
Fate of twin stars on the unstable branch:
Implications for the formation of twin stars

Pedro L. Espino1 and Vasileios Paschalidis1,2
1Department of Physics, University of Arizona, Tucson, Arizona 85721, USA

2Department of Astronomy, University of Arizona, Tucson, Arizona 85721, USA

(Received 8 May 2021; accepted 18 January 2022; published 22 February 2022)

Hybrid hadron-quark equations of state that give rise to a third family of stable compact stars have been
shown to be compatible with the LIGO-Virgo event GW170817. Stable configurations in the third family
are called hybrid hadron-quark stars. The equilibrium stable hybrid hadron-quark star branch is separated
by the stable neutron star branch with a branch of unstable hybrid hadron-quark stars. The end state of these
unstable configurations has not been studied, yet, and it could have implications for the formation and
existence of twin stars–hybrid stars with the same mass as neutron stars but different radii. We modify
existing hybrid hadron-quark equations of state with a first-order phase transition in order to guarantee a
well-posed initial value problem of the equations of general relativistic hydrodynamics, and study the
dynamics of nonrotating or rotating unstable twin stars via three-dimensional simulations in full general
relativity. We find that unstable twin stars naturally migrate toward the hadronic branch. Before settling into
the hadronic regime, these stars undergo (quasi)radial oscillations on a dynamical timescale while the core
bounces between the two phases. Our study suggests that it may be difficult to form stable twin stars if the
phase transition is sustained over a large jump in energy density, and hence it may be more likely that
astrophysical hybrid hadron-quark stars have masses above the twin star regime. We also study the
minimum-mass instability for hybrid stars, and find that these configurations do not explode, unlike the
minimum-mass instability for neutron stars. Additionally, our results suggest that oscillations between
the hadronic and quark phases could provide gravitational wave signals associated with such phase
transitions in core-collapse supernovae and white dwarf-neutron star mergers.
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I. INTRODUCTION

It is a truly exciting time for nuclear (astro)physics as a
number of nuclear physics experiments and instruments
observing the cosmos are providing orthogonal information
on the dense nuclearmatter equation of state (EOS) (see [1–5]
for recent reviews). A crucial open question about the nuclear
EOS is whether or not quark deconfinement takes place in the
high-density environments of compact stars and what the
natureof this phase transition is (see [6] for a recent review). In
principle, the densities inside stable neutron stars may reach
the threshold for quark deconfinement [7–9]. If the surface
tension between the hadronic and quark phases is strong
enough to support a first-order phase transition with a large
jump over energy density, then a new branch of stable
compact stars emerges that is called the “third family”
[10–25]. The first family of stable compact objects are the
white dwarves, and the second family stable neutron stars. In
the specific case of a high-density deconfinement phase
transition, the third family of stars are hybrid hadron-quark
stars, i.e., they posses a quark core surrounded by a hadronic
shell. Twin stars are hybrid hadron-quark stars with the same
gravitational mass as neutron stars but more compact.

Increased attention has recently been paid to hybrid EOSs
in the context of constraining the neutron star EOS especially
in the context of the LIGO-Virgo event GW170817 (see, e.g.,
[26–35] and [1,6] for reviews).
The monumental observation of a likely binary neutron

star (BNS) merger in both the electromagnetic (EM) and
gravitational wave (GW) spectrum (GW170817) [36–38]
has led to a number of first constraints on the hadronic
nuclear EOSs from multimessenger observations (see, e.g.,
[26,39–50]). Constraints on hadronic nuclear EOSs have
also been placed from observations of low mass x-ray
binaries [51–54]. Additionally, NICER [55] recently
started to place constraints on the dense matter EOS
[56–59].
Despite these efforts there still remain uncertainties in

the dense matter EOS above the nuclear saturation density.
For instance, most analyses of GW170817 were centered
on EOSs which contain only hadronic degrees of freedom
but it is possible that at least one of the binary components
could have contained quark degrees of freedom as first
discussed in [26] (see also [60–65] and references therein).
In fact, some studies find that hybrid hadron-quark EOSs
may be favored by GW170817 over purely hadronic EOSs
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[26,66,67].1 Furthermore, several of the existing constraints
on the nuclear EOS depend on a number of assumptions.
Finally, an important caveat of some existing constraints is
that these either become less restrictive or do not apply
when one allows for hybrid EOSs [26,29,66]. Of course
whether hybrid stars (HSs) exist or not will require addi-
tional observations and theoretical studies.
In light of the important information hybrid EOSs

introduce when constraining the nuclear EOS, it is crucial
to better understand HSs, including their dynamics.
However, our understanding of hybrid EOSs in the context
of dynamical scenarios is currently in its infancy because
only a limited number of studies have been performed in
general relativity [18,31–33,64,68–79].
Equilibrium HSs in the third family are expected to be

stable against radial perturbations because they satisfy the
turning point theorem [80–83]. However, as in the case of
equilibrium neutron stars and white dwarves, where the
stable neutron star and stable white dwarf branches are
separated by an unstable branch [84], stable third-family
stars and neutron stars are separated by a branch of unstable
HSs. Typically twin stars are referred to as the third family
stars that have the same mass as neutron stars and are
stable. However, in this paper we will refer to the unstable
branch following the neutron star stable branch as unstable
twin stars, because those configurations have different radii
than neutron stars but have the same masses. In particular,
the unstable branch is in the twin star regime. Thus, an
important question concerns the fate of twin stars in the
unstable branch. If unstable twin stars naturally migrate to
the hadronic branch, then it may be difficult to form stable
twin stars in nature, because stable twin stars and neutron
stars in current model EOSs do not differ very much in their
maximum densities. If that is the case, then a stable (proto-)
neutron star that receives a strong perturbation, e.g.,
following core collapse or a white dwarf–neutron star
merger, could temporarily migrate into the unstable
twin-star branch, but it would finally settle into the stable
hadronic branch, and therefore not form stable twin stars.
Thus, collapsing stars or even white dwarf–neutron star
mergers might preferentially form neutron stars. On the
other hand, if unstable twin stars tend to migrate toward the
stable third-family branch, then it is possible that stable
twin stars can form in nature. Understanding the final state
of unstable hybrid twin stars is important, because the
differences in compactness between stable hybrid and
neutron twin stars can lead to significantly different tidal
deformabilities [66], which may have an imprint on the GW
signal associated with the inspirals of compact star binaries.
What is more, the nature of this instability could provide

hints into the type of GW signatures one could expect from
events that can form twin stars, such as core collapse
supernovae (CCSN) [85–89], the merger of a white-dwarf
with a neutron star [90–95] or the accretion induced
collapse of a white dwarf [96]. Finally, it is well known
that neutron stars have a minimum-mass instability, whose
outcome is a spectacular explosion [97–100]. Thus, it is
interesting to explore what would happen to a twin star if by
some process, e.g., an eccentric black hole–twin star
encounter, it was brought near or slightly below the twin
star minimum mass limit.
As a first step toward understanding which way the

scales may tip—neutron star or stable twin star or some-
thing else, we design hybrid EOSs that give rise to a third
family of compact objects, while taking care that a well-
posed initial value problem is guaranteed. We then perform
three-dimensional, hydrodynamic simulations in full gen-
eral relativity to investigate the fate of unstable branch twin
stars. We consider different EOSs and a variety of non-
rotating and rotating twin star models along the unstable
branch as well as different initial perturbations. We find that
unstable twin stars naturally migrate toward stable neutron
stars. The unstable configurations can be momentarily
driven away from the stable neutron star branch by
depleting the pressure. When driven away from the
hadronic branch, the stars undergo radial oscillations on
a dynamical timescale while bouncing between phases but
ultimately settle into the hadronic branch. Rotating models
also undergo these oscillations, allowing for the possibility
of GW signals. We find that the GWs associated with
oscillating rotating models may be detectable by future GW
observatories out to the Andromeda galaxy. When coupled
with the detection of GWs from potential progenitor
systems of these types of stars, such as CCSN [85–89]
or white dwarf-neutron star (WDNS) mergers [90–95], it is
possible to expect a signal characteristic of the evolution of
unstable branch hybrid stars corresponding to strong
oscillations between the hadronic and quark phases.
Explosions associated with minimum-mass instability
[97–100] were not observed for minimum mass hybrid
stars in our study.
The outline of the present work is as follows. In Sec. III

we summarize the EOSs we consider and detail our
construction of initial data. Section IV includes a discussion
of our evolution methods and the diagnostics used to
monitor the simulations. In Sec. V we discuss the ultimate
fate of unstable branch twin stars as we vary the initial
perturbations and EOSs. Additionally, in Sec. V we study
the minimum-mass instability in the context of hybrid stars.
In Sec. VI we discuss the associated gravitational radiation
and the fate of rotating hybrid stars in the context of
constant rest mass equilibrium sequences. As an additional
exploration of possible transitions between branches, we
consider the evolution of stable hybrid stars, which we
present in Appendix B. We conclude in Sec. VII and point

1Henceforth we refer to EOSs which include both hadron and
quark degrees of freedom as “hybrid EOSs,” and stars that contain
both hadronic and quark phases as “hybrid stars.” Hybrid stars
with the same mass as neutron stars are referred to as “twin stars.”

