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We study the superposition of primordial massive particles and compute the associated decoherence time
scale in the radiation dominated Universe. We observe that for lighter primordial particles with masses up to
107 kg, the corresponding decoherence timescale is significantly larger than the age of the observable
Universe, demonstrating that a primordial particle would persist in a pure quantum state, with its wave
function spreading freely. For heavier particles, they can still be in a quantum state while their position
uncertainties are limited by the wavelength of background photons. We then discuss three observational
signatures that may arise from a quantum superposition of primordial particles such as primordial black
holes and other heavy dark matter candidates, namely, interference effects due to superpositions of the
metric, transition lines in the gravitational wave spectrum due to gravitationally bound states indicating
the existence of gravitons, and witnesses of quantum entanglement between massive particles and of the
gravitational field.
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I. INTRODUCTION

The reconciliation of quantum theory with general
relativity (GR) has been a longstanding open problem in
physics [1–4]. A central tenet of quantum mechanics is that
quantum degrees of freedom can be superposed. A straight-
forward extension of this principle to a massive particle
opens up several issues that are at the heart of the conflict
between GR and quantum mechanics. Preserving the
unitarity and linearity of quantum mechanics, we expect
a massive superposition to manifest as a superposition of
the metric itself which if observed would be a tell-tale sign
of quantum gravitational effects.
In this work we study primordial massive particles, that

are relics from the early Universe. Examples of primordial
massive particles include dark matter candidates that may
be created in the reheating era or primordial black holes
(PBHs) that are sourced by primordial fluctuations that
reenter the horizon. We consider a particular system

comprising a primordial particle, interacting with the
photon background in the radiation dominated Universe
and demonstrate that it can exist in a superposition.
Furthermore, we compute the decoherence timescale asso-
ciated with such a state and conclude that the superposition
can persist up to present times for a range of masses. The
gravitational decoherence of light dark matter for well-
chosen initial states through the study of scattering proc-
esses with the environment was explored in [5]. This has
also been extended to the context of general relativistic
scattering [6,7]. While Ref. [6] has considered decoherence
by a single scattering particle in terms of the decay of the
system’s off-diagonal density matrix elements, with a
special focus of light dark matter with coherent oscillations,
we consider heavy dark matter and decoherence due to a
thermal environment of particles interacting with the
system through gravity. This analysis is performed for
an arbitrary initial state of the system. Furthermore,
we investigate the implications of a coherent massive
superposition to the quantum nature of gravity. In particu-
lar, we outline observational consequences relating to
interference patterns produced by such superpositions,
quantum gravitational bound states, and entanglement
witnesses.
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II. COHERENCE OF THE SUPERPOSITION

The massive particle interacts continuously with matter
and radiation in the Universe. In the following, we will
consider decoherence due to photons as a representative
example of this phenomenon. We model the massive
particle by a scalar field χ, which interacts with the photon
bath, described by the Lagrangian

L ¼ 1

2
∂μχ

†ðxÞ · ∂μχðxÞ − 1

2
M2χ2 þ 1

4
FμνðxÞFμνðxÞ − V;

ð1Þ

where M is the mass of the massive particle. In this
equation and in what follows, we will employ natural
units, ℏ ¼ c ¼ G ¼ 1. In these units, the gravitational
potential of interaction V between these fields is

V ¼
Z

d3xd3x0 M
jx − x0j χ

†ðxÞχðxÞϱðx0Þ: ð2Þ

Here, ϱðxÞ is the photon energy density at x, which is
defined in terms of the energy of single photon ϵk ¼ k as

ϱðxÞ ¼
Z

d3keik·xϵkb
†
kbk: ð3Þ

Now, a few comments are in order. First, in (2) we have
used the Newtonian approximation as opposed to a weak
field GR approach. However, the difference due to this is
expected to be an order of 1 deviation from our result for
the decoherence timescales that we calculate here. As we
are interested in an order of magnitude comparison of this
time to the age of the Universe as a preliminary illustration,
the Newtonian approximation would suffice. Second, while
decoherence has been studied extensively in QED, mostly
in the context of quantum optics, these studies focus either
on the absorption and emission of photons in a cavity, or
interactions with vacuum fluctuations, as opposed to their
gravitational effect on a scalar particle.
The decoherence of the state of the massive particle is

studied in theAppendixA in terms of the decay of trρ2 where
ρ is its reduced density matrix. We begin by considering the
Fourier transformed interaction Hamiltonian,

