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Recent BICEP/Keck data on the cosmic microwave background, in combination with previous
WMAP and Planck data, impose strong new constraints on the tilt in the scalar perturbation spectrum,
ns, as well as the tensor-to-scalar ratio, r. These constrain the number of e-folds of inflation, N�, the
magnitude of the inflaton coupling to matter, y, and the reheating temperature, Treh, which we evaluate in
attractor models of inflation as formulated in no-scale supergravity. The 68% C.L. region of ðns; rÞ favors
large values of N�; y, and Treh that are constrained by the production of gravitinos and supersymmetric dark
matter.
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I. INTRODUCTION

Successive releases of data on perturbations in the
cosmic microwave background (CMB) [1] have provided
increasingly strong upper limits on the tensor-to-scalar
ratio, r, and hence sharpened focus on models of inflation
that favor small values of r, such as the original Starobinsky
model [2] that predicts r ∼ 0.004 for 55 e-folds. The recent
release of the BICEP/Keck [3] data has followed this trend,
imposing the bound r0.05 < 0.036 at the 95% C.L. where
the subscript denotes the pivot scale in Mpc−1. Moreover,
the combination of WMAP, Planck, and BICEP/Keck data
constrains the scalar tilt to the limited range 0.958 < ns <
0.975 at the 95% C.L. for r ¼ 0.004. A further analysis by
[4] used magnetic (BB) autocorrelation data from [5] and
allowed a free reionization optical depth and obtained a
lower limit on the scalar-to-tensor ratio to r0.05 < 0.032,
with a slightly relaxed range on the spectral tilt 0.956 <
ns < 0.974 at the 95% C.L. for r ¼ 0.004.

The Starobinsky model is not alone in accommodating
the upper limit on r. For example, Higgs inflation predicts a
similar value of r [6], and similar potentials appear
naturally in the context of supergravity, including no-scale
supergravity [7,8]. In particular, the simplest no-scale
supergravity models characterized by a Kähler potential
of the form K ¼ −3 lnðT þ T̄ − jϕj2=3Þ, where T and ϕ are
complex scalar fields, predict a Starobinsky-like value of r
[9], but the no-scale supergravity framework can also
accommodate other possibilities [10].
For example, generalizing −3 → −3α as the coefficient

of the logarithm modifies the prediction for r by a factor α,
as was first pointed out in [11] and subsequently in [12].
Such a modification of the simplest no-scale model is a
natural possibility in compactified string models, where T
may be interpreted as the volume modulus [13], which is a
product of three independent compactification moduli
Ti∶i ¼ 1, 2, 3. Models in which inflation is driven by
one (two) of these moduli correspond to α ¼ 1=3ð2=3Þ
[11]. Larger values of α are also possible, since string
compactifications also have complex structure moduli that
can contribute to the inflationary dynamics [14].
A common feature of these no-scale supergravity models

is a quadratic singularity in the kinetic term for the inflaton.
This feature leads generically to an effective potential for
the canonically normalized inflaton field with a plateau that
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leads to a quasi-de Sitter inflationary epoch similar to that
in Starobinsky inflation. This property was abstracted from
the no-scale models in [14], where they were baptized
“attractor” models. Two specific types of attractor potential
can be distinguished [11,12,15,16],1
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where φ is the canonically normalized inflaton field,MP ¼
1ffiffiffiffiffiffi
8πG

p ≃ 2.435 × 1018 GeV the reduced Planck mass, and λ

the potential scale determined from the CMB normalization
and the inflaton field value at horizon crossing.2 For the
attractor models discussed here, increasing the value of α
reduces the flatness of the plateau at the inflaton field value
at the horizon crossing of the CMB scale, φ�, which affects
the cosmological observables ns and r. It was argued in
[10–12,15,16,18] that broad classes of attractor models lead
to identical predictions of ns and r in the limit of a large
number of e-folds, N�.

