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An N-element interferometer measures correlations among pairs of array elements. Closure invariants
associated with closed loops among array elements are immune to multiplicative, element-based (“local”)
corruptions that occur in these measurements. Till recently, it has been unclear how a complete set of
independent invariants can be analytically determined. We view the local, element-based corruptions in
copolar correlations as gauge transformations belonging to the gauge group GLð1;CÞ. Closure quantities are
then naturally gauge invariant. We use this to provide a simple and effective formalism and identify the
complete set of independent closure invariants from copolar interferometric correlations using only quantities
defined on ðN − 1ÞðN − 2Þ=2 elementary and independent triangular loops. The ðN − 1ÞðN − 2Þ=2 closure
phases and NðN − 3Þ=2 closure amplitudes (totaling N2 − 3N þ 1 real invariants), familiar in astronomical
interferometry, naturally emerge from this formalism, which unifies what has required separate treatments
until now. We do not require autocorrelations but can easily include them if reliably measured. This unified
view clarifies issues relating to noise and inference of object model parameters. It also allows us to extend the
rule of parallel transport associated with Pancharatnam phase in optics to apply to amplitudes as well. The
framework presented here extends to GLð2;CÞ for full polarimetric interferometry as presented in a
companion paper, which generalizes and clarifies earlier work. Our findings are relevant to state of the art
copolar and full polarimetric very long baseline interferometry measurements to determine features very near
the event horizons of black holes at the centers of M87, Centaurus A, and the Milky Way.
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I. INTRODUCTION

Interferometry, which began with Young’s double slit
experiment, has blossomed over the years into a technique
now widely used in physics, biology, and astronomy.
Examples include the use of astronomical interferometry
in the first determination of the double-lobed morphology of
Cygnus A [1], the first imaging of the event horizon of a
black hole in the center of theM87 galaxy [2–8] and inner jet
structures around the black hole in Centaurus A [9],
determination of crystal structures ([10–14] and references
therein), seismic imaging ([15] and references therein), and
remote sensing using radar and sonar ([16,17] and references
therein).

In each of these applications, accurate measurement of
both the amplitude and phase of the coherence (represented
as complex values) is critical for success. Often, accurate
measurements of the complex-valued correlations is made
difficult by corruptions introduced by the propagation
medium, and nonideal behavior of the instrument as well
as of the measurement process. For example, in radio
interferometry, the electromagnetic wave fronts are cor-
rupted by ionospheric and tropospheric turbulences at low
and high frequencies, respectively, as well as by corrupting
factors in the array element responses. In optical interfer-
ometry, the atmospheric turbulence and imperfections in the
telescope’s surface geometry tend to destroy the phase
information.
These element-based effects can be calibrated if there is a

standard object of known morphology available [18,19].
An alternative strategy is self-calibration [20,21], which is a
self-consistent scheme which uses iteration and feedback to
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successively refine the image starting with an initial model.
But this is not always possible at the desired level of
accuracy when the signal-to-noise ratio or the a priori
knowledge of the calibrator object is inadequate. Therefore,
there is considerable interest in calibration-independent
quantities that are unaffected by these element-specific
factors, and are hence true observable properties of the
object’s structure.
Such interferometric invariants are typically constructed

using the product of pairwise correlations measured on a
closed loop of array elements, and we call them closure
invariants. In copolar interferometry (correlations between
measurements of the same polarization at all the array
elements) at radio and optical wavelengths, they are widely
known as closure phases and amplitudes ([18,19,22] and
references therein). The analog of closure invariants include
the triplet and quartet invariants in x-ray crystallography
([10–14] and references therein), and Bargmann invariants
in quantum mechanics [23]. A detailed geometric insight
into closure phase and its connections to various disciplines
is provided in [24].
In astronomical interferometry, closure quantities can be

traced to [25,26]. Since then, they have been invaluable
tools for interferometry at optical [22,27–30] and radio
frequencies ([20,31–33] and references therein). This is
particularly true of high spatial resolution applications
using very long baseline interferometry (VLBI) at radio
frequencies. A famous example is the recent imaging of the
event horizon of the supermassive black hole at the center
of the M87 galaxy [2–8]. Recently, new approaches of
probing the structure formation in the intergalactic medium
through application of closure phases on faint spectral line
emission from the early Universe during the cosmic
reionization epoch (z≳ 6) are also being explored [34–36].
In the context of copolar correlations in astronomical

interferometry, a detailed mathematical approach to deter-
mining the number of generic closure invariants (including
closure phases and closure amplitudes), and implications
for the resulting signal-to-noise ratios was presented by
[37]. Recently, first steps in the extension of closure
invariants (called “closure traces”) to correlations of full
polarimetric antenna measurements were taken in [38],
which relied on including antenna autocorrelations to
derive an independent set of closure traces involving four
correlations.
In this and an accompanying paper [39] (hereafter papers I

and II, respectively), we establish a formalism using a
combination of group-theoretic and linear algebraic
approaches that advances the previous work [37,38]. In
contrast to [38], we do not rely on the use of autocorrelations
(which in radio astronomy tend to be susceptible to
significant noise biases, besides instabilities caused by radio
frequency interference and instrumental systematics), but we
can incorporate them if reliably measured, and derive a
complete and independent set of closure invariants using

gauge theory. In this paper, we employ the GLð1;CÞ gauge
group1 and its associated gauge freedom to treat and derive
the complete and independent set of closure invariants in the
copolar case. The closure phases and closure amplitudes
familiar in radio interferometery emerge naturally from our
formalism which treats triangular loops as fundamental
units, and thus unifies the prescription for obtaining closure
phases and closure amplitudes. In paper II, we build on the
foundations presented in this paper and provide a formalism
using the GLð2;CÞ gauge group and its associated gauge
freedoms for deducing the complete and independent set of
closure invariants in the general case of full polarimetric
interferometry. In both papers, we also confirm our findings
with a parallel and independent viewpoint using conven-
tional linear algebra along with numerical simulations. We
also generalize the analysis to provide a prescription for
extracting all the independent closure invariants in an N-
element interferometer array. These closure invariants re-
present true observables about the system under observation,
which in the case of interferometric imaging in astronomy
corresponds to the true physical properties of the target
object’s morphology.
This paper is structured as follows. Section II lays out the

copolar interferometry context within which we seek a full
set of independent invariants. In Sec. III, we present the
expected number of independent closure invariants through a
dimension count analysis. Section IV develops a formalism
that provides multiple but equivalent methods to produce a
complete and independent set of closure invariants, which
can be readily identified with closure phases and closure
amplitudes familiar in radio interferometry. These invariants
are listed explicitly in the case of three, four, and N array
elements. Section V summarizes this work. In Appendix A,
we describe a scheme for reliably measuring autocorrelations
as the coincidence limit of cross-correlations if an extra
short-spaced pair of elements is available. In Appendix B,
we place our work in relation to the widely used “self-
calibration” technique, which implicitly uses closure quan-
tities. Appendix C describes the numerical scheme used to
confirm our analytic results, and Appendix D brings out how
our approach clarifies some aspects of the choice of
invariants as it relates to the effects of noise and to object
model parameters. In Appendix E, we highlight the explicit
connection between the closure phase and Pancharatnam
phase [40,41] in optics. Motivated by the radio astronomy
application, we extend the Pancharatnam rule to include
amplitudes as well.

II. COPOLAR INTERFEROMETRY

Consider an interferometer array with N elements labeled
by the indices a; b ¼ 0;…; N − 1. Each element, a, in the

1In general, GLðn;CÞ refers to the group of nonsingular n × n
matrices under multiplication, so GLð1;CÞ is the group of
nonzero complex numbers under multiplication.
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array measures the amplitude and phase of the same
polarization (copolar, or scalar) state of electric field, ea
(represented by a complex number), incident on it, which is
stochastic. The true correlation of the stochastic fields
between pairs of array elements is, by definition, obtained
by cross multiplication and averaging, Sab ≔ heae†bi, where
† denotes the conjugate transpose operator, which reduces to
complex conjugation for GLð1;CÞ matrices in the copolar
interferometric case dealt in this paper.
The complex electric fields, ea, may be subject to

arbitrary gains Ga at each element, where Ga are nonzero
complex numbers representing both amplitude and phase
distortion of the measured signal. In ideal conditions, all the
gains Ga would be unity and the measured signal at each
baseline would accurately reflect the true signal correlation,
Sab, of emission from the object. In fact, the measured
correlation, Cab, which is a corrupted form of the true
correlation, can be written as

Cab ¼ Gaheae†biG†
b ¼ GaSabG

†
b ð1Þ

because of local gain distortions at each element. Generally,
the cross-correlations are complex-valued with nonzero
amplitudes. From the definition, cross-correlations satisfy
Cab ¼ C†

ba. The auto-correlations, Aaa ≔ Caa, are real and
positive. Our objective is to construct quantities which are
immune to the gain distortions and actually reflect true
properties of the object’s morphology, rather than local
conditions at the individual elements of the interferometer.
We relate this problem to the “gauge” theories of

fundamental forces like electromagnetism. The local gains
Ga are regarded as gauge transformations and our objective
is to isolate a maximal set of gauge invariant quantities
which we will call closure invariants. This term encom-
passes both closure amplitudes and closure phases. Our
treatment places them on an equal footing by working with
a GLð1;CÞ gauge group.