PEDRO L. ESPINO and VASILEIOS PASCHALIDIS PHYS. REV. D 105, 043014 (2022)

043014-2



out future avenues of investigation. Throughout this work
we adopt geometrized units, where c ¼ G ¼ 1, unless
otherwise noted.

II. EQUATIONS OF STATE

In this section we discuss the EOSs considered in this
work. The EOSs were chosen such that they are represen-
tative of the diversity of EOSs treated in [26,29]. Current
constraints on the dense matter EOS allow for high-density
quark deconfinement phase transitions. Hybrid EOSs vary
widely and lead to a wide range of observable properties
(see [6] and references therein for a review of viable models
of hadron-quark hybrid EOSs). A full exploration of the
space of astrophysically consistent hybrid EOSs is beyond
the scope of the present work, and our focus is on hybrid
EOSs with phase transitions with a large jump in energy
density, such that a third family of stable compact objects
emerges.
Before we proceed further, in Fig. 1 we present a

gravitational mass–central energy density plot, to show
the branches of stable and unstable compact objects for the
T9 EOS in [29], which exhibits a first-order phase
transition. The plot shows regions of the sequences
corresponding to stable neutron stars, stable hybrid stars,
and unstable hybrid stars for nonrotating stars (lower blue
line), and a constant-angular momentum sequence with

J=M2
⊙ ¼ 1.0 (upper orange line). We also highlight seg-

ments of the sequences wherein twin stars roughly reside
using dotted lines. According to the turning-point criterion
for stability [81,101–103], along sequence of stars of
constant entropy S, and constant angular momentum J,
instability arises when

∂M
∂ϵc

����
J;S

≤ 0; ð1Þ

where M is the gravitational or Arnowitt-Deser-Misner
(ADM) mass and ϵc is the central energy density. The
unstable twin star branches are shown by the arrows in
Fig. 1, where Eq. (1) is satisfied.

A. Base EOSs with first-order phase transitions

We focus on two representative EOSs from each of the
two classes of hybrid EOSs studied in [26,29]. Namely, we
consider EOSs based on A4 and T9, following the naming
convention introduced in [29]; in [26] the A4 and T9
models are labeled as ACB4 and ACS-II j ¼ 0.9, respec-
tively. Since we modify these original EOSs, in this work
we label as A40 and T90 the original EOSs designated as
A4 and T9 in [29], respectively. Both EOSs correspond to
zero-temperature matter in beta equilibrium. Each EOS
incorporates hadronic (quark) degrees of freedom below
(above) a threshold transition energy density density, ϵtr.
For the EOS models considered in this work, hadronic
neutron stars exist exclusively in one stable branch, while
hybrid stars exist exclusively in the other branch. We note
that this may not always be the case, as depending on the
properties of the EOS, it may be possible to have both types
of stars in a single branch [104]. Under the nomenclature
introduced in [104], the EOSs we consider lead to “dis-
connected” hadronic and hybrid star branches.
Among the different features between the EOSs are the

parametrization of the pressure in the different phases. Both
EOS models are identical in the low density regime (for
ρb < ρ0, where ρ0 ≈ 2.7 × 1014 g cm−3 corresponds to the
rest mass density at nuclear saturation), and are based on a
covariant density functional theory with density dependent
couplings which is designed to produce the properties of
matter near nuclear saturation [105–107]. For the hadronic
phase above nuclear saturation, EOS A40 is based on the
stiffest EOS considered in [108], which properly describes
the crust-core transition and produces NS configurations
with astrophysically viable radii. EOS A40 includes a
parametrization of the pressure as a 4-segment piecewise
polytrope,

P ¼ κiρ
Γi
b ; ð2Þ

where the index i corresponds to the segment of the EOS
and runs from 1 to 4 in the case of A40, ρb is the rest-mass
density, and κi (Γi) is the polytropic constant (adiabatic

FIG. 1. Constant angular momentum sequences depicting the
gravitational massM as a function of the central energy density ϵc
for EOS T9 of [29] (labeled as EOS T90 in this work). We show
the nonrotating sequence (lower blue line) and a sequence where
J=M2

⊙ ¼ 1.0 (upper orange line). Along each sequence we
highlight the segments wherein twin stars roughly reside using
dotted lines. We point out different segments of each sequence
corresponding to stable neutron stars, stable hybrid stars, and
unstable hybrid stars.
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exponent) corresponding to segment i. The specific values
for κi and Γi, as well as the values of number densities
which demarcate each segment ni, are listed in Table II of
[26]. In the case of the T90 EOS, the hadronic phase above
nuclear saturation is based on a relativistic mean-field
theory model which accounts for nucleonic, hyperonic, and
leptonic degrees of freedom while accounting for isoscalar-
scalar, isoscalar-vector and isovector-vector interactions.
The Lagrangian describing these interactions can be found
in Eq. (1) of [106]. EOS T90 includes a quark phase EOS
which is calculated assuming a constant sound speed cs as

PðϵÞ ¼
�
Ptr ϵT90tr ≤ ϵ ≤ 1.9ϵT90tr ;

Ptr þ c2s ðϵ − 1.9ϵT90tr Þ ϵ ≥ 1.9ϵT90tr ;
ð3Þ

where cs ¼ 1.0, ϵ is the energy density, Ptr is the pressure
of the hadronic phase at ϵT90tr , and the relativistic sound
speed is defined as

c2s ≡ ∂P
∂ϵ : ð4Þ

In the case of the T9 (A4) EOS, the conformal limit (such
that c2s → 1=3 in the high density regime [109]) is (not)
reproduced. In Fig. 2 we show the squared sound speed as a
function of rest mass density for both the original (using
solid lines) and modified (using dashed lines) versions of
the A4 and T9 using blue and orange lines, respectively.
As shown in [26,29], a key difference between EOSs A40

and T90 is that the former is an example of an EOS that gives

high-mass (∼2 M⊙) twin stars, while the latter results in
low-mass (∼1.5 M⊙) twin stars. Another key difference
between EOSs A40 and T90 is the response of their
equilibrium configurations to rotation. For EOS A40,
sequences of increasing angular momentum undergo a
relatively large increase in mass for models with central
energy density ϵA40tr ≲ ϵc ≲ 1.78ϵA40tr , which is roughly the
region corresponding to the phase transition. This relative
increase results in the maximum mass stable hybrid star
having a smaller mass than the maximummass hadronic star
at large values of the angular momentum. On the contrary,
for the T90 EOS there is a comparable increase in mass for
models at all values of the energy density, which results in
the maximum mass hybrid star having a larger mass than the
maximum mass hadronic star at all values of the angular
momentum. Considering these key differences between
EOSs A4 and T9, we aim to qualitatively cover a consid-
erable part of the space of hybrid hadron-quark EOSs.

B. The challenge of evolving EOSs with first-order
phase transitions

The original A40 and T90 treat the phase transition
region using a Maxwell construction. As a result, the EOSs
have constant pressure during the phase transition which
implies that the speed of sound vanishes (cs ¼ 0) for the
corresponding values of the energy density. This is a
problem for fluid dynamics and numerical evolutions,
because when the sound speed vanishes the principal
symbol of the equations of relativistic fluid dynamics does
not possess a complete set of eigenvectors (as a straightfor-
ward check of the principal matrix in [110] can demon-
strate). Hence the system of partial differential equations is
only weakly hyperbolic [111]. For quasilinear partial
differential equations weak hyperbolicity generally implies
an ill-posed initial value problem [111], which precludes
stable numerical integration. Thus, EOSs with zero speed
of sound can result in unstable numerical integration. To
overcome this problem, we raise the value of the sound
speed over the phase transition region. However, the
modification is done such that the third family does not
disappear as we explain in the following subsection.

