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The accumulated energy density of the excited entropy modes in multiple field inflationary scenarios can
play the role of dark matter. In the usual case of a flat field space without any turning trajectory, only light
superhorizon entropy modes can be excited through the gravitational instability. In the case of a negatively
curved field space, we show that subhorizon entropy modes can be excited as well through the tachyonic
instability induced by the negative curvature of the field space. The latter, which is known as the geometrical
destabilization mechanism, allows for the production of entropy modes with masses larger than or at the order
of the Hubble expansion rate during inflation, leading to a new dark matter scenario. Due to the contribution
of subhorizon modes, the corresponding spectral density has a peak at a scale smaller than its counterpart in
the models based on a flat field space. This difference makes our model observationally distinguishable.
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I. INTRODUCTION

Although dark matter constitutes most of the matter
content of the Universe, its nature is still unknown. This is
one of the most compelling evidences which signal physics
beyond the Standard Model (SM) of particle physics. There
are many dark matter candidates based on physics beyond
the SM. Among them, the weakly interacting massive
particles (WIMPs) are the most well-known scenarios. The
WIMPs are mostly expected to be thermally produced
during the radiation dominated era more or less in the same
way as the production of the SM particles in the standard
big bang cosmology. In the absence of detection of WIMPs,
the researchers tend to look for the other possibilities
like axion dark matter [1–4] and vector dark matter models
[5–11]. While most of these models deal with the pro-
duction of dark matter during the radiation dominated era, it
is noticed that dark matter particles can be produced at
much earlier time during the inflationary stage [12–32].
Inflation is an integral part of the standard model of
cosmology that solves the horizon and flatness problems
and, more interestingly, provides the seed for the observ-
able structures in the Universe. It is then natural to consider
the possibility that not only the seeds of the structures in the
Universe but also the seed of dark matter are produced
during the inflationary stage.
Although the inflationary scenario is quite successful in

providing an initial condition for the standard big bang

cosmology, the origin of the inflaton field, which drives
inflation, is not clear yet. Indeed, there is no a priori reason
to believe that only one field drives inflation. On the other
hand, cosmic microwave background (CMB) data are in
favor of the single field models as the observed perturbations
are adiabatic and no entropy perturbations are detected. This
fact may suggest that there is no need for more than one field
as the extra fields tend to produce entropy/isocurvature
perturbations. However, the accumulated energy density of
the excited isocurvature modes can be a dark matter
candidate. The source of the isocurvature modes can be,
e.g., scalar or vector fields. In the case of vector isocurvature
modes, the dark photons are the most well-known scenarios
usually dubbed as vector dark matter [24–32]. In these
scenarios, nearly massless vector modes can be excited
during inflation through interactions with the inflaton or
other isocurvature fields that break the conformal symmetry
of the vector sector. As a dark matter candidate, after
production, the vector field should acquire mass before
the time of matter and radiation equality. There are two
possibilities: (i) the vector field is completely massless
during inflation and it acquires mass sometime later through
the Higgs symmetry breaking mechanism, (ii) the vector
field has a mass much less than the Hubble parameter during
inflation. In the first case, heavy vector dark matter particles
can be produced since the symmetry breaking can happen
even right after the time when enough particle production is
achieved. In the second case, however, lighter vector dark
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matter particles can be produced since the vector field
becomes massive when the Hubble parameter drops below
its mass through the expansion of the Universe.
The possibility of dark matter from scalar isocurvature

modes based on inflationary scenarios with multiple scalar
fields are vastly studied in the recent years [12,16–23]. As
the scalar-tensor theories are not conformally invariant in
general, the scalar isocurvature modes can be excited even
through their universal interaction with gravity and without
any direct interactions with the inflaton field. In this case,
only superhorizon modes will be excited. These scalar
isocurvature dark matter scenarios only include super-
horizon modes in their spectrum. Moreover, these excited
isocurvature modes should be almost massless during
inflation in order to allow for the efficient gravitational
particle production. These are the common features of these
types of models that make it hard to distinguish them from
each other by the observations.
The inflationary models with curved field spaces are the

most general multiple field scenarios that one can consider
in the context of scalar-tensor theories without higher
derivative terms and without nonlinear kinetic terms.
These models have been widely studied in the literature
during the recent years. They can provide large non-
Gaussianities with different shapes for the curvature
perturbations [33–42]. The semiheavy fields (compared
with the Hubble expansion rate during inflation) can be
excited in these models which lead to the observable
effects on the CMB spectrum [43–49]. Moreover, pri-
mordial black holes can form as there is a possibility to
enhance the power spectrum of curvature perturbations at
small scales in these scenarios [50]. As we have men-
tioned above, these models generally provide entropy
perturbations. It is well known that entropy modes can be
enhanced through a tachyonic instability induced by
negative curvature of the field space which is called
geometrical destabilization [51]. While the effects of
the curvature of the field space on the spectrum of
the curvature perturbations are widely studied [52–57],
the effects on the entropy modes as a source of dark matter
are not explored yet. In this paper, having in mind that
isocurvature modes can be the source of dark matter, we
study the excitation of the entropy modes by the curvature
of the field space. We show that apart from the well-
known gravitational production of the light superhorizon
entropy modes, semiheavy subhorizon entropy modes can
also be naturally produced through the geometrical
destabilization. This provides a new scenario for the
isocurvature dark matter that is observationally distin-
guishable from all other isocurvature dark matter models
that were already studied in the literature.
The structure of the paper is as follows. In Sec. II, we

review the most general two-field inflationary scenario
with linear kinetic terms, where the field space is
generically curved, and decompose the perturbations into

the curvature and entropy modes. We obtain the power
spectra for the curvature and entropy perturbations in the
case of a geodesic trajectory in the field space. In Sec. III,
we obtain relic density of dark matter produced from the
accumulated energy density of the excited entropy modes.
In Sec. IV, we consider the case of light entropy dark
matter from multiple inflationary models based on the flat
field space and show that only light superhorizon modes
can be excited through the gravitational particle produc-
tion. In Sec. V, we consider a particular model for the
curved field space and show that subhorizon modes with
arbitrary masses can be excited through the geometrical
destabilization mechanism. Section VI is devoted to the
summary and conclusions. Some technical analysis are
presented in Appendixes A and B.

II. TWO-FIELD INFLATION

In the context of scalar-tensor theories without higher
derivative terms and without nonlinear kinetic terms, the
most general multiple inflationary scenario is the one with a
curved field space, a general potential and a nonminimal
coupling of scalar fields to the spacetime curvature in the
Jordan frame. However, the effects of the nonminimal
coupling can be removed by a conformal transformation
of the spacetime metric from the Jordan frame to the Einstein
frame [36,58,59]. In the Einstein frame, the most general
multiple field inflationary scenario without higher derivative
terms and without nonlinear kinetic terms is given by the
following action

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R−

1

2
gαβγabðϕcÞ∂αϕ

a∂βϕ
b −VðϕaÞ

�
:

ð2:1Þ

In the gravitational sector, MPl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the reduced

Planck mass and R is the Ricci scalar which is constructed
from the spacetime metric gμν. The system also includes the
scalar fields ϕa ¼ ðϕ1;ϕ2Þ which span the field space with
the metric γabðϕcÞ and also the potential VðϕaÞ. For the sake
of simplicity, we have restricted our analysis to the case of
two fields while the analysis for the case with a larger (but
finite) number of fields is quite straightforward thanks to the
covariant formalism that we review below [44,60–64]. In
order for the kinetic energies to be bounded from below, we
assume that the field space metric γabðϕcÞ is positive
definite.
The Einstein equations can be obtained by taking the

variation of the action (2.1) with respect to the metric as

M2
PlGμν¼Tμν;

Tμν¼γab∂μϕ
a∂νϕ

b

−
�
1

2
gαβγab∂αϕ

a∂βϕ
bþVðϕaÞ

�
gμν; ð2:2Þ
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where Gμν is the Einstein tensor and Tμν denotes the
energy-momentum tensor of the scalar fields. Taking
variation with respect to the scalar fields, we find

□ϕa þ Γa
bc∂αϕ

b∂αϕc − Va ¼ 0; ð2:3Þ

where Va ≡ γabVb with Vb ¼ ∂bV,

Γa
bc ¼

1

2
γadð∂bγdc þ ∂cγbd − ∂dγbcÞ; ð2:4Þ

is the Christoffel symbol in the field space and γab is the
inverse of the field space metric γab.
The Riemann tensor in the field space is given by

Ra
bcd ¼ ∂cΓa

bd − ∂dΓa
bc þ Γa

ceΓe
db − Γa

deΓe
cb: ð2:5Þ

Since we restrict our analysis to the case of two scalar
fields, the Riemann tensor can be written as

Rabcd ¼
1

2
Rðγacγbd − γadγcbÞ; ð2:6Þ

where R ¼ γabRc
acb is the field space Ricci scalar.