3 In the context of supergravity, the
parameter α determines the curvature of the internal Kähler
manifold: R ¼ 2=α.4

In this paper, we explore the impact of the latest BICEP/
Keck/WMAP/Planck constraints in the ðns; rÞ plane on the
α-Starobinsky and T-model inflationary attractors (see also
[20]) from both [3,4]. From the analysis in [3], we find that
the region of CMB parameters favored at the 68% C.L. by
the combination of CMB data favors N0.05 ≳ 50.9ð52.6Þ in
the α-Starobinsky (T models), corresponding to an inflaton
decay coupling y≳ 1.7 × 10−6ð1.7 × 10−4Þ for α ¼ 1, with
an order of magnitude sensitivity to α ∈ ð0.1; 5Þ.5 In
contrast, the analysis in [4] yields substantially weaker

bounds, N0.05 ≳ 47.9ð49.4Þ in the α-Starobinsky (T mod-
els), corresponding to an inflaton decay coupling y≳ 1.9 ×
10−10ð1.2 × 10−8Þ for α ¼ 1.6 Additionally, supergravity
models must avoid overproducing gravitinos and super-
symmetric dark matter [21,22]. We find that based on [3] α-
Starobinsky models that respect these constraints fall inside
the region favored by the CMB data at the 68% C.L. only
for α ∈ ð0.67; 12Þ and that T models fall inside this region
only for α ∈ ð1.3; 5.1Þ. At the 95% C.L., these ranges are
(0, 26) and (0, 11), respectively. Based on [4], the 68% C.L.
ranges are (0.4, 12) and (0.5, 7) for the α-Starobinsky and T
models, respectively, and the 95% C.L. ranges are (0, 24)
and (0, 12).7

II. INFLATIONARY DYNAMICS

The dynamics of the inflaton is characterized by the action

S ¼
Z

d4x
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where the effective scalar potential is given by Eq. (1) or (2).
We use for our analysis the conventional slow-roll para-
meters, which are given in single-field inflationary
models by
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where the prime denotes a derivative with respect to the
inflaton field, φ. In the slow-roll approximation, the number
of e-folds can be computed using
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where k� ¼ 0.05 Mpc−1 is the pivot scale used in thePlanck
analysis. The end of inflation occurs when ä ¼ 0,
i.e., _φ2

end ¼ VðφendÞ.
The principal CMB observables, namely, the scalar tilt,

ns, the tensor-to-scalar ratio, r, and the amplitude of the
curvature power spectrum, AS, can be expressed as follows
in terms of the slow-roll parameters:

ns ≃ 1 − 6ϵ� þ 2η�; ð6Þ

r ≃ 16ϵ�; ð7Þ

AS� ≃
V�

24π2ϵ�M4
P
; ð8Þ

1We note that α-Starobinsky models are also known as E
models [17].

2The normalization of the potentials is chosen so that the
inflaton normalization scale coincides in both cases and is given
by Eq. (14). This choice does not affect the CMB observables ns
and r.

3We note that the potentials (1) and (2) are identical at zeroth

and first order in e−
ffiffiffi
2
3α

p
φ

MP but differ at higher orders and so make
different predictions when φ=

ffiffiffi
α

p ¼ OðMPÞ. One could, in
principle, consider other attractor potentials that are also equiv-
alent at zeroth and first order, but these are the options commonly
considered in the literature.

4In general, the Kähler curvature R depends on the total
number, n, of chiral fields describing the theory [7,8,16,19],
R ¼ nðnþ 1Þ=3α, and this result holds for two chiral fields,
which is the minimal number needed to construct a plateaulike
potential in no-scale supergravity [11].

5The corresponding 95% limits are N ≳ 45.9ð47.5Þ and
y≳ 3.8 × 10−13ð3.6 × 10−11Þ, respectively.

6In this case, the corresponding 95% C.L. are N ≳ 42.9ð44.6Þ
and y≳ 2.8 × 10−17ð4.0 × 10−15Þ, respectively.

7Here, the lower bound α > 0 arises because α ¼ 0 leads to a
completely flat potential that is not suitable for inflation.
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where V� ¼ Vðφ�Þ and AS� ≃ 2.1 × 10−9 [1]. In the large
N� limit, the inflationary attractor potentials (1) and (2)
predict [11]

ns ≃ 1 −
2

N�
; r ≃

12α

N2�
; ð9Þ

where the approximation holds for α≲Oð1Þ in α-
Starobinsky models, and the full analytical expression
can be found in [22].
Using expression (5), we can calculate the approximate

value of the inflaton field at the horizon exit scale k� [23]
when α ¼ 1,
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where φend was calculated using the expression
ϵ ¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − η=2
p Þ2, and the full analytical approxima-

tions for φ� and φend can be found in the Appendix A,
where they are given by Eqs. (A2)–(A5). Combining the
expressions above with expression (8) for the curvature
power spectrum, we find that the inflaton normalization
scale is proportional to λ, which is in turn proportional to α
and given by