C. Modified EOSs

One way to modify EOSs with first-order phase tran-
sitions so that the sound speed does not vanish is to change
the type of construction method for matching the hadronic
and the quark phases. This can be achieved by the well-
known Glendenning construction [112], which leads to a
smooth variation of the pressure over the phase transition
region. However, the Glendenning and Maxwell construc-
tions are two limits of the more general, and perhaps more
physical, “pasta phase” construction [113]. Other “smooth-
ing” procedures were introduced in [22], demonstrating
that the third family of compact stars does not depend on

FIG. 2. Squared sound speed c2s as a function of rest mass
density ρb for the EOS models considered in this work. We show
the cases of EOSs A40 and T90 using solid blue and orange lines,
respectively. We show the cases of EOSs A4 and T9 using dashed
blue and orange lines, respectively.
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the existence of a first-order phase transition. Moreover, the
modifications that were presented in the phase transition
region are smooth enough to be represented with a piece-
wise polytrope. Additionally, piecewise polytropic para-
metrizations are able to capture the dynamics of the
phenomena we are interested in, including the minimum-
mass neutron star instability [114]. This motivates the
approach that we follow in the present work that we next
turn to.
Given that piecewise polytropes simplify numerical

hydrodynamic simulations, we first employ an 11-branch
piecewise polytrope to fit both the A40 and T90 underlying
EOSs, such that the pressure as a function of rest-mass
density is described by Eq. (2). The first 4 branches of our
fits are reserved for the crust, and for convenience we adopt
the piecewise polytropic representation of the SLy [115]
EOS, provided in Table II of [116]. For a given EOS, we
match our piecewise polytropic representation with the
piecewise polytropic SLy parametrization at the lowest
possible energy density at which the two EOSs intersect.
We ensure that the pressure in our resulting EOSs is
monotonically increasing with rest-mass density. We have
also verified that the choice of crust EOS leaves the
equilibrium stellar configurations used in our set of initial
data practically the same as when using the baseline EOS
tables.
Beyond the point at which we match with the SLy crust,

we fit the underlying EOSs using the remaining 7 branches.
Our fitting algorithm follows that of [116], which mini-
mizes the relative error in the pressure between the under-
lying EOSs and their corresponding fits. There are two key
sets of parameters which determine the optimal fit of an
arbitrary tabulated EOS using piecewise polytropes. The
first set of parameters is the rest-mass densities which
demarcate the boundaries between neighboring polytropic
segments ρb;i. The second set of parameters corresponds to
the polytropic constants κi and adiabatic exponents Γi
which provide a fit to the underlying EOS in question. In
the following, we briefly discuss the algorithm used to
determine these two sets of parameters. We begin by evenly
dividing the range of rest-mass densities at which we fit the
EOS beyond the crust into log-equispaced intervals. This
division of rest-mass density serves as an initial guess for
the optimal set of ρb;i. To avoid interpolation where
possible, we ensure that the set of dividing rest-mass
densities ρb;i corresponds to points in the tabulated under-
lying EOS. The remainder of the algorithm is carried out to
optimize the set of ρb;i, where we focus on the optimization
of one polytropic segment at a time:
(1) Given the set of dividing rest-mass densities ρb;i, we

use the tabulated EOS to evaluate the corresponding
set of dividing pressures Pi.

(2) We determine the polytropic constants and adiabatic
exponents for the polytropic fit using the following
expressions:

(a) The adiabatic exponents are determined, assum-
ing continuity between segments, as

Γi ¼
log ðPi=Pi−1Þ
log ðρb;i=ρb;i−1Þ

ð5Þ

(b) The polytropic constants are then determined as

κi ¼
Pi

ρΓi
b;i

: ð6Þ

We highlight that the set of polytropic constants κi are not
independent of the adiabatic exponents Γi. Once we set the
transition densities ρb;i, we then use these and the under-
lying EOS to determine the adiabatic exponents (step 2a.
above), which in turn provide the polytropic constants
(step 2b. above).
(3) We evaluate the root-mean-square (RMS) error

between a linear interpolation of the tabulated
pressure and the polytropic fit to the pressure at
values of the rest-mass density ρb which span the
entire range of rest-mass densities in the table. In
particular, the RMS error is calculated as

RMS½P�≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n

ðPtabðρb;nÞ − Ppolyðρb;nÞÞ2
N

vuut ; ð7Þ

where ρb;n corresponds to the elements of a list of N
rest-mass densities. We typically choose N ¼ 1000
and choose the rest-mass densities ρb;n such that they
are log-equispaced between the minimum and maxi-
mum values of the rest-mass density in the table. Ptab
is the pressure corresponding to the tabulated under-
lying EOS linearly interpolated to the rest-mass
density ρb;n, and Ppoly is the pressure corresponding
to the piecewise polytropic fit at ρb;n. We employ
linear interpolation because the underlying table is
dense and to avoid oscillations arising from discon-
tinuous pressure derivatives around sharp features of
the EOS such as the start and end of the phase
transition. Equation (7) allows us to determine the
RMS error over the entire EOS for a particular
choice of ρb;i corresponding to the current EOS
segment.

(4) We then vary ρb;i for the current EOS segment until
the RMS error is minimized. Once this is done, we
focus on the neighboring segment and repeat the
algorithm starting at step 1 above, until all segments
have been chosen such that the RMS error is
minimized for each segment separately. Once we
have updated the values of all ρb;i that constitutes
one iteration in the fitting algorithm.

We perform multiple iterations of the fitting algorithm
until the minimum RMS error saturates and no longer
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decreases, thereby ensuring that the set of ρb;i is optimal. In
Fig. 3 we show, as an example, the RMS error correspond-
ing to the first iteration of the fitting algorithm in the case of
the A40 EOS. For each polytropic segment, depicted by
different color lines in Fig. 3, the RMS error clearly reaches
a minimum at the best choice of ρb;i for that segment. We
note that, as suggested by the curves in Fig. 3, we only
optimize the dividing rest-mass densities corresponding to
segments 6, 7, 8, and 11 because segments 1-4 correspond
to the SLy crust, segment 5 corresponds to the point at
which the crust matches the high density EOS, and seg-
ments 9 and 10 correspond to the start and end of the phase
transition, respectively. As such, ρb;6; ρb;7; ρb;8, and ρb;11 are
the only members of ρb;i which should be optimized, and
all others are left fixed.
In fitting each EOS with piecewise polytropes, we have

full control of the adiabatic index (and thus the sound
speed) during the phase transition Γtr. Note that fixing

neighboring members of ρb;i at the points corresponding to
the start and end of the phase transition ensures that we fit
that region with a single polytrope. We experimented with
several values of Γtr, and chose values slightly above the
lowest one for which the evolution of stable equilibrium
hybrids stars did not exhibit numerical instabilities.
We discuss the evolution of such models in
Appendix A. The value chosen for Γtr corresponds to ctrs ¼
0.146 (ctrs ¼ 0.155) at rest-mass density ρb ¼ 5.3 ×
1014 g cm−3 (ρb ¼ 6.0 × 1014 g cm−3) for EOS A4 (T9).
In Table I we list the polytropic constants κi, adiabatic
exponents Γi, and dividing rest-mass densities ρb;i that
provide the fit to our nonzero sound speed versions of the
A40 and T90 EOSs. Henceforth, we use the labels A4 and
T9 to correspond to the piecewise polytropic, nonzero
sound speed EOSs used in this work and summarized in
Table I. Note that in Table I, the polytropic information is
listed such that for ρb > ρb;i, the pressure is given by

TABLE I. Properties of piecewise polytropic representations for the EOSs used in this work. We list the polytropic constants κi [in cgs
units determined by Eq. (2)], adiabatic exponents Γi, and segment-dividing rest-mass densities ρb;i (in units of 1015 g cm−3) for each
segment i. We list the sound speed at the start of the phase transition ctrs (in units of the speed of light c) and the rest-mass densities
corresponding to the start and end of the phase transition transition ρib;tr and ρfb;tr , respectively (in units of 1015 g cm−3). Next to the
transition rest mass densities, in parentheses, we list the corresponding approximate baryon number nB;tr ≡ ρb;tr=mn, (where mn ≈
1.6 × 10−24 g is the approximate nucleon mass) in units of fm−3. Note that the information for segments 1–4 correspond to the SLy EOS
[116]. The polytropic information for EOS A40 can be found in Table II of [26] in the entry corresponding to EOS ACB4.