III. COUNTING ARGUMENTS

Let us first do a dimensional count to see how many
closure invariants we would expect to find. The number of
measured cross-correlations is NðN − 1Þ=2, this being the
number of baselines or element pairs, i.e., the number of
nonrepeating combinations among N elements taken two at
a time. Since each cross-correlation is a complex number
we have NðN − 1Þ real numbers. If nA autocorrelations
(described by nA real numbers) are also measured, we
would have to add nA to the above count. Without loss of
generality, we can assume that nA is either zero or one.2 In
radio astronomy, autocorrelation measurements are

unreliable because they are dominated by nonastronomical
systematics. Our formalism for closure invariants works
with or without autocorrelations.
The unknown element-based gains are N complex

numbers, but note that there may be sets of gains Ga
which do not affect the correlations. That is, they satisfy
GaCabG

†
b ¼ Cab for all a, b. This yields GaG

†
b ¼ 1 and so

GaG
†
aGbG

†
b ¼ 1. If the correlations themselves are

unchanged, then so will the triple products of correlations.
Thus, using GaG

†
bGbG

†
cGcG

†
a ¼ 1 (assuming N ≥ 3, and

distinct a, b, c) gives us GcG
†
c ¼ 1 for all c. This means

Ga ¼ eiθ for all a, which is simply an overall phase factor
that cancels out in Eq. (1) and does not affect the
correlations. Thus, counting out this single phase parameter
from the 2N real parameters in the gains gives us a count of
effectively 2N − 1 unknown real numbers in the gains.
Assuming none of the measured correlations is redun-

dant (they are all independent of each other) and all of them
are used, the number of closure invariants (that are
independent of any choice of the unknown gains) is the
difference

NðN − 1Þ þ nA − ð2N − 1Þ ¼ N2 − 3N þ 1þ nA: ð2Þ

Note that this equals the number of closure phases,
ðN − 1ÞðN − 2Þ=2, plus the number of closure amplitudes,
NðN − 3Þ=2þ nA [18,37]. For example, this equals 1 (one
closure phase) or 5 (three closure phases and two closure
amplitudes) when nA ¼ 0 for N ¼ 3 or N ¼ 4, respec-
tively, and 2 (one closure phase and one closure amplitude)
or 6 (three closure phases and three closure amplitudes)
when nA ¼ 1 for N ¼ 3 and N ¼ 4, respectively. As N
becomes large, the structural information about the object
that can be extracted using closure phases and closure
amplitudes asymptotically approaches that which can be
extracted using correlations.

IV. FORMALISM FOR CLOSURE INVARIANTS

From a gauge theory perspective, we can regard each of
the N elements a ¼ 0;…; N − 1 as vertices in a graph. The
gains that represent element-based corruption factors are
local variables and multiplication by the gain factor results in
a gauge transformation at each vertex. Each baseline is an
edge ab or link carrying “connection” variables that are
bilocal since they are defined on the link connecting two
vertices. These are the cross-correlations. In the language of
gauge theory, each triangle, ΔðabcÞ ≡ ða; b; cÞ is called an
“elementary plaquette” and defines a “Wilson loop.” The
Wilson loop of any closed circuit can be determined from
those of the elementary triangular plaquettes. Our objective is
to list a complete and independent set of elementary Wilson
loops. These are the closure invariants of radio astronomy.
In a Uð1Þ gauge theory like electromagnetism, the gauge

group would be unitary and complex conjugation in Eq. (1)

2In radio astronomy, measuring any more autocorrelations
does not give us new information due to the implicit assumption
of spatial stationarity.
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would be the same as inversion. One can then form
independent closure invariants from each elementary tri-
angular plaquette abc by simply multiplying correlations
around the triangle, as in Babc ¼ CabCbcCca. (Babc is called
the “bispectrum” in interferometry). However, our gauge
group GLð1;CÞ is not unitary. Using G ¼ fGag, a ¼
0;…; N − 1 to denote a general gauge transformation at
every vertex, a, on the graph, the bispectrum and other
higher order products (“polyspectra”) of a set of Cab around
a closed loop, Γ, transform as

PΓ↦
G jGaj2jGbj2…PΓ: ð3Þ

The phase of PΓ is invariant under gauge transformations
G ¼ fGag, a ¼ 0;…; N − 1 and this is familiarly known as
the closure phase. However, because the gauge group is not
unitary, the amplitude ofPΓ is not invariant as it still depends
on the gain amplitudes, jGaj.
Similarly, one can define closure amplitudes for every

even-edged loop. For example, given the loop Γ ¼ abcda,
the quantity

QΓ ¼ CabC−1
bcCcdC−1

da ð4Þ

transforms as

QΓ↦
G
GaG

†−1
a GbG

†−1
b GcG

†−1
c GdG

†−1
d QΓ: ð5Þ

It follows, since jGaG
†−1
a j ¼ 1 that jQΓj, the modulus of

QΓ, is a closure invariant:

jQΓj↦
G jQΓj: ð6Þ

However, the phase of Q is not an invariant because it still
depends on the phases of Ga at the loop vertices.
The virtues of PΓ and QΓ can be combined in a single

quantity CΓ by defining a hat operator, bZ ¼ ðZ†Þ−1, on
nonzero complex numbers. We introduce the term cova-
riants as the set of even number of products of correlations
around a closed loop, Γ, with even numbered terms “hatted”
starting with the second. For example, a covariant on a
4-vertex loop can be written as CΓ ¼ Cab

bCbcCcd
bCda. Hence,

covariants transform as

CΓ↦
G
G0CΓG−1

0 : ð7Þ

Because the gauge group of Ga, GLð1;CÞ, is Abelian,

CΓ↦
G
CΓ: ð8Þ

Thus, the covariants are invariant3 under the gauge trans-
formation effected by the element-based corruption, and
form the closure invariants we are seeking in copolar
interferometry. Some of the notation above is deliberately

kept general so that it transfers easily to the more difficult
non-Abelian case discussed in paper II.

A. Triangular plaquettes

The need to have an even number of correlations in the
product around a closed loop appears to impose the require-
ment of elementary quadrilaterals rather than triangles.
However, it is unclear beforehand which even-vertexed
loops will provide us with a complete set of independent
invariants. We show below that such a set can be obtained by
considering variables on elementary triangular plaquettes
that are independent, rather than quadrilateral plaquettes.
The latter can be entirely derived from the former.
The independent triangles in an N-element interferometer

can be obtained by fixing a base vertex (for example, 0) and
choosing all the triangles that contain this vertex [18]. There
are NΔ ¼ ðN − 1ÞðN − 2Þ=2 such independent triangles.
We construct elementary triangular plaquette variables
pinned at vertex 0 that includes just three elements
(0; a; b): Aab ¼ C0aĈabCb0. This quantity is neither a
bispectrum nor a covariant, but acts as a building block
that can be used to construct all the closure invariants. These
triangular variables are clearly independent and complete as
all closed loops can be decomposed into triangles and each
distinct triangle is independent. Around the closed loop
pinned at vertex 0 (Γ0), they undergo gauge transformations
with G0 as

Aab↦
G jG0j2Aab: ð9Þ

We term such quantities as advariants in this paper. A
special advariant is A0 ¼ A00, the autocorrelation. The
notation clarifies that this autocorrelation advariant is a local
variable based at 0. Note that advariants have an advantage
that their gauge freedom is restricted to just a scaling by a
single jG0j2 in contrast to polyspectra (including bispectrum)
whose gauge transformations depend on jGaj of all the
vertices in the loop. Thus, jG0j2 is the only unknown
quantity in the advariants that has to be eliminated to arrive
at invariant quantities. However, the phase of a triangular
advariant is equal to the phase of the corresponding
bispectrum, and thus gives the closure phase [25], which
is an invariant.

