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We present a new analytic model describing gravitational-wave emission in the postmerger phase of
binary neutron star mergers. The model is described by a number of physical parameters that are related
to various oscillation modes, quasilinear combination tones or nonlinear features that appear in the
postmerger phase. The time evolution of the main postmerger frequency peak is taken into account and it is
described by a two-segment linear expression. The effectiveness of the model, in terms of the fitting factor
or, equivalently, the reduction in the detection rate, is evaluated along a sequence of equal-mass simulations
of varying mass. We find that all parameters of the analytic model correlate with the total binary mass of
the system. For high masses, we identify new spectral features originating from the nonlinear
coupling between the quasiradial oscillation and the antipodal tidal deformation, the inclusion of which
significantly improves the fitting factors achieved by the model. We can thus model the postmerger
gravitational-wave emission with an analytic model that achieves high fitting factors for a wide
range of total binary masses. Our model can be used for the detection and parameter estimation of the
postmerger phase in upcoming searches with upgraded second-generation detectors, such as aLIGOþ and
aVirgoþ, with future, third-generation detectors (Einstein Telescope and Cosmic Explorer) or with
dedicated, high-frequency detectors.
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I. INTRODUCTION

The two gravitational-wave (GW) events that have
been identified as binary neutron star (BNS) mergers,
GW170817 [1] and GW190425 [2], offer a glimpse into
the many more observations that are anticipated for the next
years [3]. Already, the detection of GWs from the inspiral
phase of GW170817 produced new constraints on the
dimensionless tidal deformability of neutron stars and thus
on their equation of state (EOS) [1,4]; see [5,6] for recent
reviews. Those detections can be combined with informa-
tion extracted from the electromagnetic counterpart of
GW170817 or other measurements, e.g., [7–17] and
references therein. Significant improvement on these

EOS constraints is expected by combining a larger number
of detections in the near future [18–22]. Although the
sensitivity of the Advanced LIGO and Advanced Virgo
detectors was not sufficient to detect the postmerger phase
in GW170817 [1,4,23], such detections are likely to be
achieved in the future, with upgraded [24], with dedicated
high-frequency [25–29] or with third-generation [30,31]
detectors. Such observations of GWs in the postmerger
phase of BNS mergers would offer a tremendous oppor-
tunity to probe the high-density EOS; see [13,32–67] and
references therein.
In order to detect the postmerger GW phase, robust and

efficient data analysis techniques are needed, and currently
there are two main approaches. One employs morphology-
independent signals [44,52], while the other is based on
matched-filtering techniques, which require accurate GW
postmerger template banks. We focus our discussion on the
latter method. In [40] we introduced a time-domain analytic
model, which utilizes a combination of three exponentially
decaying sinusoids. The model incorporated the dominant
postmerger peak (fpeak) and the two most significant
secondary frequency components (fspiral and f2−0) that
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also correlate with the binary’s properties. Informed by
numerical relativity simulations, frequency-domain mod-
els were introduced in [39,50,53,68] and time-domain
models were introduced in [35,49,57,69–71]. In [39] a
frequency-domain model (which can be inverted to the
time domain) was constructed for the amplitude and phase
of the spectra, using a principal component analysis.
Reference [50] introduced a frequency-domain hierarchi-
cal model, which generates amplitude spectra. In [53] a
frequency-domain amplitude model, which utilizes
Lorentzian functions, in combination with relations con-
necting binary properties to the postmerger characteristic
features was introduced. Reference [49] developed a time-
domain analytical model based on the morphology of the
postmerger waveforms (employing numerical relativity
informed relations), which can be combined with an
inspiral waveform. In [57] a time-domain analytic model
which uses exponentially damped sinusoids (as in [40])
and includes three frequency components was developed.
In this model, for all the frequency components, a constant
linear frequency-drift term was introduced.
In order to construct faithful postmerger GW templates, it

is important to understand the underlying physical mecha-
nisms, which dictate the different features of the GW
spectrum. The latter is complex and even though some of
its properties are well studied and understood others are not.
In this work we compare the spectral properties of the

postmerger phase along a sequence of equal-mass BNS
merger simulations with increasing total mass (Mtot). We
find a smooth transition of spectral features along this
sequence as anticipated in [37]. In particular, we study
the time evolution of the dominant frequency component
(fpeak) in the GW spectra (see also [57]) and using spectro-
grams we introduce a time-dependent two-segment piece-
wise analytic function, which models such a frequency drift.
In addition, we identify a new coupling mechanism

between tidal antipodal bulges (fspiral; see [37]) and the
quasiradial mode (f0), which results in two frequency
peaks in the GW spectra of high-mass models. The
inclusion of this new feature significantly improves the
fitting factors achieved for systems with binary masses near
the threshold mass to prompt collapse.
We develop a time-domain analytic model (based on [40])

for the postmerger GW emission, which incorporates the
four frequency components (fpeak, fspiral, and f2�0) and
allows a time-dependent description of the fpeak component.
We introduce a hierarchical procedure to determine the
analytic model’s parameters. We evaluate the performance of
our analytic model using the noise-weighted fitting factor
(FF) and show that this remains higher than ∼0.96 along the
whole sequence of binary models considered.
Our new analytic model is described by physical

parameters only and we find that all parameters correlate
with the total binary mass of the system. It can be used for
the detection and parameter estimation of the postmerger

phase in upcoming searches with upgraded second-
generation detectors, such as aLIGOþ and aVirgoþ (see
[24]), with future, third-generation (Einstein Telescope [72]
and Cosmic Explorer [30]) or with dedicated high-
frequency detectors [25–29]. Because the model is based
on physical parameters, it elucidates the mechanisms
shaping the spectra and how those depend on the
binary mass.
This paper is structured as follows: In Sec. II we describe

the physical systems we simulate and our numerical setup.
In Sec. III we discuss particular features of the GW signal
in the postmerger phase for a reference simulation. In
Sec. IV we consider a sequence of models with increasing
total binary mass Mtot and describe how the spectral
properties depend on Mtot. In Sec. V we introduce an
analytic time-domain model for the postmerger phase.
In Sec. VI we discuss the fits of the analytic model to
the simulation data and evaluate its performance using the
noise-weighted FF. Section VII addresses the parameters
of the analytic model and their dependencies on the
total binary mass Mtot. In Sec. VIII we focus on specific
configurations with a total mass Mtot close to the threshold
mass for prompt collapse Mthres. In different appendixes,
we include more detailed information on various aspects
described in the main text.
Unless otherwise noted, we employ a dimensionless

system of units for which c ¼ G ¼ M⊙ ¼ 1. In
Appendix C 4 we summarize the notation and the units
for all the parameters of our analytic model.

II. METHODS

We perform three-dimensional fully general relativistic
simulations of binary neutron star mergers and discuss the
spectral features of the postmerger GW emission. We use
the MPA1 [73] EOS. This EOS model is compatible with
constraints from GW170817 [74] and with the mass
measurement of 2.01� 0.04 M⊙ for pulsar PSR J0348þ
0432 [75]. We simulate a sequence of symmetric binaries
(with mass ratio q ¼ 1) varying the total binary mass Mtot.
We consider eight models with Mtot ¼ 2.4, 2.5, 2.6, 2.7,
2.8, 2.9, 3.0 and 3.1 M⊙. None of the models collapses to a
black hole (BH) within the simulation time of up to 25 ms
after merging, although the total mass of the most massive
binary is close to the threshold binary mass for prompt BH
formation Mthres [76]. In the following sections we will
introduce our results by discussing the model with Mtot ¼
2.5 M⊙ as a reference simulation and then extend the
analysis by including models with other binary masses.
We construct initial data (ID) of circular quasiequili-

brium solutions with the LORENE code [77,78]. The initial
separation between the centers of the NSs is 40 km, which
results in a few revolutions before merging. We assess the
impact of residual eccentricity e in the simulations in
Appendix A 1. We show that the GW spectral features are
hardly affected by eccentricity e < 0.01.
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For the evolution we employ the Einstein Toolkit code [79].
The hydrodynamics are solved by the GRHydro module
[80,81] adopting the Valencia formulation [82,83]. We
use the HLLE Riemann solver [84] and weighted essentially
non-oscillatory (WENO) reconstruction [85,86]. The space-
time evolution is carried out in the Z4c formulation [87,88]
as implemented in the CTGamma module [89,90]. The
computational domain consists of seven refinement levels
where the inner one has the finest resolution (dx ¼ 277 m)
while the grid spacing is doubled at each successive level.
The box size corresponds to xmax ¼ 2126.276 km. In
Appendix A 2 we describe an additional simulation with
better resolution (dx ¼ 185 m) and find an only weak
influence on the GW spectral features. In the following
sections we will refer to this calculation as HR simulation
and will indicate the respective results in various figures.
To reduce the computational costs we impose reflection

symmetry with respect to the orbital plane and pi symmetry
with respect to the axis normal to this plane. We have also
performed additional simulations without the pi symmetry
and find that the impact on the spectral properties is
negligible (see Appendix A 3).
The EOS is implemented as a seven-segment piecewise

polytrope [91] and is supplemented with an ideal-gas
pressure component to approximate thermal effects, where
we set Γth ¼ 1.75 (see e.g., [92] justifying this value as a
reasonable choice to model the postmerger GW emission).
We extract GWs employing the Ψ4 formalism. The Weyl

scalar Ψ4 is decomposed in spin-weighted spherical har-
monics at a finite coordinate radius R, where the radially
averaged component is denoted by Ψl;m

4 ðt; RÞ. We focus on
the dominant mode ðl; mÞ ¼ ð2; 2Þ. We use an extraction
coordinate radius of R ≃ 443 km (but we tested also a
larger extraction coordinate radius of R ≃ 1033 km and
find that the GW spectra are essentially unaffected).
Computing the strain requires a double integration of
Ψl;m

4 ðt; RÞ with respect to coordinate time t, which leads
to nonlinear drifts in the strain. To avoid this problem, we
perform the integration in the frequency domain using a
fixed frequency integration scheme [93].
We define the merging time tmerge as the time at which

jhðtÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þðtÞ þ h2×ðtÞ

p
reaches the maximum. We per-

form a time shift (t → t − tmerge) so that t ¼ 0 corresponds
to the merging time. We split the GW signals into two
phases accordingly: (a) the inspiral phase (t < 0) and
(b) the postmerger phase (t ≥ 0). All figures associated
with GW quantities (such as GW spectrograms) use the
aforementioned convention meaning that t ¼ 0 corre-
sponds to the merging time obtained from max jhðtÞj.
Figures and measures associated with the lapse function
(such as spectrograms of the minimum lapse function αmin)
define the merging time using the maximum of strain
obtained from the quadrupole formula jhQFðtÞj. We note
that (prior to our time shifting) the two times of

the max jhðtÞj and max jhQFðtÞj should differ by approx-
imately Δt ≃ 1

c R ≃ 1.5 ms, which thus can be removed as
appropriate.

III. SPECTRAL ANALYSIS OF THE
POSTMERGER GW EMISSION FOR A

REFERENCE SIMULATION

First, we consider the model with Mtot ¼ 2.5 M⊙ as a
reference simulation and discuss the different features of
the postmerger GW signal. We describe how we extract
those features from the simulation data and how we include
them in an analytic model for the postmerger phase. Apart
from considering the features present in the GW spectrum,
we also also extract the time evolution of certain features by
computing spectrograms. Throughout this work and for
the sake of simplicity, we will often use a frequency, for
example, fpeak, to refer to a specific peak in the spectrum or
mode of the GW signal.