λ ≃
24απ2AS�

N2�
: ð14Þ

We now calculate the number of e-folds, N�, assuming that
there is no additional entropy injection between the end of
reheating and when the horizon scale k� reenters the
horizon [24,25],
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where the present Hubble parameter and photon temper-
ature are given by H0 ¼ 67.36 km s−1Mpc−1 [26] and

T0 ¼ 2.7255 K [27]. Here, ρend and ρrad are the energy
density at the end of inflation and at the beginning of the
radiation domination era when w ¼ p=ρ ¼ 1=3, respec-
tively, and a0 ¼ 1 is the present day scale factor and greh ¼
915=4 the effective number of relativistic degrees of
freedom in the minimal supersymmetric standard model
at the time of reheating. The equation of state parameter
averaged over the e-folds during reheating is

wint ≡ 1

Nrad − Nend

Z
Nrad

Nend

wðnÞdn: ð16Þ

Using the numerical values given above with the Planck
pivot scale k� ¼ 0.05 Mpc−1,8 we find the following value
for the sum of the first two lines in (15): N� ≃ 61.04þ � � �.
Mechanisms for producing a baryon asymmetry (such
as leptogenesis) are simplified when Treh≳ the electroweak
scale. Accordingly, we also display results for a reheating
temperature Treh ¼ TEW ∼ 100 GeV, while acknowledging
that lower reheating temperatures are possible.
For Treh ¼ TEW, we take the Standard Model value for
greh ¼ 427=4 and find NEW ¼ 61.10þ � � �. The minimum
reheating temperature that is compatible with big bang
nucleosynthesis (BBN) is Treh ≳Oð1Þ MeV. Using
TBBN ¼ 2 MeV in our numerical analysis, corresponding
to greh ¼ 10.75, the sum of the first two lines of (15) takes
the following numerical value: NBBN ≃ 61.29þ � � �.
To calculate the values of N�, NEW, and NBBN numeri-

cally, we use the following equations that govern the
cosmic background dynamics:

_ρφ þ 3Hρφ ¼ −Γφρφ; ð17Þ
_ρr þ 4Hρr ¼ Γφρφ; ð18Þ

ρφ þ ρr ¼ 3M2
PH

2; ð19Þ

d
dt

ðNwintÞ ¼ Hw; ð20Þ

where ρφ and ρr are the energy densities of the inflaton and
produced radiation, respectively, and Γφ is the inflaton
decay rate given by

Γφ ¼ y2

8π
mφ; ð21Þ

where y is a Yukawa-like coupling, and we find the
following masses in the inflationary attractor potentials
(1) and (2),

mφ ¼
ffiffiffi
λ

α

r
MP; ðα-StarobinskyÞ; ð22Þ

8We note that when we calculate the tensor-to-scalar ratio r0.002
numerically, we evaluateN� at the pivot scale k� ¼ 0.002 Mpc−1.
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mφ ¼ 1

2

ffiffiffi
λ

α

r
MP; ðT ModelÞ:

III. REHEATING

The reheating process occurs after the end of inflation in
a matter-dominated background. As the inflaton starts to
decay, the dilute plasma reaches a maximum temperature,
Tmax [28,29], and subsequently starts falling as T ∝ a−3=8.
The reheating temperature is defined through [30,31]

π2grehT4
reh

30
¼ 12

25
ðΓφMPÞ2; ð24Þ

when the energy density of the inflaton is equal to the
energy density of radiation, corresponding to

Treh ≃ 1.9 × 1015 GeV · y · g−1=4reh

�
mφ

3 × 1013 GeV

�
1=2

: ð25Þ

In order to evaluate the constraint on Treh from over-
production of supersymmetric dark matter in scenarios
where the gravitino is lighter than Treh, we use the
expression [29,32]9

Y3=2ðTÞ ¼ 0.00336

�
1þ 0.51

m2
1=2

m2
3=2

��
Γφ

Mp

�
1=2

; ð26Þ

where Y3=2 ≡ n3=2=nrad is the gravitino yield,
nrad ¼ ζð3ÞT3=π2, m3=2 the gravitino mass, and m1=2 the
gluino mass [33–35]. Disregarding the term m2