B. Complete and independent set of invariants

1. Method 1

Consider all the NΔ elementary triangular plaquettes
pinned at vertex 0. Each of them gives us a complex number
Aab. These complex numbers scale as in Eq. (9). The real

3Note that a four-edged covariant essentially resembles a cross
ratio, which is a well-known invariant in projective geometry
([42,43] and references therein).
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and imaginary parts of these complex numbers give usM ¼
2NΔ real numbers, feImg; m ¼ 1;…;M, all of which trans-
form by the unknown scale, jG0j2, under gauge trans-
formations. The ratios of these eIm with respect to any of
them (eI0, for example) or some symmetric combination
(½Pm

eI2m�1=2, for example), will eliminate this unknown
scale, and thus give us M − 1 real closure invariants,
feIk=eI0g; k ¼ 2;…;M. Their number is N2 − 3N þ 1,
which is in exact agreement with the expectation in
Eq. (2). This gives us a complete and independent set of
closure invariants. Also, there is no need for autocorrelations
in this construction. If we were to add A00 as a measured
quantity, we would gain a single real invariant becauseA0 ¼
A00 being real and positive, would only contribute one more
real number to feImg. Note that the practical problem of
systematic effects affecting autocorrelations can be mitigated
by the use of cross-correlations between a pair of closely
spaced elements in cases where the angular size of the object
is much smaller than the angular resolution corresponding to
the short spacing, and is described in Appendix A.
While this method of taking ratios completely solves the

problem we sought to address, namely, the determination of
a complete and independent set of copolar interferometric
invariants, we provide below an alternative formalism that
allows us to better visualize the closure phases and ampli-
tudes, as they are familiarly known in radio interferometry, in
terms of combinations of the invariants determined here.

2. Method 2

The elementary covariant quantity defined earlier as the
closed loop product of an even number of correlations with
alternate terms hatted starting with the second (a minimum
of four terms) can be equivalently defined as the multipli-
cation of an even number (minimum of two) advariants
with every alternate term hatted starting with the second.
For example, consider two triangles,Δ1 ≡ Δð0;1;2Þ (the base
triangle) and Δl ≡ Δð0;a;bÞ chosen from the set of NΔ
triangles, both pinned at vertex 0, and their reversed forms,
∇1 ≡ Δð0;2;1Þ and ∇l ≡ Δð0;b;aÞ. The covariant, which is an
invariant, can now be expressed by pairing the advariants
on these triangles as

IΔ1;Δl
¼ CΔ1;Δl

¼ AΔ1

bAΔl
ð10Þ

or; IΔ1;0
¼ CΔ1;0

¼ AΔ1

bA0; ð11Þ

which are in general complex valued. In the copolar case
studied in this paper, since covariants are indeed invariants,
they will be used interchangeably. However, the same is not
true in the full polarimetric case presented in paper II.
The following properties of covariants are noted:
(i) AΔ1

scales as jG0j2, whereas bAΔl
and bA0 scale as

jG0j−2, thereby canceling the unknown scale factor

in Eqs. (10) and (11), and making the covariant an
invariant.

(ii) A covariant formed with Δ1 and Δl has the
same amplitude as that formed with Δ1 and ∇l.
That is, jIΔ1;Δl

j ¼ jIΔ1;∇l
j, and thus do not

provide independent amplitude information. Sim-
ilarly, jIΔl;Δ1

j ¼ jIΔ1;Δl
j−1.

(iii) If ϕΔ1
and ϕΔl

are the phases of the advariants
(closure phases), then the phases of IΔ1;Δl

and
IΔ1;∇l

are ϕΔ1
þ ϕΔl

and ϕΔ1
− ϕΔl

, respectively.
(iv) Each invariant, IΔ1;Δl

, is complex valued and thus
contains two real-valued invariants, except when
Δl ¼ Δ1. In that case, jIΔ1;Δ1

j ¼ 1, and therefore,
contains only one real invariant, namely, its phase
which is twice the closure phase, 2ϕΔ1

.
Using the above properties, a set of covariants (invariants)

can be constructed by pairing all the independent triangular
advariants, AΔl

with the advariant of the base triangle, AΔ1
,

as IΔ1Δl
¼ AΔ1

bAΔl
, l ¼ 1;…; NΔ. Each of these complex

invariants yields two real invariants for l ≠ 1 and only one
real invariant for l ¼ 1 as noted above. Therefore, the total
number of real invariants is 2NΔ − 1 ¼ N2 − 3N þ 1. The
presence of an autocorrelation measurement will increase
this count to N2 − 3N þ 2 due to one additional real-valued

amplitude invariant in AΔ1

bA0. Therefore, this method
provides N2 − 3N þ 1þ nA real invariants, which is a
complete and independent set, and is consistent with the
first method using ratios as well as with the dimension count
analysis in Sec. III. We also verified these results numerically
as detailed in Appendix C.

C. Closure phases and amplitudes

Using the second method, we can directly identify the
closure phases and amplitudes familiar in radio interfer-
ometry with the closure invariants obtained here.
The independent closure phases are directly given by the

phases of the NΔ independent triangular advariants. But
they can be derived from the covariants, IΔ1Δl

, as well,
where Δl is any triangle that shares vertex 0 with the
reference triangle, Δ1. The phase of IΔ1Δ1

is 2ϕΔ1
, which

yields ϕΔ1
to within an ambiguity of π. This ambiguity can

be addressed by using the phase of the advariant, AΔ1
,

which gives ϕΔ1
directly without the aforementioned

ambiguity. The phase of the rest of the covariants IΔ1Δl

is ϕΔ1
þ ϕΔl

, which will directly yield ϕΔl
via plain

substitution of the previously determined ϕΔ1
. This will

yield NΔ independent closure phases. The same construct
also yields closure amplitudes.
An inspection of jIΔ1Δl

j shows that it is indeed a
closure amplitude, jC01jjC21j−1jC20jjCa0j−1jCabjjC0bj−1.
In general, closure amplitudes formed from a pair of
triangular advariants involves six such terms. However,
when Δl shares an edge with Δ1 (a ¼ 2, for example),
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then the contributions, jC20j and jCa0j−1, associated with
that edge cancel each other, and the closure amplitude
reduces to the familiar form containing four terms,
jC01jjC21j−1jC2bjjC0bj−1. Noting that jIΔ1Δ1

j does not
contribute an amplitude (it always has unit amplitude),
there are NΔ − 1 ¼ NðN − 3Þ=2 independent closure
amplitudes (from the NΔ − 1 triangle pairs sharing vertex
0 with the base triangle Δ1). The autocorrelation meas-
urement, if present, adds one more independent closure

amplitude through jAΔ1

bA0j ¼ jC01jjC21j−1jC20jA−1
00 .

Therefore, there are NΔ − 1þ nA independent closure
amplitudes in general. It may also be noted that if an
autocorrelation can be reliably measured, we can obtain all
the invariants just from triangles with the autocorrelation

advariant as the base advariant using I0;Δl
¼ A0

bAΔ1
, with-

out requiring quadrilaterals or six-edged loops.
The set of closure amplitudes and phases contains a

total of 2NΔ − 1þ nA ¼ N2 − 3N þ 1þ nA real invari-
ants as given in Eq. (2), which is complete and indepen-
dent, and is in agreement with all the earlier analyses. Our
approach using advariants and covariants (invariants)
constructed only from these triangular plaquettes provides
a unifying approach that directly identifies the traditional
invariants known as closure phases and amplitudes in
radio interferometry.
Then the following question arises: which form of closure

invariants is preferable? In Appendix D, we consider this
question from the viewpoint of correlations within the chosen
set of invariants and their overall contribution to the deter-
mination of the likelihood of parameterized models. In brief,
the choice of invariants is immaterial in the determination of
the likelihood function of the model parameters as long as the
set of invariants employed is complete. However, certain
choices of coordinates in which the invariants are represented
could lead to coordinate-induced correlations among the
invariants, and also to situations when one or more of the
invariants become ill-defined in those coordinates. A well-
known example occurs when representing real and imaginary
parts of random variables in polar form, where the amplitude
and phase angle can become correlated in general and the
phase angle becomes ill defined in low S=N regimes even if
the real and imaginary parts are perfectly uncorrelated and
well defined. For these reasons, even if the real and imaginary
parts of the invariants in our approach may be correlated, we
still prefer this representation over the polar form consisting
of phases and amplitudes.

D. Illustration with examples

For illustration, we consider the familiar examples of
three- and four-element arrays below.