A. Evolution of f peak and analytic fit

The strongest feature in the postmerger gravitational-
wave signal is attributed to the fundamental quadrupolar
oscillation mode (see [35,38–40,48,94–106]). Its fre-
quency, usually denoted as fpeak (or f2), dominantly
depends on the EOS and the total binary mass. This is
expected since the high-density regime of the EOS dictates
the size of the remnant. As the remnant undergoes further
evolution, fpeak shifts to higher or lower frequencies. The
interplay of cooling and angular momentum redistribution
as well as losses leads to a change of the stellar structure
and thus to a change in the dominant oscillation frequency.
In order to understand the frequency evolution of

particular components in the GW signal, we compute
spectrograms that employ a wavelet-based scheme [107].
The spectrogram in Fig. 1 displays the time evolution of the
dominant component fpeak of our reference simulation.
In the first few milliseconds, fpeak undergoes a rapid
evolution, and the signal can be split in two phases:
(a) for t≲ 6 ms, fpeak follows a decreasing trend approx-
imately from about 2.8 to 2.5 kHz; (b) for t≳ 6 ms, fpeak is
approximately constant with fpeak ¼ 2.5 kHz. We quantify
the drift by extracting the evolution of fpeakðtÞ from the
spectrogram (black curve) as the frequency which corre-
sponds to the maximum wavelet coefficient at time t.
We model fpeakðtÞ with a simple two-segment piecewise
analytic fit with respect to the time coordinate t. The first
segment describes the initial drift as a linear function in the
frequency-time plane, while the second segment assumes a
constant fpeak, imposing continuity as

fanalyticpeak ðtÞ ¼
�
ζdrift · tþ fpeak;0 for t ≤ t�;

fpeakðt�Þ for t > t�:
ð1Þ
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The analytic fit is shown as two white line segments in
Fig. 1 and is in good agreement with the numerically
extracted fpeakðtÞ. Notice that Fig. 1 shows a particular
example, with an initial negative drift. In the parameter
space of different EOSs and masses, the initial drift can be
positive or nearly zero and there are also cases which can be
better described by a constant drift up to the delayed
collapse to a black hole (these cases can also be covered by
the above analytic description).
Throughout this work, fpeak, i.e., without explicit time

argument, denotes the frequency corresponding to the
maximum amplitude of heff;þðfÞ ¼ f · h̃þðfÞ, where
h̃þðfÞ is the Fourier transform of hþðtÞ (in agreement
with the definition currently used in the literature) and
fpeakðtÞ refers to dominant frequency as a dynamical
quantity, which is extracted from the spectrogram.
Below we use this notation for other components of the
signal as well. As shown in Fig. 2, the frequency peak may
not be symmetric, but it can have a broader, one-sided
distribution toward higher frequencies. This feature is
explained by an evolving fpeakðtÞ which covers the corre-
sponding frequency range; see also Sec. VI A. The cyan-
shaded area in Fig. 2 shows the frequency range as covered
by our analytic piecewise function fanalyticpeak ðtÞ, in agreement
with the one-sided peak of the dominant mode.

From the spectrograms we also extract a mean value
of fpeakðtÞ averaged over the initial interval from 0 to t�.

This mean value hft∈½0;t��peak ðtÞi does not necessarily coincide
very well with the maximum in the power spectrum, but it
provides a measure for fpeakðtÞ at early times.

B. Secondary GW peaks f 2�0 and f spiral
As it is apparent from the spectrogram (see Fig. 1) and

the spectrum (see Fig. 2) the postmerger GW signal
contains several additional secondary features apart from
the dominant oscillation mode. Two of those subdominant
features originate from a nonlinear coupling between the
quadrupolar mode and the quasiradial oscillation mode f0.
This coupling is expected to produce side peaks
(combination tones) of the dominant peak at frequencies
f2�0 ≈ fpeak � f0. Inspecting the GW spectrum in Fig. 2,
we indeed identify secondary peaks at approximately
fpeak � f0, where we estimate f0 from a Fourier transform
of the evolution of the minimum lapse function, since f0
(being a quasiradial oscillation) does not occur prominently
in the GW spectrum.
In our analysis we extract and define f2�0 as the

corresponding local maxima in the effective power spec-
trum heff;þðfÞ (employing the full signal including the
inspiral), where we note that the relation f2�0 ¼ fpeak � f0
holds only approximately. This slight inequality is due to

FIG. 1. Spectrogram of strain hþðtÞ for the reference simu-
lation. The black curve illustrates fpeakðtÞ determined by the
maximum wavelet coefficient at given time t. The white curve

shows the two-segment piecewise analytic fit fanalyticðtÞpeak of Eq. (1).
The purple star indicates t ¼ t�, after which the frequency
remains constant. The cyan, yellow, green, and orange dashed
horizontal lines indicate fpeak, fspiral, f2−0, and f2þ0, respectively,
as extracted from the spectrum shown in Fig. 2.

FIG. 2. Effective GW spectrum heff;þðfÞ for the postmerger
phase of the reference simulation. Colored dashed vertical lines
indicate the frequency peaks fpeak, fspiral, f2−0, and f2þ0. Shaded
areas correspond to the frequency range of fpeak, f2−0, and f2þ0

(see text for details). The dash-dotted curves denote the design
sensitivity Advanced LIGO [108] and of the Einstein Telescope
[109], respectively.
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the fact that the frequencies of the f2�0 peaks are
determined during the early, very dynamical evolution of
the remnant, when the radial oscillation is still strongly
excited. In this very early postmerger period, the main
frequency peaks, in particular, fpeakðtÞ, can evolve rapidly.
In this regard, we further investigate the time evolution

of f0ðtÞ. We extract the quasiradial oscillation from the
time evolution of minimum lapse function αmin (or from
the maximum rest mass density ρc). Figure 3 shows the
spectrogram of the minimum lapse function αminðtÞ. For
our reference simulation, the frequency change of f0ðtÞ is
small and comparable to the noise associated to the
spectrogram scheme [for high-mass configurations the
frequency drift of f0ðtÞ is slightly more pronounced; see
Sec. IV]. The roughly constant frequency f0ðtÞ is in good
agreement with the maximum in the power spectrum of
αmin, as shown in Fig. 7.
Finally, we consider the time evolution of both fpeakðtÞ

and f0ðtÞ to obtain f2�0ðtÞ ¼ fpeakðtÞ � f0ðtÞ. In Fig. 2 the
green and orange bands indicate the ranges in which
f2�0ðtÞ varies and which coincide well with the secondary
peaks.
As already noted, the exact values of the f2�0 peaks

deviate by some percent from fpeak � f0, i.e., the frequen-
cies extracted from the full signal, which is a consequence
of the initial evolution of the main peak frequency fpeakðtÞ.
Employing the average hft∈½0;t��peak ðtÞi being more represen-
tative for the initial phase, we find an excellent agreement

between f2�0 and hft∈½0;t��peak ðtÞi � f0. This is understand-
able, because f0 decays in comparison to fpeak relatively
fast, which is why one may expect that the coupling
between both modes is shaped by the early fpeakðtÞ.

Another secondary peak, fspiral, originates from the
orbital motion of tidal antipodal bulges [37] formed at
the merging phase. Their angular frequency is lower than
the one of the inner remnant, and this component is present
only for a few cycles [37]. We consider fspiral to be constant
in time and define fspiral as the maximum of the corre-
sponding peak at the GW spectrum. There may be a
slight evolution of the frequency of fspiral as the central
remnant evolves in time and thus affects the motion of the
bulges generating fspiral. At approximately t ¼ 3 ms (and
f ¼ 2.20 kHz) in Fig. 1 a frequency increase of fspiral is
observed. This drift can be seen more clearly in spectro-
grams with different wavelet parameters, which enhance
the frequency resolution. However, since the amplitude
of the fspiral feature decays rapidly, we expect the impact
of the frequency evolution to be small. In our reference
simulation fspiral is the strongest secondary frequency peak
and therefore an additional low-frequency modulation
fpeakðtÞ − fspiral is expected to affect the remnant’s com-
pactness and thus the evolution of αminðtÞ [37]. This
modulation is indeed seen in our reference simulation’s
spectrogram of αminðtÞ (see Fig. 3), where we overplot the
extracted fpeakðtÞ − fspiral.

C. f spiral− 0 coupling

In this subsection we present our findings about a new
mechanism which explains additional frequency peaks in
the GW power spectrum, specifically, a coupling between
fspiral and the quasiradial oscillation mode f0. To illustrate
this, we discuss the model with a total binary mass Mtot ¼
3.0 M⊙ (see Fig. 4) where this feature is more pronounced.
In this configuration, the total binary mass Mtot is close to
Mthres and therefore the quasiradial mode is strongly
excited [37]. In this model, an fspiral component is clearly
present. We thus conjecture that the strong radial oscillation
affects the motion of the bulges and leads to a coupling
between f0 and fspiral. And indeed, we find additional
frequency peaks at approximately fspiral�0 ¼ fspiral � f0.
Figure 4 illustrates the postmerger power spectrum

for this simulation. As before, we extract the quasiradial
oscillation frequency f0 from the maximum in the Fourier
transform α̃minðfÞ of the minimum lapse function (see
Fig. 7) and obtain the estimates for fspiral�0 using fspiral
from the GW spectrum. In Fig. 4 the estimates fspiral�0

match very well with additional frequency peaks in the
power spectrum. The frequency fspiral − f0 is in better
agreement with the corresponding frequency peak while
the high-frequency fspiral þ f0 deviates by roughly 200 Hz.
To further assess our conjecture, we extract the time
evolution of f0ðtÞ from the spectrogram of αminðtÞ (see
Fig. 3) to estimate the frequency ranges of fspiral�0. These
ranges are in good agreement with the additional peaks in
the GW spectrum. In particular, the frequency peak in the

FIG. 3. Spectrogram of minimum lapse function αminðtÞ for the
reference simulation. The black curve shows f0ðtÞ, as determined
by the maximum wavelet coefficient at time t. The white line
shows fpeakðtÞ − fspiral. The vertical dash-dotted line indicates the
merging time tmerge.
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vicinity of fspiral þ f0 lies in the corresponding range. Since
in reality fspiral is not exactly constant, a 200 Hz deviation
may be understandable. We emphasize that our finding is not
unique for this EOS model but it is a general feature in
merger simulations. We observe it in additional GW spectra
of additional simulations carried out with an smooth particle
hydrodynamics (SPH) code [110,111] with varying EOSs
and total mass Mtot.
We further corroborate our finding by considering a

simple analytic toy model: We adopt two point particles
with individual masses m1 ¼ m2 ¼ 0.2 M⊙ on an orbit

with an orbital frequency forb ¼ fspiral
2

at a radius R ¼ 9 km.
We add a radial oscillation with frequency f0 superimposed
on the circular orbit with amplitude A ¼ 1.0 km. These
values may be representative of typical simulations. To
mimic the fact that the bulges disappear after a few
milliseconds we assume an exponential decay of the
point-particle masses with a timescale τm ¼ 5.0 ms.
Finally, we compute the corresponding GW radiation
employing the quadrupole formula and derive the
Fourier transform, which we overplot in Fig. 4.
Interestingly, this simple model produces a strong peak
at fspiral (as expected) and two secondary peaks which
coincide with fspiral � f0. Note the same pattern of the
relative amplitudes of fspiral � f0 in the simulation and the
analytic toy model; fspiral þ f0 is significantly enhanced.
Finally, we note that the coupling to the quasiradial mode

f0 may result in frequency peaks at approximately

fpeakðtÞ � 2 · f0 and fspiral � 2 · f0. These components
are expected to be weak; however for high total mass
models, where the f0 mode is strongly excited, they
may become more significant. Our simple analytic toy
model generates a peak (in its spectrum) at approximately
f ¼ 4.7 kHz which coincides with fspiral þ 2 · f0. A weak
bump in the GW spectrum can be seen in the vicinity
of fspiral þ 2 · f0. In Sec. VIII we identify more features
in the GW spectrum which can be associated to such
couplings.