EOS i ki Γi ρb;i ctrs ρib;trðniB;trÞ ρfb;trðnfB;trÞ
A40 … … … … 0.0 0.57 (0.36) 1.0 (0.63)

A4 1 6.11 × 10þ12 1.584 … 0.146 0.53 (0.33) 0.91 (0.57)
2 9.54 × 10þ14 1.287 2.44 × 10−8

3 4.79 × 10þ22 0.620 3.78 × 10−4

4 3.59 × 10þ13 1.359 2.63 × 10−3

5 6.50 × 10þ15 1.186 0.02
6 6.62 × 10þ03 2.060 0.05
7 5.40 × 10−04 2.559 0.16
8 3.59 × 10−38 4.921 0.29
9 1.15 × 10þ32 0.200 0.53
10 1.65 × 10−25 4.000 0.91
11 2.09 × 10−10 3.000 1.27

T90 … … … … 0.0 0.66 (0.41) 1.0 (0.57)

T9 1 6.11 × 10þ12 1.584 … 0.155 0.60 (0.38) 1.08 (0.68)
2 9.54 × 10þ14 1.287 2.44 × 10−8

3 4.79 × 10þ22 0.620 3.78 × 10−4

4 3.59 × 10þ13 1.359 2.63 × 10−3

5 3.75 × 10þ06 1.870 0.04
6 1.43 × 10−03 2.536 0.14
7 1.02 × 10−15 3.377 0.29
8 3.03 × 10þ30 0.3 0.60
9 2.52 × 10−49 5.56 1.08
10 1.16 × 10−18 3.535 1.38
11 9.91 × 10−02 2.427 1.88
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P ¼ κiρ
Γi
b . Hence, the first entry for ρb;i is left blank

because the first segment of the EOS may begin at any
rest-mass density below ρb;2.

III. INITIAL DATA

In this section we discuss the methods for generating our
initial data and the properties of the initial configurations
we considered.

A. Methods

We construct initial data with the code of [101–103],
which solves Einstein’s equations coupled to the equations
of hydrostationary equilibrium for a perfect fluid assuming
stationarity and axisymmetry. The code adopts the follow-
ing spacetime metric [102] (see [117] for a review of other
line elements used in the literature)

ds2 ¼ −eγþρdt2 þ e2αðdr2 þ r2dθ2Þ
þ eγ−ρr2 sin2 θðdϕ − ωdtÞ2; ð8Þ

where r, t, θ, and ϕ correspond to the usual spherical
coordinates, and γ, ρ, ω, and α are metric potentials which
are functions of r and θ only. The perfect fluid stress-energy
tensor is given by

Tab ¼ ρbhuaub þ Pgab; ð9Þ

where ua is the fluid four velocity and h is the specific
enthalpy, given by

h ¼ 1þ εþ P
ρb

; ð10Þ

where ε is the specific internal energy. To close the system
of equations, the EOSs described in Sec. II are supplied.

B. Equilibrium configurations

Using our EOSs A4 and T9 we build equilibrium
configurations of compact stars. In Fig. 4, we show
constant angular momentum sequences for the A4 EOS
(left panel) and T9 EOS (right panel) for rigidly rotating
stars. As demonstrated in the figure, our modified EOSs
give rise to a third family of compact stars, including
branches of stable and unstable twin stars. In addition, the
inclusion of rotation results in a relative increase in mass for
different regions of the EOS fits, as previously described
for the underlying EOSs. More specifically, we find that the
A4 EOS is most alike the A40 EOS beyond the phase
transition region, and results in a close match of the
maximum mass hybrid star with ∼0.2% relative difference
in the mass, while it results in a ∼2% difference in the
maximum mass star on the hadronic branch. On the other
hand, the T9 EOSmost closely matches the T90 EOS below
the phase-transition region, resulting in a close match of the
maximum mass hadronic star with less than 0.1% relative
difference in the mass, while it results in a ∼4% relative

FIG. 3. Example of the root-mean-square error in the pressure
as a function of the choice for the dividing rest-mass density
corresponding to segments 6, 7, 8, and 11 (dark blue, magenta,
orange, and yellow lines, respectively) of the polytropic fit for
EOS A40. For each segment, we mark the value of ρb;i that results
in the minimum RMS error (and are thus optimal choices) with a
dashed vertical line of the same color.

TABLE II. Properties of the initial unstable equilibrium twin
star configurations considered in this work. For each model we
show the central energy density ϵc and rest-mass density ρb;c in
units of 1015 g cm−3, the ADMmassM and rest massM0 in units
of M⊙, the compactness C≡M=Rc (where Rc is the equatorial
circumferential radius), the ratio of polar to equatorial radii rp=re,
and dimensionless spin a≡ J=G. For each model, in the last two
columns we also list the central rest-mass density (in units of
1015 g cm−3) of the lower (second family) and higher density
(third family) stable stars with rest mass equal to the unstable
configuration. The last line in the table corresponds to the
minimum mass unstable hybrid twin star with the T9 EOS,
which does not have a corresponding higher-density configura-
tion on the stable third-family branch.

EOS ϵc ρb;c M M0 C rp
re

a ρb;c;low ρb;c;low

A4 1.15 0.97 1.99 2.27 0.21 1.00 0.00 0.61 1.21
1.25 1.04 1.97 2.24 0.22 1.00 0.00 0.53 1.13

T9 1.30 1.12 1.53 1.68 0.17 1.00 0.00 0.73 1.25

T9 1.30 1.12 1.56 1.71 0.17 0.96 0.20 0.70 1.25
1.30 1.12 1.63 1.80 0.17 0.87 0.40 0.76 1.28
1.30 1.12 1.82 2.00 0.17 0.68 0.60 0.68 1.27

T9 1.40 1.19 1.50 1.65 0.17 1.00 0.00 0.62 …

FATE OF TWIN STARS ON THE UNSTABLE BRANCH: … PHYS. REV. D 105, 043014 (2022)

043014-7



difference in the maximummass of the third-family branch.
Thus, our fits provide good approximations to the under-
lying EOSs without the shortcoming of a zero sound speed
over the phase transition region.
The key difference introduced into the EOSs by increas-

ing the sound speed is a change from a sharp, first-order
phase transition to a smoother transition between phases.
As mentioned earlier, both sharp and smooth phase
transitions are consistent with a high-density quark decon-
finement phase transition, and each scenario has been
considered in the study of hybrid stars in the past
[88,89,118,119]. In the context of the turning-point insta-
bility, increasing the sound speed over the phase transition
region leads to a nonzero first derivative M0ðϵcÞ over the
span of the transition, where before it was 0, and hence the
A40 and T90 EOSs contained only turning-point marginally
unstable models. Compared to the original A40 and T90,
our A4 and T9 EOSs have an extended second family of
compact objects that in addition to neutron stars now also
includes stars whose maximum density is above the phase
transition threshold, and hence are hybrid stars. Moreover,
the maximum mass configuration in the second family is
also a hybrid star.
In Fig. 4 we mark with filled circles the points along the

constant angular momentum sequences which correspond
to our set of initial data. This set samples a range of masses
of twin stars on the unstable branch, with the lowest and
highest mass stars having M ≈ 1.5 M⊙, and M ≈ 2.0 M⊙,

respectively. Some of our models have rest masses which
are greater than that of the corresponding maximum mass
hadronic stars Mhad

max, leading to the possibility that they
settle into the stable hybrid configurations in the second
family introduced after smoothing the phase transition
transition (see insets in each panel of Fig. 4 for constant
J sequences which show the rest mass M0 as a function of
the energy density). In Fig. 4 we highlight these additional
stable models using solid line segments along each constant
angular momentum sequence. We discuss the possibility of
settling into these additional stable configurations in Sec. V.
Our rotating models (marked by yellow filled circles in the
right panel of Fig. 4) are chosen by considering constant
angular momentum sequences which contain stable stars on
both the hybrid and hadronic branches and locating models
which satisfy Eq. (1). We include relevant properties for the
set of initial data in Table II.