1. Three-element array

Consider an array with N ¼ 3 and one autocorrelation
measured (nA ¼ 1). We have 1 and 6 real values in the auto-

and cross-correlations, respectively, totaling seven real
measurements. We have 2N − 1 ¼ 5 unknown real-valued
parameters in the three complex-valued element gains. From
dimension counting used in Eq. (2), we expect to find two
real-valued closure invariants. From these measurements, we
can form a triangular advariant, AΔ1

, corresponding to the
triangle Δ1 ≡ Δð0;1;2Þ, and an autocorrelation advariant, A0.
The complex invariant

IΔ1;0
¼ AΔ1

bA0 ¼
jC01jjC20j
jC12jA00

eiϕΔ1 ð12Þ

gives both these real-valued invariants. The magnitude of
this complex quantity is like a closure amplitude (with one
autocorrelation) and the phase is the standard closure phase
of three elements. These two quantities are evidently
independent. IΔ1;Δ1

¼ e2iϕΔ1 will give no new invariants.
If autocorrelation is not measured (nA ¼ 0), then the

number of real measurements reduces by 1 to 6. Hence, we
now expect only one invariant from Eq (2). Using the only
advariant available, AΔ1

, we find that

IΔ1;Δ1
¼ AΔ1

bAΔ1
¼ e2iϕΔ1 ð13Þ

contains that expected invariant, namely, its phase, which is
twice the standard closure phase associated with Δ1, and
carries an ambiguity of π. However, the closure phase, ϕΔ1

,
can be unambiguously obtained from the phase of AΔ1

directly.

2. Four-element array

For an N ¼ 4 array, we have NΔ ¼ 3 independent
triangles, Δ1 ≡ Δð0;1;2Þ, Δ2 ≡ Δð0;2;3Þ, Δ3 ≡ Δð0;1;3Þ, and
hence, three complex advariants, AΔ1

, AΔ2
, andAΔ3

. If the
autocorrelationA0 is measured, then we have an additional
real advariant. The dimension count analysis predicts six
invariants when the autocorrelation is measured and five
when it is not.
When autocorrelation is not measured (nA ¼ 0), we

combine the reference triangle Δ1, first with itself, and
then with the two other independent ones, Δ2 and Δ3.

IΔ1;Δ1
¼ AΔ1

bAΔ1
¼ e2iϕΔ1 ; ð14Þ

IΔ1;Δ2
¼ AΔ1

bAΔ2
¼ jC01jjC23j

jC21jjC03j
eiðϕΔ1þϕΔ2 Þ; ð15Þ

IΔ1;Δ3
¼ AΔ1

bAΔ3
¼ jC20jjC31j

jC21jjC30j
eiðϕΔ1þϕΔ3 Þ: ð16Þ

We see that there are five real-valued invariants in the
equations above—three independent closure phases and
two independent closure amplitudes familiar in radio
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interferometry for a four-element copolar interferom-
eter array.
When nA ¼ 1, we can write down the following three

complex invariants—AΔ1

bA0, AΔ2

bA0, and AΔ3

bA0—which
gives us six real invariants comprising of three closure
phases and three closure amplitudes (two as above, and one
more due to autocorrelation). The invariant phase in

AΔ1

bAΔ1
is redundant due to the presence of AΔ1

bA0, and
can therefore be ignored.
Thus, the closure phases and closure amplitudes emerge

naturally in our approach which treats independent trian-
gles as fundamental. We break this up into a single invariant
associated with the reference triangle, Δ1, and two for each
of the rest. The autocorrelation measurement will provide
one additional closure amplitude.

E. Quadrilateral closure amplitudes

We have so far emphasized the role of triangles in
constructing advariants. The complete set of closure invar-
iants we generate include four-sided loops (quadrilaterals) as
well as six-sided loops. Traditionally, closure amplitudes
have been discussed by astronomers using quadrilaterals. In
order to connect with this discussion we ask the following:
can we obtain a complete, independent set with only
quadrilateral-based closure amplitudes? A clear methodol-
ogy is provided in [44] which involves placing the N
elements on a ring and considering two nonoverlapping
pairs of elements where each pair is made of consecutive
elements. Here, we provide an alternate method based on our
formalism.
One way to ensure independence is to ensure that each

loop contains a unique element pair not present in any other.
To do this, we fix the element pair (0,1) and consider the
quadrilateral made with two more elements a and b. We
arrange for 1 < a < b < N and choose the set (which we
call A) of closure amplitudes, jC01jjC1aj−1jCabjjCb0j−1. So,
each such choice of a pair ða; bÞ with a < b gives us an
independent closure amplitude. The number of closure
amplitudes in the set A is therefore the number of such
ða; bÞ pairs, which is ðN − 2ÞðN − 3Þ=2. However, we
know from basic counting [18] and linear algebra [37] that
the total number of independent closure amplitudes is
NðN − 3Þ=2. We therefore need ðN − 3Þ½N − ðN − 2Þ�=2 ¼
N − 3 more independent closure amplitudes to complete the
desired list. We supply these in a set B, by observing that
element 0 is only paired with b and hence never paired with
element 2 in the set A. We therefore add precisely N − 3
more closure amplitudes by including the pair, (0,2), as
jC01jjC1bj−1jCb2jjC20j−1, which contains C02 in addition to
our base choice of C01. The set B is only indexed by bwhich
can take N − 3 values, and its members are clearly inde-
pendent of each other, since each contains the element pair
ð1; aÞ which is unique to it within this set A. Every member
of B is also independent of all those of set A, since none of

those contains the pair (0,2). This completes the explicit
construction of NðN − 3Þ=2 independent quadrilateral clo-
sure amplitudes. Although this construction has been
described in a self-contained way, it was arrived at by
considering quadrilateral closure amplitudes as the product
of two advariants, sharing an edge.
The closure amplitudes from our approach and the ring-

based approach in [44] are essentially equivalent.
However, a consequence of the fundamental difference
in the methodologies leads to one notable difference in the
invariants constituting the complete and independent set
when an ðN þ 1Þth element (indexed by a ¼ N) is added
to the array. In the approach of [44], the inclusion of a new
member, a ¼ N, in the ring will remove the earlier pairing
of (N − 1, 0) because they are no longer adjacent and the
corresponding second set of consecutive pairs will also get
removed. In their place, two new pairs of consecutive
indices, ðN − 1; NÞ and ðN; 0Þ, and the corresponding sets
of second adjacent pairings will have to be included. In
other words, some members of the original set of closure
amplitudes will be removed and replaced with a larger but
different set. A similar removal and replacement process
also occurs when an array element has to be excluded. In
our approach, the additional element yields N − 1 trian-
gles (and advariants) pinned at base vertex 0 containing
this element that were not present before. When paired
with the base triangle, we get N − 1 new complex-valued
invariants in addition to the existing set. That is, the
members of the original set are undisturbed and 2N − 2
real-valued invariants are added, amounting to a total of
N2 − N − 1 real invariants for the ðN þ 1Þ-element array.
This difference may have practical consequences when
certain array elements are flagged at specific times or
frequencies due to poor quality of data. Our approach will
be robust to such practical challenges.
Thus, we have provided multiple methods of explicitly

listing the closure invariants in an N-element interferometer
array. These methods do not yield the same set of invariants
but carry exactly equivalent information. Our approach
unifies the treatment of all copolar closure invariants,
including the triangular closure phases and quadrilateral
closure amplitudes familiar in radio interferometry as seen
earlier.