1=2=m
2
3=2 in

(26) and using the observed dark matter density today,
ΩCDMh2 ≃ 0.12, we find the following upper limit on the
Yukawa-like inflaton coupling, assuming that the gravitino
decays after the lightest supersymmetric particle (LSP)
decouples,

jyj < 9.2 × 10−8

ffiffiffiffiffiffiffi
MP

mφ

s �
100 GeV
mLSP

�
; ð27Þ

where mLSP is the mass of the LSP, and the inflaton
masses for the different inflationary attractor potentials are
given by Eqs. (22) and (23).10 We note that since
mφ ∝ 1=

ffiffiffi
α

p
, jyj ∝ α1=4.11

In high-scale supersymmetry models in which the
gravitino mass may be significantly larger than the electro-
weak scale and the other supersymmetric particles are
heavier than the inflaton, the gravitino, which is now the
LSP, is pair produced via its longitudinal components [37].
In such a scenario, we find [38]

Ω3=2h2 ≃ 0.12

� jyj
3.0 × 10−7

�
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3 × 1013 GeV

�
67=10

×

�
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�
3
�
0.030
α3

�
16=5

; ð28Þ

where m3=2 is the gravitino mass, and α3 is the strong
coupling. Using the observed dark matter abundance today
to constrain Ω3=2h2, we find that avoiding overproduction
of dark matter imposes the following bound:

jyj < 6.6 × 10−16
�
MP

mφ

�
67=38

�
m3=2

0.1 EeV

�
15=19

: ð29Þ

We note that in a nonsupersymmetric theory there would, in
general, be a lower limit on y due to the fact that it generates
radiative corrections ∝ y4 in the effective inflaton potential
[39]. However, this is not the case in supersymmetric
models such as those discussed above, where these radi-
ative corrections cancel down to the level of the relatively
small supersymmetry-breaking effects [40].

IV. RESULTS

We solve the cosmic background equations (17)–(20)
numerically to determine the number of e-folds N�, NEW,
and NBBN. In the α ¼ 1 case, the procedure of calculating
the analytical approximations for N� is given in
Appendix A [see Eqs. (A11) and (A12)]. The full numerical
computation of the CMB observables is discussed in
Appendix B.
Figure 1 summarizes our numerical results based on the

analysis of [3]: those for α-Starobinsky models are shown
in the upper pair of panels and those for T models in the
lower pair. For each of the two models, we derive limits on
N� from the requirements that Treh > 2 MeV (100 GeV)
and the supersymmetric relic density when mLSP ¼
100 GeV. The former gives a lower limit to N�, while
the latter gives an upper limit. We also derive the corre-
sponding limits on y. These are compared to the 68% and
95% C.L. on N and y from the BICEP/Keck constraints on
ns. For α ¼ 1, we find the following limits:

9We use here an analytical approximation since there is only a
0.03% difference between the analytical and fully numerical
calculation.

10If the gravitino is the LSP, the second term in the brackets in
(26) must be taken into account, and the constraint on y depends
on the ratio m1=2=m3=2.

11For another recent analysis of gravitino constraints in light of
the BICEP/Keck results, see [36].
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α-Starobinsky∶

41.8ð45.6Þ < N� < 51.8;

1.7 × 10−18ð1.6 × 10−13Þ < jyj < 2.6 × 10−5;

N68% ¼ 50.9; N95% ¼ 45.9;

Treh;68% ¼ 8.7 × 108 GeV; Treh;95% ¼ 2.4 × 102 GeV;

y68% ¼ 1.7 × 10−6; y95% ¼ 3.8 × 10−13; ð30Þ

TModel∶

42.0ð45.8Þ<N�<52.1;

2.3×10−18ð2.2×10−13Þ< jyj<3.6×10−5;

N68%¼52.6; N95%¼47.5;

Treh;68%¼5.9×1010GeV; Treh;95%¼1.4×104GeV;