Hint ¼
Z

d3pd3kνðkÞϵka†papþkb
†
kbk; ð4Þ

where νðkÞ ¼ M=πk2 is the Fourier transform of gravita-
tional potential ϕðxÞ ¼ M=jxj (see Appendix B). Let ρT be
the density matrix of the system and environment combined,
and ρE be the reduced densitymatrix of the environment. The
unitary evolution of ρT under Hint interaction is given by
ρTðtÞ ¼ exp ð−iHtÞρTð0Þ exp ðiHtÞ. Sincewe are interested
in the description of the primordial particle (in terms of its
reduced density matrix ρ), we trace out the photon

environment and obtain the well-known Lindblad form for
the master equation [8],

dρ
dt

Δt ¼ i½trEðU1ρEÞ − trEðBρEÞ; ρ�

þ trE

�
U1ρTU1 −

1

2
U2

1ρT −
1

2
ρTU2

1

�
; ð5Þ

where U1 ¼ −
R
∞
−∞ dtHintðtÞ is the time evolution operator,

and B is some Hermitian operator that drops out in the one
particle sector. Here,Δt is the timescale over which we study
the evolution of ρ. This timescale is small compared to the
evolution of the system but large compared to the evolution
of the environment. The right-hand side of this equation is
also proportional to Δt, details of which can be found
in Ref. [8].
We now represent the density matrix as the function

ρðk;k0Þ ≔ hkjρjk0i, and compute the rate of change of trρ2

as an indicator of the purity of the state. We obtain

dðtrρ2Þ
dt

¼ −
1

π

Z
d3qjνðqÞj2ϵ2qnqðnq þ 1ÞΛðqÞ; ð6Þ

where ΛðqÞ is defined by

ΛðqÞ ≔ trρ2 − Re
Z

d3kd3sρðk; sÞρðs − qẑ;k − qẑÞ: ð7Þ

Having shown that ΛðqÞ ∈ ½0; trρ2�, we obtain

dðtrρ2Þ
dt

¼ −Γtrρ2; ð8Þ

where the decay rate Γ ∈ ½0;Γ0�, with

Γ0 ¼
4M2

π2

Z
∞

0

dq
q2

ϵ2qnqðnq þ 1Þ: ð9Þ

Further details of this calculation can be found in
Appendix A. Setting ϵq ¼ q, and nq to be the number
density corresponding to the Planck distribution, the
integral can be explicitly evaluated to yield

Γ0 ¼
��

16

15π2
−
96ζð5Þ
π6

�
1

β5
þ 8ζð3Þ

π4
1

β3

�
M2; ð10Þ

where ζðxÞ is the Riemann zeta function. Thus, we have
derived an upper bound on the rate of decoherence of the
massive particle due to the photons that scales as the
squared mass. Note that our approach of using trρ2 to
quantify purity is basis independent, although we have used
the momentum basis to perform intermediate calculations
for simplicity.
We neglect the decoherence due to baryonic matter

in our estimate. While, the source of gravitational
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decoherence comes from both the background density of
matter and radiation, we argue that radiation is the main
source of decoherence. This is trivial in the radiation
dominated era. In the matter dominated era, the matter
has already formed localized distributions such as stars and
galaxies. While the gravitational field due to these large
structures could potentially become strong, it is homo-
geneous in the small spatial region around the particle. This
homogeneous gravitational field is equivalent to acceler-
ation by the equivalence principle and does not contribute
to any significant decoherence.
That being said, the result in (9) is also generally

applicable to decoherence caused by the baryonic matter
with ϵq ¼ m2 and nq taken to be the Fermi-Dirac distri-
bution ð1þ exp βq2=2mÞ−1 in the nonrelativistic limit.
However, in this case the integrand in (9) is ∝ q−2 in
the IR limit, and hence the integral diverges. We resolve
this issue by using a better upper bound than trρ2 in the
derivation of (9). We show in Appendix C that indeed in the
IR limit, this introduces a factor ∝ q2 that alleviates
the divergence. It must be noted that this argument also
holds for photons and will yield a better bound Γ0 in place
of (10).
We observe in Fig. 1 that for a range of temperatures