V. SUMMARY

In this paper, we have explicitly enumerated from copolar
interferometric measurements a complete and independent
set of closure invariants that are immune to corruptions local
to the elements of an interferometer array. The solution relies
on mathematical ideas borrowed from gauge theories of
particle physics and the geometric phase of quantum
mechanics and optics. Specifically, the copolar interfero-
metric invariants presented here are invariant under gauge
transformations by the element-based corruption factors
which belong to the Abelian gauge group, GLð1;CÞ.
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Invariants such as closure phases and closure ampli-
tudes have been in wide use in many disciplines for
decades. However, they relied on using closed triangular
and quadrilateral loops, respectively, and thus required
different treatments. The solution presented here relies on
using only independent triangular plaquettes, which form
the simplest nontrivial loops and are well determined, as
our basis. The quantity defined on these triangles, called
advariants, can be combined with an advariant chosen on a
reference triangle to produce a complete set of indepen-
dent invariants. The main result of this work is that using
this formalism we have unified the treatment of closure
invariants, which have historically required separate
methods. Thus, we have provided an altered and unified
perspective which improves our global understanding of
interferometric closure invariants from a symmetry view-
point. The familiar closure phases and closure amplitudes
emerge naturally from this approach.
Radio astronomers are aware that autocorrelation mea-

surements are unreliable because they could be dominated
by nonastrophysical systematic effects. Our formalism
works even without autocorrelations but can naturally
accommodate them if they are reliably measured. We have
also outlined a methodology for using a cross-correlation
on a short-spaced element pair in place of an autocorre-
lation to increase the number of invariants by 1, without
introducing systematic errors associated with a direct
single-element autocorrelation measurement.
Our approach clarifies certain aspects related to the

choice of the form of closure invariants and their impli-
cations for their covariance properties and their impact on
the likelihood of model parameters. While the methods
presented here are specific to copolar interferometry, the
concepts serve as a stepping stone and reveal their full
power when applied to a discussion of invariants in full
polarimetric interferometry in paper II. We expect that this
solution will aid astronomers in processing data collected
from VLBI measurements and other radio interferometry
experiments.
There is also an unexpected spinoff from this application

which is described in more detail in Appendix E. As
explained there, there is a strong connection between
closure phases in astronomy and the Pancharatnam phase
in optics and quantum mechanics. The present application
suggests how the Pancharatnam phase rule can be gener-
alized to include amplitudes as well as phases. This rule
goes beyond existing ideas in the physics literature and
shows how an astronomical application can enrich the
physics which is being applied.
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APPENDIX A: AUTOCORRELATIONS FROM
SHORT-SPACED ELEMENTS

We have seen that autocorrelations can be used to
construct covariants, not just advariants, from a triangle of
elements such as in Eq. (12). This option is usually
unavailable because of systematic errors in measuring
autocorrelations. However, when the angular size of the
object (θobj) is small compared to the angular resolution
determined by the element spacing, we can recover this
advantage, by using a cross-correlation, C000 , when the
elements 0 and 00 have a small separation (D000 ), such that
θobj ≪ λ=D000 , where λ is the wavelength of observation.
We assume that the gains of the these closely spaced

elements are independent of each other, while their corre-
lation inC000 is free from the problems that a single-element
autocorrelation poses. One example would be an additional
element, 00, in close proximity to the base element 0.
Another possibility is to use two physically close but
independent subarrays (denoted by 0 and 00) that are phased
from a dense array that is being used as a single element in a
“phased array” mode. An example is the Atacama Large
Millimeter/submillimeter Array (ALMA) in the EHT
observations of M87 and Centaurus A [3,9]. Although 00
can be paired with all the other existing elements, the true
correlations, Sa00 , will carry no new information that is not
redundant4 with Sa0, excepting S000 , which is a good
approximation to S00.
Thus, we have two closely spaced elements, 0 and 00,

which do not resolve the object’s features but have
independent element gains, G0 and G00 . This means that
S000 ≈ S00 ¼ S0000 . We can form the covariant,
C000bC00aCab

bCb0 ¼ G0S000bS00aSabbSb0G−1
0 ≈ S00bS0aSabbSb0.

Note that the G0 terms are eliminated because our group
is Abelian and we have used S000 ≈ S00, which is the true
autocorrelation. Thus, we have effectively included auto-
correlations as the coincidence limit of cross-correlations,
which will increase the number of real-valued indepen-
dent invariants by 1 corresponding to the autocorrelation.
The use of closely located elements was suggested in [38]
as a diagnostic for non-element-dependent errors. Here,
we are using them to provide one more invariant effec-
tively involving an autocorrelation.
Since we have used advariants as the building blocks, we

can also reformulate this in terms of the advariant
C000 bC00aCa0 ¼ G0S000bS00aSa0G†

0, where a ∉ f0; 00g. Under
our assumption of closeness of elements 0 and 00, this can be
written as ≈ G0S00bS0aSa0G†

0. Since bS0aSa0 ¼ 1, we are
therefore left with only G0S00G

†
0, which is exactly what

an autocorrelation advariant pinned at 0 would have yielded.

4The redundancy, however, may be useful towards obtaining a
calibration that is independent of knowledge of the sky brightness
distribution, and forms the basis of redundant-calibration
schemes in radio interferometry (for example, [45,46]).
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This means the earlier discussion with nA ¼ 1 is applicable
and we gain one invariant. This agrees with the preceding
discussion based on covariants, as expected.
We can also explain this using the dimension counting

principles. The presence of an additional S000 ≈ S00, which is
nearly real and positive, effectively increases the dimension-
ality of the real values in the true correlations by nA ¼ 1 to
NðN − 1Þ þ 1. It would appear that we have introduced an
unknown complex gain, G00 , consisting of two real param-
eters in the process. However, because of the redundancy
Sa00 ≈ Sa0, G00 can be expressed as

G00 ≈ C00aC−1
0aG0; ðA1Þ

which is fully determined by G0, and therefore not an
independent degree of gauge freedom. Hence, the number of
unknown real parameters in the gains is still 2N − 1. Thus,
the resulting number of real invariants increases by nA ¼ 1,
to N2 − 3N þ 2, which confirms the alternate viewpoints
presented above.

APPENDIX B: RELATION TO SELF-
CALIBRATION

The parameters describing the element-dependent effects
can be determined if there is a standard signal. In practice,
measurements on a pointlike object are interspersed with
those of the target object to get a preliminary calibration. A
major improvement of this procedure is “self-calibration”
[20,21,32]. The approximate calibration parameters are
only used as an initial guess to produce an approximate
image. The image is then refined by alternating steps of
deconvolution, with adjustment of the instrumental param-
eters to best fit the current image at each stage. This
converges, in favorable cases, to a much better image than
was earlier possible. The word “better” reveals that criteria
based on a priori information, such as positivity, smooth-
ness, and compactness of the emission, play a role via the
deconvolution step.
Our work is concerned with a related but distinct notion of

using closure invariants, which directly characterize the
source and are independent of any model or deconvolution
scheme. Forming images using just these invariants alone
has been explored, especially in VLBI, by “forward-model-
ing,” that is, fitting a model to the measured closure
invariants. This approach would be appropriate in cases
where the data are not extensive enough to constrain a free-
form fitting procedure like self-calibration. Invariants can be
used to discriminate between different proposed models,
purely in the domain of observations, without bringing in
deconvolution with its attendant a priori assumptions. A
fully converged self-calibration solution will, of course,
automatically satisfy all invariants. However, invariants have
a role even when self-calibration is not directly applicable.

APPENDIX C: NUMERICAL TEST FOR
INDEPENDENCE OF INVARIANTS

Here, we numerically verify the independence of the
invariants derived through various analytical methodologies
described in this paper. We begin with the simplest case with
three elements which gives three cross-correlations. We also
include one autocorrelation. We generate multiple realiza-
tions of one random positive real number for the uncorrupted
autocorrelation, S00, and three random complex numbers for
the uncorrupted cross-correlations, S01, S12, and S31, and
three more random complex numbers for the element-based
gains (corruptions), G0, G1, and G2. These can be used to
construct the measured correlations, A00, C01, C12, and C20

using Eq. (1), which are described by seven real values.
From these, we construct the advariants, AΔ1

and A0 and

compute the triangular invariant, AΔ1

bA0, whose real and
imaginary parts are the two closure invariants.
Analytically, the test for independence of these invariants

would be to look at the two real invariants as functions of
the real and imaginary parts of the input true correlations.
We construct the Jacobian matrix of partial derivatives
relating first order changes in the output to those in the
input. The rank of the Jacobian matrix gives the number of
independent invariants. Numerically, we construct the
elements of this Jacobian matrix by varying one input
quantity xi at a time by a small amount, and recording the
output changes yj as a column. In this case, there will be
seven columns of length 2, so the Jacobian is a 2 × 7
matrix. The rank is checked numerically by carrying out a
singular value decomposition (SVD) of the Jacobian and
examining the list of nonzero singular values. Zero-valued
singular values appear as very small values (compared to
the nonzero singular values by many orders of magnitude)
due to finite-precision computations. The number of zero
singular values (also called the corank) gives the reduction
in the number of independent invariants, compared to the
total number being calculated. In geometric terms, we are
finding the dimension of the surface onto which a given,
general set of measured visibilities gets mapped when we
compute a number of invariants of our own choosing. This
dimension is in general less than the maximum possible
rank, by the number of zeros.
The rank of a Jacobian can also be used to cross-check

the dimension counting. While we have pointed out the
most obvious redundancy in the gains, namely, an overall
phase, one might want to verify that no others have been
missed. In this case, we simulate random true correlations
as the input, and apply randomly chosen gains to them to
get the measured correlations as output. Now, we vary all
the gain parameters in small increments and find the
Jacobian via the partial derivatives of all the real-valued
parameters in the measured correlation with respect to these
changes in the 2N real gain parameters. Not surprisingly, in
all cases the corank is 1, and the count of 2N − 1 for the
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number of independent variations of the gains which
modify the measured correlations, is confirmed. This
numerical scheme generalizes to full polarimetric measure-
ments as well.