y68%¼1.7×10−4; y95%¼3.6×10−11: ð31Þ

FIG. 1. Illustrations of the impacts of the BICEP/Keck and other constraints on α-Starobinsky models (upper panels) and T models
(lower panels) based on the analysis of [3]. The left panels compare the observational 68% and 95% C.L. constraints in the ðns; rÞ plane
(using pivot scales 0.002 for r and 0.05 for ns) with the model predictions for different numbers of e-folds N50;60, showing also the
predictions for an inflaton coupling y ¼ 1, the constraints from Treh ≥ TBBN and TEW, and the constraints if the LSP mass is 100 GeV.
The right panels display ðy; NÞ planes (using the pivot scale 0.05), showing the relations between y and Treh and between N and ns, and
the values α ¼ 0.1, 1, 5 (dashed, solid, and dotted black lines). We also include lower limits on y from BBN (red line), Treh ¼ TEW (gray
line), and gravitino production (purple line) for α ¼ 1, which increase for smaller α, and 68% and 95% C.L. lower limits on N0.05 from
BICEP/Keck and other data (blue lines).
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We note that the first two lines do not depend on the BICEP/
Keck constraints, since these limits are derived from the
conditions Treh > 2 MeV (100 GeV) (smaller limit) and
mLSP ¼ 100 GeV (larger limit). The dark (light) blue
regions in the left panels are the 68% (95)% C.L. regions
of the ðns; r0.002Þ planes favored by a global analysis of the
CMB and baryon acoustic oscillations (BAO) data. We also
show in the left panels of Fig. 1 dotted contours correspond-
ing to 60 and 50 e-folds, solid lines corresponding to the
maximum number of e-folds consistent with y ≤ 1, and the
minimum number of e-folds consistent with Treh > TBBN
and TEW, as well as the dark matter density constraints for a
LSP mass of 100 GeV. The corresponding limit for a
gravitinomass of 108 GeV in the high-scale supersymmetry
case would lie roughly midway between the mLSP ¼
100 GeV and N� ¼ 50 lines. For the α-Starobinsky (T
models) we shade in red (orange) the preferred region
respecting the constraint Treh > TEW and the relic density
constraintwithmLSP ¼ 100 GeV. In the upper left panel, we
also show lines corresponding to α ¼ 1 and 12, the latter
being the largest value allowed at the 68% C.L. for
mLSP ¼ 100 GeV, and α ¼ 26, the largest value allowed
at the 95% C.L. for mLSP ¼ 100 GeV. We see in the lower
left panel that values of α ∈ ð1.3; 5.1Þ are consistent with the
data at the 68% C.L. if mLSP ¼ 100 GeV, and values of
α ≤ 11 are allowed at the 95% C.L.
The right panels of Fig. 1 show the ½yðTrehÞ; N0.05ðnsÞ�

planes for the α-Starobinsky models and T models. The
left-most vertical lines (red) correspond to the minimum
values of y allowed by BBN, the middle vertical lines
(gray) to Treh ¼ TEW, and the right-most vertical lines
(purple) to the maximum values allowed for
mLSP ¼ 100 GeV. We assume α ¼ 1 when plotting the
parameters and constraints. The constraints would each
move to the right (towards larger values of y and Treh)
with decreasing values of α, although their dependencies
are weak. The diagonal lines are the predictions of the
α-Starobinsky and T models for α ¼ 0.1 (dashed lines), 1
(solid lines), and 5 (dotted lines). Finally, we show as
horizontal lines the lower limits on n0.05 at the 68% and
95% C.L. We see that the 68% lower limit of N0.05 requires
y > 1.7 × 10−6 in the α-Starobinsky model and y > 1.7 ×
10−4 for the T-Starobinsky model, both for α ¼ 1. This
implies a lower limit to the reheating temperature of 8.7 ×
108 and 5.9 × 1010 GeV for the α-Starobinsky models and
T models, respectively. This limit is relaxed at the
95% C.L., where the lower limit on the reheating temper-
ature drops to 2.4 × 102 GeV in the α-Starobinsky models
and 1.4 × 104 GeV for the T models.
We assumed in the above analysis that generation of a

factor Δ of entropy subsequent to inflaton decay could be
neglected. However, this may not be the case, e.g., in
models with additional phase transitions at temperatures
between Treh and TEW, such as those based on flipped
SU(5) grand unified theories (GUTs) [41]. In this case,

there would be a modification to the calculation of N� in
Eq. (15) in the form of an extra term − 1