IV. SEQUENCE OF MERGER SIMULATIONS
WITH DIFFERENT TOTAL BINARY MASS

In this section we discuss a sequence of merger simu-
lations with different total binary masses, in the range of
2.4–3.0 M⊙, with a step size of 0.1 M⊙ (which includes the
reference simulation) and we describe how the different
components of the postmerger GW signal depend on Mtot.
We find a smooth transition between the GW spectra along
the sequence and observe that the presence and strength of
the different spectral features continuously change with
total binary mass Mtot as it approaches the binary mass for
prompt BH formation Mthres. Figure 5 shows the effective
GW spectra heff;þðfÞ for different Mtot, where the fpeak,
fspiral, f2�0 and fspiral−0 peaks are indicated. As in the
previous sections, we assume a distance of 40 Mpc and
overplot the sensitivity curves of Advanced LIGO and the
Einstein Telescope for reference.

A. Secondary GW peaks

In Fig. 5, the main as well as the secondary peaks show a
clear dependence on the total binary mass. The morphology
of the GW spectra broadly follows the classification of the
postmerger GW signals as in [37], which is based on the
presence and relative strength of the secondary peaks. In
low-mass configurations (Mtot ≤ 2.6 M⊙) f2−0 and fspiral
are well separated and f2−0 is relatively weak because the
quasiradial mode is not strongly excited. For high-mass
configurations (Mtot ≥ 2.8 M⊙), f2−0 becomes more pro-
nounced and there is a noticeable overlap between f2−0 and
fspiral. The absolute height of the fspiral peak is roughly
constant in all models, whereas the f2−0 feature becomes
stronger with higher total binary mass [by nearly one order
of magnitude in heff;þðfÞ].
The secondary frequency peak f2þ0 is, in most models,

observationally less interesting because of its lower ampli-
tude, when compared to the other secondary peaks, and
because of the lower sensitivity of current detectors at
higher frequencies. However, for the two models with the
highest mass within our sequence, the amplitude of f2þ0

becomes comparable to the amplitude of the other secon-
dary peaks and so it becomes observationally relevant.
Interestingly, the frequency f2þ0 only mildly depends on
Mtot and ranges between 3.8 and 4.0 kHz for the whole

FIG. 4. Effective GW spectrum heff;þðfÞ for theMtot ¼ 3.0 M⊙
model at postmerger phase. Colored vertical lines indicate fspiral,
fspiral−0, and fspiralþ0. Shaded areas correspond to their frequency
range visualized by the same colors respectively. Orange curve
shows the effective GW spectrum of a simple analytic toy model
discussed in Sec. III C.
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mass sequence. The latter is due to fpeak being an increas-
ing function of Mtot while f0 decreases.
Only the high-mass configurations (and especially the

ones with total mass Mtot ≥ 2.9 M⊙) exhibit a significant
frequency peak fspiral−0 (see purple dashed line in Fig. 5).
Since fspiral grows with Mtot while f0 slightly decreases,
the frequency fspiral−0 increases as the total binary mass
approaches the threshold binary mass for prompt collapse
Mthres. The strength of the fspiral−0 peak increases with the
total binary massMtot. Its absolute height is always smaller
than that of the other secondary features, but relative to the
projected detector sensitivity curves, the signal to noise
ratio of the fspiral−0 coupling is roughly comparable to that
of f2þ0. The fspiral−0 feature is thus important for configu-
rations with binary masses close to Mthres, where the
quasiradial mode is strongly excited, which enhances both
fspiral−0 and f2�0 (see lower right panel in Fig. 5).

B. Minimum of the lapse function

As in [37], we investigate the time evolution of the
minimum lapse function αmin. Figure 6 shows that the
behavior of αminðtÞ for all models along the sequence is
consistent with the respective GW spectra and shows a
clear dependence on Mtot. As already noted for the models
in [37], the quasiradial mode is stronger excited with
increasing total binary mass Mtot, which explains the
enhancement of those GW features that involve a coupling
to this particular oscillation mode. For lower-mass and
intermediate-mass models the quasiradial mode is only
weakly excited. Instead, αminðtÞ features an additional

oscillation with lower frequency fpeakðtÞ − fspiral, which
dominates during the early phase of the remnant evolution.
This modulation is explained by the impact of the massive
orbiting bulges generating fspiral on the remnant compact-
ness (see [37] for details).
In general, the behavior in Fig. 6 can be understood from

the merger dynamics and remnant properties. High-mass
models lead to a collision with a higher impact velocity and
thus the quasiradial oscillation is strongly excited.
The aforementioned features in the minimum lapse func-

tion can be identified in the power spectra of the Fourier
transform α̃minðfÞ, as shown in Fig. 7 (see also [45]).

FIG. 5. Effective GW spectra heff;þðfÞ for the mass sequence. Purple dashed lines indicate fspiral−0. Purple shaded areas correspond to
frequency ranges. The other colors follow the notation of Fig. 2.

FIG. 6. Time evolution for minimum lapse function αminðtÞ
normalized to merging time tmerge along the sequence of models
with varying Mtot. Black vertical dashed line shows the merging
time tmerge.
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Wecompute α̃minðfÞ using an appropriatewindow function to
select only the postmerger phase.
A common feature in all models is the pronounced

quasiradial oscillation frequency peak f0 in the vicinity of
1 kHz. In low-mass configurations we observe an addi-
tional peak at lower frequencies, which corresponds to the
fpeakðtÞ − fspiral modulation with a strength comparable to
that of the quasiradial mode. Even in cases where the
fpeakðtÞ − fspiral modulation appears dominant in the initial
phase in the time domain (see Fig. 6), the f0 peak in the
postmerger spectrum is stronger, because the quasiradial
mode oscillates longer.
High-mass configurations show a very dominant fre-

quency peak f0. The strength of the peak increases with
Mtot, and the peak becomes broader and one-sided. This
suggests that the quasiradial frequency undergoes an
evolution, which can be verified by spectrograms of αmin
(see Appendix B). Intermediate-mass models show that the
fpeakðtÞ − fspiral peak overlaps and merges with the f0
peak, asMtot increases. We remark in particular for models
with higher masses that fpeakðtÞ initially evolves rapidly
toward lower values and is initially higher than the fpeak

identified in the GW spectrum (see Appendix B). Hence, at
early times, when the low-frequency modulation is present,
the difference fpeakðtÞ − fspiral is in fact larger than one
would infer from an inspection of the GW spectrum alone
and in high-mass models it is roughly consistent with the
left side of the main peaks in Fig. 7. In Fig. 7 we show the
estimates for the frequency ranges for fpeakðtÞ − fspiral
(red band).

C. Evolution of frequencies

As in the case of the reference simulation of Sec. III, all
postmerger GW spectra along the sequence of models (see
Fig. 5) exhibit an asymmetric (one-sided) peak, due to the
time evolution of fpeakðtÞ. The exact morphology some-
what varies as the total mass increases. We quantify the
respective drifts in fpeakðtÞ and fit a two-segment piece-

wise linear or constant function fanalyticpeak ðtÞ, as shown for
the reference simulation in Sec. III A [see Appendix B for
the spectrograms used in extracting the time evolution of
fpeakðtÞ and Sec. VII A for empirical fits as a function of

Mtot of the parameters of fanalyticpeak ðtÞ along our sequence
of models]. For each model along the sequence, the
analytic fit fanalyticpeak ðtÞ provides a frequency range, which
we indicate by cyan bands in Fig. 5 and which coincides
well with the full structure of the main peak in the
different spectra.
In a similar way, we proceed with the nonlinear

couplings between the quadrupolar and the quasiradial
mode to estimate a frequency range of these secondary
peaks. We extract f0ðtÞ from the spectrogram of the
minimum lapse function αminðtÞ and employ fanalyticpeak ðtÞ
to obtain a time evolution of f2�0ðtÞ ¼ fanalyticpeak ðtÞ � f0ðtÞ.
Considering the evolution of f2�0ðtÞ during the first
milliseconds provides frequency ranges, which we overplot
in Fig. 5 (green and orange bands) and which very well
agree with the f2�0 peaks.
We also estimate the frequency range of the coupling

between the fspiral and the quasiradial mode (for high-mass
configurations) using the time-dependent fspiral−0ðtÞ ¼
fspiral − f0ðtÞ. We overplot them (see Fig. 5) and find a
very good agreement with the fspiral−0 peak.
As in the case of the reference simulation, it is seen that

also for other binary masses the main frequency fpeak in
Fig. 5 does not exactly occur in the middle between f2−0
and f2þ0 as one would expect for f2�0. Instead, since the
combination tones are rapidly evolving features, we find

that hft∈½0;t��peak i [which is higher than fpeak in all models and
more representative for fpeakðtÞ at early times] does indeed
agree very well with 1

2
ðf2−0 þ f2þ0Þ; i.e., it lies as expected

in the middle between the two secondary peaks.

FIG. 7. Fourier transform of the minimum lapse function αmin
along the sequence models with varyingMtot. The vertical dashed
line indicates the quasiradial frequency f0. The red band indicates
the frequency range of fpeakðtÞ − fspiral.
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V. ANALYTIC AND SEMIANALYTIC
POSTMERGER MODELS

In this section we use our analysis of the postmerger GW
signal to build analytic waveform models for the post-
merger phase. We construct an accurate analytic model of
the postmerger GW signal, as an extension of [40], which
included fixed fpeak, fspiral and f2−0 frequencies with
exponential damping, and of [57], which introduced a
linear time dependence of fpeakðtÞ with a constant slope
throughout the time evolution. In comparison to these
previous works, we also include the higher-frequency
combination tone f2þ0 and use the two-segment piecewise
linear model of Eq. (1) to describe the time evolution of
fpeakðtÞ. The model can easily be extended to include
additional features, such as fspiral−0 for high masses and we
do so in Sec. VIII.
In addition to the fully analytic model, we also consider a

semianalytic modelwhich incorporates directly a numerical
representation of fpeakðtÞ extracted from the spectrograms.
This is extended in Sec. VIII to also include time-dependent
secondary components f2�0ðtÞ.
Since the models include a relatively large number of

parameters, we employ several successive steps in order to
determine the model’s parameters. We describe these steps
in the following subsections.

A. Analytic model

The analytic model employs exponentially decaying
sinusoids and except for the main frequency fpeakðtÞ we
assume all other frequencies of the model to be constant in
time. The model reads

hþðtÞ ¼ Apeak eð−t=τpeakÞ · sinðϕpeakðtÞÞ
þ Aspiral eð−t=τspiralÞ · sinð2πfspiral · tþ ϕspiralÞ
þ A2−0 eð−t=τ2−0Þ · sinð2πf2−0 · tþ ϕ2−0Þ
þ A2þ0 eð−t=τ2þ0Þ · sinð2πf2þ0 · tþ ϕ2þ0Þ; ð2Þ

where the fpeak component’s phase ϕpeakðtÞ is

ϕpeakðtÞ ¼
�
2π ðfpeak;0 þ ζdrift

2
tÞtþ ϕpeak; for t ≤ t�;

2π fpeakðt�Þðt − t�Þ þ ϕpeakðt�Þ; for t > t�:

ð3Þ

Using the above expression, the phase ϕpeakðtÞ is continu-
ous and the frequency fpeakðtÞ ¼ 1

2π
dϕpeakðtÞ

dt features a time
dependence as in Eq. (1).
We employ several steps to determine the analytic

model’s parameters and the model contains several fre-
quency components, which is why it is not straightforward
to find the optimal values describing the data. We find that

by introducing a normalization factor N we obtain better
fits. We thus define

hFitþ ðtÞ ¼ N · hþðtÞ; ð4Þ

with hþðtÞ given as in Eq. (2). We note that when simpler
(underperforming) analytic models are employed (consist-
ing of only one or two frequency components) the
normalization factor N is dropped. We stress that the
normalization factor is only introduced as part of our
procedure for determining the best fit—with other fitting
procedures it may not be required.
Lastly, in order to improve the fits for this particular mass

sequence and EOS we introduce a phenomenological
modification to the analytic model in the description of
the fpeakðtÞ component. Our quasilinear model of Eq. (2)
does not accurately capture the very early evolution pre-
sumably because of the nonlinearities that are present
immediately after merger. We observe a mild delay in the
starting times of the exponentially decaying sinusoids
between the fpeak component and the secondary components
fspiral and f2�0 during the first≈1.0 ms (see the spectograms
in Appendix B). This delay is more pronounced in high-
mass configurations. We mimic this delay by multiplying
the first line of Eq. (2), which corresponds to the fpeak
component, by a Tukey window function, denoted here by
Wðt; sÞ, where s is the roll-off parameter. We use a roll-off
parameter s ¼ 0.075 for models with Mtot ≤ 2.9 M⊙ and
s ¼ 0.1 for models with Mtot > 2.9 M⊙.
The above phenomenological introduction of nonlinear

effects leads to more accurate fits of the initial phases of the
secondary components. We note after ≈1.0 ms from the
onset of the postmerger phase that the evolution is close to
quasilinear (linear plus quasilinear combination tones) and
the analytic model of Eq. (2) is sufficient for its description.
To summarize, the complete analytic model of the þ

polarization of the signal amplitude reads

hFitþ ðtÞ ¼ N ·
�
hpeakþ ðtÞ ·Wðt; sÞ þ

X
i

hiþðtÞ
�
;

for i ¼ spiral; 2� 0; ð5Þ

where hiþðtÞ ¼ Aieð−t=τiÞ · sinðϕiðtÞÞ.
To obtain the cross polarization hFit× ðtÞ, we adopt the

parameters for the amplitudes, damping timescales
and frequencies from hFitþ ðtÞ and assume a phase shift of
90° to the individual initial phases ϕi (for i ¼ peak,
spiral, 2� 0).