C. Initial perturbations

For each configuration presented in Table II we consider
the effects of seeding a small perturbation at the start of the
simulation. We focus on quasiradial perturbations which
are seeded by perturbing the pressure at t ¼ 0 everywhere
in the star. The form of the pressure perturbation is

Pðt ¼ 0;xÞ → ð1þ ξÞPðt ¼ 0;xÞ; ð11Þ

FIG. 4. Left panel: sequences of constant angular momentum, and zero entropy depicting the gravitational massM as a function of the
central energy density ϵc for EOS A4. The color bar corresponds to the dimensionless spin a ¼ J=M2 along each sequence. For each
sequence we highlight the additional stable models introduced by modifying the polytropic fit to the underlying A40 EOS using solid
line segments. We mark the models that comprise our set of initial data using circles (dark blue for nonrotating and bright yellow for
rotating). We also show the nonrotating sequence for EOS A40 using the dashed line. In the inset we show the rest massM0 as a function
of central energy density ϵc for sequences which correspond to our initial data for this EOS. Right panel: same as left panel but for EOS
T9. The nonrotating sequence for EOS T90 is shown using the dashed line.
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where x indicates the spatial coordinates, and ξ can be
either positive or negative in cases where we add or deplete
pressure, respectively. Our main set of simulations is
summarized in Table III, and consists of 16 cases. The
naming convention for the models presented in Table III is
as follows. The model name begins with the EOS label,
followed by a superscript corresponding to the value of the
perturbation parameter in Eq. (11) and a subscript corre-
sponding to the value of the initial central energy density
(in units of 1015 g cm−3) which determines the model’s
location on the unstable branch. For rotating configura-
tions, the model name is followed by the letter “a”
(corresponding to the dimensionless spin)

a≡ J
M2

; ð12Þ

and a subscript corresponding to the value of a. For
example, the nonrotating model corresponding to the A4
EOS with ϵc ¼ 1.15 × 1015 g cm−3 under a 1% positive
pressure perturbation is labeled A4þ0.01

1.15 , while the rotating
model corresponding to the T9 EOS with ϵc ¼
1.3 × 1015 g cm−3 under a 1% negative pressure perturba-
tion and spin a ¼ 0.4 is labeled T9−0.011.3 a0.4. In Table III we
also list the simulation MMT9−2%1.4 , which corresponds to
the evolution of the minimum mass nonrotating hybrid star
for the T9 EOS, where 2% of the initial rest mass is stripped
at the start of the simulation (here we use 2% and non 0.02
in the case label to indicate that it is not a pressure
perturbation). Along with the simulations presented in
Table III we also consider two simulations at varying grid
resolutions corresponding to model A4−0.011.25 , a set of
simulations corresponding to stable hybrid stars used to
assess the validity of each EOS, two simulations corre-
sponding to different size initial perturbations for model
T9−0.011.3 , three simulations corresponding to stable branch
hybrid twin stars used to consider the possibility of
migration from the stable branch to the unstable regime,
and several simulations corresponding to the lower and
higher density equilibria with the same rest mass as that of
particular models in Table III as comparison points. Our
stable twin star and resolution studies are presented in
Appendix A. Our study of dynamical migration from the
stable hybrid branch is presented in Appendix B.

IV. EVOLUTION METHODS

In this section we describe the basic methods used in
evolving the initial data outlined in Sec. III. We describe the
evolution code, the grid hierarchy, and detail the different
diagnostics used.

A. Evolution code

To evolve the hydrodynamics and spacetime we use the
code of [120–122], which operates within the CACTUS

framework and employs CARPET [123,124] for mesh
refinement. The code solves the Einstein equations using
the Baumgarte-Shapiro-Shibata-Nakamura formulation
[125,126] within the 3þ 1 formalism. Our gauge choice
consists of “1+log” slicing for the lapse [127] and the
“Gamma-freezing” condition for the shift in first-order
form [128–130]. The temporal evolution uses a fourth-
order Runge-Kutta scheme with a Courant-Friedrichs-
Lewy factor of 0.5. The fluid variables are evolved in
flux-conservative form adopting high-resolution shock-
capturing methods [131,132]. Our code is compatible with
piecewise polytropic representations of realistic, cold, beta-
equilibrated EOSs. We validate our approach to modify
hybrid hadron-quark equations of state by evolving stable
branch hybrid star models. We present the results of these
evolutions in Appendix A. The code has been thoroughly
tested in the past and demonstrated to be convergent. Of
relevance to this work are the convergence tests in [91].

B. Grid hierarchy

For all evolutions in this work, we construct evolution
grids, using fixed mesh refinement [123,124], consisting of
7 nested boxes. The half-side length of the finest level is set
to 1.5Rc (where Rc is the initial hybrid star equatorial
circumferential radius), and all subsequent levels have half-
side length equal to twice that of the adjacent finer level.
The canonical resolution used in our study is set such that
the finest level contains at least 64 grid-points per Rc, so
that the finest canonical grid spacing is given by
Δx1 ¼ Rc=64. All other levels have grid spacings
Δxn ¼ 2Δxn−1, where n ∈ ð2; 7Þ is the level number with
larger n meaning coarser level. In addition, we consider
higher resolution simulations to assess convergence and
invariance of our results with resolution. For higher
resolution runs, we employ grids which are 1.25 and 1.5
times finer than the canonical-resolution grid, which we
label the medium- and high-resolution cases, respectively.
Note that there are at least 80 and 96 grid-points per Rc for
the medium- and high-resolution simulations, respectively.
To reduce computational cost we employ reflection sym-
metry across the equatorial plane. To avoid singularities
when converting the initial stellar solutions from spherical
polar to the Cartesian coordinates used in the evolution,
we shift the grid points in the y-direction by Δy ¼ 0.001
(in units where ðG=c2Þ1015 g cm−3 equals 1), so that the
origin is avoided. Such coordinate shifts have been shown
to have a negligible effect on the dynamics of relativistic
stars [133].

C. Diagnostics

We monitor several diagnostics to assess different
aspects of the evolution including the evolution of the
rest-mass density, the L2 norm of the Hamiltonian and
momentum constraints [130], and global conservation laws
such as total rest-mass, total ADM mass, and angular
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momentum conservation. We also track the boundary
between the hadronic and quark phases, which we define
as the locus of points where the rest-mass density ρb equals
the value corresponding to the onset of the phase transition
for a given EOS.
Although our initial configurations are in equilibrium,

rotating models undergoing quasiradial oscillations generate
GWs.To investigate this, we extract GWsusing theNewman-
Penrose formalism [134,135], in particular focusing on
s ¼ −2 spin-weighted spherical harmonic decompositions
of the Newman-Penrose scalar Ψ4. The coefficients of the
spin-weighted decomposition are labeledΨl;m

4 , where l andm
are the usual degree and order for the spherical harmonics. In
all cases we focus on the dominant quasiradial l ¼ 2,m ¼ 0

mode. We extract Ψl;m
4 from the numerical solution at fixed

concentric spheres with increasing coordinate radii
rex ¼ ηM, where η ∈ f40; 50; 60; 80; 90; 100g. For a suit-
able comparison to the GWs of similar systems [18,70], we
compute the gravitational wave strain h from

Ψ4 ¼ ḧþ − iḧ×: ð13Þ

adopting the fixed-frequency integration (FFI) [136]. The
visualizations and GW analysis presented in this work were
carried out using the KUIBIT Python package [137].

V. RESULTS

In this section we detail the results of the simulations
listed in Table III. We first discuss our nonrotating models,
categorizing by the perturbation seeded at the beginning of
the simulations. We highlight the key features in the
evolution and point out the differences between the results
for each EOS. We then present the results for rotating
models and highlight the key differences in the dynamics
introduced by rotation. Finally, we summarize the results of
our study of the hybrid star minimum-mass instability.

A. Nonrotating models

Our set of nonrotatingmodels consists of the first 9 entries
in Table III. The initial data for this set consists of three
models: two correspond to the A4 EOS, and one to the T9
EOS. The initial dataset also covers a range of central energy
densities and masses in the unstable twin star branch. In
general, we find that all nonrotating models in our study
migrate toward the stable hadronic configuration, i.e., the
neutron star with the same rest mass but lower maximum
rest-mass density than the original configuration. Generally,
adding (removing) pressure initially, such that ξ > 0
(ξ < 0), results in the configuration settling near the had-
ronic branch on a shorter (longer) timescale than cases
wherein noperturbationwas applied.Depending on theEOS
and central energy density of the initial configuration, slight
qualitative differences arise between the evolutions.
However, all nonrotating models tend toward the hadronic

branch (the second family of stable compact objects),
showing that the outcome of the instability is independent
of the perturbationswe studied. In the followingwe consider
the effect of each perturbation separately.