3
lnΔ in the right-

hand side. This would in turn modify the left panels of
Fig. 1; e.g., the TBBN and TEW constraints would move to
lower ns, as would the y ¼ 1 line, whereas the N50 and N60

lines would be unchanged, as would the LSP density
constraint. As entropy generation would allow a higher
initial gravitino abundance, and thus a higher reheating
temperature, the contribution to N� from reheating is
exactly compensated by the contribution from Δ. In
addition, the lines of fixed α are unchanged. The net result
would be to expand the favored regions of the ðns; r0.002Þ
planes towards lower values of ns, while keeping the same
overlaps with the regions of the planes favored by the
BICEP/Keck and other constraints at the 68% C.L.
However, this would require higher reheating temperatures.
Figure 2 shows analogous results based on the analysis

in [4]. Since this work provides limits on r using
0.05 Mpc−1 for the pivot scale, we have recalculated the
theory curves accordingly, although the difference is quite
small. What is more striking is the difference in the 68%
and 95% lower limits to ns. These are shifted slightly to
smaller values, and, as one can see in Fig. 2, a large portion
of the red-shaded region (between TEW and the 100 GeV
relic density limit) now overlaps the 68% C.L. observa-
tional region (dark blue). In the right panels, we see that the
weaker lower limits on ns reduce the lower limits on N0.05
and hence allow a smaller inflaton coupling to matter and a
lower reheat temperature. However, the allowed ranges for
α are only slightly modified: (0.4, 12) and (0, 24) for the α-
Starobinsky model at 68% and 95% C.L., respectively, and
(0.5, 7) and (0, 12) for the T model.
The modified limits analogous to Eqs. (30) and (31) for

α ¼ 1 are

α-Starobinsky∶

N68% ¼ 47.9; N95% ¼ 42.9;

Treh;68% ¼ 9.8 × 104 GeV; Treh;95% ¼ 0.031 GeV;

y68% ¼ 1.9 × 10−10; y95% ¼ 2.8 × 10−17; ð32Þ
T Model∶

N68% ¼ 49.4; N95% ¼ 44.6;

Treh;68% ¼ 4.4 × 106 GeV; Treh;95% ¼ 2.0 GeV;

y68% ¼ 1.2 × 10−8; y95% ¼ 4.0 × 10−15: ð33Þ
The limits on N� and y from limits to Treh and the relic

density are unaffected by the choice of data analysis and are
not repeated.

V. DISCUSSION

As can be seen from the left panels of Figs. 1 and 2, the
primary driver of the upper limits on α is the new upper
limit on r, whereas the constraint on ns is the primary driver
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of the lower limit on the number of e-folds. In both the α-
Starobinsky and T models there is also an upper limit on the
number of e-folds due to requiring the inflaton decay
coupling y≲Oð1Þ, namely, N� ≲ 56, as seen in the right
panels of the figures, which restricts ns to the left halves of
the preferred ovals in the left panels of Figs. 1 and 2. In both
cases, couplings near or at this upper limit lead to
observables closest to the central value of the confidence
contours. This indicates that the updated constraints in ns
favor scenarios for which radiation domination is almost
immediately reached after the end of inflation. We note that
such a thermal history is always realized regardless of the
inflaton-Standard Model couplings if the inflationary

potential is quartic near its minimum, as is the case of
Higgs inflation [6], WIMPflation [42], or T models of the
form V ∼ tanh4ðφ= ffiffiffiffiffiffi

6α
p

MPÞ [30,43]. For quartic minima,
N� ≃ 56, independent of the reheating temperature.
The values of the effective Yukawa coupling y disfavored

by electroweak scale gravitino overproduction, shown in
purple in Figs. 1 and 2, correspond coincidentally to the
domain of nonperturbative particle production (preheating).
Indeed, for y≳ 10−5, efficient parametric resonance will be
present during the early stages of reheating, for either
fermionic or bosonic inflaton decay products [44–48].
However, this effect is not necessarily reflected in the
CMB observables. In the case of fermionic preheating, the

FIG. 2. Illustrations of the impacts of the BICEP/Keck and other constraints on α-Starobinsky models (upper panels) and T models
(lower panels) based on the analysis of [4]. The left panels compare the observational 68% and 95% C.L. constraints in the ðns; rÞ plane
(using pivot scales 0.05 for both r and ns) with the model predictions for different numbers of e-folds N50;60, showing also the
predictions for an inflaton coupling y ¼ 1, the constraints from Treh ≥ TBBN and TEW, and the constraints if the LSP mass is 100 GeV.
The right panels display ðy; NÞ planes (using the pivot scale 0.05), showing the relations between y and Treh and between N and ns, and
the values α ¼ 0.1, 1, 5 (dashed, solid, and dotted black lines). We also include lower limits on y from BBN (red line), Treh ¼ TEW (gray
line), and gravitino production (purple line) for α ¼ 1, which increase for smaller α, and 68% and 95% C.L. lower limits on N0.05 from
BICEP/Keck and other data (blue lines).
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expansion history during reheating (and hence, wint and
ρrad) is not affected unless y ∼Oð1Þ. The resulting Pauli
suppression of particle production simply reduces the
energy density of radiation relative to the value predicted
by (18) for a time much shorter than the duration of
reheating [48]. Hence, our results for N� shown in the left
panels of Fig. 1 would be mostly unchanged in this
fermionic case. In the case of bosonic preheating, the
efficiency of nonperturbative particle production depends
on the resonance band structure of the coupling. If the
backreaction regime is reached, transient radiation-domi-
nated stages can occur during reheating, modifying wint and
hence our predictions [48,49]. However, we do not delve
here into this model-dependent issue. Finally, for attractors
with quadratic minima, the self-interaction of the inflaton
does not disrupt the matterlike oscillation of the inflaton
condensate during reheating [50].
Turning to the future, we note that the experiments