B. Semianalytic model

The semianalytic model differs from the analytic model
by the substitution of ϕpeakðtÞ with the numerical phase
ϕnumerical
peak ðtÞ. The latter is obtained by first extracting the
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instantaneous frequency fspectrogrampeak ðtÞ from the spectro-
grams, which is then integrated in time to obtain the
phase at a particular time step ti as ϕnumerical

peak ðtÞ using the
iterative formula

ϕiþ1 ¼ ϕi þ 2πfpeak;i · ðtiþ1 − tiÞ; ð6Þ

where ϕi ≡ ϕðt ¼ tiÞ and fpeak;i ≡ fpeakðt ¼ tiÞ. The initial
phase ϕpeak;0 ≡ ϕðt ¼ 0Þ is a parameter (like ϕpeak in the
analytic model).
In Sec. VIII we consider an extended semianalytic

model, which includes time-dependent secondary compo-
nents f2�0ðtÞ where the phases ϕ2�0ðtÞ are extracted from
the spectrograms in a similar way.

C. Parameter extraction procedure

This subsection is structured as follows: In Sec. V C 1 we
discuss the analytic description of fpeakðtÞ. In Sec. V C 2
we describe how we obtain the secondary frequencies
fspiral, f2�0, and fspiral−0 from GW spectra. In Sec. V C 3
we describe the method for the extraction of model
parameters (Ai, τi for i ¼ spiral; 2� 0) of the secondary
components. In Sec. V C 4 we discuss the determination
of the remaining parameters Apeak, τpeak, N , and ϕi for
i ¼ peak; spiral; 2� 0 and the fit to the simulation data.
For all models of our mass sequence we proceed as
follows.

1. Analytic description of f peakðtÞ
As mentioned before, we extract the evolving fpeakðtÞ

from spectrograms as the frequency of the maximum
wavelet coefficient at time t. We parametrize fpeakðtÞ as
two-segment piecewise function Eq. (1). We obtain the
parameters ½ζdrift; fpeak;0; t�� from a fit to the extracted
fpeakðtÞ. The fit is done in one step using the analytic
function of Eq. (1). The extracted parameters are
finally inserted to the analytic model via ϕpeakðtÞ as
in Eq. (3).

2. Secondary frequency peaks

We compute the secondary frequencies fspiral and f2�0 in
two steps. First we obtain a rough estimate of the ranges of
the different components, which is necessary to correctly
identify the different features. Then we pick the frequency
at the maximum in the GW spectrum within the estimated
frequency ranges of the different components. For the
estimate of fspiral we use the rest-mass density profiles on
the equatorial plane (as done in [37]). We estimate of f2�0

using the relation f2�0 ≈ fpeak � f0. We replace fpeak by
the mean value of fpeakðtÞ during the first milliseconds,
while f0 is the dominant frequency peak in the Fourier
transform of the minimum lapse function αmin (see Fig. 7).

We note that our choices are in agreement with the
empirical relations in [112].

3. Amplitudes Ai and decay timescales τi
for secondary components

We describe the technique to estimate the amplitudes
Aspiral and A2�0 and timescales τspiral and τ2�0 using the
spectrograms. We find that the following procedure leads to
results which better reproduce the secondary frequency
peaks in GW spectrum.
First we employ spectrograms and extract the wavelet

coefficients as functions of time t for the frequency
components fspiral and f2�0 and obtain AspiralðtÞ and
A2�0ðtÞ. We then assume a signal of the form
Aie−t=τi cosð2πfi · tÞ and consider each component sepa-
rately. Within a curve fitting procedure we compute the
coefficients at fi of this model’s signal and determine Ai
and τi such that the coefficient function matches the
extracted AiðtÞ. The curve fitting procedure adopts a
trust-region-reflective algorithm [113–115].
By this method the various components are treated

independently; thus in the case of overlapping frequencies
the method loses accuracy, since each component is
amplified by its neighboring component. The scheme
may thus overestimate the amplitudes Ai. To compensate
this, we introduced the aforementioned normalization
factor N , which we determine in the next step.

4. Fit to simulation data

In the final step we determine the remaining parameters
Apeak, τpeak, and ϕi for i ¼ spiral; 2� 0, N . We perform a
fit of the analytic model to the simulation data, using the
aforementioned curve fitting routine, employing a trust-
region-reflective algorithm. The previously determined
parameters are inserted in the analytic model.
We found that the secondary features of the signal are

better reproduced from the spectrograms as described in
Sec. VII B, whereas the fpeak feature as the dominant
component is well determined by the fitting routine.

VI. PERFORMANCE OF THE ANALYTIC
AND SEMIANALYTIC MODELS

In this section, we discuss fits of the analytic and
semianalytic models to the GW signals extracted from
simulations and quantify their performances. We compare
the fits to the actual numerical waveform in the time and
frequency domains and examine how well certain GW
features are reproduced.
We evaluate the performance of the models with the

(noise-weighted) FF defined by

FF≡ ðh1; h2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1; h1Þðh2; h2Þ
p ; ð7Þ
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using the noise-weighted inner product ðh1; h2Þ between
two waveforms given by

ðh1; h2Þ≡ 4Re
Z

∞

0

df
h̃1ðfÞ · h̃�2ðfÞ

ShðfÞ
; ð8Þ

where ShðfÞ is the detector’s noise spectral density and
h̃iðfÞ is the Fourier transform of the waveform hiðtÞ
(for i ¼ 1, 2).
Moreover, we consider simpler versions of our analytic

model, where we include only a subset of GW features. By
this we assess the significance of the individual compo-
nents of the GW signal.

A. GW fits

First we focus on the analysis of the reference simulation
(Mtot ¼ 2.5 M⊙) and later extend the discussion to the
whole sequence of models.

1. Reference simulation

We extract the parameters of the analytic model, Eq. (5)
for our reference simulation, as described in Sec. V C. We
compare the simulation data to the analytic model in the
time domain in Fig. 8. The two signals agree very well
throughout the whole postmerger evolution of 24 ms. In the
early phase, the dominant and the secondary components
are significant, whereas during the later evolution only
the fpeak component is present. We remark the importance
of a time-dependent fpeakðtÞ, which simultaneously yields
a proper description of the early and the late phase. Note
that the model captures the phase evolution very well at
late times.

The success of the analytic model is also seen in the GW
spectrum heffðfÞ (see Fig. 9). The analytic model repro-
duces remarkably well the one-sided fpeak structure.
We further assess the time evolution of fpeakðtÞ and its

analytic model of a two-segment piecewise linear function
fanalyticpeak ðtÞ, Eq. (1). To this end we generate the semianalytic
model, as described in Sec. V B. That is, we extract
fspectrogrampeak ðtÞ from the spectrogram and insert the numerical
phase ϕpeakðtÞ using Eq. (6) in the analytic function Eq. (5),
whereas we obtain all other parameters as described in
Sec. V C. The resulting GW spectra are displayed in Fig. 9
and are compared to the numerical waveform from the
simulation. Both models yield spectra that are very close to
the spectrum of the numerical simulation. We quantify the
accuracy of the models by calculating their fitting factors
(with respect to the numerical simulation) assuming the
projected ET sensitivity curve [109]. We find fitting factors
of FF ¼ 0.969 for the semianalytic model and FF ¼ 0.956
for the analytic model. The semianalytic model yields a
slightly higher FF than the analytic model, which is
expected since the former contains more precise informa-
tion about the fpeak component. However, the small differ-
ence of only 1.34% between the fitting factors of the two
models demonstrates that using the analytic model fanalyticpeak

instead of the numerically extracted fspectrogrampeak ðtÞ is suffi-
cient for the description of the time evolution of the fpeakðtÞ
component.
Figure 9 also demonstrates that both the analytic and

semianalytic models successfully reproduce the triplet of
FIG. 8. GW strain r · hþðtÞ for the reference simulation and for
the analytic model hFitþ ðtÞ of Eq. (5).

FIG. 9. Postmerger effective GW spectra heff;þðfÞ for the
numerical simulation (black line), for the analytic model
hFitþ ðtÞ (orange dashed line) and for the semianalytic model (cyan
line; see text), for the reference simulation. Colored boxes
indicate the respective FFs.
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secondary frequencies fspiral and f2�0, which implies that
our fitting procedure yields reasonable estimates of the
corresponding parameters Ai and τi. We note that for the
purpose of detectability, the secondary peak f2−0 is more
important than f2þ0. Nevertheless, the inclusion of f2þ0

makes the analytic model more complete and increases
the quality of the fit, since the absence of a frequency
component in the early phase may spoil the determination
of the other parameters. For similar reasons, we found the
inclusion of the phenomenological Tukey window function
Wðt; sÞ for the fpeak component to be useful.
We note that our model does not include and hence does

not reproduce the additional frequency peak at 3.5 kHz in
Fig. 9, which remains to be explained and modeled.
Figure 10 directly compares the spectrogram of the

simulation (upper panel) and of the analytic model (lower
panel). We observe a very good agreement considering the
simplicity of the analytic model.

2. Fitting factors along the whole sequence
of merger simulations

We test the performance of the analytic model along
the sequence of models with different Mtot (as defined in
Sec. II) and display the spectra for the analytic fits (in
comparison to the numerical spectra) in Fig. 11. We find
that the analytic model performs well for all configurations
and achieves FFs (assuming the sensitivity curve of
ET [109]) in the range [0.955, 0.979] for all but the most

FIG. 10. Top panel: spectrogram of hþðtÞ for the reference
simulation. The black line corresponds to the numerically
extracted fspectrogrampeak ðtÞ as described in Fig. 1. Bottom panel:

spectrogram of hFitþ ðtÞ for the reference simulation. The white line
illustrates fanalyticpeak ðtÞ.