1. Equilibrium evolution

In Fig. 5 we present the central rest-mass density as a
function of time for the case of equilibrium evolution for all
nonrotating models in our study. Note that in Fig. 5 the
time is scaled by the dynamical time, given by
τdyn ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρb;maxðt ¼ 0Þp

. The central rest-mass densities
for models A401.15, A4

0
1.25, and T9

0
1.3 are depicted in the left,

center, and right panels of Fig. 5, respectively, using solid
lines. We mark the densities corresponding to the phase
transition region of the EOS using gray shaded regions in
Fig. 5, such that central rest-mass densities below the gray
shaded regions correspond to pure hadronic stars.
In the case of equilibrium evolution all nonrotating

models in our study undergo an initial increase in the
rest-mass density corresponding to contraction, which
takes place early in the evolution. At this point the size
of the quark core saturates, the EOS stiffens, and the
models subsequently begin expanding. As the models
expand the value of the central rest-mass density eventually

TABLE III. Main set of cases considered in this work. For each
model we list the model name (see text body for model naming
convention), the EOS, the central energy density in units of
1015 g cm−3, the dimensionless spin a ¼ J=M2, and the value of
the perturbation parameter ξ in Eq. (11). The final entry, model
MMT9−2%1.4 , corresponds to the evolution of the minimum-mass
nonrotating hybrid star for the T9 EOS in the case where 2% of
the rest mass is removed at the start of the simulation.

Model EOS ϵc a ξ

A4−0.011.15 A4 1.15 0.0 −0.01
A401.15 A4 1.15 0.0 0.0

A4þ0.01
1.15

A4 1.15 0.0 0.01

A4−0.011.25 A4 1.25 0.0 −0.01
A401.25 A4 1.25 0.0 0.0
A4þ0.01

1.25
A4 1.25 0.0 0.01

T9−0.011.3 T9 1.3 0.0 −0.01
T901.3 T9 1.3 0.0 0.0

T9þ0.01
1.3

T9 1.3 0.0 0.01

T90.01.3a0.2 T9 1.3 0.2 0.0

T9−0.011.3 a0.2 T9 1.3 0.2 −0.01

T90.01.3a0.4 T9 1.3 0.4 0.0

T9−0.011.3 a0.4 T9 1.3 0.4 −0.01

T90.01.3a0.6 T9 1.3 0.6 0.0

T9−0.011.3 a0.6 T9 1.3 0.6 −0.01

MMT9−2%1.4 T9 1.4 0.0 0.0
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becomes smaller than the threshold corresponding to the
end of the phase transition ρfb;tr and quickly drops to a value
ρb;c ≲ ρib;tr (see Table I for the values of ρib;tr and ρfb;tr for
each EOS). The expansion reverts into a momentary
collapse as the models begin to contract until
ρb;c > ρib;tr, at which point the central rest-mass density
jumps to a point above the end of the phase transition
ρb;c ≳ ρfb;tr. The models undergo several such bounces
corresponding to radial oscillations while the core oscillates
between the hadronic and quark phases. Eventually, the
radial oscillations decay as the models settle into approx-
imately steady states at lower central rest-mass densities.
The size and number of oscillations observed early in the

evolution likely depends on the position of each model
along the unstable branch (i.e., on the model’s central
energy density and rest mass). Of the models considered,
A401.25 is the only one with rest mass lower than the
maximum rest mass purely hadronic star—the configura-
tion with central rest-mass density just below the phase
transition threshold. In other words, models A401.15 and
T901.3 have counterpart lower-density, stable equilibrium
hybrid star models with the same rest mass, which are in the
second family of compact objects (see solid segments of
Fig. 4). We find significant oscillations throughout the
evolutions of models A401.15 and T901.3 which peak inside
the gray bands corresponding to the phase transition region
in Fig. 5. However, we find a lack of such long-term
oscillations in model A401.25, possibly because this unstable
twin star has a lower-density stable counterpart with max
density below that of the phase transition threshold. Such a
disparity in dynamics between unstable branch stars
(whether or not their central regions oscillate within the

phase transition region) may be tied to our EOSs where the
quark deconfinement phase transition is not a first-order
transition. For sharp, first-order phase transitions, all EOS
models we are aware of produce unstable branch twin stars
with corresponding lower-density neutron stars which have
central rest-mass density lower than ρib;tr. If the quark
deconfinement phase transition is of first-order, the migra-
tion of unstable branch hybrid stars toward the hadronic
branch may closely follow the evolution of model A401.25.
However, since the pasta phase reconstruction may be more
natural, there may be a diversity in how unstable twin stars
migrate toward the hadronic branch. The A401.15 and T901.3
models both undergo small but non-negligible late-time
oscillations in the rest-mass density of approximately ∼5%
in amplitude. We evolved these models for more dynamical
times than the A401.25 model, which reveals that the
amplitude of the rest-mass density oscillations continues
to decrease, albeit at a slower rate compared to the initial
oscillations.
For suitable comparisons we also consider the evolution

of the stable lower-density equilibrium model with the
same rest mass as that of the initial configuration of each
model. We depict the central rest-mass density for these
models with solid black lines in Fig. 5. In all cases the
evolution of the lower-density counterparts show small
(≲1%) oscillations in the rest-mass density. It is worth
noting that the final central rest-mass density of the lower-
density counterparts agrees to within ∼0.08%, ∼1.5%, and
∼0.1% with the final central rest-mass density of models
A401.15, A4

0
1.25 and T901.3, respectively. By the end of the

evolutions it is clear that all unstable models are very close
to their lower-density stable counterpart in the second
family.

FIG. 5. Left panel: central rest-mass density ρb;c as a function of time (scaled by the dynamical time τdyn) for model A401.15 under
equilibrium evolution (solid lines) and model A4þ0.01

1.15 with a positive pressure perturbation (dashed lines). Also shown is ρb;c for the
lower-density equilibrium model with the same rest mass as that of the initial configuration (solid black line). We use horizontal black
lines to mark the start (lower lines) and end (upper lines) of the phase transition and a gray band to mark the densities corresponding to
the phase transition region. Center panel: same as the left panel but for models A401.25 and A4þ0.01

1.25 . Right panel: same as the left and
center panels but for models T901.3 and T9þ0.01

1.3 .
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2. Positive initial pressure perturbation

The evolution of ρb;c for the case of positive pressure
perturbations is shown by the dashed lines in Fig. 5. We
generally find that adding a positive initial pressure
perturbation results in evolutions that are similar to those
without initial perturbation. Depending on the EOS, the key
features of evolution may arise on a slightly shorter
timescale. For instance, where model T90.01.3 settled into a
lower-density configuration with ∼5% oscillations in the
rest-mass density after t ≈ 60τdyn, we find that adding
pressure drives the initial configuration to a similar state
by t ≈ 30τdyn. The timescale on which models A4þ0.01

1.15 and
A4þ0.01

1.25 settle to lower densities is almost identical to
models A401.15 and A401.25, respectively.
Depending on the EOS, the early evolution in cases with

positive pressure perturbations show small differences to
the cases of equilibrium evolution. For models A4þ0.01

1.15 and
A4þ0.01

1.25 we observe an initial small expansion, which is
followed by contraction and subsequent evolution similar
to the cases wherein no perturbations were excited.
However, model T9þ0.01

1.3 undergoes an initial expansion,
without contraction, which coincides with an initial
decrease in the central rest-mass density. The model
continues expanding until the quark phase disappears from
the stellar center. The model then undergoes a number of
bounces and the evolution proceeds in a qualitatively
similar fashion to that of model T901.3.
The differences in the early stages of evolution between

model T9þ0.01
1.3 and those corresponding to the A4 EOS may

be attributed to the EOS stiffness in the quark phase
immediately above the phase transition region. The first
polytropic segment after the phase transition region (listed
in Table I as segment 10 and 9 for EOSs A4 and T9,

respectively) corresponds to the part of the EOS that is
sampled in the central region of these stars. As such, the
central regions of the initial configurations are significantly
stiffer for models built using the T9 EOS than for those
built with the A4 EOS.