CMB-S4 [51] and LiteBIRD [52] will target primarily the
search for B modes in the CMB and will impose strong
constraints on r, with the potential to reduce substantially
the uncertainty in r, by a factor Oð2Þ. Such a measurement
will reduce the uncertainty in α to a similar value,
constraining significantly string models of inflation.
Unfortunately, the ability of these experiments to constrain
ns is limited. However, this is an important objective for the
future, as ns is related directly to the magnitude of the
coupling between the inflaton and matter, whose under-
standing will be key for connecting the theory of inflation
to laboratory physics.
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APPENDIX A: ANALYTICAL APPROXIMATIONS

As stated in the main text, the power spectrum and
reheating constraints summarized in Fig. 1 have been
obtained numerically. In this Appendix we provide analyti-
cal approximations to the relevant inflationary quantities.
The end of inflation corresponds to the end of the

epoch of accelerated expansion, i.e., ä ¼ 0 or ϵH ¼ 1, where
ϵH ¼ − _H=H2 is the first Hubble flow function. In terms of
the potential slow-roll parameters (4), it can be shown that
the end of inflation occurs approximately when [23]

ϵ ≃ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η=2

p
Þ2: ðA1Þ

This expression can be used to obtain the following closed-
form estimates for the value of the inflaton field at the end of
inflation for α-Starobinsky models,

φend

MP
≃

ffiffiffiffiffiffi
3α

2

r
ln

�
2ð6αþ 3

ffiffiffiffiffiffi
3α

p
− 2Þ

12α − 1

�
; ðA2Þ

and for T models,

φend

MP
≃

ffiffiffiffiffiffi
3α

2

r
ln

"
4 − 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð5þ 4αÞp

1 − 12α

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

75

5þ 68αþ 16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð5þ 4αÞp

s #
: ðA3Þ

As expected, for α ¼ 1, we recover Eqs. (12) and (13).
Compared to the exact values, the analytic approximations
have errors of 2% (2%, 4%) for α ¼ 1 (0.1, 10) in the case of
α-Starobinsky models and of 5% (3%, 5%) for α ¼ 1 (0.1,
10) for T models.
The value of the inflaton field at the moment when

the pivot scale crosses the horizon can be estimated by
integrating Eq. (5). In the case of α-Starobinsky models,

φ�
MP

≃
ffiffiffiffiffiffi
3α

2

r �
1þ 3α

4N� − 3α

�

× ln

�
4N�
3α

þ e
ffiffi
2
3

p
φend
MP −

ffiffiffi
2

3

r
φend

MP

�
; ðA4Þ

and for T models,

φ�
MP

≃
ffiffiffiffiffiffi
3α

2

r
cosh−1

�
4N�
3α

þ cosh

� ffiffiffiffiffiffi
2

3α

r
φend

MP

��
: ðA5Þ
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For 40 < N� < 60, the relative errors are at most 0.3%
(0.3%, 3%) for α ¼ 1 (0.1, 10) in the α-Starobinsky case and
0.5% (0.4%, 0.7%) for α ¼ 1 (0.1, 10) in the case of
T-model inflation.
The logarithm of the so-called reheating parameter [25],

lnRrad ≡ ln

�
aend
arad

�
ρend
ρrad

�
1=4

�
ðA6Þ

¼ 1 − 3wint

12ð1þ wintÞ
ln

�
ρrad
ρend

�
; ðA7Þ

may be estimated by noting that the energy density of the
relativistic inflaton decay products, assuming a constant
decay rate Γφ, can be written as [23]