A. Background analysis

For the homogeneous and isotropic cosmological back-
ground, we consider a spatially flat Friedmann–Lemaître–
Robertson–Walker geometry together with homogeneous
vacuum expectation values for the scalar fields as follows

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ϕa ¼ φaðtÞ; ð2:7Þ

where t is the cosmic time and aðtÞ is the scale factor.
Substituting (2.7) in the Einstein equations (2.2), we find

the Friedmann equations

3M2
PlH

2 ¼ 1

2
_σ2 þ V; ð2:8Þ

M2
Pl
_H ¼ −

_σ2

2
; ð2:9Þ

where a dot denotes derivative with respect to the cosmic
time t, H ¼ _a=a is the Hubble expansion rate, and we have
also defined

_σ2 ≡ γab _φ
a _φb: ð2:10Þ

In this view, _σ2=2 measures the kinetic energy along the
background trajectory.
The scalar field equations (2.3) for the background

configuration (2.7) take the form

Dt _φ
a þ 3H _φa þ Va ¼ 0; ð2:11Þ

where we have introduced a covariant time derivative Dt in
curved field space as follows

DtXa ¼ _Xa þ Γa
bc _φ

bXc; ð2:12Þ

for an arbitrary vector field XaðtÞ in the field space.
Solving background equations (2.8) and (2.9) with a

proper initial condition, we find a unique solution φaðtÞ ¼
ðφ1ðtÞ;φ2ðtÞÞ, which determines the classical trajectory
of the system. This trajectory, parametrized by the cosmic
time t, defines a curve in the field space as shown in Fig. 1.
To characterize this curve, it is convenient to consider two
unit vectors Ta and Na as

Ta ≡ _φa

_σ
; Na ≡ γabðdet γÞ1=2ϵbcTc; ð2:13Þ

where ϵab is the two-dimensional Levi-Civita symbol with
ϵ11 ¼ ϵ22 ¼ 0 and ϵ12 ¼ −ϵ21 ¼ 1. As shown in Fig. 1, the
vectors Ta and Na are, respectively, tangent and normal to
the background trajectory at any moment. From (2.13) we
see that

TaTa ¼ 1 ¼ NaNa; TaNa ¼ 0; ð2:14Þ

where we have used γab and γab to raise and lower the field
space indices.
We can use these two unit vectors to expand any vector

field in the field space as Xa ¼ XTTa þ XNNa where XT ≡
TaXa and XN ≡ NaXa are projection along the tangent and
normal directions, respectively. The equations of motion
for the scalar fields (2.11), projected along the tangent
direction, gives

σ̈ þ 3H _σ þ Vσ ¼ 0; Vσ ≡ Ta∂aV; ð2:15Þ

while projecting along Na gives

FIG. 1. The schematic time evolution of the tangent vector Ta

and the normal vector Na along the background trajectory
denoted by the blue curve. These orthonormal vectors are used
to decompose the perturbations δϕa into adiabatic and entropic
modes [65].
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DtTa ¼ −
VN

_σ
Na; VN ≡ Na∂aV: ð2:16Þ

To characterize the dynamics of the background quan-
tities, we define the following dimensionless parameters

ϵ≡ −
_H
H2

¼ _σ2

2M2
PlH

2
; ηa ≡ −

Dt
_φa

H _σ
: ð2:17Þ

Intuitively, ϵ is similar to the first geometric slow-roll
parameter in single field models while ηa contains infor-
mation about the second slow-roll parameter since it
includes second time derivatives of the scalar fields. To
make this fact more clear, we decompose ηa along the
tangent and normal directions as

ηa ≡ ηkTa þ η⊥Na; ð2:18Þ

where ηk ≡ Taη
a and η⊥ ≡ Naη

a are found to be

ηk ¼ −
σ̈

H _σ
; η⊥ ¼ VN

H _σ
: ð2:19Þ

The above relations make it clear that ηk is the counterpart of
the usual second slow-roll parameter in single field inflation
models. Therefore, the slow-roll conditions are given by

ϵ ≪ 1; jηjjj ≪ 1: ð2:20Þ

Note that a large value of η⊥ does not necessarily spoil the
above slow-roll conditions. To understand the role of the
parameter η⊥, using (2.16) and (2.19), we find

DtTa ¼ −Hη⊥Na; DtNa ¼ þHη⊥Ta: ð2:21Þ

We see that the vectors Ta and Na remain covariantly
unchanged along the classical trajectory if η⊥ ¼ 0. On the
other hand, depending on the sign of η⊥, the vectors Ta and
Na can turn to the right or to the left during the evolution of
the system.

B. Perturbation analysis: Curvature/entropy
decomposition

The scalar perturbations around the homogeneous and
isotropic background configuration (2.7) are given by

ds2 ¼ −ð1þ 2AÞdt2 þ 2∂iBdtdxi

þ a2ðð1þ 2ψÞδij þ 2E;ijÞδijdxidxj ð2:22Þ

and

ϕaðt;xÞ ¼ φaðtÞ þ δϕaðt;xÞ; ð2:23Þ

where A, B, ψ , E, and δϕa are functions of time and
spatial coordinates. It is more convenient to work with the

gauge-invariant combinations δϕa þ _φa

H ψ and, therefore,
we parametrize scalar perturbations in terms of curvature
perturbation R and entropy perturbation S as follows

R≡ ψ þH
_σ
Taδϕ

a; S ≡H
_σ
Naδϕ

a ≡H
_σ
F : ð2:24Þ

Working in the spatially flat gauge ψ ¼ 0 ¼ E and
integrating out nondynamical variables A and B, it is
straightforward to show that the quadratic action for the
scalar perturbations in terms of the gauge-invariant quan-
tities R and F is given by [45]

Sð2Þ ¼ 1

2

Z
d4xa3

�
_σ2

H2
_R2 −

_σ2

H2

ð∇RÞ2
a2

þ _F 2 −
ð∇F Þ2
a2

þ 4η⊥ _σ _RF −m2
effF

2

�
; ð2:25Þ

where we have defined the effective mass meff as

m2
eff ≡m2

s þ μ2 − ðHη⊥Þ2; m2
s ≡ VNN;

μ2 ≡ ϵM2
PlH

2R ¼ 1

2
_σ2R: ð2:26Þ

Here, VNN ≡ NaNb∇a∇bV is the conventional mass term.
It is worth looking at various contributions in m2

eff . The
first term in meff , as just mentioned, represents the usual
contribution. The second term represents the contributions
from the curvature of field space while the last term is due
to the centripetal force induced by the turn in the field
space. In this work we are mainly interested in the effects of
the second term, which is responsible for the geometrical
destabilization mechanism [51], while the nongeodesic
motion in the field space induced by η⊥ has interesting
features [39,50].
The equations of motion governing the system are

given by

R̈þ ð3þ 2ϵ − 2ηjjÞH _R −
∇2R
a2

¼ −2
H2

_σ
η⊥½ _F þ ð3 − ηjj − ξ⊥ÞHF �; ð2:27Þ

F̈ þ 3H _F −
∇2F
a2

þm2
effF ¼ 2η⊥ _σ _R; ð2:28Þ

where ξ⊥ ≡ −_η⊥=ðHη⊥Þ. As we see, when η⊥ ≠ 0 the two
modes become coupled and it may not be easy to solve
them analytically. As we are mostly interested in the
effects coming from the curvature of the field space and
also in order to simplify the analysis, in the following we
consider the case where η⊥ ¼ 0, representing geodesic
motions in the curved field space.
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C. Geodesic trajectory in the field space

In this section we focus on the geodesic trajectories
η⊥ ¼ 0 in the field space where the two modes R and F
are decoupled at the linear level.
In the slow-roll regime (2.20) where we have a quasi–

de Sitter expansion, it is better to work with the conformal
time τ ¼ R

dt=aðtÞ in term of which the action Eq. (2.25)
takes the following form

Sð2Þ ¼ 1

2

Z
d3x dτ a2½2ϵðR02 − ð∇RÞ2Þ

þ F 02 − ð∇F Þ2 − ðm2
s þ μ2Þa2F 2�: ð2:29Þ

We have assumed that on the background trajectory
η⊥ ¼ VN=ðH _σÞ ¼ 0, which implies VN ¼ 0, but it does not
imply VNN ¼ 0. This is obvious from the fact that the Na

direction is linearly independent of the tangent Ta of the
trajectory and therefore demanding that VN ¼ 0 every-
where on the trajectory does not restrict the value of VNN ,
i.e., the second derivative of the potential along the
independent direction Na. Therefore, ms ≠ 0 is compatible
with η⊥ ¼ 0.
To quantize the system and to obtain the power spectra,

we define the canonically normalized fields

u≡ zR; and s≡ aF ; ð2:30Þ

where z2 ≡ 2M2
Pla

2ϵ. In terms of these variables the action
takes the canonical form

Sð2Þ ¼ 1

2

Z
d3xdτ

��
u02 − ð∇uÞ2 þ z00

z
u2
�

þ
�
s02 − ð∇sÞ2 þ a00

a
s2 − ðm2

s þ μ2Þa2s2
��

: ð2:31Þ

The canonical fields u and s, corresponding to the adiabatic
and entropy perturbations, are decoupled at the linear level
and, therefore, we study their power spectra separately in
the following.
Going to the Fourier space with the standard definition