spanning the current temperature (2.7 K) of the Universe to
that at the time of recombination (3000 K) the decoherence
rate is mild enough such that even a single percentage
drop in purity [the corresponding time taken is
t0.01 ¼ − lnð0.99Þ=Γ0] occurs at timescales several orders
greater than the age of the Universe for M ¼ 1 kg.
Considering the M−2 dependence of this time, we can
safely neglect decoherence for particles at a mass scale of
order 107 kg or lower. While we can extend our discussion
to more massive candidates of dark matter, such as massive
compact halo objects [9–11], they decohere rather quickly
as calculated above. However, it is still possible to observe
effects of quantum spread as their localization in position

can only be of order of the wavelength of the cosmic
microwave background (CMB) photons.
Similarly, we also compute the minimum spread asso-

ciated with a primordial particle in the time when
decoherence is negligible. For demonstration, we consider
an initial Gaussian state of the primordial particle with
initial spread s0. After time t the spread of the wave
function is

sðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s40 þ ðℏt=mÞ2

s20

s
: ð11Þ

This can be minimized in s0 to give the minimum value of
sðtÞ to be

sminðtÞ ¼
ffiffiffiffiffiffiffi
2ℏt
m

r
: ð12Þ

For instance, for a primordial particle of mass 1011 GeV
formed during the early Universe, t ≈ 14 billion years, and
we get the minimum spread today as smin ≈ 0.72 m. Note
that this is only the minimal wave function spread con-
sidering the uncertainty principle. The initial condition of
the particle may allow more dramatic spread of the wave
function, depending on the production mechanism of the
primordial particle.

III. OBSERVABLE CONSEQUENCES

Having shown that a class of massive particles do not
decohere significantly since their formation through the
interaction with photons in the radiation dominated
Universe, we will discuss how a superposition of massive
particles and its QG effects can be observed. We will
consider three classes of observations: (i) experiments that
distinguish between classical spreads and quantum super-
positions of the stress energy tensor, (ii) stationary states
and transitions, and (iii) signatures of entanglement.
The quantum nature of gravity, unlike standard field

theory, comprises two distinct aspects—whether the metric
can exist in a superposition, and whether there is a
quantized force carrier for gravity—the graviton. Of the
three proposed signatures, the first allows us to probe the
quantum nature of the metric. The second signature
explores the existence of atomlike bound states for super-
positions with a discrete absorption spectrum hinting at the
existence of gravitons. Finally, detecting entanglement
between the components of the bipartite system interacting
gravitationally demonstrates that the gravitational field
mediating the interaction is quantum.

IV. SUPERPOSITION EFFECTS

One of the key questions we wish to answer about the
nature of quantum gravity is how superpositions of matter
affect the construction of the stress-energy tensor and in

FIG. 1. Plots of the maximum decoherence rate Γ0 and time
taken for 1% decoherence due to background photons t0.01 of a
1 kg primordial particle as a function of the temperature of the
Universe. Note that Γ0 scales as M2 while t0.01 scales as M−2.
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turn affect the associated gravitational field. In a semi-
classical treatment of quantum field theory (QFT) in curved
spacetime, one might consider a background value of the
stress energy tensor that is in actuality an expectation value
over possible quantum states of the Universe, effectively
treating the stress energy tensor classically. Alternatively, in
a fully quantum approach [12], one may consider a many-
worlds scenario—one for each distribution of matter and all
of them superposed linearly.
As an illustration consider the following: it is well known

that massive objects distort the path of passing light around
them giving rise to gravitational lensing. We investigate
how this phenomenon will occur with a massive object
(such as a PBH or a heavy particle) with a spread in wave
function. Consider a detector on Earth that measures the
angular intensity Iðθ;ϕÞ of radiation coming from different
azimuths θ and declinations ϕ. Let Tμν be the stress energy
tensor associated with the superposed massive object with
its center described by a wave function ψðxÞ, and let
αðθ;ϕ; TμνÞ be the corresponding angular amplitude of
radiation from a distant source, lensed by Tμν and observed
on Earth in that direction. Then, we may compute a
semiclassical average Tμν defined by

hTμνðxÞi ¼
Z

d3x0jψðx0Þj2τμνðx − x0Þ; ð13Þ

where τμνðxÞ is the energy momentum tensor at x of the
massive object centered at the origin. In the semiclassical
picture, we will expect to observe a lensing pattern due to
this expectation value, hTμνi, whose intensity Icl is given by

Iclðθ;ϕÞ ¼ jαðθ;ϕ; hTμνiÞj2: ð14Þ

However, we can alternatively consider a coherent sum
over the amplitudes given by