FIG. 11. Postmerger effective GW spectra heff;þðfÞ for the simulations (black lines), for the analytic model (orange dashed line),
and the semianalytic model (cyan line) along the whole sequence of models. The FFs for the analytic model are reported in each case.
Note that for the highest-mass model with Mtot ¼ 3.1 M⊙ an extended analytic model is introduced in Sec. VIII, where a higher FF is
achieved.
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massive model of this sequence.1 For the latter model
(which is close to the threshold for prompt collapse) we
introduce an extended analytic model in Sec. VIII and
achieve a comparable fitting factor of 0.962.
In the spectra of Fig. 11, the secondary frequency

components are well reproduced by the analytic model
and the shape of the frequency peaks agrees with that
obtained from the simulations. Our fitting procedure, as
described in Sec. V C, yields parameter values that capture
well the secondary peaks, except for the amplitude of the
f2þ0 combination tone, A2þ0. The latter would need to be
individually amplified at the end of the above fitting
procedure for models with Mtot ≥ 2.8 M⊙, in order to
obtain better agreement with the simulations.

B. Simplified analytic models

To further assess our analytic model we consider
simplified analytic models and quantify their performance
using FFs. We first discuss the reference simulation and
then extend the considerations to the whole sequence of
merger simulations.

1. Definitions of the simplified analytic models

We consider three simplified analytic models. The first
one includes only the time-dependent fpeakðtÞ component
and the second includes the fpeakðtÞ component plus one
secondary component. As before, the fpeakðtÞ component is

modeled by the analytic two-segment function fanalyticpeak ðtÞ.
For low-mass models, including the reference simulation,
the dominant secondary component is the fspiral, while for
higher-mass configurations f2−0 becomes the most promi-
nent feature. In the third model, fpeakðtÞ is kept constant

and equal to fpeak ¼ hft∈½0;t��peak i, while all the secondary
frequency components are included.
We note that for the two-component model (one secon-

dary component) we do not employ the normalization
factor N . For the one-component model we discard the
phenomenological window Wðt; sÞ, since this leads to a
slightly higher fitting factor in this case.
Table I summarizes information on the various

analytic, semianalytic and simplified models and their
assigned names.

2. Fitting factors for the reference simulation

We perform the fits using the aforementioned procedure
for the complete analytic model (Ac), the two-component
analytic model (A2), and the one-component analytic
model (A1) and display the corresponding postmerger

GW spectra in Fig. 12 for the reference simulation. All
three models reproduce well the shape of the fpeak peak,
since they include the time-dependent description for
fanalyticpeak ðtÞ. However, there are significant differences in
the FFs. The complete analytic model achieves
FF ¼ 0.956. As one would expect, the fewer components
are included in the model, the worse the value of the fitting
factor. The two-component model achieves FF ¼ 0.931,
whereas for the one-component model the performance
deteriorates to FF ¼ 0.825.
To further understand the impact of differences in the

achieved fitting factors we convert them to the reduction in

TABLE I. Definitions for the various analytic, semianalytic and
simplified models that we consider. When the time dependence is
explicitly written, a time-dependent description is employed for
that particular component.

Model description Name Included components

Complete analytic model Ac fanalyticpeak ðtÞ, fspiral,
f2−0, f2þ0

Complete semianalytic model Sc fspectrogrampeak ðtÞ, fspiral,
f2−0, f2þ0

Simplified (two-component)
analytic model

A2 fanalyticpeak ðtÞ, fspiral or f2−0

Simplified (one-component)
analytic model

A1 fanalyticpeak ðtÞ

Simplified (const. frequencies)
complete analytic model

sAc hft∈½0;t��peak i, fspiral,
f2−0, f2þ0

FIG. 12. Postmerger effective GW spectra heff;þðfÞ for the
simulation (black lines) and for three analytic models, Ac (cyan
line), A2 (orange line) and A1 (green line) for the reference
simulation. In each case, the corresponding FF is shown.

1As for the reference simulation, we obtain only slightly better
FFs for the semianalytic model—even for the most massive
model—and hence we only report the FFs for the analytic model
along the whole sequence.
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detection rates, which is considered to scale as ð1 − FF3Þ ×
100 [116]. For the reference simulation discussed in
Fig. 12, the complete analytic model achieves a reduction
of the detection rate of only 12.63%, whereas the simpler,
two-component and one-component analytic models
suffer from larger reductions of 19.30% and 43.85%,
respectively.
The above comparison quantifies the importance of

including at least one secondary component to the analytic
description of the postmerger phase, as this significantly
increases the detectability of the signal with matched-
filtered techniques; otherwise, more than half of the
candidate events would go undetected.

3. Phase evolution

We compare the analytic model fits with respect to the
gravitational phase ϕðtÞ defined by

ϕðtÞ ¼ − arctan

�
h×ðtÞ
hþðtÞ

�
: ð9Þ

We compute the phase difference ΔϕðtÞ ¼ ϕfitðtÞ −
ϕsimulationðtÞ between the analytic models and the GW
signal from the simulation (see Fig. 13). In the following
analysis, we also consider the complete semianalytic
model (Sc) where the fpeakðtÞ component is modeled by
fspectrogrampeak ðtÞ. We split the postmerger signal in two phases:
the initial phase, which lasts approximately 8 ms, and the
late phase referring to the rest of signal.
In the early phase, the phase differences ΔϕðtÞ are

characterized by low-amplitude spikes. These spikes are
present in all of the analytic models. The semianalytic

model follows the same trends, although with slightly
lower amplitudes. In the late postmerger phase, the phase
difference for the analytic models is dominated by
fanalyticpeak ðtÞ, since by that time the secondary peaks have
practically diminished. The semianalytic model has a
notably different phase evolution than the analytic models,
although the absolute value jΔϕðtÞj is comparable.

4. Fitting factors along the whole sequence
of merger simulations

We compare the fitting factors achieved by the com-
plete analytic (Ac) and semianalytic (Sc) models and by
the simplified analytic models (A2 and A1) along the
whole sequence of merger simulations in Fig. 14 and
report the corresponding reduction in detection rates in
Table II. The general trend is consistent with the findings
for the reference simulation. The complete analytic and
semianalytic models perform best leading to the highest
fitting factors. The fitting factors for the simple, one-
component analytic model are between 0.82 and 0.86
for most simulations but deteriorate drastically for the
two highest-mass simulations, leading to a reduction of
the detection rate of up to 72.28%. The two-component
model performs significantly better than the one-
component model, but it is still insufficient, when
compared to the complete analytic or semianalytic mod-
els. We thus conclude that postmerger GW templates
should include several secondary components such as
fspiral and f2�0, if a small reduction of the detection is to
be achieved.

FIG. 13. Gravitational phase difference ΔϕðtÞ between simu-
lation and analytic or semianalytic model fits for the reference
simulation in postmerger phase.

FIG. 14. FFs for the analytic, and semianalytic model fits for a
source at polar distance of 40 Mpc using the Einstein Telescope
sensitivity curve [109]. The blue circle displays the FF for the Ac
model fit for the HR simulation (see Appendix A 2).
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5. Importance of the two-segment
description of fpeakðtÞ

Furthermore, we assess the significance of the time-
dependent description of fpeakðtÞ in the analytic model in
comparison to the constant frequency description. We
consider the simplified complete analytic model (sAc)

where fpeakðtÞ is constant and equal to fpeak ¼ hft∈½0;t��peak i,
and we perform the fits for the models Ac, sAc and
compare the FFs.
Table III and Fig. 15 (top panel) show the fitting factors

along the mass sequence. The model sAc leads to small
FFs, ranging from 0.727 to 0.846. In contrast, the Ac model
performs significantly better. In terms of the reduction in
detection rates, the sAc model is significantly worse than
the Ac model. We note that for the two highest-mass

models (Mtot ¼ 3.0; 3.1 M⊙) substituting hft∈½0;t��peak i with
fpeak leads to FFs close to the ones obtained with Ac.

VII. PARAMETERS OF THE ANALYTIC MODEL

In this section we discuss the parameters of the analytic
model and their dependence on the total binary mass Mtot.

We find a systematic dependence on Mtot for all the
parameters of the model and employ polynomial fits to
obtain analytic descriptions of the respective dependencies.
We first focus on the analytic description of fpeakðtÞ and the
parameters which determine the two-segment piecewise
function, Eq. (1). We then discuss the amplitudes Ai,
timescales τi and normalization factor N . We address
the initial phases ϕi where we find additional correlations
between these parameters. Finally, we employ empirical
relations for all the parameters of the analytic model (Ac)
and discuss a purely analytic model which uses exclusively
analytic functions.

A. f peakðtÞ parametrization

Figure 16 shows the extracted parameters ζdrift, t�, and
fpeak;0 as functions of total mass Mtot for our sequence of
simulations. We find that these parameters follow specific
dependencies. The dependence of the parameters t�; fpeak;0
and ζdrift can be modeled by second- and third-order
polynomials (black lines), respectively, given by

ζdrift ¼ −1.420 ·M3
tot þ 11.085 ·M2

tot

− 28.834 ·Mtot þ 24.943; ð10Þ

TABLE II. Reduction in detection rates for various analytic and
semianalytic models. The definition of each model is given in
Table I.

Reduction in detection rates (%)

Mtot [M⊙] Sc Ac A2 A1

2.4 5.01 6.17 9.86 43.03
2.5 9.01 12.63 19.30 43.85
2.6 7.88 12.63 13.45 37.93
2.7 3.56 6.74 21.88 40.52
2.8 5.30 7.03 9.01 42.82
2.9 8.45 10.97 17.73 41.36
3.0 11.53 12.90 22.38 55.75
3.1 24.39 25.39 33.01 72.28

TABLE III. FFs and reduction in detection rates (%) for the Ac
and sAc analytic models for the postmerger GW emission (see
Table I for definitions).

FFs Reduction in detection rates (%)

Mtot [M⊙] Ac sAc Ac sAc

2.4 0.979 0.827 6.17 43.44
2.5 0.956 0.727 12.63 61.58
2.6 0.956 0.773 12.63 53.81
2.7 0.977 0.845 6.74 39.66
2.8 0.976 0.846 7.03 39.45
2.9 0.962 0.824 10.97 44.05
3.0 0.955 0.779 12.90 52.73
3.1 0.907 0.797 25.39 49.37

FIG. 15. Top panel: FFs for the Ac and sAc analytic fits.
Bottom panel: reduction in detection rates for the Ac and sAc
analytic fits. The circles indicate the FF (blue) and reduction in
detection rates (pink) for the sAc model fit for the HR simulation
(see Appendix A 2).
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fpeak;0 ¼ þ0.908 ·M2
tot − 3.974 ·Mtot þ 7.058; ð11Þ

t� ¼ −8.523 ·M2
tot þ 40.179 ·Mtot − 40.741: ð12Þ

Figure 16 (bottom) shows the final frequency
fpeakðt ¼ t�Þ, which by definition is determined by the

parameters ζdrift, fpeak;0, and t� [the black dashed curve is
determined by Eqs. (10)–(12)].
The parameter fpeakðt�Þ (see Fig. 16) approximately

coincides with fpeak (maximum of the peak in the GW
spectra) and increases with the total mass Mtot (since the
remnant becomes more compact). fpeak;0 exhibits a similar
dependence on the total mass Mtot. As previously men-
tioned, fpeakðtÞ evolves faster and more significantly for
high-mass configurations. This is confirmed by the differ-
ence Δfpeak ¼ fpeak;0 − fpeakðt�Þ, which increases with
total mass Mtot from 0.288 kHz for the model with the
lowest mass to 0.462 kHz for the configuration with
Mtot ¼ 3.1 M⊙.
The duration of the frequency drift, t�, is a decreasing

function of the total binary mass Mtot. We note that in
particular t� possibly exhibits a dependence on the numeri-
cal scheme, resolution and physics of the simulation tool,
which can affect the angular momentum redistribution of
the remnant and possibly prolong or shorten the drift.
The slope parameter ζdrift is approximately constant

(≈ − 0.060 kHz2) for Mtot ≤ 2.8 M⊙. However, a rapid
decrease occurs as the total mass Mtot approaches Mthres
(see Fig. 16). Such a trend may not be unexpected as a
result of an accelerated evolution of the remnant (in the
early postmerger phase) due to the strong gravity.
If it is possible to extract ζdrift, t� and Δfpeak, one may

use this information to estimate the proximity to a prompt
collapse. To this end, the occurrence of a faster frequency
evolution for high-mass binaries should be confirmed
for other EOS models, possibly considering ζdrift, t�, and
Δfpeak relative to fpeak, instead of absolute values.