Xðτ;xÞ ¼ R
d3k
ð2πÞ3 XkðτÞeik·x for the scalar field X, and then

expanding the operator counterpart of the field u in terms
of the annihilation and creation operators as usual, the
corresponding mode function satisfies the Mukhanov-
Sasaki equation

u00k þ
�
k2 −

z00

z

�
uk ¼ 0: ð2:32Þ

Imposing the Bunch-Davies (Minkowski) initial condition
in the limit −kτ → ∞, we find

uk ¼
ffiffiffiffiffiffiffiffi
−πτ

p
2

Hð1Þ
ν ðxÞ; x≡ −kτ; and

ν ≈
3

2
þ 2ϵ − ηjj: ð2:33Þ

Then the dimensionless power spectrum of the curvature
perturbations R ¼ u=z for the superhorizon modes
becomes

PR ¼ k3

2π2
jRkj2kτ→0 ¼

H2

8π2M2
Plϵ

x3−2ν: ð2:34Þ

For the entropy modes, doing the same process of
quantization as the curvature perturbations, we find that
the corresponding mode function satisfies

s00k þ ω2
ksk ¼ 0; ω2

k ≡ k2 þ β

τ2
−
2þ α

τ2
; ð2:35Þ

where ωk is the frequency and we have defined

α≡ −
μ2

H2
¼ −ϵM2

PlR; β≡ m2
s

H2
: ð2:36Þ

In the above relation β is a dimensionless parameter that
characterizes the usual mass of the entropy modes which is
normalized by the Hubble expansion rate. The dimension-
less parameter α corresponds to the mass induced by the
curvature of the field space that can be positive (negative)
for α > 0 (α < 0).
Looking at the τ−2 parts of the effective frequency squared

ω2
k, we notice three distinct contributions. The term con-

taining −2 represents the usual gravitational particle pro-
duction in a quasi–de Sitter background. The terms
containing α and β, respectively, represent the effects of
the field space curvature and the mass. Note that the
parameters α and β can take either signs and can be time
dependent. We are interested in situations where in regions
of the field space the combination α − β can become
negative, indicating a period of tachyonic instability.
However, in order not to destroy the CMB constraints on
entropy perturbation the tachyonic growths should be under
control and happen only on sub-CMB scales.
Imposing the Minkowski initial condition on Eq. (2.35)

we find

sk ¼
ffiffiffiffiffiffiffiffi
−πτ

p
2

Hð1Þ
μ ðxÞ; μ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þ α − β

r
: ð2:37Þ

Correspondingly, the dimensionless power spectrum for the
entropy perturbations S ¼ ðH= _σÞF ¼ ðH=a _σÞs is given by
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PS ¼ k3

2π2
jSkj2kτ→0 ¼

H2

8π2M2
Plϵ

x3−2μ: ð2:38Þ

Now, let us consider the CMB constraints on the
parameters of the model. For the curvature perturbations,
the scale dependence of the spectrum is given by the
spectral index nR − 1≡ 3 − 2ν as follows

nR − 1 ¼ −4ϵþ 2ηjj: ð2:39Þ

The CMB observations imply nR − 1 ¼ Oð10−2Þ, which
put a constraint on a combination of the slow-roll
parameters as 2ϵ − ηjj ¼ Oð10−2Þ. On the other hand,
there is an upper bound on the power spectrum of the
superhorizon entropy perturbations PS=PR ≲ 10−3 at
three scales k ¼ f0.002; 0.05; 0.1g Mpc−1 [66]. Using
Eqs. (2.34) and (2.38), we find that this constraint on
the amplitude of entropy perturbations is rewritten as

α − β ≲ δþ 1

9
δ2; δ≡ 6ϵ − 3ηjj −

9 lnð10Þ
2N CMB

≃ 6ϵ − 3ηjj − 0.17 ·
60

N CMB
; ð2:40Þ

where N CMB ¼ Oð60Þ is the number of e-folds from the
horizon exit of the CMB scale to the end of inflation.
Thus, the CMB constraints on the spectra of curvature and
entropy perturbations imply α − β ≲ −0.1. In the case of
light modes with jβj ≪ 1, the CMB constraint put the
direct constraint α≲ −0.1 on the curvature of the field
space. For the case of heavy modes β − α ≫ 1, the mode
function (2.37) receives a Boltzmann suppression factor
and the entropy modes will not be efficiently excited.
Thus, there is no constraint from the CMB scales on the
spectra of the heavy entropy modes and in this case the
parameter α can acquire any value on CMB scales as long
as β − α ≫ 1.

III. DARK MATTER RELIC DENSITY

Looking at Eq. (2.35), we see that ω2
k < 0 for some

entropy modes. The negative contributions come from both
the gravitational interaction encoded in the term −2=τ2 and
also from the negative curvature of the field space encoded
in the term −α=τ2 with α > 0 (R < 0). Thus, the adiabatic
approximation breaks down and the entropy modes with
ω2
k < 0 can be excited.
The accumulated energy density of the excited entropy

modes during inflation can play the role of dark matter
when they become nonrelativistic later due to the expansion
of the Universe. In Appendix A, we have computed the
energy density of the excited entropy modes during
inflation which is given by Eq. (A8). Going to the
Fourier space, we find

ρs;e ¼
1

2a4

Z
kmax

kmin

d3k
ð2πÞ3

�����a
�
sk
a

�0����
2

þ
�
k2 þ β þ α

τ2

�
jskj2

�����
τ¼τe

; ð3:1Þ

where the conformal time τe represents the time of end of
inflation. The integral limits kmin and kmax are the smallest
and largest momenta, respectively, which can be excited. We
determine their explicit values later. Note that we should
only consider contributions from the tachyonic modes, say
those modes with kmin < k < kmax. Otherwise, one would
include contributions from the pure vacuum fluctuations that
should be renormalized away. It is also worth mentioning
that during inflation, depending on the value of the parameter
α, the Hamiltonian for the entropy modes given by Eq. (B4)
can become negative. This is not an issue for our model as
the parameter α vanishes, i.e., αr ¼ 0 for _σ ¼ 0 when the
inflaton stops at the end of reheating. Indeed, we need this
local tachyonic instability due to the negative curvature of
the field space in order to excite dark matter particles.
It is more convenient to introduce the dimensionless

fractional energy density

Ωs;e ≡ ρs;e
3M2

PlH
2
e
; ð3:2Þ

where He is the Hubble expansion rate at the end of
inflation. The above quantity represents the contribution
of the produced entropy particles to the total energy
density of the Universe at the end of inflation. Having
Ωs;e in hand, we only need to keep track of the evolution
of the energy density from the end of inflation until late
times through the expansion of the Universe. Moreover,
in order to keep the model under theoretical control and
for simplicity, we consider an instantaneous reheating.
Following Ref. [30], in this case the relic density for the
dark matter today is given by

Ωs;0 ¼
�
gs�;0
gs�;r

��
π2

90
g�;r

��
T3
0Tr

M2
PlH

2
0

��
ae
aNR

�
Ωs;e; ð3:3Þ

where T0 and H0 are the CMB temperature and the Hubble
parameter today, gs�;0 and gs�;r are the number of relativistic
degrees of freedom for the entropy density today and at the
time of reheating, respectively, while g�;r is the number of
relativistic degrees of freedom for the energy density at the
time of reheating. Additionally, Tr denotes the reheating
temperature and aNR is the scale factor at the time when all
produced modes become nonrelativistic. Here, for the sake
of simplicity, we have also assumed an instantaneous
transition from the relativistic regime to the nonrelativistic
one for the energy density of the entropy modes at the time
when the Hubble expansion rate approaches the mass of the
entropy modes HNR ¼ ms. Note that this transition should
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happen when the Universe is radiation dominated, after
the reheating and before the time of matter and radiation
equality.
During the radiation dominated era we have