Iqgðθ;ϕÞ ¼
����
Z

d3x0ψðx0Þαðθ;ϕ; Sx0τμνÞ
����2; ð15Þ

where Sx0τμν is the shifted energy momentum tensor,
Sx0τμνðxÞ ¼ τμνðxþ x0Þ. We will expect these intensities
Icl and Iqg to be qualitatively different, which would in turn
be an observable signature. Icl would be equivalent to the
lensing pattern produced by an extended object, while Iqg
would show the emergence of a diffraction pattern corre-
sponding to the interference of Einstein rings generated by
each individual branch of the PBH superposition.
This effect resembles Feynman’s thought experiment

[13] to witness the quantum effects of gravitational field
through a double slit experiment with single particles in
presence of gravitational field. It has been argued that this
does not prove the existence of noncommuting comple-
mentary observables of the gravitational field [14] and thus
does not prove that the gravitational field is quantum in the

quantum information theoretic sense. However, in this
work, we have demonstrated that a cosmological massive
particle can persist in a superposition. Thus, in the case of a
coherent sum over amplitudes in (15), we are adding
geodesics corresponding to different stress energy tensors,
rather than only considering the effect of gravitational field
on the phase. While this is still not conclusive evidence of
quantum nature in the quantum information theoretic sense,
we expect the interference pattern to be more exotic than a
simple double slit pattern that could be reasonably pro-
duced by an alternative classical mechanism. A more
rigorous signature of the quantum nature of the gravita-
tional field could be constructed by considering the role of
entanglement as discussed subsequently under entangle-
ment effects.

V. STATIONARY STATES AND TRANSITIONS

A quantum system of heavy massive particles, possibly
belonging to the dark matter sector, can now exist in a
quantum bound state [15,16]. As an illustration, consider a
pair of such particles of mass M bound by mutual
gravitation. We expect that this system would not emit
gravitational waves as long as it is in a stationary quantum
state. However, similar to atoms, this system would absorb
and emit gravitational waves during transitions.
First, we compute the spectrum of energies by

quantizing the total angular momentum similar to the
Bohr atom. The total energy of a state with principal
quantum number n is

En ¼ −
G2M5

4ℏ2n2
¼ −1.84 × 10−32

�
Mc2

1011 GeV

�
5 1

n2
J: ð16Þ

The corresponding orbit radius from the common center of
mass is

rn ¼
ℏ2n2

GM3
¼ 29.1

�
1011 GeV

Mc2

�
3

n2 pm: ð17Þ

Note that the radius of this orbit is much smaller than the
minimal uncertainty in position of a 1011 GeV mass,
calculated using (12). Similarly, the velocity of the particle
in orbit is given by

vn ¼
Gm2

2nℏ
¼ 10.1

�
Mc2

1011 GeV

�
2 1

n
ðnm=sÞ: ð18Þ

Note that this approximation is only valid when vn ≪ c, or
correspondingly M ≪ 1019GeV=c2, which is expected
generally of dark matter particles. Imagine the scenario
when a gravitational wave passes through a cloud of these
bound states. As the spectrum of energies is discrete, we
would expect to see absorption lines similar to the hydro-
gen atom spectrum. The frequencies of such lines can be
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expressed in terms of the principal quantum numbers of
initial and final states n and m as

νnm ¼ E0

ℏ

�
1

m2
−

1

n2

�
;

¼ 174

�
Mc2

1011 GeV

�
5
�

1

m2
−

1

n2

�
Hz: ð19Þ

The gravitational cross section for absorption has been
calculated to be of the order l2p [15]. Although this is very
small, we can consider the augmenting effect of dark matter
prevalent over astronomical distances. While we may not
observe very dark lines like the EM atoms, we could expect
dips in the GW spectrum. Furthermore, this effect will
depend on whether we can get a small enough line width,
corresponding to a large intensity drop at specific frequen-
cies. Despite the significant observational challenge this
poses, it is worthwhile to investigate this possibility
thoroughly as it is among the few known direct indicators
of the graviton.