ρrad ¼ ρend

�
aend
arad

�
4
Z

vrad

0

�
aðuÞ
aend

�
e−udu; ðA8Þ

where v≡ Γφðt − tendÞ. Approximating the equation-of-
state parameter as w ≃ 0 during reheating, we can further
write

aðtÞ
aend

≃
� ffiffiffiffiffiffiffiffiffiffiffi

3

4
ρend

r
t − tend
MP

�2
3

¼
�
3Hendv
2Γφ

�2
3

: ðA9Þ

Substitution of (A9) into (A8) and subsequently into (A6)
results in the following simple approximation for the
reheating parameter:

lnRrad ≃
1

6
ln

�
Γφ

Hend

�
: ðA10Þ

This result allows us to write simple analytical expressions
for the number of e-folds after horizon crossing as
functions of the effective Yukawa coupling responsible
for reheating. As an example for α ¼ 1, substitution of
(A2), (A4), and (A10) into (15) gives

N� ≃ 57.68 −
1

2
lnN� þ

1

3
ln y −

1

12
ln greh; ðA11Þ

for α-Starobinsky models at the pivot scale k� ¼
0.05 Mpc−1 and for T models

N� ≃ 57.82 −
1

2
lnN� þ

1

3
ln y −

1

12
ln greh: ðA12Þ

In the range of values shown in the left panels of Fig. 1, the
maximum differences of these approximations from the full
numerical results are 0.2% (0.1%) for the α-Starobinsky
models (T models).
For other analyses of reheating in attractor models,

see [45,53].

APPENDIX B: COMPUTING THE CMB
OBSERVABLES

In order to compute accurately the inflationary
observables, in particular, the scalar tilt ns, we have
integrated the linear equations for the curvature fluctuation
numerically. To calculate the gauge-invariant Mukhanov-
Sasaki variable Q,12 we integrate the equation of motion
[54,55],

Q̈þ 3H _Qþ
�
k2

a2
þ 3 _φ2 −

_φ4

2H2
þ 2

_φVφ

H
þ Vφφ

�
Q ¼ 0;

ðB1Þ

with the Bunch-Davies initial condition Qk≫aH ¼
e−ikτ=a

ffiffiffiffiffi
2k

p
, where dτ ¼ dt=a is the conformal time.

The corresponding metric fluctuation and its power spec-
trum are in turn given by

R ¼ H
j _φjQ; ðB2Þ

hRðkÞR�ðk0Þi ¼ 2π2

k3
PRδðk − k0Þ: ðB3Þ

The scalar tilt is then computed using its definition,

ns ¼ 1þ d lnPR

d ln k
; ðB4Þ

and the tensor-to-scalar-ratio is

FIG. 3. The scalar tilt ns as a function of the number of e-folds
after horizon crossing, N�, for the α-Starobinsky model with
α ¼ 1. The continuous blue line is the numerical solution of
Eqs. (B1)–(B4). The dotted gray line is the slow-roll approxi-
mation (6) with the Hubble parameters ϵH , ηH defined in (B6).
The dashed black line is the slow-roll approximation (6)
calculated using the potential parameters ϵ, η defined in (4).

12In the Newtonian gauge, Q ¼ δφþ _φ
HΨ, where δφ and Ψ

denote the field and the metric perturbations, respectively.
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r ¼ PT

PR
; ðB5Þ

where in the case of the tensor spectrum we take the
horizon-crossing value PT ¼ 2H2=π2.
Comparing the numerical results obtained by the pro-

cedure above with the slow-roll approximations (6) and (7),
we find a discrepancy ≳1 e-fold for N� ¼ N�ðnsÞ, see the
dashed line in Fig. 3. This difference can be reduced if
instead of the potential slow-roll parameters (4) one uses
the Hubble slow-roll parameters,

ϵH ¼ −
_H
H
; ηH ¼ 2ϵH −

_ϵH
2ϵHH

; ðB6Þ

see the dotted line in Fig. 3.
This difference remains even when the higher-order

slow-roll corrections are included. Ultimately, it is due
to the fact that curvature modes do not immediately freeze
upon leaving the horizon, which corresponds to the con-
dition k ¼ aH. Hence, there is always a shift between the
approximate horizon-crossing value, used in our semi-
analytical estimates, and the final “freeze-out” values used
in our full numerical results, in particular, in Fig. 1.
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