APPENDIX D: CHOICE OF INVARIANTS, NOISE,
AND IMAGING

We have seen in Sec. IV that a complete and independent
set of invariants is not necessarily unique and can take
multiple forms. How do we choose the form for a complete
and independent set of invariants from all possible sets? We
approach this question from two considerations—one from
that of likelihood on the inferred model parameter space,
and another from anticipated noise properties of the
invariants themselves.
Let us consider determining the likelihood of a para-

metrized set of models, e.g., a ring of emission with
azimuthal asymmetries as in [7]. Here and below, we
use a single symbol like M to denote an entire set of
variables, in this case parameters describing the model.
This model will lead to a predicted set of correlations from
which a predicted set of invariants follows, IpðMÞ. The
noise on the correlations, presumed known, can be propa-
gated to a probability distribution for the invariants I
around IpðMÞ, using the functional relation I ¼ fðCÞ.
We denote this density by PIðIÞ. Evaluating this at the
measured values of the invariants Im gives the likelihood
function on the model space, LðMjImÞ ¼ PIðImÞ.
Now consider working with two different, but complete,

sets of invariants, I and eI . There is a two-way functional
relation between them. Because the probability densities
for I and eI are related by PIðIÞdI ¼ PeIðeIÞdeI, we get

LðMjImÞ ¼ LðMjeImÞjJj, where jJj ≔ detðJÞ is the deter-
minant of the Jacobian matrix, J≡ Jpq ¼ ∂eIp=∂Iq. jJj is
evaluated at the measured values of the two sets of
invariants, and does not depend on the model, M.
Hence, jJj appears as a simple proportionality factor in
the space of M. Therefore, the maximum likelihood
solution does not depend on the choice of invariants.
In Bayesian approaches, including the maximum entropy

methods, there is an additional factor, namely, a prior

depending solely on M. It may be noted that the standard
approach of self-calibration does not even use invariants
explicitly, while satisfying them implicitly, so the question
of a choice does not arise. It is therefore satisfying that the
direct use of invariants in determining the maximum
likelihood of the models is also independent of the chosen
form of invariants.
While the maximum likelihood of the models does not

depend on the chosen form of the invariants, there may
however be other considerations of noise characteristics and
interpretations that may favor one form of invariants over
another. Here, we compare and contrast our approach to that
of [44]. Their construction of NðN − 3Þ=2 independent
closure amplitudes, and the demonstration that all other
such amplitudes can be constructed from these is elegant and
complete, and has the convenience of interpretation in terms
of amplitudes and phases.
In our approach based on gauge theory, the use of

triangles as the generators of all other loops and their
associated invariants is more natural. These emerge as
complex quantities, the magnitudes being generalized
closure amplitudes (since some have six baselines) and
the phases are sums of the standard closure phases on two
triangles. We have chosen to work with the real and
imaginary parts rather than the amplitudes and phases of
our set of invariants. Our primary motivation is
described below.
Following [18], for simplicity, consider an ideal case of

bivariate Gaussian distribution of two uncorrelated varia-
bles, X and Y, denoting the real and imaginary parts of a
complex number, respectively. Their joint probability dis-
tribution, without loss of generality, is taken to be centered
on ðX0; 0Þ with a variance of σ2, and is given by

PX;YðX; YÞ ¼
1

2πσ2
exp

�
−
ðX − X0Þ2 þ Y2

2σ2

�
: ðD1Þ

Here, PX;YðX; YÞ ¼ PXðXÞPYðYÞ. By change of variables,
X ¼ A cos θ and Y ¼ A sin θ, the joint probability distri-
bution in polar form becomes

PA;θðA; θÞ ¼
A0

2πσ2
exp

�
−
ðA − X0Þ2 − 2X2

0 cos θ þ 4ðA − X0ÞX0sin2
θ
2

2σ2

�
; ðD2Þ

where A0 ¼ A exp ½−X2
0=σ

2�. The first and the second
terms inside the exponential in Eq. (D2) depend only
on A − X0 and θ, respectively. However, the third term
depends on both, which makes A and θ correlated in
general. Only when S=N ≫ 1 (jA − X0j ≪ jX0j), the
apparent correlation term may be neglected and the joint
distribution becomes separable into amplitude and phase

terms, PA;θðA; θÞ ¼ PAðAÞPθðθÞ, where PθðθÞ reduces to a
von Mises distribution, that can be further approximated
as a Gaussian distribution in θ [18,44]. However, when
S=N ≲ 1, approximating that A and θ are uncorrelated is
not only invalid, but the phase is also not well defined. So,
the joint distribution is preferably represented in real and
imaginary coordinates (X and Y) rather than their polar
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form (A and θ). Thus, it is evident that purely on account
of the choice of the coordinate system on which the joint
probability distribution is represented, it can not only
induce covariance among the random variables but also
cause one or more variables to be poorly defined. There-
fore, in such cases, a different coordinate system is clearly
preferred.
The closure invariants, regardless of the form they are

represented in, are generally higher order functions of the
correlations, and are thus expected to be neither Gaussian
distributed nor have an uncorrelated behavior. When
expressed as amplitudes and phases, they could suffer from
induced covariance and singularities in low S=N regimes.
Thus, owing to such scenarios, we consider the real and
imaginary parts of the covariants as “better” variables and
prefer them over their amplitude and phase representation,
even though they carry the same physical information.

APPENDIX E: CONNECTION TO
PANCHARATNAM PHASES

The electric field time series, eaðtÞ, received at element,
a, as a function of time can be viewed as a vector in Hilbert
space [47,48],

jeai ¼ feaðtÞj0 ≤ t ≤ Tg; ðE1Þ

where T is the integration time. The correlation function,
heae†bi, provides an inner product between these vectors,

hebjeai ¼ Cab ¼
1

T

Z
T

0

e�bðtÞeaðtÞdt: ðE2Þ

Closure phases can now be understood as a Pancharatnam
phase [40,41] (see [33] for an earlier radio astronomy
application). Pancharatnam’s work in polarization optics
gives us a rule (known in mathematics as a “connection”)
for comparing phases between vectors based at a and b. We
fix jeai at element a and define jebi to be in phasewith jeai
if the correlation hebjeai is real and positive. The physical
motivation is that the intensity of the superposed beam is a
maximum under this condition. This gives a rule for

transporting a phase from element a to b, that is, modifying
the phase of b so that it is “in agreement” with a. Iterating
this rule and going in a closed loop from element a to b to c
and back to a, we find on returning to a that the cyclic
application of the rule gives a nontrivial phase change with
respect to the original phase of jeai. In words, jebi can be
“in phase” with jeai, and jeci with jebi, but then jeci in
general is not “in phase” with jeai. The Pancharatnam
phase is

arghebjeaihecjebiheajeci ¼ argCabCbcCca; ðE3Þ

which astronomers will recognize as the closure phase [25].
Closure phases, thus, emerge as the curvature of the
Pancharatnam rule for comparing phases. This is a discrete
version of the curvature familiar from parallel transport
along a closed curve on a sphere.
A natural question arises at this point: is there a transport

rule for the amplitude as well as the phase? The idea is to
modify the vector jebi representing the signal at b so that it is
“in agreement” with jeai in both phase and amplitude. This
is achieved as follows. The vector jebi0 ¼ fbjebi is propor-
tional to jebi, but is now rescaled by a complex factor fb,
i.e., in amplitude and phase so that heaje0bi ¼ fbheajebi ¼ 1

(note that in the case of phases this was only made real and
positive, but the magnitude was left undetermined). This
gives fb ¼ 1=heajebi. At the next stage, the vector jeci is
rescaled to fcjeci so that its inner product with fbjebi is 1,
i.e., f�bfchebjeci ¼ 1. This gives fc ¼ heajebi�=hebjeci.
The pattern is now clear. After an even number of steps,
returning to a, we obtain a vector fajeai which can be
compared in amplitude and phase to the original jeai. The
rescaling factor, fa, comes out to be nothing but our four-
element complex closure invariant, made up of correlations
with alternate terms hatted. This transport rule, applicable to
amplitudes and phases, can be regarded as a spinoff from
radio astronomy to possible application in other areas. The
restriction to an even number of steps has appeared before in
relativity in a discussion of the analogue of Fermi transport
for null curves [49].