B. Amplitudes, timescales, normalization factor

In this subsection we discuss the properties of the
dominant component’s parameters Apeak and τpeak, the
parameters of the secondary components Aspiral, A2�0,
τspiral, and τ2�0 and the normalization factorN . We employ
the parameters determined for the complete analytic
model (Ac).

1. Apeak and τpeak
Figures 17(a) and 17(b) show the parameters Apeak and

τpeak. These parameters follow dependencies, which can be
modeled by second-order polynomial fits given by

Apeak ¼ −0.409 ·M2
tot þ 3.657 ·Mtot − 6.130; ð13Þ

τpeak ¼ þ7.782 ·M2
tot − 53.040 ·Mtot þ 93.542: ð14Þ

Apeak increases withMtot, which may be expected, since the
involved masses are higher and also the initial excitation is
more pronounced. τpeak decreases as the total binary mass
Mtot increases, indicating a stronger damping.

FIG. 16. Top panel: ζdrift parameter along the mass sequence.
The black curve shows a third-order polynomial fit. Middle
panel: t� parameter along the mass sequence. The black curve
shows a second-order polynomial fit. Bottom panel: fpeak;0
parameter (orange) along the mass sequence. The black solid
curve shows a second-order polynomial fit. In addition, data
points (red) along the mass sequence are shown for fpeakðt�Þ,
which is determined by ζdrift, fpeak;0, and t�. The black dashed
curve is determined by polynomial fits to ζdrift, fpeak;0, and t�.
Cyan circles indicate the fpeak extracted from the GW spectra (see
Fig. 5). The rest of the circles indicate the respective parameters
(for each figure) for the HR simulation (see Appendix A 2).
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2. Aspiral, A2�0, τspiral, and τ2�0

Figures 18(a) and 18(b) display the parameters Ai and τi
(for i ¼ spiral; 2� 0). The amplitudes Ai and timescales τi
correlate with the total massMtot and follow specific trends.
We quantify these dependencies by performing second-
order polynomial fits resulting in

τspiral ¼ −0.874 ·M2
tot þ 3.521 ·Mtot − 2.005; ð15Þ

τ2−0 ¼ þ2.057 ·M2
tot − 10.804 ·Mtot þ 14.606; ð16Þ

τ2þ0 ¼ þ8.469 ·M2
tot − 48.785 ·Mtot þ 71.671; ð17Þ

Aspiral ¼ þ2.649 ·M2
tot − 13.580 ·Mtot þ 17.752; ð18Þ

A2−0 ¼ −1.704 ·M2
tot þ 10.004 ·Mtot − 13.909; ð19Þ

A2þ0 ¼ þ0.816 ·M2
tot − 3.920 ·Mtot þ 4.734: ð20Þ

These relations are not particularly tight, especially for
A2−0 and τspiral, which is likely caused by the difficulty to
precisely extract secondary features from the complex
signal. However, the amplitudes of all secondary features
clearly increase with mass.
As the total mass Mtot increases, the components f2�0

become more prominent and this is seen in A2�0 too [see
Fig. 18(a)]. This is understandable, because the radial
oscillation mode is more strongly excited for high-mass
models. For low-mass configurations, the coupling to the
radial oscillation is significantly suppressed (see Fig. 6),
and consequently the amplitudes of the couplings f2−0 and
f2þ0 should be small, which is only the case for the f2þ0

component. We suspect that the relatively high amplitude

(a) (b)

(c)

FIG. 17. Top left panel: analytic model dimensionless amplitude Apeak for r · hþðtÞ for the analytic model which employs the
fanalyticpeak ðtÞ description. The black curve corresponds to second-order polynomial fit. Top right panel: analytic model timescale τpeak for

the analytic model which employs the fanalyticpeak ðtÞ description. The black curve corresponds to second-order polynomial fit. Bottom panel:
analytic model products ðA · τÞpeak. Black dashed curves determined by fits to Apeak and τpeak. The blue circles indicate the respective
parameters (for each figure) for the HR simulation (see Appendix A 2).
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A2−0 for small Mtot is an artifact of the fit and is
compensated by a very small decay timescale. The weak-
ness of the radial oscillation implies that the τ2�0 are not
very meaningful measures for low-mass systems. For
higher total binary masses one can see a mild increase
of τ2�0, which is in line with the behavior in Fig. 6.
The timescales of the spiral component exhibit a mild
decrease, corresponding to a faster dissipation of the tidal
bulges. The amplitude of the fspiral component similarly
increases with Mtot.
Furthermore, we consider the product ðA · τÞi as a

quantitative measure for the strength of a secondary feature.
Figure 18(c) shows the products ðA · τÞi for each frequency
component. We use Eqs. (15)–(20) to derive analytic
expressions displayed by dashed curves. The products

ðA · τÞ2�0 increase systematically with Mtot as expected
and closely follow the analytic expressions. The product
ðA · τÞspiral is roughly constant.2

The strength of the secondary components quantified as
in Fig. 18(c) resembles the behavior which was anticipated
in [37] and reproduces different types of postmerger GW
emission: For low-mass binaries the fspiral component is
dominant (type III in the notation of [37]), for intermediate
masses the strength of fspiral and f2−0 is roughly compa-
rable (type II), and for models with very high Mtot the

(a) (b)

(c) (d)

FIG. 18. Top left panel: analytic model dimensionless amplitudes Aspiral, A2−0, and A2þ0 for r · hþðtÞ extracted from spectrograms.
Black curves correspond to second-order polynomial fits. Top right panel: analytic model timescales τspiral, τ2−0, and τ2þ0 extracted from
spectrograms. Black curves correspond to second-order polynomial fits. Bottom left panel: analytic model products ðA · τÞspiral,
ðA · τÞ2−0, and ðA · τÞ2þ0. Black dashed curves determined by polynomial fits to Ai, τi for i ¼ spiral, 2� 0. The yellow dashed curve
corresponds to the fourth-order polynomial fit to ðA · τÞspiral. Bottom right panel: analytic model correction factor N for the analytic

model which employs the fanalyticpeak ðtÞ description. The black curve corresponds to a linear fit. The colored circles indicate the respective
parameters (for each quantity and figure) for the HR simulation (see Appendix A 2).

2ðA · τÞspiral shows a large scatter from the derived analytic
expression [using Eq. (18) and (15)]; however, we find that a
fourth-order polynomial fit describes well the trend.
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couplings with the radial oscillation are dominant over
fspiral (type I). The products ðA · τÞi may thus serve as a
quantitative measure to classify different types of post-
merger dynamics and GW emission including the mor-
phology of the spectrum.
We note that the method we use for the derivation of Ai

and τi introduces a bias whenever f2−0 and fspiral are close
(see Sec. VII B). The latter is possibly one of the reasons for
the scattering of Ai and τi from the analytic fits.

3. N

Figure 18(d) shows the normalization factor N as a
function of total mass Mtot for fits with the complete
analytic model (Ac). We find a linear dependence on Mtot
modeled by

N ¼ −0.485 ·Mtot þ 2.025: ð21Þ

N becomes less important (close to 1) for low-mass
configurations and more significant (close to 0.50) for
high-mass configurations.
One reason for this trend may be that for estimating Ai

and τi we treat each component separately. In low-mass
configurations the components fspiral and f2−0 are well
separated and therefore the parameters Ai and τi are
accurately derived. However, this is not the case for
high-mass configurations, where the peaks overlap, and
thus the parameters may be overestimated and the correc-
tion becomes necessary.
Another reason may be the fact that the f2�0 components

are significantly weaker than the fspiral components for
low-mass systems [see e.g., the products ðA · τÞi]. Hence,
their contribution to the total signal is minor and a single
secondary feature does not require significant corrections
by the normalization factor.

C. Initial phases ϕpeak, ϕspiral, and ϕ2�0

In this subsection we discuss the properties of the initial
phases ϕi (for i ¼ peak; spiral; 2� 0) for all the models
in the sequence of simulations. For the analysis we add
multiples of 2π to the initial phases ϕi such that ϕiðMtotÞ
becomes an increasing function (see Fig. 19).
We find a tight correlation between ϕi and the total

mass Mtot. We model this dependence with a two-segment
piecewise function consisting of two linear fits which
intersect at total mass ofMtot ¼ 2.7 M⊙ (see Appendix C).
These remarkably tight correlations imply that the

properties of the gravitational phase ϕðtÞ [see Eq. (9)] in
the early postmerger phase depend systematically on the
total mass Mtot.
Furthermore, we find tight correlations between the

initial phases ϕspiral, ϕ2�0 and ϕpeak as shown in Fig. 20.
We model these correlations with linear fits given by

ϕspiral ¼ þ0.953 · ϕpeak þ 0.756; ð22Þ

ϕ2−0 ¼ þ0.980 · ϕpeak þ 1.345; ð23Þ

ϕ2þ0 ¼ þ0.975 · ϕpeak − 2.166: ð24Þ

FIG. 19. Initial phases ϕi (for i ¼ peak, spiral, 2� 0) for the
analytic model which employs the fanalyticpeak ðtÞ description as a
function of total binary mass. Colored curves correspond to
piecewise linear fits. The colored circles indicate the respective
parameters for the HR simulation (see Appendix A 2).

FIG. 20. Initial phases ϕi (for i ¼ spiral, 2� 0) with respect to
ϕpeak for the analytic model which employs the fanalyticpeak ðtÞ
description. Black curves correspond to linear fits. The colored
circles indicate the respective parameters for the HR simulation
(see Appendix A 2).
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The slope parameters in Eqs. (22)–(24) are approxi-
mately equal and differ at most by 3%. We note that the
slopes are also close to 1, which would imply a constant
difference in phase between the fpeak component and the
secondary components. It may well be that these relations
and the ones shown in Fig. 19 are in reality even tighter and
the small but finite scatter results from finite resolution in
the simulations or the fitting procedure. Such tight relations
can be employed to reduce the complexity of the analytic fit
by reducing the parameter space.
We find that using the ϕpeakðMtotÞ and ϕspiralðϕpeakÞ,

ϕ2�0ðϕpeakÞ relations [see Eqs. (22)–(24)] one may reduce
the number of the analytic model’s parameters (and thus the
complexity of the fitting procedure) and obtain good fits to
the data. We test this by substituting the initial phases ϕi
with the predictions made by Eqs. (C1) and (22)–(24) and
find that the FFs only differ by a few percent (0.5%–3%)
compared to fits to the analytic model. When we perform a
phase alignment in the waveforms the FFs differ by at
most ≈1%.
We overplot the initial phases ϕi (for i ¼ peak, spiral,

2� 0) for the HR simulation in Figs. 19 and 20 (see
Appendix A 2). These appear to be slightly larger than the
ones from the mass sequence simulations; however, their
relative difference is similar to the mass sequence simu-
lations as corroborated by Fig. 20.
Furthermore, we also find that these tight correlations

between the initial phases [Eqs. (22)–(24)] are unaffected
by residual eccentricities in the ID (see Fig. 25 and
Appendix A 1).

D. Purely analytic model

We consider a purely analytic model PðMtot; tÞ which
uses the analytic functions Eqs. (10)–(21) and (C1)–(C4)
and thus depends only onMtot. We evaluate its performance
by computing the respective FFs. Table IV shows the
FFs for the analytic model PðMtot; tÞ compared to the
Ac analytic fits. The FFs drop significantly as expected;
however, the majority of the fits still result in FFs≳ 0.80.

The FFs can be further improved by considering an analytic
model where ϕpeak is treated as a free parameter, denoted by
PðMtot; t;ϕpeakÞ. In this case, almost all configurations lead
to FFs≳ 0.85 (see Table IV).
These considerations show that it may be possible to

determine the different analytic functions Eqs. (10)–(21)
and (C1)–(C4) (or only piecewise linear segments of
these functions) by several simulations and anticipated
observations and then use those functions to interpolate the
model in Mtot.