VI. ENTANGLEMENT EFFECTS

Having shown that a primordial massive particle can
exist in a coherent quantum state, it is natural to expect the
emergence of entanglement in superpositions of composite
systems. For instance, similar to the entanglement between
the proton and electron of the hydrogen atom, constituent
primordial particles of binary systems will also be
entangled.
The entangled pair would undergo interference that is

markedly different from the unentangled case [14,17].
However, it remains a challenge to identify the comple-
mentary observables [18–20] that need to be measured on
the subsystems to construct an entanglement witness. We
also remark that the transfer of entanglement effects
between the primordial entangled pair and other interacting
species that scatter off the pair or interact gravitationally
with it could be witnessed through the correlation functions
of the scattered particles. We emphasize the importance of
this effect as the creation of entanglement between particles
whose interaction is mediated solely by gravity is a
direct witness of the quantum nature of the gravitational
field [14,17].
Generalizing the above arguments to many body

systems, one could consider a massive condensate of
primordial particles, similar to axion stars. A class of
witnesses predicated on the non-Gaussianity [21] of the
state can be used as a probe of the quantum nature of the
self-gravitational effects.
Furthermore, we can consider a stationary state of two

particles as discussed earlier. We may assume that the total
state of the two-particle system is pure, which is reasonable
given that there is limited decoherence from the environ-
ment. As an entanglement witness, we may measure the

trρ21, where ρ1 is the reduced density matrix of one of the
particles (labeled as 1). We can then conclude that the
particles are entangled if the value of trρ21 deviates
significantly from unity.

VII. CONCLUSION AND DISCUSSIONS

We have demonstrated that primordial particles can
persist in a quantum state after interacting gravitationally
with the dominant constituents of the Universe at various
epochs. The decoherence time of a primordial particle
formed during recombination scales as M2 yielding an
upper bound of 107 kg on the mass of primordial particles
that we expect to survive in a coherent state till present
time. This is significant from the standpoint of quantum
gravity where massive superpositions are expected to get
entangled to the gravitational field probing its quantum
nature. Our work provides a natural foray into the founda-
tions of quantum gravity and helps ascertain the necessary
postulates expected in candidate theories of quantum
gravity.
There are many topics which deserve to be explored

further. For example, the difference between the interfer-
ence patterns Icl and Iqg introduced in (14) and (15),
respectively, can be calculated explicitly and in greater
detail. Furthermore a comprehensive study of the nature
and observability of the absorption lines must be con-
ducted. We hope to address these issues in future work.
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APPENDIX A: DECOHERENCE OF MASSIVE
PARTICLE IN A PHOTON BATH

We study the decoherence rate of the model from (1) and
(2). We can introduce creation and annihilation operations
a†k and ak for χ, and b†k and bk for photons, respectively,
and define νðkÞ to be the Fourier transform of gravitational
potential ϕðxÞ ¼ M=jxj (see Appendix B),

νðkÞ ¼ 1

2π

Z
d3xe−ik·xϕðxÞ ¼ M

πk2
: ðA1Þ

Then
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Hint ¼
Z

d3pd3kνðkÞϵka†papþkb
†
kbk: ðA2Þ

We define the Fourier transformed number density of
massive particle as

Nk ¼
Z

d3pa†papþk: ðA3Þ

Then

Hint ¼
Z

d3kνðkÞϵkNkb
†
kbk: ðA4Þ

1. Evolution of density matrix

We now study the evolution of the reduced density
matrix ρ of the massive particle to calculate the time of
decoherence under this interaction. The master equation
has been studied in Ref. [8] and takes the Lindblad form
given as follows:

dρ
dt

Δt ¼ i½trEðU1ρEÞ − trEðBρEÞ; ρ�

þ trE

�
U1ρTU1 −

1

2
U2

1ρT −
1

2
ρTU2

1

�
; ðA5Þ

where B is an arbitrary Hermitian operator, which would
not be relevant in the slow motion approximation where the
time evolution of Nk is neglected in comparison to the
rapidly evolving environment, and U1 is the time evolution
operator defined by

U1 ¼ −
Z

∞

−∞
dtHintðtÞ ≈ −

Z
d3kνðkÞϵkNkb

†
kbk: ðA6Þ

Here, Δt is the timescale over which we study the evolution
of ρ. This timescale is small compared to the evolution of
the system but large compared to the evolution of the
environment. The right-hand side of this equation is also
proportional to Δt as calculated in Ref. [8]. We then obtain
the following differential equation describing ρ,

dρ
dt

¼ −i
�
H0 −

Z
d3kdðkÞNkN

†
k; ρ

�

þ
Z

d3kcðkÞ
�
NkρN

†
k −

1

2
N†

kNkρ −
1

2
ρN†

kNk

�
:

ðA7Þ

Here, H0 is the free Hamiltonian of the massive particle,
dðkÞ is some function of k which depends on the operator
B in (A5), and cðkÞ is a function describing the photon
environment given by

cðkÞ ¼ 1

2π
jνðkÞj2ϵ2khb†kbkb†kbkiE ;

¼ 1

2π
jνðkÞj2ϵ2knkðnk þ 1Þ: ðA8Þ

Here, we have used the thermal density of photons nk in
place of hb†kbki. Notice that the integral containing dðkÞ in
(A7) is a c number due to the slow motion approximation
and its commutator with ρ vanishes. We further restrict our
focus to the one particle sector for the massive particle.
Then the density matrix in (A7) reduces to a function
ρðk;k0Þ ≔ hkjρjk0i of two momenta, k and k0. In this
representation,

hkj½H0; ρ�jk0i ¼ hkj k
2

2M
ρ − ρ

k02

2M
jk0i;

¼ k2 − k02

2M
ρðk;k0Þ: ðA9Þ

Further, as NkN
†
k acting on the one particle state is

a c number, the commutator of
R
d3kdðkÞNkN

†
k with

ρ vanishes for any function dðkÞ. Likewise,

hkjNqρN
†
qjk0i ¼ hk − qjρjk0 − qi ¼ ρðk − q;k0 − qÞ;

hkjN†
qNqρjk0i ¼ hkjρN†

qNqjk0i ¼ hkjρjk0i ¼ ρðk;k0Þ:
ðA10Þ

Also, as νðkÞ only depends on the magnitude k, we shall
write νðkÞ to denote it. With these simplifications, (A7)
becomes

dρ
dt

ðk;k0Þ ¼ −iρðk;k0Þ k
2 − k02

2M

þ 1

2π

Z
d3qjνðqÞj2ϵ2qnqðnq þ 1Þ

× ½ρðk − q;k0 − qÞ − ρðk;k0Þ�: ðA11Þ

2. Master equation for trρ2

We now derive a master equation for trρ2. First, in the
function form ρðk;k0Þ, ρ2 is given by

ρ2ðk;k0Þ ¼
Z

d3sρðk; sÞρðs;k0Þ: ðA12Þ

The evolution of trρ2 is given by
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dðtrρ2Þ
dt

¼
Z

d3kd3s

�
ρðk;sÞdρðs;kÞ

dt
þdρðk;sÞ

dt
ρðs;kÞ

�
;

¼ 1

2π

Z
d3qjνðqÞj2ϵ2qnqðnqþ1Þ

×
�
−2trρ2þ2Re

Z
d3kd3sρðk;sÞρðs−q;k−qÞ

�
:

ðA13Þ

For the purpose of the integrals over s and k, the direction
of q is arbitrary and can be chosen to be along the z axis. In
other words, the integral only depends on the magnitude of
q. We can define

ΛðqÞ≔ trρ2−Re
Z

d3kd3sρðk;sÞρðs−qẑ;k−qẑÞ: ðA14Þ

Then

dðtrρ2Þ
dt

¼ −
1

π

Z
d3qjνðqÞj2ϵ2qnqðnq þ 1ÞΛðqÞ: ðA15Þ

3. Bounds on ΛðqÞ
To calculate bounds on ΛðqÞ, we define

αðqÞ ≔
Z

d3kd3sρðk; sÞρðs − qẑ;k − qẑÞ

¼ trρρ̃q; ðA16Þ

where ρ̃qðs;kÞ ≔ ρðs − qẑ;k − qẑÞ is the “displaced”
density matrix. It has been shown [22] that for any real
symmetric n × n matrix B and any arbitrary real n × n
matrix A,

Xn
i¼1

λ0iμn−iþ1 ≤ trðABÞ ≤
Xn
i¼1

λiμi: ðA17Þ

Here, λi, λ0i, and μi denote the ith eigenvalue of A and the
transpose of A and B, respectively, when arranged in
ascending order.
Now, let A ¼ ρ and B ¼ ρ̃q. A and its transpose have the

same set of eigenvalues, say fλig, and let the set of
eigenvalues of B be fμig. Further, A and B are both valid
density matrices and their eigenvalues represent probability
to be found in some pure quantum state. Thus, they must all
be positive. Thus, the lower bound in (A17) is 0. We note
that trA2 ¼ trB2 ¼ trρ2, trA2 ¼ P

i λ
2
i , and trB2 ¼ P

i μ
2
i .