[1] R. C. Jennison and M. K. Das Gupta, Fine structure of the
extra-terrestrial radio source Cygnus I, Nature (London)
172, 996 (1953).

[2] K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay,
A.-K. Baczko, D. Ball, M. Baloković, J. Barrett et al. (Event
Horizon Telescope Collaboration), First M87 Event Horizon
Telescope results. I. The shadow of the supermassive black
Hole, Astrophys. J. Lett. 875, L1 (2019).

[3] K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay,
A.-K. Baczko, D. Ball, M. Baloković, J. Barrett et al. (Event
Horizon Telescope Collaboration), First M87 Event Horizon
Telescope results. II. Array and instrumentation, Astrophys.
J. Lett. 875, L2 (2019).

[4] K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay,
A.-K. Baczko, D. Ball, M. Baloković, J. Barrett et al. (Event
Horizon Telescope Collaboration), First M87 Event Horizon

INVARIANTS IN COPOLAR INTERFEROMETRY: AN ABELIAN … PHYS. REV. D 105, 043019 (2022)

043019-11

https://doi.org/10.1038/172996a0
https://doi.org/10.1038/172996a0
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.3847/2041-8213/ab0c96


Telescope results. III. Data processing and calibration,
Astrophys. J. Lett. 875, L3 (2019).

[5] K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay,
A.-K. Baczko, D. Ball, M. Baloković, J. Barrett et al. (Event
Horizon Telescope Collaboration), First M87 Event Horizon
Telescope results. IV. Imaging the central supermassive
black hole, Astrophys. J. Lett. 875, L4 (2019).

[6] K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay,
A.-K. Baczko, D. Ball, M. Baloković, J. Barrett et al. (Event
Horizon Telescope Collaboration), First M87 Event Horizon
Telescope results. V. Physical origin of the asymmetric ring,
Astrophys. J. Lett. 875, L5 (2019).

[7] K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay,
A.-K. Baczko, D. Ball, M. Baloković, J. Barrett et al.
(Event Horizon Telescope Collaboration), First M87
Event Horizon Telescope results. VI. The shadow and
mass of the central black hole, Astrophys. J. Lett. 875, L6
(2019).

[8] K. Akiyama, J. C. Algaba, A. Alberdi, W. Alef, R. Anantua,
K. Asada, R. Azulay, A.-K. Baczko, D. Ball et al. (Event
Horizon Telescope Collaboration), First M87 Event Horizon
Telescope results. VII. Polarization of the ring, Astrophys. J.
Lett. 910, L12 (2021).

[9] M. Janssen et al. (The EHT Collaboration), Event Horizon
Telescope observations of the jet launching and collimation
in Centaurus A, Nat. Astron. 5, 1017 (2021).

[10] H. Hauptman, The direct methods of x-ray crystallography,
Science 233, 178 (1986).

[11] H. Hauptman, Direct methods and anomalous dispersion
(Nobel lecture), Angew. Chem., Int. Ed. Engl. 25, 603
(1986).

[12] H. A. Hauptman, The phase problem of x-ray crystallogra-
phy, Rep. Prog. Phys. 54, 1427 (1991).

[13] C. Giacovazzo, F. Capitelli, C. Cuocci, and M. Ianigro,
Direct methods and applications to electron crystallography,
in Microscopy, Spectroscopy, Holography and Crystallog-
raphy with Electrons, Advances in Imaging and Electron
Physics Vol. 123, edited by P. W. Hawkes, P. G. Merli, G.
Calestani, and M. Vittori-Antisari (Elsevier, New York,
2002), pp. 291–310, 10.1016/S1076-5670(02)80067-2.

[14] C. Giacovazzo, Phasing in Crystallography: A Modern
Perspective, International Union of Crystallography Texts
on Crystallography (Oxford University Press, Oxford,
2014), 10.1093/oso/9780199686995.001.0001.

[15] R. Snieder and E. Larose, Extracting earth’s elastic wave
response from noise measurements, Annu. Rev. Earth Planet
Sci. 41, 183 (2013).

[16] H. Callow, Signal Processing for Synthetic Aperture Sonar
Image Enhancement: A Thesis Presented for the Degree of
Doctor of Philosophy in Electrical and Electronic Engineer-
ing at the University of Canterbury, Christchurch, New
Zealand (University of Canterbury, 2003), 10.26021/1573.

[17] P. Rosen, S. Hensley, I. Joughin, F. Li, S. Madsen, E.
Rodriguez, and R. Goldstein, Synthetic aperture radar
interferometry, Proc. IEEE 88, 333 (2000).

[18] A. R. Thompson, J. M. Moran, and G.W. Swenson, Jr.,
Interferometry and Synthesis in Radio Astronomy, 3rd Ed.
(Springer, Cham, 2017), 10.1007/978-3-319-44431-4.

[19] Synthesis Imaging in Radio Astronomy II, edited by G. B.
Taylor, C. L. Carilli, and R. A. Perley, Astronomical Society

of the Pacific Conference Series Vol. 180 (Astronomical
Society of the Pacific, San Francisco, Calif., 1999), https://
www.aspbooks.org/a/volumes/table_of_contents/?book_id=
292.

[20] T. J. Cornwell and P. N. Wilkinson, A new method for
making maps with unstable radio interferometers, Mon.
Not. R. Astron. Soc. 196, 1067 (1981).

[21] R. D. Ekers, The almost serendipitous discovery of self-
calibration, in Serendipitous Discoveries in Radio
Astronomy (NRAO, Green Bank, WV, 1984), p. 154.

[22] J. D. Monnier, Phases in interferometry, New Astron. Rev.
51, 604 (2007).

[23] V. Bargmann, Note on Wigner’s theorem on symmetry
operations, J. Math. Phys. (N.Y.) 5, 862 (1964).

[24] N. Thyagarajan and C. L. Carilli, Invariants in interferometry:
Geometric insight into closure phases, arXiv:2012.05254.

[25] R. C. Jennison, A phase sensitive interferometer technique
for the measurement of the Fourier transforms of spatial
brightness distributions of small angular extent, Mon. Not.
R. Astron. Soc. 118, 276 (1958).

[26] R. Q. Twiss, A. W. L. Carter, and A. G. Little, Brightness
distribution over some strong radio sources at 1427 Mc=s,
The Observatory 80, 153 (1960), https://ui.adsabs.harvard
.edu/abs/1960Obs....80..153T/abstract.

[27] J. D. Monnier, Astrophysics with closure phases, in EAS
Publications Series, EAS Publications Series Vol. 6, edited by
G. Perrin and F. Malbet (2003), p. 213, 10.1051/eas:2003019.

[28] J. D. Monnier, Optical interferometry in astronomy, Rep.
Prog. Phys. 66, 789 (2003).

[29] J. D. Monnier, J.-P. Berger, R. Millan-Gabet, W. A. Traub,
F. P. Schloerb, E. Pedretti, M. Benisty, N. P. Carleton, P.
Haguenauer, P. Kern, P. Labeye, M. G. Lacasse, F. Malbet,
K. Perraut, M. Pearlman, and M. Zhao, Few skewed disks
found in first closure-phase survey of Herbig Ae/Be stars,
Astrophys. J. 647, 444 (2006).

[30] J. D. Monnier, M. Zhao, E. Pedretti, N. Thureau, M. Ireland,
P. Muirhead, J. P. Berger, R. Millan-Gabet, G. Van Belle, T.
ten Brummelaar, H. McAlister, S. Ridgway, N. Turner, L.
Sturmann, J. Sturmann, and D. Berger, Imaging the surface
of Altair, Science 317, 342 (2007).

[31] F. R. Schwab, Adaptive calibration of radio interferometer
data, in 1980 Intl Optical Computing Conf I, Vol. 0231,
edited by W. T. Rhodes, International Society for Optics and
Photonics (SPIE, Bellingham, WA, 1980), pp. 18–25,
10.1117/12.958828.

[32] T. J. Pearson and A. C. S. Readhead, Image formation by
self-calibration in radio astronomy, Annu. Rev. Astron.
Astrophys. 22, 97 (1984).

[33] S. Bhatnagar and R. Nityananda, Solving for closure errors
due to polarization leakage in radio interferometry of
unpolarized sources, Astron. Astrophys. 375, 344 (2001).

[34] N. Thyagarajan, C. L. Carilli, and B. Nikolic, Detecting
Cosmic Reionization Using the Bispectrum Phase, Phys.
Rev. Lett. 120, 251301 (2018).