H ∝ ffiffiffiffiffiffiffi
g�;r

p
a−2. Neglecting changes in g�;r for the times

H > ms, we find a simple expression ae=aNR ∼ β1=4e , where
we have used the definition of the parameter β in Eq. (2.36)
at the end of inflation. Although during an inflationary
background the Hubble parameter and the conventional
mass are considered to be constants with a good accuracy,
we frequently use the notation βe not only to be more
precise but also to emphasize on the dependency of
calculations to what happens at the end of inflation.
Putting all things together, the relation (3.3) finally takes

the following form

Ωs;0 ¼ Oð1020Þβ1=4e

�
Tr

1012 GeV

�
Ωs;e; ð3:4Þ

where we have substituted T0∼10−13 GeV,H0∼10−42GeV,
gs�;0 ¼ 3.9, and gs�;r ¼ 106.75 ¼ g�;r.
Due to the curvature/entropy decomposition, by defini-

tion, there is no contribution from the entropy modes to the
background at the beginning. However, the entropy modes
can very efficiently be produced through the geometrical
destabilization. This can destabilize the background trajec-
tory of inflaton field as it is mentioned in [67–69]. In our
setup, this will happen when Ωs;e ∼Oð1Þ. Thus, in order to
have a consistent inflationary background, we have to make
sure that the backreaction from the produced entropy modes
will not spoil the background equations of motion (2.8),
(2.9), and (2.15), which implies

Ωs;e ≪ 1: ð3:5Þ

In other words, destabilization of the background trajectory
always comes with the overproduction of dark matter in our
setup. This is because we consider the case where the
negative curvature of the field space becomes more andmore
prominent towards the end of inflation [see, e.g., Eq. (5.1)],
unlike the original setup of geometrical destabilization.
The large prefactor Oð1020Þ in the result (3.4) shows

that if heavy modes with βe ≳Oð1Þ excite, then even a
small amount of particle production with Ωs;e ≲Oð10−20Þ
is enough to obtain Ωs;0 ¼ Oð1Þ. We will show that this
is indeed possible in our model. On the other hand, for
the light modes with βe ≲Oð10−60Þ or equivalently
ms ≲Oð10−8 eVÞ, we need larger values of Ωs;e ¼
Oð10−5Þ to achieve Ωs;0 ¼ Oð1Þ.
The first criterion that our model should satisfy is to

provide enough dark matter at the background level. This
can be simply checked by looking at the accumulated
energy density (3.1). However, in order to study the
phenomenology of the produced dark matter particles,

we also need to look at the scale dependence of the dark
matter spectrum. Therefore, we define the dimensionless
spectral density of the dark matter as

Ωs ≡
Z

kmax

kmin

d ln kPsðkÞ: ð3:6Þ

The corresponding spectral tilt of entropy perturbations is
given by

nSðkÞ − 1≡ d lnPs

d ln k
: ð3:7Þ

One can discriminate between different dark matter models
by means of the spectral density PsðkÞ and the spectral tilt
(3.7) as they characterize the dependence of the dark matter
relic on the scale [24,32]. Specifying an explicit functional
form of the curvature of the field space R, we can find
explicit forms of Ωs, PsðkÞ and nSðkÞ as we shall show in
Secs. IV and V.
Moreover, we have to make sure that all excited entropy

modes become nonrelativistic before the time of matter and
radiation equality. Thus, the conditions

ms ≫ H and ms ≫
kmax

a
; ð3:8Þ

should meet before the time of matter and radiation
equality. From the above conditions, we find the following
lower bound on the mass of the excited entropy modes [30]

βe ≳max

�
10−43

�
aeHe

kmax

�
2

; 10−86
�
1012 GeV

Tr

�
2
	

×

�
1012 GeV

Tr

�
2

: ð3:9Þ

To obtain the above result, we have substituted Teq ∼OðeVÞ
for the matter-radiation equality temperature.
Before closing this section, some comments are in order.

First, we have considered the geodesic motion in the field
space by assuming η⊥ ¼ 0 while the nongeodesic motion
with η⊥ ≠ 0 is also an interesting possibility. For η⊥ ≠ 0, the
negative contribution from the last term in the expression
of m2

eff in (2.26) would lead to the production of dark matter
particles even for positive curvature R > 0. Second,
although the curvature and entropy perturbations decouple
at the linear level for η⊥ ¼ 0, they still interact with each
other at the nonlinear level. At some point when the entropy
modes are produced efficiently due to the geometrical
destabilization, these nonlinear interactions are no longer
negligible. This will open an indirect decay channel of the
produced entropy modes to the SM particles. Therefore,
assuming that this decay rate to be small, we find an upper
bound on the mass of the entropy modes. This upper bound
on the mass indicates that even if we excite superheavy
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entropy modes through the large negative values of the
curvature of field space, they will decay to the SM particles.
Third, we have considered an instantaneous reheating for the
sake of simplicity. Had we considered the standard reheating
scenario during which _σ oscillates, then so would α in
Eq. (2.35). Consequently, the entropy modes would be
excited even for positive curvature R > 0 through the
process of parametric resonance. We leave the interesting
cases of η⊥ ≠ 0 and the production of dark matter particles
through parametric resonance during reheating phase for
future studies.

IV. FLAT FIELD SPACE

Let us first consider the simplest case of multiple field
inflation with a flat field space. Considering R ¼ 0 or
equivalently α ¼ 0 in Eq. (2.35), the equation of motion for
the entropy mode function takes the well-known form

s00k þ ω2
ksk ¼ 0; ω2

k ¼ k2 þ β

τ2
−

2

τ2
: ð4:1Þ

The positive frequency solution with the Bunch-Davies
initial condition for the above equation is given by

sk ¼
ffiffiffiffiffiffiffiffi
−πτ

p
2

Hð1Þ
μ1 ðxÞ; μ1 ≡

ffiffiffiffiffiffiffiffiffiffiffi
9

4
− β

r
: ð4:2Þ

There is no particle production when β ≫ 1 during infla-
tion since the second term in ω2

k in Eq. (4.1) is larger than
the third term which implies ω2

k > 0 all the time. On the
other hand, for β ≪ 1 during inflation, we can have ω2

k < 0

from the negative contributions due to the last term which is
nothing but the gravitational particle production. In this
case, we find kmin ¼ −

ffiffiffi
2

p
=τi and kmax ¼ −

ffiffiffi
2

p
=τe, namely

xmin¼−kminτe¼
ffiffiffi
2

p
e−N ; xmax¼−kmaxτe¼

ffiffiffi
2

p
; ð4:3Þ

where we have used the fact that τi=τe ¼ eN . Here,N is the
total number of e-folds during inflation.
Substituting solution (4.2) into Eq. (3.2), the spectral

density defined in Eq. (3.6) turns out to be

Pflat
s;e ðxeÞ ¼

H2
e

48πM2
Pl

x3e ½x2e jHð1Þ
μ1þ1ðxeÞj2

þ ðβe þ x2e þ ðμ1 þ 3=2Þ2ÞjHð1Þ
μ1 ðxeÞj2

− 2xðμ1 þ 3=2ÞRe½Hð1Þ
μ1 ðxeÞHð2Þ

μ1þ1ðxeÞ��; ð4:4Þ

where xe ≡ −kτe. In the case of the flat field space, as it can
be seen from Eq. (4.2), there is only gravitational particle
production due to the term −2=τ2, which only happens for
the very light modes with β ≪ 1. Consequently, only
superhorizon modes can be excited. This is similar to what

happens for the curvature perturbations when they become
classical after horizon crossing.
Considering βe ≪ 1, we have μ1 ≈ 3=2 and (4.4) sim-

plifies to

Pflat
s;e ðxeÞ ≈

H2
e

24π2M2
Pl

x2eð1þ 2x2eÞ: ð4:5Þ

The above spectrum is blue tilted with the peak
Pflat
s;e jxe¼xmax

¼ 5H2
e=12π2M2

Pl and the spectral tilt

nflatS;eðxeÞ − 1 ¼ 2

�
1þ 4x2e
1þ 2x2e

�
: ð4:6Þ

For the corresponding accumulated energy density, from
Eq. (3.6) we find

Ωflat
s;e ¼ H2

e

24π2M2
Pl

Z
xmax

xmin

dx xð1þ 2x2Þ ≈ H2
e

8π2M2
Pl

; ð4:7Þ

where we have neglected contributions from the lower limit
in comparison with the contributions from the upper limit.
Substituting the result (4.7) into Eq. (3.4), we find the

relic density of dark matter as follows

Ωflat
s;0ðβeÞ ¼ Oð10−6Þβ1=4e

�
Tr

1012 GeV

�
5

; ð4:8Þ

where we have used the relation 3M2
PlH

2
e ¼ ðπ2=30Þg�;rT4

r

and have substituted g�;r ¼ 106.75. Note that although
Ωflat

s;e is very small, one can achieve Ωflat
s;0 ¼ Oð1Þ for Tr ≳

Oð1013 GeVÞ for the mass range 10−16 ≲ βe ≲ 10−4.
The idea of obtaining dark matter from the entropy modes

induced by the scalar isocurvature superhorizon modes is
already discussed in the literature. In Ref. [12], it was
pointed out that excited entropy modes can contribute to part
of the observed dark matter relic density. More recently, it
has been shown that considering a general spectator scalar
field during inflation, it is possible to achieve the whole of
dark matter [16–23]. In all of these models, superhorizon
entropy modes are excited through the process of gravita-
tional particle production. In the next section, we focus on
the effects of the curvature of field space in particle
production and find a new model of dark matter production
in which subhorizon modes can be excited as well.