Then the upper bound can be obtained using the Cauchy-
Schwartz inequality as

trðABÞ ≤
Xn
i¼1

λiμi ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�X
i

λ2i

��X
i

μ2i

�s
¼ trρ2: ðA18Þ

Thus

αðqÞ ∈ ½0; trρ2� ðA19Þ

and

ΛðqÞ ¼ trρ2 − αðqÞ ∈ ½0; trρ2�: ðA20Þ

4. Evolution of trρ2

All the terms in (A15) only depend on the scalar
magnitude of q. Thus, we can integrate out the solid angle
to 4π, and substitute ν from (A1) and the bounds on ΛðqÞ
to get

dðtrρ2Þ
dt

¼ −Γtrρ2; ðA21Þ

where the decay rate Γ ∈ ½0;Γ0�, with

Γ0 ¼ −
4M2

π2

Z
∞

0

dq
q2

ϵ2qnqðnq þ 1Þ: ðA22Þ

For a thermal bath of photons, ϵq ¼ q is the photon energy
and nq is the number density corresponding to the Planck
distribution,

nq ¼ q2

π2ðeβq − 1Þ ; ðA23Þ

in natural units with β ¼ ðkBTÞ−1. However, this derivation
holds for any species of thermal particles in the background
with the right choice of nq and ϵq, and combinations of
them with Γ0 being additive.

APPENDIX B: FOURIER TRANSFORM OF
GRAVITATIONAL POTENTIAL

Here, we derive the Fourier transform of gravitational
potential and prove (A1). We have

νðkÞ ¼ 1

2π

Z
d3xe−ik·xϕðxÞ;

¼ M
2π

Z
∞

0

dxx
sin kx
kx

: ðB1Þ

We see that this integral is oscillatory and thus does not
converge. Hence, we modify the potential to include a
Yukawa term e−λx for λ > 0 and set it to 0 after integration.
That is,

ϕðxÞ ¼ M
x
e−λx: ðB2Þ

Then
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νðkÞ ¼ M
2π

Z
∞

0

dxx
Z

1

−1
dte−ikxt−λx;

¼ M
π

1

k2 þ λ2
¼λ→0 M

πk2
; ðB3Þ

as stated in (A1).

APPENDIX C: DECOHERENCE
DUE TO FERMIONS

We begin by computing a better bound for ΛðqÞ in place
of (A20). Observe that when q ¼ 0, ρq ¼ ρ, αð0Þ ¼ trρ2,
and thus Λð0Þ ¼ 0. Also, as ΛðqÞ is an even function its
first derivative must vanish. Then, in the small q limit, it
will be approximated by a Taylor expansion with leading
term ∝ q2. To calculate this approximation, consider the
density matrix expressed in terms of its eigenvectors jψ ii
and corresponding eigenvalues λi as

ρ ¼
X
i

λijψ iihψ ij: ðC1Þ

Then,

ρ2 ¼
X
i

λ2i jψ iihψ ij: ðC2Þ

We define Sq to be the shift operator in momentum
expðiqZÞ, which acts on momentum eigenstates as
Sqjpi ¼ jpþ qẑi. Here Z is the z component of the
position operator. Then,

ρq ¼
X
i

λ2i Sqjψ iihψ ijS−1q : ðC3Þ

Now, ΛðqÞ can be written in terms of λi, jψ ii, and Sq,

ΛðqÞ ¼
X
i;j;k

λiλjhψkjψ iihψ ijSqjψ jihψ jjS−1q jψki

−
X
i

λ2i : ðC4Þ

We expand Sq to second order in q and use orthonormality
of jψ ii to get

ΛðqÞ ¼ 1

2
q2
X
i≠j

λiλjjhψ ijZjψ jij2;

≤
1

2
q2hx2iρ ≤ q2hx2iρtrρ2: ðC5Þ

Here, hx2iρ is the expectation value of x2 under the density
matrix ρ. The last inequality is because we are only
interested in values of trρ2 close to 1. This approximation

however is only valid in the low q limit, q≲ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2iρtrρ2

q
.

Let D ≔ hx2iρtrρ2. Then, (9) for decoherence due to
fermions of mass m becomes

Γ0 ¼
4M2m2

π2

�Z 1ffiffi
D

p

0

dqDnqðnq þ 1Þ

þ
Z

∞

1ffiffi
D

p

dq
q2

nqðnq þ 1Þ
�
: ðC6Þ
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