VIII. MODELS CLOSE TO PROMPT COLLAPSE

In this section we analyze the spectral properties of
configurations with a total mass Mtot close to threshold
mass for prompt collapse Mthres. Fitting factors decrease
for these high-mass models, which possibly points to an
incompleteness of our analytic model. We separately
consider two modifications to the analytic model in order
to increase the FF. First, we include a dynamical evolution
of f2�0ðtÞ. Second, we incorporate the fspiral−0 component,
i.e., an additional coupling between fspiral and f0 (see
Sec. III C). Table V summarizes information for the
extended analytic models.

A. Extended analytic models and GW fits

To assess the importance of the time evolution of
f2�0ðtÞ, we extracted f2�0ðtÞ from spectrograms (see
Sec. IV) and inserted the numerically extracted values into
the analytic model (see Sec. V B). We do not further discuss
a parametrization of f2�0ðtÞ because we find below that
even the complete numerical description of f2�0ðtÞ yields
only a minor improvement.
Figure 21 shows the fits to the simulation with total

binary mass Mtot ¼ 3.1 M⊙ for the extended analytic
models. The introduction of the time-evolving components
f2�0ðtÞ leads to a mild increase of the fitting factor:
FFnew;1 ¼ 0.916 compared to the original of FFold ¼
0.907 (see Sec. VI A). This increase in FF slightly improves
the reduction in detection rates from 25.39% to 23.14%.
The model with the dynamical f2�0ðtÞ qualitatively repro-
duces a small peak at approximately 1.9 kHz (orange curve
in Fig. 21) but still does not yield a good description of the
simulation below 2 kHz.

TABLE IV. FFs for the analytic model Ac fits, the purely
analytic model PðMtot; tÞ, and the analytic model with one free
parameter PðMtot; t;ϕpeakÞ.

FFs

Mtot [M⊙] Ac PðMtot; tÞ PðMtot; t;ϕpeakÞ
2.4 0.979 0.653 0.801
2.5 0.956 0.795 0.847
2.6 0.956 0.912 0.913
2.7 0.977 0.878 0.922
2.8 0.976 0.878 0.899
2.9 0.962 0.848 0.905
3.0 0.955 0.595 0.864
3.1 0.907 0.887 0.898

TABLE V. Definitions for the two extended analytic models.
When the time argument is explicitly written, a time-dependent
description is employed for that particular component.

Model description Name Components

Extended analytic
model 1

M1 fanalyticpeak ðtÞ, fspiral, f2−0ðtÞ, f2þ0ðtÞ
Extended analytic
model 2

M2 fanalyticpeak ðtÞ, fspiral, f2−0, f2þ0, fspiral−0
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The blue curve in Fig. 21 includes the fspiral−0 compo-
nent, whose frequency we assume to be constant and we
also adopt constant values for f2�0 as in the original model.
We do not incorporate an fspiralþ0 component in our
modified analytic model since we do not observe a distinct
peak in the GW spectrum at the respective frequency. The
parameters Aspiral−0 and τspiral−0 are derived from the
spectrograms as described in Sec. V C 3.
The inclusion of the fspiral−0 component substantially

increases the fitting factor FFnew;2 ¼ 0.962. This leads to a
significant improvement regarding the reduction in the
detection rates of 11%. The importance of the fspiral−0
component is also apparent in the GW spectrum (compare
orange and blue curve below 2 kHz). As previously
mentioned, the strength of fspiral−0 relative to the
frequency-dependent sensitivity curve is similar to f2þ0

(for this mass configuration) and thus has a large impact
on the FF.
We remark that the first modification [time-evolving

f2�0ðtÞ] only slightly improves the analytic fits but
increases the complexity of the model since a parametriza-
tion of f2�0ðtÞ would require a number of additional
parameters. The second modification (inclusion of
fspiral−0) improves significantly the analytic fits (FFs)
and only introduces a minimum of new parameters
(Aspiral−0, τspiral−0, and ϕspiral−0, while the frequency is
already given by the other components).

B. Additional spectral features

We finally note that the different components and their
couplings provide explanations for basically every feature
in the GW spectrum up to about 6 kHz if one additionally
considers higher-order combination tones. This is shown in
Fig. 22, where we in addition draw the fit for the simplified
analytic model (green curve). We estimate those additional
frequencies employing the dominant frequency at early

times hft∈½0;t��peak i and using expressions f2þ20 ≈ hft∈½0;t��peak i þ
2 · f0 and fspiralþ20 ≈ fspiral þ 2 · f0. We derive the respec-
tive frequency ranges inserting the time evolution of f0ðtÞ
and fanalyticpeak ðtÞ. The estimated frequency ranges for f2þ20

and fspiralþ20 match relatively well with peaks in the GW
spectrum. We note that the frequencies f2þ20 and fspiralþ20

are also expected to follow empirical relations, which can
be exploited in more sophisticated analytic models.
Finally, we remark that the frequency component f2−20 is

most likely less important than fspiral−0. Our estimation

using the expression f2−20 ≈ hft∈½0;t��peak i − 2 · f0 leads to
f2−20 ¼ 1.309 kHz, which is significantly lower than the
peak in the GW spectrum (fspiral−0 ¼ 1.664 kHz).
Another relevant feature is the reexcitation of the

quadrupolar mode fpeak, which occurs roughly 10 ms after

FIG. 21. Effective GW spectra heff;þðfÞ for simulation and
analytic models for Mtot ¼ 3.1 M⊙ model. The black line corre-
sponds to the simulation. Colored curves illustrate the analytic
model fits as described by the labels. Colored boxes show the
corresponding FFs. Dashed vertical lines indicate secondary
frequencies.

FIG. 22. Effective GW spectra heff;þðfÞ for simulation and
simplified analytic model for Mtot ¼ 3.1 M⊙ model. The black
line corresponds to the simulation. The green line displays the
simplified one-component analytic model (A1). Dashed and
dash-dotted vertical lines indicate secondary frequencies

hft∈½0;t��peak i, fspiral, f2�0, fspiral−0, f2þ20, and fspiralþ20. Shaded
areas visualize their respective spread due to the time-evolving
frequencies.
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merging in high-mass models (see Appendix C 2) possibly
due to the excitation of a low-jT=Wj rotational instability
(see e.g., [117–119] and references therein). This feature
is not captured by the adopted single exponential decay of
the amplitude.

IX. CONCLUSIONS

In this work, we investigate the spectral properties of the
GW emission for a mass sequence of binary neutron star
mergers and introduce an analytic model for the postmerger
GW emission, which employs exponentially decaying
sinusoids. We discuss the features of the GW spectra
and their dependence on total binary mass. We also study
the time evolution of certain frequency components using
spectrograms. Notably, we find that the fpeak mode exhibits
a time evolution which can be split in two phases: (a) a
rapid initial drift and (b) an approximately constant
frequency at late times. We identify a new mechanism
which explains a low-frequency peak (in the GW spectra)
occurring in high-mass configurations. It is caused by a
coupling between the antipodal bulges (fspiral) and the
quasiradial mode (f0). Our analytic model incorporates a
time-dependent fpeakðtÞ and three secondary components
(fspiral and f2�0). We evaluate the model’s performance
using the noise-weighted FF and find good agreement with
the simulations with FF > 0.95 for the majority of the
models. We explore the dependencies of the analytic
model’s parameters, and correlations among them, on
the total mass Mtot. Finally, we include potential modifi-
cations to the analytic model for the configurations with
Mtot close to Mthres.
All models of the mass sequence exhibit a time-

dependent fpeakðtÞ. In their GW spectra, fpeak is one-sided
toward high frequencies. We model this evolution with a
two-segment piecewise function Eq. (1) and quantify the
drift using spectrograms of the simulation signals. The
analytic model reproduces remarkably well the one-sided
fpeak structure and thus it confirms that our choice is
sufficient for the description of such time-dependent

fpeakðtÞ. We note that hft∈½0;t�peak i is a good measure of
fpeak in the early postmerger phase. We find that the
parameters characterizing the time evolution of fpeakðtÞ
(ζdrift, t�, and fpeak;0) show a dependence on total massMtot.
The frequency evolution becomes faster for high-mass
configurations. We note that such trends may provide
information on the proximity to prompt collapse.
We confirm that the postmerger GW spectra follow

the classification scheme introduced in [37]. As the total
mass Mtot increases and the quasiradial mode is stronger
excited, the secondary components f2�0 become more
pronounced and there is an overlap between f2−0 and fspiral.
In low-mass configurations a low-frequency modulation

fpeak − fspiral is seen in αminðtÞ with comparable strength to
that of the quasiradial mode.
Using the analytic model’s parameters, amplitudes

and decay timescales Ai and τi, we find that the products
ðA · τÞi for the mass sequence can be used to quantitatively
define the strength of secondary components (for
i ¼ spiral; 2� 0) and allow a quantitative classification
of the different types of spectra as in [37].
Furthermore, we identify a new mechanism generating a

potentially relevant secondary GW feature: In high-mass
configurations the coupling between fspiral and f0 leads
to frequencies at approximately fspiral�0 ≈ fspiral � f0.
We note that relative to the sensitivity curve, fspiral−0 is
comparable to f2þ0.
We hypothesize couplings to the overtones of the

quasiradial mode, such as f2þ20 and fspiralþ20, and identify
frequency peaks in the GW spectrum near their vicinity
such that we explain nearly all visible frequency peaks.
The analytic model leads to FFs (assuming the sensitivity

curve of ET) in the range of [0.907–0.979] where the
majority of the models have FF > 0.95 and only theMtot ¼
3.1 M⊙ configuration (close toMthres) has FF ¼ 0.907. We
find that for this configuration the inclusion of the fspiral−0
component significantly increases the fitting factor to
FF ¼ 0.962. We further assessed our analytic model by
considering simplified analytic models with fewer fre-
quency components. We find that postmerger GW tem-
plates should incorporate at least two secondary
components such as fspiral and f2−0. The simplified model
with one secondary component leads to a large reduction
in detection rates. Using an additional simplified analytic
model which incorporates a constant fpeak and three
secondary components, we find that an accurate description
of fpeakðtÞ is crucial for obtaining higher FFs, at least for
the particular EOS studied here.
We find systematic dependencies for all the analytic

model’s parameters with respect to the total binary mass
Mtot. Ai and τi (for i ¼ peak; spiral; 2� 0) correlate with
Mtot and follow trends which we model using second-order
polynomials. Some of these trends, such as A2−0 and τspiral,
are not particularly tight but the dependence on mass is
clear. We also find tight correlations between the initial
phases ϕi (for i ¼ peak; spiral; 2� 0) of each component
with the total mass Mtot and between the secondary
component initial phases ϕspiral, ϕ2�0 and ϕpeak which
may suggest a constant phase difference between the fpeak
and secondary components.
One possible limitation of our analytic model is that it

includes a relatively large number of parameters, which
results from the complexity of the problem. However, all of
them show a clear dependence on the total binary massMtot
and can be modeled by analytic relations. These can
potentially be used to decrease the parameter space in
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data analysis techniques. Furthermore, we note that the
tight relations between the initial phases ϕpeak and ϕspiral,
ϕ2�0 should be further explored.
In our analysis, we applied a hierarchical procedure to

initially estimate a subset of the analytic model’s param-
eters and to then determine the remaining parameters using
a curve fitting procedure (trust-region-reflective algorithm).
Ideally, one would employ more sophisticated parameter
estimation techniques, which provide distributions in the
parameter space.
In future work, we plan to evaluate the model’s perfor-

mance for a large sample of EOSs and for unequal-mass
mergers.
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APPENDIX A: NUMERICAL SETUP

In this section we further discuss our numerical
setup. We address the impact of residual eccentricity
in the ID, of the initial orbital separation, of the
numerical resolution, and of pi symmetry on the spectral
features.