3. Pressure depletion

In this section we describe our results for an initial
perturbation that depletes (ξ < 0) a small fraction of the
pressure everywhere. This is designed to test if the unstable
configuration can be pushed to the stable twin star
counterpart. In Fig. 6 we show the central rest-mass density
in the case of pressure depletion. We generally find that
relative to the equilibrium evolution, pressure depletion
tends to delay the timescale on which some key features
arise. Similarly to the cases of equilibrium evolution and
positive pressure perturbations, the models considered
under pressure depletion settle at lower central rest-mass
densities toward the second family branch. For all models
under pressure depletion we observe an initial increase in
rest-mass density. This initial increase in rest-mass density
leads to the growth of the quark core, such that a larger part
of the core is above the densities of the phase transition
region, where the EOS stiffens again. The stiffening of the
EOS at these high densities leads to a bounce, and the
configurations enter an expansion phase, which results in a
decrease of the central rest-mass density. Once the central
rest-mass density falls below the critical value correspond-
ing to the end of the phase transition (upper solid black line
in the left panel of Fig. 6), it quickly drops to the rest-mass
density corresponding to the start of the phase of transition
(lower solid black line) and the quark core disappears. As
the core enters a softer part of the EOS, the pressure support
becomes weaker, and the star quickly reverts into a

FIG. 6. Left panel: central rest-mass density ρb;c as a function of time (scaled by the dynamical time τdyn) for model A4−0.011.15 under a
negative pressure perturbation. We use horizontal black lines to mark the start (lower lines) and end (upper lines) of the phase transition
and a gray band to mark the densities corresponding to the phase transition region. Center panel: same as the left panel but for model
A4−0.011.25 . Right panel: same as the left and center panels but for model T9−0.011.3 . Also shown are ρb;c for model T9−0.0051.3 with 0.5% pressure
depletion (light orange dashed line) and T9−0.021.3 with 2% pressure depletion (blue dotted line).
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momentary collapse. The cycle repeats and the maximum
rest-mass density exhibits strong oscillations as the central
region bounces between the quark and hadronic phases.
Similar to cases wherein no explicit perturbation was
excited, such oscillations eventually decay and the models
settle to lower central rest-mass densities. Depending on the
properties of the initial configurations (such as central
energy density and mass), pressure depletion may induce a
larger number of such oscillations compared to cases with
no explicit perturbation.
The A4−0.011.15 model (left panel of Fig. 6) undergoes strong

bounces between the quark and hadronic phases for the first
t ≈ 60τdyn of evolution, while the oscillations in the central
rest-mass density are damped as the model settles to the
lower-density stable equilibrium model with the same rest
mass as that of the initial configuration (note that for
models A40.01.15 and A4þ0.01

1.15 the strong oscillations were
damped after t ≈ 20τdyn). Model T9−0.011.3 (right panel of
Fig. 6) similarly exhibits strong oscillations for longer
(t ≈ 40τdyn) than models T90.01.3 (t ≈ 30τdyn) and T9þ0.01

1.3

(t ≈ 20τdyn). In the case of the A4−0.011.25 model (center panel
of Fig. 6) we find that the configuration settles at the lower-
density equilibrium model with the same rest mass as that
of the initial configuration on a comparable (but slightly
longer) timescale than the corresponding equilibrium
evolution case. Model A4−0.011.25 shows oscillations of a
comparable number, duration, and amplitude to model
A40.01.25, suggesting that this initial configuration has the
highest propensity to migrate toward the stable second-
family branch as discussed in Sec. VA 1.
In Fig. 7 we show snapshots of equatorial contours of the

rest-mass density at key points corresponding to the
evolution of model A4−0.011.15 . We outline the quark phase
(shown in white), with ρb > ρfb;tr, using black dashed lines.

The left panel of Fig. 7 depicts the saturation of the quark
core size during the initial contraction stage of the model at
t ≈ 10τdyn. The center panel of Fig. 7 corresponds to the
disappearance of the quark core during the expansion stage
which follows the initial contraction stage at t ≈ 15τdyn.
The right panel of Fig. 7 depicts the time corresponding to a
local-in-time peak in the rest-mass density at t ≈ 40τdyn. All
local-in-time maxima depicted in the left panel of Fig. 6
between t ≈ 20τdyn and t ≈ 60τdyn are consistent with the
right panel of Fig. 7. Figure 7 shows that the central region
exhibits a quasiperiodic revival of the quark core as the
model undergoes radial oscillations. The evolutions of
unstable branch hybrid stars with a negative initial pressure
perturbation suggests the ability of phase transitions giving
rise to a third family to drive strong oscillation cycles in
these stars. This could be a smoking gun signature of EOSs
with sharp hadron/quark phase transitions leading to a third
family of compact objects (as has also been suggested in
[73,78], for example, following the merger of heavy
neutron stars that form a remnant whose density is above
the threshold for the quark deconfinement phase transition).
A common feature in all of the evolutions discussed thus

far is that the amplitude of density oscillations decreases as
the models tend toward a steady state, which suggests some
form of energy dissipation. For a qualitative understanding
of the role that heating may play in dissipating the stellar
oscillations, we considered the ratio of total to cold
polytropic pressure Ptot=Pcold to reveal the relative size
of the thermal contribution Pth, computed through

Ptot ¼ Pcold þ Pth; ð14Þ

with a density cutoff of ρb ¼ 1 × 10−3ρb;max. We emphasize
that our simulations do not include a prescription for the

FIG. 7. Left panel: equatorial snapshot of the rest-mass density for model A4−0.011.15 at time t ≈ 10τdyn, which corresponds to the peak of
the central rest-mass density. We outline the region with rest-mass density larger than the end of the phase transition (corresponding to
the quark core, shown in white) with a black dashed line. At this stage the model exhibits a large quark core. Center panel: same as the
left panel, but for time t ≈ 15τdyn, which corresponds to the disappearance of the quark phase and the expansion of the model following
the initial contraction. Right panel: same as the left and center panels, but for time t ≈ 40τdyn, which corresponds to a relative peak in the
rest-mass density and the reappearance of the quark core.
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thermal EOS, and they do not account for the QCD phase
diagram at finite temperatures. Instead, we consider the
ratio of total fluid pressure to that expected from the cold
EOS as a way to understand the role of shock heating. In all
cases, we find that the models develop warm atmospheres
(with over 10% thermal support), but that the bulk of the
star remains cold (with less than 1% thermal pressure
support). Our resolution study showed that the oscillations
are damped on approximately the same timescale indepen-
dent of resolution. We note that damping of such radial
oscillations of stars have been reported in other cases where
migration from an unstable to a stable branch can take place
for neutron stars, e.g., [138]. We emphasize that our
simulations do not account for bulk or shear viscosity,
which may provide dissipation mechanisms for the oscil-
lations we observe. In the absence of shock heating or bulk/
shear viscosity, we cannot reliably conclude that the chief
mechanism behind the damping of stellar oscillations is not
numerical in nature.

4. Effect of initial perturbation amplitude

To investigate the role of the amplitude of perturbations
in Eq. (11), we also consider perturbations which are half as
large (ξ ¼ −0.005) and twice as large (ξ ¼ −0.02) as that
considered for model T9−0.011.3 , corresponding to 0.5% and
2% pressure depletion, respectively. We ensure that for the
additional levels of pressure depletion the Hamiltonian and
momentum constraints remain small, and similar to the
standard cases of pressure depletion (see Appendix A for a
discussion of the constraints with and without pressure
perturbations). We present the central rest-mass density for
these cases with dashed orange (T9−0.0051.3 ) and dotted blue
(T9−0.021.3 ) lines in the right panel of Fig. 6. We find that
changing the size of the perturbation affects the timescale
on which the initial bounces occur. Specifically, with larger
pressure depletion (T9−0.021.3 ), we find that the central rest-
mass density reaches its first maximum on a slightly shorter
timescale compared to the canonical pressure depletion
case (T9−0.011.3 ). On the other hand, lower pressure depletion
(T9−0.0051.3 ) results in the first maximum being reached on a
slightly longer timescale. The size of the density perturba-
tions does not strongly affect the amplitude of the initial
density maximum, but it affects the size of late-time
oscillations. We find that the amplitude of the density
oscillations for model T9−0.0051.3 does not reach the initial
maximum after the first bounce (similar to model T9−0.011.3 ),
resulting in fewer and weaker bounces compared to model
T9−0.021.3 . On the other hand, model T9−0.021.3 reaches the peak
value of ρb;c twice and exhibits stronger oscillations deeper
into the evolution than model T9−0.011.3 . Ultimately, the
oscillations for all pressure depletion cases are damped
as the models tend toward the lower-density equilibrium
models with the same rest mass as that of the initial
configurations. We find that the initial increase in density is

never large enough for the final configurations to reach
densities near the counterpart stable twin star. This is
despite the fact that the maximum density reached during
the evolution exceeds the central density of the counterpart
configuration in the third family. This is indicative of the
natural propensity these unstable solutions have to migrate
toward the second-family branch.