V. CURVED FIELD SPACE

In order to have an efficient particle production from the
curvature of the field space, we need α − β ≳Oð1Þ so
ω2
k < 0 for these modes. As we have shown in Eq. (2.40),

the CMB bound on the isocurvature modes implies
α − β ≲ −0.1 at the time when the CMB scales exit the
horizon. Thus, it is not possible to have an efficient
particle production via the curvature of the field space at
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the CMB scales. On the other hand, there is no bound at
smaller scales and the curvature of the field space can be
large so that α − β ≳Oð1Þ. Thus, we consider the case
where the curvature of the field space R increases
monotonically in time. This feature is quite general and
we can consider many scenarios with different functional
forms for the curvature of the field space which meet this
criterion. In addition, we can also consider the situation
where the mass ms changes during inflation such that
α − β ≳Oð1Þ. This is possible, since the mass is related to
VNN which may take complicated form in a curved field
space. However, to simplify the analysis, we restrict our
analysis to the situation where ms is constant during
inflation while allowing for α to increase towards the final
stage of inflation (i.e., after the time when the modes of
CMB scales have left the horizon).
In order to have an explicit model that is analytically

solvable, we consider the following simple power-law form

R ¼ Re

�
τe
τ

�
2p
; p > 0; ð5:1Þ

where Re < 0 is the curvature of field space at the end of
inflation τ ¼ τe and p (> 0) is a free parameter of the
model. The specific value of p is not important and in our
analysis we may consider a typical value p≳ 1. The
dimensionless parameter α defined in Eq. (2.36) is then
a function of time given by

α ¼ αe

�
τe
τ

�
2p
; αe ≡ −ϵM2

PlRe > 0: ð5:2Þ

The parameter αe denotes the maximum value of α at the
end of inflation. Technically speaking, the above ansatz is
applicable only after the time when modes of CMB scales
have left the horizon and until the end of inflation. This is
because from the CMB constraint on the entropy perturba-
tions we require that α≲ −0.1þ β so for small β the ansatz
(5.2) may not be consistent. Therefore in the following
analysis we employ ansatz (5.2) after the time when the

CMB scales have left the horizon till end of inflation. We
further assume that α → 0 when the reheating is completed.
This may happen for example when one field decays to
radiation during reheating so we end up with a one dimen-
sional field space which is flat by construction.
Inserting Eq. (5.2) into Eq. (2.35), the equation of motion

for the entropy mode function takes the following form

s00k þω2
ksk ¼ 0; ω2

k ¼ k2þ β

τ2
−
2

τ2
−
αe
τ2

�
τe
τ

�
2p
: ð5:3Þ

To ensure that the effect of the curvature of the field space
becomes important sometime during inflation, we consider

αe > jβ − 2j: ð5:4Þ

In this case the last term in the right-hand side of ω2
k in

Eq. (5.3) dominates over the second and third terms
towards the end of inflation. This happens at the time τc
given by

τc
τe

¼
�

αe
jβ − 2j

� 1
2p

: ð5:5Þ

Recasting the relation (5.5) in term of the number of
e-folds, we obtain

ΔN ≡ ln

�
τc
τe

�
¼ 1

2p
ln

�
αe

jβ − 2j
�
; ð5:6Þ

where ΔN denotes the e-folding number for the period
when the last term in (5.3) dominates over the second and
third terms before the end of inflation. The larger αe is, the
sooner the effect of the curvature of field space becomes
important.
As we already mentioned, we are interested in the modes

withω2
k < 0 that can be excited by the negative curvature of

the field space. In this case, from Eq. (5.3) we find

8<
:

xmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − βeÞðe−2pðN−ΔN Þ þ 1Þ

q
e−N ; xmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − βeÞðe2pΔN þ 1Þ

q
; βe < 2

xmin ¼ 0; xmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβe − 2Þðe2pΔN − 1Þ

q
; βe > 2

; ð5:7Þ

where we have used τc=τe ¼ eΔN and τi=τe ¼ eN .
Now, we only need to find solutions for the entropy

mode function which satisfies Eq. (5.3). This equation
cannot be solved analytically. However, based on the above
discussion, we know that the last term in ω2

k in Eq. (5.3) can
be neglected at early times τ ≪ τc, while it dominates
towards the end of inflation τ ≫ τc. Solving separately for

these two different phases and imposing the Bunch-Davies
initial condition at τ ≪ τc, we find

sk ¼
ffiffiffiffiffiffiffiffi
−πτ

p
2

�
Hð1Þ

μ1 ðxÞ; τ ≪ τc

Hμ2ðiyÞ; τ ≫ τc
; ð5:8Þ
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where Hð1Þ
μ1 ðxÞ is the Hankel function of the first kind and

we have defined

Hμ2ðiyÞ≡ c2H
ð1Þ
μ2 ðiyÞ þ c1H

ð2Þ
μ2 ðiyÞ; ð5:9Þ

with

y≡
ffiffiffiffiffi
αe

p
p

�
τe
τ

�
p
; μ2 ≡ 1

2p
: ð5:10Þ

Matching the ingoing and outgoing solutions in (5.8)
at τ ¼ τc, fixes the coefficients c1;2. More specifically,
demanding that both sk and s0k to be continuous at τc yields

1

clðxcÞ ¼
iπ
4p

ð−1Þl½ipycHð1Þ
μ1 ðxcÞHðlÞ0

μ2 ðiycÞ

þ xcH
ð1Þ0
μ1 ðxcÞHðlÞ

μ2 ðiycÞ�;
l ¼ 1; 2; ð5:11Þ

where the primes denote derivatives with respect to the
corresponding arguments. In the above results

xc ¼ −kτc; yc ¼
ffiffiffiffiffi
αe

p
p

e−pΔN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffijβ − 2jp
p

: ð5:12Þ

It is worth noting that the coefficients cl depend on k via
the dependence on xc.
Having the mode function at the time τ ≫ τc in hand, we

can compute the spectral energy density (3.6) for entropy
modes at the end of inflation

Pcurved
s;e ðxeÞ ¼

H2
e

48πM2
Pl

x3e

�����xe dHμ2

dxe
þ 3

2
Hμ2

����
2

þ ðx2e þ βe þ αeÞjHμ2 j2
�
: ð5:13Þ

The spectrum is defined for any mode while we are
interested in the growing modes in the range defined in
(5.7). As seen from Figs. 2 and 3, the spectral density (5.13)
is always blue tilted and it is an increasing function for
all modes xmin ≤ xe ≤ xmax with arbitrary masses. In this
regard, it always has a peak at xe ¼ xmax, which depends on
the model parameters. Moreover, we have compared the
results for the light excited entropy modes in flat and
curved field spaces in Fig. 4. As seen from the figure, the
main contribution to the spectral energy density in the flat
field space (4.4) also comes from xmax, but xmax only
includes superhorizon modes as shown in Eq. (4.3). In the
case of curved field space, on the other hand, xmax includes
subhorizon modes as well thanks to the negative contri-
bution of the curvature of field space to ω2

k. Therefore, the
location of the peak of the density spectrum in our model is
different than in models of dark matter with a flat field
space which are based on the excitation of the superhorizon
entropy modes.

FIG. 2. The spectral density versus the momentum is plotted for the excited entropy modes with different masses represented by
parameter βe. The superhorizon modes xe <

ffiffiffi
2

p
are enhanced by a higher rate than the subhorizon ones with xe >

ffiffiffi
2

p
. However, the

accumulated energy density Ωcurved
s;e , given by Eq. (5.15), receives more contributions from the subhorizon modes.

1More precisely, we need to write the junction conditions for
F k and their conjugate momenta to avoid any discontinuity.
However, we have F k ¼ ask and we assume that the scale factor
and the Hubble expansion rate do not change significantly across
the time τ ¼ τc.
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On the other hand, the location of peak for the vector dark
matter models can be at small scales as the subhorizon
modes can be excited in some of these models as well
[25–28,30–32]. A question then may arise whether our
model is distinguishable from the vector dark matter models
or not. First, the shape of the spectral energy density in our
model can be different than those in the vector dark matter
models. This criterion is, however, model dependent and one

may expect a vector dark matter model that provides the
spectral density with a shape more or less similar to our
model. However, there is a fundamentally different criterion
which makes the models based on the scalar isocurvature
modes like our model, different than vector dark matter
models. All vector dark matter models will provide vector
perturbations that lead to small scale anisotropies, while this
is not the case for the scalar dark matter models [70–73].