[35] N. Thyagarajan and C. L. Carilli, Detection of cosmic
structures using the bispectrum phase. I. Mathematical
foundations, Phys. Rev. D 102, 022001 (2020).

[36] N. Thyagarajan et al., Detection of cosmic structures using
the bispectrum phase. II. First results from application to

THYAGARAJAN, NITYANANDA, and SAMUEL PHYS. REV. D 105, 043019 (2022)

043019-12

https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.3847/2041-8213/abe71d
https://doi.org/10.3847/2041-8213/abe71d
https://doi.org/10.1038/s41550-021-01417-w
https://doi.org/10.1126/science.233.4760.178
https://doi.org/10.1002/anie.198606031
https://doi.org/10.1002/anie.198606031
https://doi.org/10.1088/0034-4885/54/11/002
https://doi.org/10.1016/S1076-5670(02)80067-2
https://doi.org/10.1093/oso/9780199686995.001.0001
https://doi.org/10.1146/annurev-earth-050212-123936
https://doi.org/10.1146/annurev-earth-050212-123936
https://doi.org/10.26021/1573
https://doi.org/10.1109/5.838084
https://doi.org/10.1007/978-3-319-44431-4
https://www.aspbooks.org/a/volumes/table_of_contents/?book_id=292
https://www.aspbooks.org/a/volumes/table_of_contents/?book_id=292
https://www.aspbooks.org/a/volumes/table_of_contents/?book_id=292
https://www.aspbooks.org/a/volumes/table_of_contents/?book_id=292
https://www.aspbooks.org/a/volumes/table_of_contents/?book_id=292
https://doi.org/10.1093/mnras/196.4.1067
https://doi.org/10.1093/mnras/196.4.1067
https://doi.org/10.1016/j.newar.2007.06.006
https://doi.org/10.1016/j.newar.2007.06.006
https://doi.org/10.1063/1.1704188
https://arXiv.org/abs/2012.05254
https://doi.org/10.1093/mnras/118.3.276
https://doi.org/10.1093/mnras/118.3.276
https://ui.adsabs.harvard.edu/abs/1960Obs....80..153T/abstract
https://ui.adsabs.harvard.edu/abs/1960Obs....80..153T/abstract
https://ui.adsabs.harvard.edu/abs/1960Obs....80..153T/abstract
https://ui.adsabs.harvard.edu/abs/1960Obs....80..153T/abstract
https://ui.adsabs.harvard.edu/abs/1960Obs....80..153T/abstract
https://ui.adsabs.harvard.edu/abs/1960Obs....80..153T/abstract
https://ui.adsabs.harvard.edu/abs/1960Obs....80..153T/abstract
https://ui.adsabs.harvard.edu/abs/1960Obs....80..153T/abstract
https://ui.adsabs.harvard.edu/abs/1960Obs....80..153T/abstract
https://ui.adsabs.harvard.edu/abs/1960Obs....80..153T/abstract
https://doi.org/10.1051/eas:2003019
https://doi.org/10.1088/0034-4885/66/5/203
https://doi.org/10.1088/0034-4885/66/5/203
https://doi.org/10.1086/505340
https://doi.org/10.1126/science.1143205
https://doi.org/10.1117/12.958828
https://doi.org/10.1146/annurev.aa.22.090184.000525
https://doi.org/10.1146/annurev.aa.22.090184.000525
https://doi.org/10.1051/0004-6361:20010799
https://doi.org/10.1103/PhysRevLett.120.251301
https://doi.org/10.1103/PhysRevLett.120.251301
https://doi.org/10.1103/PhysRevD.102.022001


cosmic reionization using the hydrogen epoch of reioniza-
tion array, Phys. Rev. D 102, 022002 (2020).

[37] A. Lannes, Phase and amplitude calibration in aperture
synthesis. Algebraic structures, Inverse Probl. 7, 261 (1991).

[38] A. E. Broderick and D.W. Pesce, Closure traces: Novel
calibration-insensitive quantities for radio astronomy,
Astrophys. J. 904, 126 (2020).

[39] J. Samuel, R. Nityananda, and N. Thyagarajan, companion
Letter, Invariants in Polarimetric Interferometry: A Non-
Abelian Gauge Theory, Phys. Rev. Lett. 128, 091101 (2022).

[40] S. Pancharatnam, Generalized theory of interference, and its
applications. Part I. Coherent pencils, Proc. Indian Acad.
Sci. A 44, 247 (1956).

[41] S. Pancharatnam, Collected works of S. Pancharatnam,
Phys. Bull. 27, 265 (1976).

[42] F. Klein, Vergleichende Betrachtungen über neuere geo-
metrische Forschungen (Verlag von Andreas Deichert,
Erlangen, 1872) published later in Math. Ann. 43, 63
(1893). English translation by M. W. Haskell, A compar-
ative review of recent researches in geometry, Bull. N. Y.
Math. Soc. 2, 215 (1892–1893).

[43] R. Penrose and W. Rindler, Spinors and Space-Time. Vol. 1:
Two-Spinor Calculus and Relativistic Fields (Cambridge
University Press, 1984), 10.1017/CBO9780511564048.

[44] L. Blackburn, D. W. Pesce, M. D. Johnson, M. Wielgus,
A. A. Chael, P. Christian, and S. S. Doeleman, Closure
statistics in interferometric data, Astrophys. J. 894, 31
(2020).

[45] M. H. Wieringa, An investigation of the telescope based
calibration methods ‘redundancy’ and ‘self-cal’, Exp. Astron.
2, 203 (1992).

[46] A. Liu, M. Tegmark, S. Morrison, A. Lutomirski, and M.
Zaldarriaga, Precision calibration of radio interferometers
using redundant baselines, Mon. Not. R. Astron. Soc. 408,
1029 (2010).

[47] M.M. Komesaroff and I. Lerchet, Extending the fourier
transform—the positivity constraint, in Image Formation
from Coherence Functions in Astronomy, edited by C. Van
Schooneveld (Springer Netherlands, Dordrecht, 1979),
pp. 241–247, 10.1007/978-94-009-9449-2_27.

[48] M.M. Komesaroff, R. Narayan, and R. Nityananda, The
maximum entropy method of image restoration properties
and limitations, Astron. Astrophys. 93, 269 (1981), https://ui
.adsabs.harvard.edu/abs/1981A%26A....93..269K/abstract.

[49] J. Samuel and R. Nityananda, Transport along null curves,
J. Phys. A Math. Gen. 33, 2895 (2000).

INVARIANTS IN COPOLAR INTERFEROMETRY: AN ABELIAN … PHYS. REV. D 105, 043019 (2022)

043019-13

https://doi.org/10.1103/PhysRevD.102.022002
https://doi.org/10.1088/0266-5611/7/2/009
https://doi.org/10.3847/1538-4357/abbd9d
https://doi.org/10.1103/PhysRevLett.128.091101
https://doi.org/10.1007/BF03046050
https://doi.org/10.1007/BF03046050
https://doi.org/10.1088/0031-9112/27/6/028
https://doi.org/10.1090/S0002-9904-1893-00147-X
https://doi.org/10.1090/S0002-9904-1893-00147-X
https://doi.org/10.1017/CBO9780511564048
https://doi.org/10.3847/1538-4357/ab8469
https://doi.org/10.3847/1538-4357/ab8469
https://doi.org/10.1007/BF00420576
https://doi.org/10.1007/BF00420576
https://doi.org/10.1111/j.1365-2966.2010.17174.x
https://doi.org/10.1111/j.1365-2966.2010.17174.x
https://doi.org/10.1007/978-94-009-9449-2_27
https://ui.adsabs.harvard.edu/abs/1981A%26A....93..269K/abstract
https://ui.adsabs.harvard.edu/abs/1981A%26A....93..269K/abstract
https://ui.adsabs.harvard.edu/abs/1981A%26A....93..269K/abstract
https://ui.adsabs.harvard.edu/abs/1981A%26A....93..269K/abstract
https://ui.adsabs.harvard.edu/abs/1981A%26A....93..269K/abstract
https://ui.adsabs.harvard.edu/abs/1981A%26A....93..269K/abstract
https://ui.adsabs.harvard.edu/abs/1981A%26A....93..269K/abstract
https://ui.adsabs.harvard.edu/abs/1981A%26A....93..269K/abstract
https://ui.adsabs.harvard.edu/abs/1981A%26A....93..269K/abstract
https://ui.adsabs.harvard.edu/abs/1981A%26A....93..269K/abstract
https://doi.org/10.1088/0305-4470/33/14/318