1. Effect of residual eccentricity in ID
and of initial orbital separation

In this section we address the effect of the residual
eccentricity in the ID to the spectral features. To minimize
the initial eccentricity in the ID we implement the pre-
scription introduced in [120] and adapt it to the field
equations solved within LORENE [77].
We carry out two additional simulations with total binary

mass Mtot ¼ 2.5 M⊙ (as in the reference simulation) and
initial separation distance of d ¼ 50 km. The reduction
of eccentricity is achieved with an iterative procedure
(described in [120]), which uses a few revolutions during
the inspiral. It performs better at large initial separation,
e.g., d ¼ 50 km, which is why we choose a larger d for
these tests. Otherwise the numerical setup is the same as for
the mass sequence simulations (see Sec. II). Considering
these two additional simulations we can assess the impact
of eccentricity on the spectral features since this is the only
parameter, which differs between those two calculations.
We refer to the simulation with the quasicircular ID and
the simulation with reduced eccentricity as QC and RE,
respectively.
In order to compute the separation distance between the

two NSs, we assume that the center of mass of the star
coincides with the location of the maximum rest-mass
density ρmax. We use these coordinates (xmax, ymax) in the
orbital plane and define the separation distance by

dðtÞ ¼ 2 ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2max þ y2max

q
; ðA1Þ

where the factor 2 reflects the pi symmetry of the system.
Figure 23 shows the time evolution of the coordinate

separation distance dðtÞ for both simulations. We estimate
the eccentricity using the method described in [120]. The
residual eccentricity in the QC simulation is e ≈ 0.0088 and
the reduced residual eccentricity of the RE simulation is

FIG. 23. Time evolution of the coordinate separation distance
dðtÞ for the simulations QC (blue) and RE (orange).
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e ≈ 0.00089. The QC simulation exhibits small modula-
tions in the separation distance dðtÞ, while in the RE
simulation these oscillations disappear, as expected due to
the reduced eccentricity.
Figure 24 displays the GW spectra for the reference

simulation and the simulations QC and RE. The spectra
agree in the general features and their morphology, and the
frequency peaks coincide. They exhibit an fpeak which is
one-sided and a dominant secondary peak, fspiral, with
comparable strength. Therefore it is unlikely that the
residual eccentricity in the ID affects the mechanisms
for the frequency of evolution of fpeak or the formation
of the antipodal bulges and thus fspiral. There are small
differences in the amplitudes of the frequency peaks, which
might be explained by differences in the impact velocities
during the collision. However, these differences can also be
seen between the reference simulation and the simulation
QC, which only differ in initial separation distance. In
particular, the morphology of the main peak is to some
extent affected by the initial orbital separation.
We compute the analytic (Ac) and semianalytic (Sc)

model fits for the two simulations and find large fittings
factors of FF≳ 0.970 (see Table VI). We overplot the initial

phases ϕi (for i ¼ peak; spiral; 2� 0) together with
Eqs. (22)–(24) in Fig. 25. We find that the tight correlations
between the phases still hold and the impact of residual
eccentricities is negligible. We note that the initial phases ϕi
(for i ¼ peak; spiral; 2� 0) are shifted with additions or
subtractions of multiples of 2π.

2. Resolution study

In this section we discuss the impact of resolution on
the spectral properties. We consider an additional high-
resolution simulation with total binary mass Mtot¼2.5M⊙
(as in the reference model) and finest grid spacing of dx ¼
185 m (keeping the same number of refinement levels).
Apart from the resolution, the numerical setup is identical
to the one described in Sec. II. We refer to the high-
resolution simulation as HR.
Figure 26 displays the GW spectra for the reference and

HR simulation. The agreement between the frequency
peaks is remarkable, although there are small differences
in the morphology of the main peak. The time evolution of
fpeakðtÞ agrees well in both simulations, and we observe a
very good agreement between the secondary frequencies,
especially for fspiral and f2−0. Figure 27 shows the spectro-
grams for the two simulations and confirms that, in spite of
the differences in the structure of the main peak shown in
the spectra of Fig. 26, the time evolution of fpeakðtÞ is
qualitatively similar in both cases and it can thus be
described by the same analytic model that we describe
in the main text.
We also compute the analytic (Ac) and semianalytic (Sc)

model fits for the HR simulation and find large fitting
factors of FF≳ 0.970 (see Table VII). We note that for this
particular configuration the FFs are even larger than the
ones obtained for the reference simulation.

FIG. 24. Effective GW spectra heff;þðfÞ for the reference
simulation (black) and simulations QC (blue) and RE (orange).
The dash-dotted curves denote the design sensitivity Advanced
LIGO [108] and of the Einstein Telescope [109], respectively.

FIG. 25. Initial phases ϕi (for i ¼ spiral, 2� 0) with respect to
ϕpeak for the analyticmodel (Ac) fits for the simulationsQC (square)
and RE (circle). Colored lines correspond to Eqs. (22)–(24).

TABLE VI. FFs for the analytic (Ac) and semianalytic (Sc)
model fits for the simulations QC and RE.

FFs

Simulation Sc Ac

QC 0.969 0.978
RE 0.981 0.979
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3. Effect of pi symmetry

In this section we discuss the impact of imposing pi
symmetry during the simulations. We carry out additional
simulations using the same numerical setup as described in
Sec. II but without pi symmetry. We run additional models
for Mtot ¼ 2.5 M⊙; 2.7 M⊙; 2.9 M⊙ and 3.0 M⊙. The
respective spectra agree very well with the simulations
using pi symmetry. As example, we show the calculation
forMtot ¼ 3.0 M⊙ in Fig. 28. This particular configuration
is discussed in Sec. III C. We conclude that imposing pi
symmetry does not impact the spectral features and in
particular the fspiral�0 coupling is unaffected by the pi
symmetry.

FIG. 27. Top panel: spectrogram of hþðtÞ for the reference
simulation. Bottom panel: spectrogram of hþðtÞ for the high-
resolution simulation HR. The black curves correspond to the
numerically extracted fspectrogrampeak ðtÞ for the reference simulation
and HR, respectively.

TABLE VII. FFs for the analytic (Ac) and semianalytic (Sc)
model fits for the HR simulation.

FFs

Simulation Sc Ac

Ref. 0.969 0.956
HR 0.978 0.974

FIG. 28. Effective GW spectra heff;þðfÞ for the Mtot ¼ 3.0 M⊙
simulation with pi symmetry (black) and without pi symmetry
(blue). The dash-dotted curves denote the design sensitivity
Advanced LIGO [108] and of the Einstein Telescope [109],
respectively.

FIG. 26. Effective GW spectra heff;þðfÞ for the reference
simulation (black) and the high-resolution simulation HR
(blue). The dash-dotted curves denote the design sensitivity
Advanced LIGO [108] and of the Einstein Telescope [109],
respectively.
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APPENDIX B: SPECTRAL PROPERTIES OF THE MASS SEQUENCE MODELS

We present supplementary figures for the mass sequence models. Figure 29 shows the GW spectra including the inspiral
signal. Figure 30 displays the spectrograms for the postmerger GW signal hþðtÞ. Figure 31 provides the spectrograms for
the minimum lapse function αminðtÞ starting at a few milliseconds before the merging phase.

FIG. 29. As in Fig. 2 but including the inspiral signal.
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FIG. 30. As in Fig. 1 but for all models in our mass sequence.
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FIG. 31. As in Fig. 3 but for all models of our mass sequence.
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APPENDIX C: ANALYTIC MODEL

1. Spectrogram analysis

To further evaluate the analytic model, we quantitatively
analyze the spectrograms of the numerical simulation and
of the analytic fit. Figures 32(a)–32(c) depict the wavelet

coefficients ApeakðtÞ, AspiralðtÞ, and A2−0ðtÞ, which we
extract at the corresponding frequencies from the spectro-
grams as function of time, for the simulation (blue line)
and for the analytic fit (orange line). The analytic model
performs well in reproducing the three coefficients of the
simulation data. For illustration purposes, we omit the

(a) (b)

(c)

FIG. 32. Top left panel: coefficient curvesApeakðtÞ for the fpeak component extracted from the spectrograms of simulation and analytic
model. The purple dashed line indicates amplitude Apeak. The black dotted horizontal line shows the maximum of ApeakðtÞ for
simulation. The purple sinusoidal function shows fpeak component as used in the analytic model. The dashed black curve shows its
exponential decay. Top right panel: coefficient curvesAspiralðtÞ for the fspiral component extracted from spectrograms of simulation and
analytic model. The yellow dashed line shows the amplitude Aspiral. The black dotted horizontal line indicates the maximum ofAspiralðtÞ
for simulation. The yellow sinusoidal function shows fspiral component as used in the analytic model. The dashed black curve shows its
exponential decay. Bottom panel: coefficient curves A2−0ðtÞ for the f2−0 component extracted from spectrograms of simulation and
analytic model. The yellow dashed line shows amplitude A2−0. The black dotted horizontal line indicates the maximum of A2−0ðtÞ for
simulation. The yellow sinusoidal function shows the f2−0 component as used in the analytic model. The dashed black curve shows its
exponential decay.
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normalization factor N and overlay the corresponding
exponentially decaying sinusoid functions for each fre-
quency component while we rescale the coefficient curves
by a constant factor which ensures that the maxima of
ðhpeakðtÞWðt; sÞÞ and ApeakðtÞ coincide.
We note that the three components exhibit different

magnitudes of the coefficient curves AiðtÞ, whereas the
amplitudes Ai (i ¼ peak; spiral; 2 − 0) of the analytic
model are roughly comparable. For our reference simu-
lation with a total binary mass Mtot ¼ 2.5 M⊙, we actually
expect that the fspiral component is the strongest secondary
feature, which is also suggested by the GW spectrum, and
in fact the maxima of the coefficients show this hierarchy.

We thus remark that the amplitudes Ai of the analytic model
may have only a limited physical meaning, while other
quantities, such as the surface area underAiðtÞ, the maxima
of AiðtÞ or the product Ai · τi may turn out to be more
representative for the merger dynamics and GW emission.

2. Sequence of simulations with different masses

Figure 33 shows the time-domain signals for the sim-
ulation and the analytic model along the sequence of
simulations with different masses. Notice the possible
excitation of a low-jT=Wj rotational instability in the
highest-mass model, after ∼10 ms from the onset of
merger [117–119].

FIG. 33. As in Fig. 8 but for all models of our mass sequence.
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3. Initial phases

We find that the initial phases ϕpeak, ϕspiral, and ϕ2�0

correlate with the total binary mass Mtot. We model this
dependence with a two-segment piecewise function con-
sisting of two linear fits which intersect at Mtot ¼ 2.7 M⊙.
These are given by

ϕpeak ¼
�þ18.957 ·Mtot − 46.321 for Mtot ≤ 2.7 M⊙;

þ43.425 ·Mtot − 113.152 for Mtot > 2.7 M⊙;

ðC1Þ

ϕspiral ¼
�þ17.580 ·Mtot − 42.199 for Mtot ≤ 2.7 M⊙;

þ40.448 ·Mtot − 104.258 for Mtot > 2.7 M⊙;

ðC2Þ

ϕ2−0 ¼
�þ18.541 ·Mtot − 43.911 for Mtot ≤ 2.7 M⊙;

þ43.613 ·Mtot − 112.705 for Mtot > 2.7 M⊙;

ðC3Þ

ϕ2þ0 ¼
�þ16.064 ·Mtot − 41.163 for Mtot ≤ 2.7 M⊙;

þ43.309 ·Mtot − 115.341 for Mtot > 2.7 M⊙:

ðC4Þ

4. Empirical relations

The fits are carried out for the signals r · hsðtÞ (for
s ¼ þ;×). Table VIII provides information about the
analytic model’s parameters.
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