FIG. 3. The tilt of the spectral density ncurvedS;e ðxeÞ − 1 ¼ d lnPcurved
s =d ln k versus the momentum is plotted for the excited entropy

modes with different masses. The spectrum is always blue tilted while the rate of production for the heavy modes is less than the light
ones (denoted by the solid green curve).

FIG. 4. The spectral density for light entropy modes in the model with a flat field space versus the curved field space one. Only
superhorizon modes xe <

ffiffiffi
2

p
can be excited in the case of flat field space while both superhorizon modes xe <

ffiffiffi
2

p
and subhorizon

modes xe >
ffiffiffi
2

p
can be excited in the model with a curved field space. Thus, the location of the peaks for the spectral densities in the

cases of flat and curved field spaces are different.
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Therefore, based on the above mentioned points, our
model is distinguishable not only from the scalar dark
matter models based on the flat field space but also from
the vector dark matter scenarios if one looks at both the
location of the peak of the spectral density and small scale
anisotropies.
Having the spectral density (5.13) in hand, we can find

the corresponding relic density in the model with a curved
field space through the definitions (3.4) and (3.6) as follows

Ωcurved
s;0 ðαe; p; βeÞ ¼ Oð1020Þβ1=4e

�
Tr

1012 GeV

�

×Ωcurved
s;e ðαe; p; βeÞ; ð5:14Þ

where

Ωcurved
s;e ðαe; p; βeÞ ¼

Z
xmax

xmin

d ln xPcurved
s;e ðxÞ: ð5:15Þ

We have presented the results for the relic (5.14) in Fig. 5
for entropy modes with different masses in terms of ΔN
with p ¼ 1. Demanding that the relic (5.14) contains the
total observed dark matter density, i.e.,Ωcurved

s;0 ≃ 0.27, leads
to a parameter space for αe; βe, and Tr. We have presented
in Figs. 6 and 7 the suitable parameter space for Tr, which
represents the energy scale of inflation, in terms of αe and
βe, respectively.
In the case of light (βe ≪ 1) and semiheavy (βe ∼ 1)

entropy modes, we can achieve the right amount of dark
matter for a wide range of the parameter space. On the other
hand, for the heavy modes (βe ≫ 1) the value of the

parameters βe and αe ≈ βee2pΔN should be chosen very
close to each other in order to produce the right amount of
dark matter. This shows that we need a fine-tuning for the
heavy modes. Indeed, one can directly confirm that the
larger βe is, the more accurate the required fine-tuning is in
order to achieve the right amount of dark matter (i.e., not to
overproduce dark matter). This fact can be understood
as follows.
First, having large masses, from (5.14) we see that we do

not need to produce so many heavy dark matter particles
and a small spectral density can do the job. Second, but
more importantly, we note that for the heavy entropy modes
β ≫ 1, we have to assume α ≫ 1 in order to be able to
achieve the desired tachyonic condition ω2

k < 0. Thus, we
can neglect the term −2=τ2 in Eq. (2.35) for β ≫ 1 and
α ≫ 1. The mass term þβ=τ2 dominates at τ ≪ τc while
the term −α=τ2 dominates at τ ≫ τc. If we consider β > α,
then there would be no particle production. On the other
hand, if we consider β < α, then there would be a huge
negative contribution to ω2

k for some interval in the regime
τ > τc, which leads to the overproduction of dark matter.
Based on the above two mentioned points, the only way to
achieve the right amount of dark matter is to fine-tune the
values of the mass term and the curvature of field space
such that α≳ β to produce a little amount of heavy dark
matter particles in a very short time interval. In this regard,
although it is in principle possible to produce the right
amount of dark matter from the growing heavy entropy
modes, we need to fine-tune the values of the parameters.
We have performed the integration in (5.15) numerically

as it is not possible to find an analytical result in general. In
order to better understand the behavior of the dark matter

FIG. 5. The accumulated energy density of the excited entropy modes versus the number of e-folds ΔN , defined in (5.6), is plotted for
different masses and different inflationary energy scales. The solid horizontal line shows the desired value of the dark matter relic density
today, Ω0 ¼ 0.27. The particle production is very efficient as Ωcurved

s;0 ∼Oð1Þ can be achieved even for ΔN ≲Oð1Þ.
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relic density (5.14), we now study the cases of heavy,
semiheavy, and light modes separately. Then, we will be
able to find analytical expressions for the corresponding
dark matter relic density.

A. Heavy modes

For the heavy entropy modes with β ≫ 1 and α ¼ Oð1Þ,
the term þβ=τ2 dominates over all the other terms in
Eq. (2.35) during the whole period of inflation and,

obviously, we do not have any particle production since
always ω2

k > 0. However, if we consider α ≫ 1 in addition
to β ≫ 1, in principle, it is possible to satisfy the desired
condition ω2

k < 0. In this case, one can completely neglect
the term −2=τ2 in (2.35), which is responsible for the
gravitational particle production, in comparison with
þβ=τ2 and −α=τ2 terms. Thus, we end up with the
conclusion that even heavy entropy modes can be excited
through the geometrical destabilization mechanism [51].
Note that this is not possible in the case of a flat field space

FIG. 6. The curves show the suitable parameter space for Tr − αe demanding that the entropy modes with semiheavy masses
β ¼ 1=2; 1; 3=2 provide all the dark matter in the Universe.

FIG. 7. The curves show the suitable parameter space for Tr − βe with αe ¼ 3, 5, 7, 10, demanding that the entropy modes with small
masses generate all the dark matter in the Universe.
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(α ¼ 0) as β ≫ 1 implies ω2
k > 0 in Eq. (4.1) for the whole

period of inflation.
Since α in our model (5.2) increases with time, the mass

term β=τ2 dominates up to the time τc defined in (5.5).
Thus, there is no particle production for τ < τc. For τ > τc,
the last term in Eq. (5.3) dominates, which gives a negative
contribution and makes the tachyonic growth with ω2

k < 0

possible. The range of growing modes in (5.7) for the heavy
modes are characterized by

xmin ¼ 0; xmax ≈
ffiffiffiffiffi
βe

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2pΔN − 1

p
: ð5:16Þ

For the heavy entropy modes with βe ≫ 1, from Eqs. (4.2)
and (5.12) we see that yc ≫ 1 and μ1 ¼ i

ffiffiffiffiffi
βe

p
. Therefore

expanding (5.11) for yc ≫ 1 and then using Hð1Þ
ν ðzÞ ∼

−i
ffiffiffiffi
2
πν

q
ðez
2νÞ−ν for ν ≫ 1, we find

cl ≈
−iffiffiffiffiffiffi
2p

p e
ð−1Þl
p

ffiffi
β

p
e−

π
ffiffi
β

p
2

�
exc
2

ffiffiffi
β

p
�

−i
ffiffi
β

p
: ð5:17Þ

From the above result we see that c1=c2 ¼ e−ð2=pÞ
ffiffi
β

p
≪ 1

for β ≫ 1. Thus, we ignore the contribution from c1 in
(5.9). Substituting (5.17) in (5.9) and using the result in
(5.13), from Eqs. (5.14) and (5.15) we obtain

ΩH
s;eðΔN ; p; βeÞ ≈

13H2
e

720π2M2
Pl

epΔN ðe2pΔN − 1Þ3=2e−κ
ffiffiffiffi
βe

p
β2e ; κ ≡ 2

p

�
epΔN þ πp

2
− 1

�
; ð5:18Þ

where we have used the relation (5.6).
The corresponding energy density today is given by

ΩH
s;0ðΔN ; p; βeÞ ¼ Oð1020Þβ1=4e

�
Tr

1012 GeV

�
ΩH

s;eðΔN ; p; βeÞ: ð5:19Þ

As we have κ > 0 for the typical values of p and ΔN , the

factor e−κ
ffiffiffiffi
βe

p
¼ e−κms=He in (5.18) is responsible for the

well-known Boltzmann suppression factor for the heavy
modes. On the other hand, this mass suppression can be

compensated by the factor β2e, which is originated from the

curvature of the field space. This is the analytical con-
firmation of the existence of a fine-tuning that we men-
tioned at the end of the previous subsection. However, the
fine-tuning issue for this model can be somehow amelio-
rated at the cost of lowering the energy scale of inflation as
can be seen in Fig. 8.

FIG. 8. The curves show the suitable parameter space for Tr − αe, demanding that the entropy modes with heavy masses βe ¼ 50, 70,
100 generate all the dark matter in the Universe. The requirement of high energy inflation, Tr > Oð1011 GeVÞ, leads to the fine-tuning
αe ≃ βe − 2 indicated by the dotted vertical lines.
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B. Semiheavy modes

Now, we turn to the most interesting case of semiheavy
entropy modes with β ¼ Oð1Þ. The critical value yc defined
in Eq. (5.12) satisfies yc ≲ 1 for the semiheavy and light
entropy modes with β ≲Oð1Þ and the typical value of
p ¼ Oð1Þ. However, we have numerically confirmed that,
for 0.5≲ yc ≲ 1, we can obtain approximate results by
taking the limit yc ≪ 1 for the semiheavy entropy modes
with very good accuracy. In this case, the coefficient c1;2 in
(5.11) can be approximated as follows

c1;2ðxcÞ ≈
i−μ2

4
μ2Γðμ2Þðð2μ1 þ 1ÞHð1Þ

μ1 ðxcÞ

− 2xcH
ð1Þ
μ1−1ðxcÞÞ

�
2

yc

�
μ2
; for yc ≪ 1: ð5:20Þ

As c1 ≃ c2 for yc ≪ 1, the solution (5.8) at τ ≫ τc
simplifies to

sk ¼ eiθ
ffiffiffiffiffiffiffiffi
−πτ

p
c1Jμ2ðiyÞ; τ ≫ τc; ð5:21Þ

where JμðxÞ denotes the Bessel function and θ is a phase
factor. Substituting the above result in Eq. (3.1) we find

ΩSH
s;e ¼

H2
e

12π2M2
Pl

Z
xmax

xmin

dxðLeþðβeþαeþx2ÞKeÞx2jc1ðxÞj2;

ð5:22Þ

where we have defined LðτÞ and KðτÞ, which are functions
of time and not momentum as follows:

LðτÞ≡ π½ ffiffiffiffiffi
αe

p
I1þμ2ðyÞ − Iμ2ðyÞ�2; KðτÞ≡ πIμ2ðyÞ2:

ð5:23Þ

Here, IμðxÞ ¼ i−μJμðxÞ is the modified Bessel function of
the first kind. The limits of the integration in (5.22) are
given by (5.7).
Substituting Eq. (5.20) in Eq. (5.22) and performing the

integral, we find the following analytical result

ΩSH
s;e ¼ H2

e

3M2
Pl

�Γð1þ 1
2pÞ

4πeΔN

�2�
2pffiffiffiffiffi
αe

p
�

1=p
½ðLe þ ðαe þ βeÞKeÞF ð2Þðμ1Þ þ e−2ΔNKeF ð4Þðμ1Þ�; ð5:24Þ

where

F ðnÞðμ1Þ≡
�
μ1 þ

1

2

�
2

I ðnÞ
μ1;μ1 þ I ðnþ2Þ

μ1−1;μ1−1 − 2

�
μ1 þ

1

2

�
Re½I ðnþ1Þ

μ1;μ1−1�; ð5:25Þ

I ðnÞ
a;b ≡

Z
xmaxeΔN

xmineΔN
dx xnHð1Þ

a ðxÞHð2Þ
b ðxÞ: ð5:26Þ

The integrals for I ðnÞ
a;b can be explicitly computed in terms

of the hypergeometric and gamma functions.
Substituting Eq. (5.24) in Eq. (3.4), we find the follow-

ing result for the relic density of the dark matter produced
by the semiheavy entropy modes

ΩSH
s;0ðαe; p; βeÞ ¼ Oð1020Þβ1=4e

�
Tr

1012 GeV

�
ΩSH

s;e ðαe; p; βeÞ:

ð5:27Þ
To simplify the result, we note that xmin ≪ 1. Expanding
(5.24) for the small values of xe, we find that the leading
term is given by x3−2μ1e . Therefore for the case of real μ1
with β < 9=4, which includes semiheavy modes with
β ¼ Oð1Þ < 9=4, we always have μ1 < 3=2 and, therefore,
contributions from the lower limit xmin are negligible.
The dominant contributions are then given by the upper
limit xmax. From Eq. (5.7) we find that xmax ≳Oð1Þ. For
xmax ∼Oð1Þ we cannot simplify the result further while we
find the following simple result for xmax ≫ Oð1Þ

ΩSH
s;e ðαe; p; βeÞ ≈

H2
e

3M2
Pl

Γð1=2pÞ2
27π3p2

�
2pffiffiffiffiffi
αe

p
�

1=p

× KeeΔN x5maxT ðxmax; μ1Þ; ð5:28Þ

where we have defined

T ðx; μ1Þ≡ 7 − 4μ1
5

cot ðπμ1Þ cos ð2xeΔN Þ
− sin ð2xeΔN Þ: ð5:29Þ

We can further simplify the result (5.28) by taking the
limit limx→∞ T ðx; μ1Þ, which gives

T ðxmax; μ1Þ ≤
���� 5þ ð7 − 4μ1Þ cot ðπμ1Þ

5 sin ðπμ1Þ
����: ð5:30Þ

In particular, we have T ðxmax; μ1Þ ≤ 1 for μ1 ¼ 1=2 or
βe ¼ 2. The above result is valid for the whole range
0 ≤ μ1 ≤

ffiffiffi
7

p
=4 or equivalently 1=2 ≤ βe ≤ 9=4, while the

right-hand side of Eq. (5.30) can be very large for small
values of μ1. Substituting the above result in Eq. (5.28), we
find the following upper bound
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ΩSH
s;e ðαe; p; βeÞ≲ H2

e

3M2
Pl

Γð1=2pÞ2
27π3p2

�
2pffiffiffiffiffi
αe

p
�

1=p
KeeΔN ð2 − βe þ αeÞ5=2

���� 5þ ð7 − 4μ1Þ cot ðπμ1Þ
5 sin ðπμ1Þ

����: ð5:31Þ

The main contributions come from the upper limit of the
integral and we have shown that the energy density
spectrum is blue tilted. This is the reason why we have
treated the result (5.31) for xmax ≫ Oð1Þ to be an upper
bound for all semiheavy modes. The result (5.31) was
obtained for 1=2 ≤ β ≤ 9=4 and it is not valid for either
β ≪ 1 or β ≫ 1.

C. Light modes

In the case of light dark matter β ≪ 1, we can neglect β
in Eq. (5.3) and, therefore, we have particle production
during the whole period of inflation τi < τ < τe. The limits
in (5.7) simplify to

xmin ≈
ffiffiffi
2

p
e−N ; xmax ¼

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2pΔN þ 1

p
: ð5:32Þ

The result (5.20) is also applicable for the light entropy
modes with β ≪ 1. Substituting μ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − β

p
≈ 3=2 in

Eq. (5.20), we find

c1;2 ≈ i1−μ2eixc
μ2Γðμ2Þffiffiffiffiffiffi

2π
p

�
x2c þ 2ixc − 2

x3=2c

��
2

yc

�
μ2
; ð5:33Þ

which after substituting in (5.22) gives

ΩL
s;eðΔN ; pÞ ¼ H2

e

3M2
Pl

μ22Γðμ2Þ2
8π3

�
2

yc

�
2μ2

Z
xmax

xmin

dxðLe þ ðαe þ x2ÞKeÞ
�
x3eΔN þ 4

x
e−3ΔN

�
;

≈
H2

e

24π2M2
Pl

Γð1=2pÞ2
4πp2

�
2pffiffiffi
2

p
�

1=p
�
Le þ

10

3
ð1þ e2pΔN ÞKe

�
ð1þ e2pΔN Þ2: ð5:34Þ

In obtaining the above result, we have neglected contri-
butions from the lower limit defined in Eq. (5.32) in
comparison with the dominant contributions from the upper
limit. Using this result in Eq. (3.4) we find the relic density
for the dark matter produced by the light entropy modes as
follows

ΩL
s;0ðΔN ; p; βeÞ ¼ Oð1020Þβ1=4e

�
Tr

1012 GeV

�
ΩL

s;eðΔN ; pÞ:

ð5:35Þ

VI. SUMMARY AND DISCUSSIONS

We have considered the most general two-field infla-
tionary scenario with linear kinetic terms characterized by a
curved field space and without higher derivative terms.
Multiple field inflationary scenarios generally provide
entropy perturbations which are constrained on CMB
scales but otherwise may have interesting cosmological
implications. In the case of a flat field space, the super-
horizon entropy modes are excited through the gravitational
particle production process in a similar way as the curvature
perturbations are stretched on superhorizon scales. The
accumulated energy density of the excited superhorizon
entropy modes can play the role of dark matter after the
time of matter and radiation equality. These types of dark
matter scenarios were already studied in the literature and it

was found that only light entropy modes (compared with
the Hubble expansion rate during inflation) can be excited
through the gravitational instability.
In this paper, we have looked at the role of the curvature

of the field space. We have shown that even subhorizon
heavy and semiheavy entropy modes (with the mass larger
than or comparable to the Hubble expansion rate during
inflation) can be excited through the tachyonic instability
induced by the negative curvature of the field space which
is known as the geometrical destabilization. We have
obtained the spectral energy density, the spectral tilt, and
the accumulated energy density of the excited entropy
modes. The spectrum is blue tilted so that the subhorizon
modes provide the dominant contribution to the dark matter
energy density. Compared to the models that are based on a
flat field space and where only light superhorizon entropy
modes are excited, the spectral energy density in our model
has a peak at much smaller scales. Moreover, contrary to
the vector dark matter models, our model does not provide
any small scale vector-type anisotropies. These differences
make our model observationally distinguishable from both
vector dark matter models and scalar isocurvature dark
matter scenarios based on the flat field space.
In order to simplify the analysis we have restricted our

considerations to the geodesic motions in the field space
corresponding to η⊥ ¼ 0. In general a nongeodesic motion
can have interesting effects on the dark matter production in
various ways. First, the parameter η⊥ contribute negatively
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to the effective mass squared which can facilitate tachyonic
instability (i.e., with β < 0) along with the negative field
space curvature. Second, with η⊥ ≠ 0 the adiabatic and the
entropy modes are coupled at the linear order which can
affect the production of the dark matter from the entropy
modes and also the constraint on them from the CMB
observations. We would like to come back to this question
in future works.
In addition, we have considered the simplified picture

of an instant reheating. In a realistic situation, during the
(p)reheating process the scalar fields oscillate rapidly while
the inflaton energy is transferred to SM particles. In a
multiple field setup with a curved field space, this process is
highly nontrivial and tachyonic instabilities can efficiently
be activated during (p)reheating [74–76]. This may gen-
erate small-scale entropy modes as the seed of the dark
matter. In a sense what we have calculated in the current
simplified setup with an instant reheating is a lower bound
on the fractional density of dark matter from the entropy
modes. It is an interesting question to look for the
production of dark matter particles through the tachyonic
resonance of entropy modes in a curved field space during
(p)reheating.
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helpful comments and discussions. M. A. G. thanks
School of Astronomy at Institute for Research in
Fundamental Sciences (IPM) for their hospitality during
the final stage of this work. The work of M. A. G. was
supported by Japan Society for the Promotion of Science
Grants-in-Aid for international research fellow
No. 19F19313. S. M.’s work was supported in part by
Japan Society for the Promotion of Science Grants-in-Aid
for Scientific Research No. 17H02890, No. 17H06359,
and by World Premier International Research Center
Initiative, MEXT, Japan. H. F. and A. T. acknowledge
partial support from the “Saramadan” federation of Iran.

APPENDIX A: ENERGY DENSITY FOR THE
ENTROPY MODES

In this appendix, we find the energy density of the
entropy modes.
The energy-momentum tensor for our model defined by

the action (2.1) is given by Eq. (2.2) as follows

Tμ
ν ¼ −2Xμ

ν þ ðX − VÞδμν; ðA1Þ

where we have defined

X ≡ gμνXμν ¼ γabXab ðA2Þ

with

Xμν ≡ −
1

2
γab∂μϕ

a∂νϕ
b and Xab ≡ −

1

2
gαβ∂αϕ

a∂βϕ
b:

ðA3Þ
The total energy density is then given by

ρ ¼ −T0
0 ¼ γabð2Xab − XabÞ þ V;

X̄ab ≡ −
1

2
gα0∂αϕ

a _ϕb: ðA4Þ

The energy density of the entropy modes is encoded in the
second order perturbations of the energy density,

ρð2Þ ¼ 1

2
½γð2Þab ð2X̄abð0Þ − Xabð0ÞÞ

þ γð0Þab ð2X̄abð2Þ − Xabð2ÞÞ þ Vð2Þ�; ðA5Þ
where the upper indices (i) show the order of perturbations.
We work in spatially flat gauge by fixing the diffeo-
morphism gauge freedom so that ψ ¼ 0 ¼ E. Moreover,
we focus on the decoupling limit and neglect metric
perturbations A and B as their contributions are slow-roll
suppressed. In this respect, the metric takes the unperturbed
form of Eq. (2.7). Then, all information of the scalar
perturbations are encoded in the scalar field perturbations
δϕa defined in Eq. (2.23). In this case, we find [64]

X̄abð2Þ ¼ −g00ð0Þ½Rða
ecd _φ

bÞ _φdδϕeδϕc þ δ _ϕaδ _ϕb�;
Xabð2Þ ¼ −gμνð0Þ½Rða

ecd∂μφ
bÞ∂νφ

dδϕeδϕc þ ∂μδϕ
a∂νδϕ

b�;
Vð2Þ ¼ Vabδϕ

aδϕb: ðA6Þ
Note that γð2Þab identically vanishes through the metric

compatibility condition with respect to the Christoffel
symbols (2.4) as explained in Ref. [64]. In the spatially
flat gauge with ψ ¼ 0, from Eq. (2.24) we find

δϕa ¼ _σ

H
RTaþFNa; δ _ϕa ¼

�
_σ

H
R
�

:
Taþ _FNa; ðA7Þ

where we have used the fact that _Ta ¼ 0 ¼ _Na for η⊥ ¼ 0
from Eqs. (2.21). Substituting (A7) in Eqs. (A6) and using
the result in (A5) we find the following result for the energy
density of the entropy modes

ρsðτÞ ¼
1

2a4

��
a

�
s
a

�0�2

þ ð∇sÞ2 þ ðVNN − μ2Þa2s2
�
;

ðA8Þ

where we have worked with the conformal time and with
the canonically normalized entropy field s ¼ aF . In
obtaining the above result we have also used Eqs. (2.6),
(2.13), and (2.14). Going to the Fourier space, we find the
result (3.1) for the energy density of the entropy modes at
the end of inflation τ ¼ τe.
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APPENDIX B: HAMILTONIAN FOR THE
ENTROPY MODES

In this appendix we compute the quadratic Hamiltonian
for the entropy modes based on the quadratic action (2.29).
As the curvature and entropy perturbations completely

decouple from each other at the linear order for the
geodesic trajectory η⊥ ¼ 0, we rewrite the action (2.29)
as follows

Sð2Þ ¼ Sð2ÞR þ Sð2ÞF ; ðB1Þ

where we have defined

Sð2ÞF ≡
Z

dτLð2Þ
F ;

Lð2Þ
F ≡ a2

2

Z
d3x½F 02 − ð∇F Þ2 − ðVNN þ μ2Þa2F 2�: ðB2Þ

In (B1), we have also defined Sð2ÞR ≡ Sð2Þ − Sð2ÞF in

which Sð2ÞR is the quadratic action for the curvature
perturbations in the case of η⊥ ¼ 0. Defining the canoni-

cal momentum πð2ÞF ¼ ∂Lð2Þ
F =∂F 0 and performing the

Legendre transformation, the Hamiltonian for the entropy
modes turns out to be

Hð2Þ
F ¼F 0πð2ÞF −Lð2Þ

F

¼a2

2

Z
d3x½F 02þð∇F Þ2þðVNNþμ2Þa2F 2�: ðB3Þ

Going to the Fourier space and working with the
canonical entropy field s ¼ aF , which is defined in
Eq. (2.30), we find

Hð2Þ
s ¼ 1

2

Z
d3k
ð2πÞ3

�����a
�
sk
a

�0����
2

þ ðk2 þ ðVNN þ μ2Þa2Þjskj2
�
: ðB4Þ

If we seek the energy density associated with the above
Hamiltonian through the relation Hð2Þ

s =
ffiffiffiffiffiffi−gp ¼ Hð2Þ

s =a4,
then we find a result different from Eq. (3.1), which we
find from the second order expansion of the energy-momen-
tum tensor Eq. (A1). More precisely, the sign of the mass
term induced by the curvature of the field space μ2 is different
for these two energy densities. First, this is not surprising as
the second order part of the energy-momentum tensor reflects
a part of the cubic action while the Hamiltonian (B4) is the
generator of the time evolution for the linear perturbations
that are obtained from the quadratic action. As is known,
these quantities are different in general and this is the case in
our model. Second, the different sign for μ2 term in Eqs. (A8)

and (B4) shows that ρs > 0 and Hð2Þ
s < 0 for μ2 < 0

(α > 0). Thus, the system becomes unstable in this regime,
which is a signature of the existence of tachyonic instability
in our model. Indeed, we need this local instability induced
by the negative curvature of the field space to produce
entropy modes in the context of the so-called geometrical
destabilization mechanism [51].
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