5. Effect of the EOS

We find that, despite the differences between EOSs
pointed out in II A, the dynamics of the unstable branch
hybrid twin stars we consider only weakly depend on the
EOS. The main difference in evolution between the models
we consider arises from the nature of the perturbation
excited at the start of each simulation, as highlighted in
Secs. VA 1–VA 4. Additionally, the timescale on which
the strong oscillations persist depends on whether the initial
configuration has a corresponding stable model with equal
rest mass and central density below the transition threshold,
as we discuss in Sec. VA 1. To emphasize the fact that the
EOS only qualitatively affects the evolution, we focus on
the evolutions of models A4−0.011.15 and T9−0.011.3 as shown in
the left and right panels of Fig. 6 using solid blue and
maroon lines, respectively. Each of these models does not
have a corresponding stable, equal-mass, lower density
configuration with central rest mass density below the
threshold to the transition ρb;c < ρib;c. In other words, the
corresponding lower-density configuration of the same rest
mass as these models falls within the solid-line segments
shown in Fig. 4. In each case, the model initially undergoes
several strong oscillations with the rest mass density
reaching values ρb > ρfb;tr. The rest mass density then

oscillates within values of ρib;tr < ρb < ρfb;tr as these oscil-
lations decay to the level of a few percent over t ≈ 60τdyn
and t ≈ 40τdyn for models A4−0.011.15 and T9−0.011.3 , respectively.
By contrast, model A4−0.011.25 only undergoes one strong
initial bounce and, immediately after, the oscillations decay
to the level of a few percent (on a comparatively shorter
timescale of t≲ 20τdyn). Despite the fact that they are
described by different EOSs, the evolution of models
A4−0.011.15 and T9−0.011.3 are much more similar to one another
than they are to the evolution of model A4−0.011.25 . Moreover,
the evolutions of models A4−0.011.15 and A4−0.011.25 are qualita-
tively different as highlighted above, despite the fact that
they are described by the same EOS. We emphasize that the
key differences between models A4−0.011.15 =T9−0.011.3 and model
A4−0.011.25 is whether there is a corresponding stable, equal-
mass, lower density configuration with ρb;c < ρib;tr; in the
case of models A4−0.011.15 =T9−0.011.3 this is not the case, while it
is true for model A4−0.011.25 . In conclusion, our results suggest
that the key properties which affect the dynamics of
unstable branch hybrid twin stars are the nature of the
initial perturbation, and the value of the central rest mass
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density (which places the initial configuration along a
constant angular momentum sequence and determines
whether it has a a corresponding stable, equal-mass, lower
density configuration with ρb;c < ρib;tr); as such, the role
that the EOS plays is subdominant. We also note that the
preceding comparison of results based on EOS holds for
other initial perturbations, as depicted in Fig. 5.

B. Rotating models

In the case of rotation we focus on the T9 EOS. We
consider models with the same central energy density as the
nonrotating model of ϵc ¼ 1.3 × 1015 g cm−3 albeit with
different values of the angular momentum. We consider
these models both under equilibrium evolution and neg-
ative pressure perturbations. We find that all rotating
models naturally migrate toward the second-family branch
on a dynamical timescale. The rotating models we consider
exhibit strong oscillations in the early stages of evolution
which are eventually damped as the models tend toward
their respective lower-density equilibrium counterparts. As
in the nonrotating models discussed in Sec. VA 3, we find
that pressure depletion in rotating models incites strong
oscillations. In particular, rotating models under pressure
depletion exhibit prolonged oscillations in the rest-mass
density when compared to the equilibrium evolution cases.
In the following we present the results of our study on
rotation, categorizing by the initial perturbation.

1. Equilibrium evolution

In the left, middle, and right panels of Fig. 8 we show the
central rest-mass density for models T901.3a0.2, T9

0
1.3a0.4,

and T901.3a0.6, respectively, using solid lines. In the case of
equilibrium evolution, we find that rotating models exhibit

oscillations early in the evolution which are eventually
damped as the models settle toward configurations with
lower central densities, similar to nonrotating models. The
early-time oscillations in rest-mass density for models
T901.3a0.2, T9

0
1.3a0.4, and T901.3a0.6 are significantly damped

(such that the oscillations in ρb;max are approximately
1–2%) within t ≈ 40τdyn, t ≈ 45τdyn, and t ≈ 60τdyn,
respectively.
Similar to nonrotating models, the oscillations in rest-

mass density are damped on a dynamical timescale. As
with nonrotating models, we also find that the rest-mass
density presented in Fig. 8 never reaches its prebounce
value, suggesting that the models are temporarily bouncing
to the additional stable configurations with central energy
densities between the hadronic and quark phases.

2. Pressure depletion

The evolution of the central rest-mass density for models
T9−0.011.3 a0.2, T9−0.011.3 a0.4, and T9−0.011.3 a0.6 is depicted using
dashed lines in the left, center, and right panels of Fig. 8,
respectively. Under pressure depletion with rotation, we
observe a qualitatively similar evolution to nonrotating
cases early on. We observe an initial contraction in the
configuration which corresponds to an increasing central
rest-mass density. The contraction eventually halts at a
maximum and the central region proceeds to bounce
between the hadronic and quark phases. For models
T9−0.011.3 a0.2 and T9−0.011.3 a0.6 we observe two consecutive
strong bounces early on, as the model returns to the peak
rest-mass density once again after the initial contraction. In
the late stages of evolution, the oscillations are damped.
Despite the early-time strong oscillations for rotating
models under pressure depletion, eventually they all tend
to settle near their respective lower-density counterparts.

FIG. 8. Left panel: central rest-mass density ρb;c as a function of time (scaled by the dynamical time τdyn) for models T901.3a0.2 with no
initial perturbation (solid line) and T9−0.011.3 a0.2 with a negative initial pressure perturbation (dashed line). The lower and upper black
horizontal lines correspond to the lower and upper bounds of the phase transition, respectively. The gray band corresponds to the phase
transition region of the EOS. Center panel: same as the left panel, but for models T901.3a0.4 and T9

−0.01
1.3 a0.4. Right panel: same as the left

and center panels, but for models T901.3a0.6 and T9−0.011.3 a0.6.
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We find that rotating models with negative pressure
perturbations tend to undergo strong oscillations of the
central region between phases for a prolonged time. For
models T9−0.011.3 a0.2, T9−0.011.3 a0.4 and T9−0.011.3 a0.6 we find
strong oscillations (where oscillations in ρb;c are of approx-
imately 50% in amplitude) for the first t ≈ 60τdyn,
t ≈ 50τdyn, and t ≈ 80τdyn, respectively. After the stage
of strong bouncing, the oscillations are damped. Rotating,
radially oscillating compact stars can be potential sources
of GWs. We discuss the prospects of detectability for
rotating unstable branch hybrid stars in detail in Sec. VI B.
As in the nonspinning cases, we find that the initial

increase in density is large enough for the configurations to
reach and exceed the central density of the counterpart
stable twin star, but the solution does not settle there. For
this reason we also investigate the stability of the stable
twin star in Appendix B. We find that these configurations
are dynamically stable (as expected from the turning point
theorem), and they do not exhibit large oscillations that
would lead them transition to the unstable regime. This
suggests, that these stable twin star configurations may
need to be reached in a quasistatic way for them to naturally
form. However, this could be challenging in the case of a
core-collapse supernova or the accretion induced collapse
of a white dwarf or even in the case of a white dwarf–
neutron star merger, because as the central density increases
the hadronic branch is encountered first, and if the density
increases further (e.g. due to compression) and crosses over
into the phase transition, the EOS will soften, causing the
star to undergo collapse until the density becomes high
enough for a bounce to take place, and then enter the
oscillation cycles we observed here.
Note that the size of the density perturbation influences

the timescale over which the early-time strong oscillations
persist, as discussed in Sec. VA 3. As such, the interplay
between the strong oscillations incited by pressure
depletion and the natural tendency for rotating models to
settle to lower central densities may depend sensitively on
both the angular momentum of the initial configuration and
the size of the initial perturbation. We leave a more in-depth
investigation of the interplay between strong quasiperiodic
oscillations and rotation for future work.

C. Minimum mass instability

Neutron stars near the minimum-mass equilibrium con-
figuration, located on the unstable branch between the
stable white-dwarf and stable neutron-star families,
undergo a dynamical instability if the mass is lowered
below the minimum neutron star mass (e.g. if matter is
stripped off the neutron star) [97–100]. We consider this
“minimum-mass instability” in the context of minimum-
mass hybrid stars, which are analogously located between
the stable neutron star and stable hybrid star families. The
neutron star minimum-mass instability sets in for configu-
rations in hydrostatic equilibrium wherein the timescale τβ

associated with the electroweak interactions that deter-
mines chemical equilibrium is comparable to the dynamical
timescale. In cases where τβ=τdyn ≫ 1, the evolution is
determined by expansion on a secular timescale, as the
configuration has ample time to oscillate about neigh-
boring configurations in hydrostatic equilibrium without
undergoing beta decay. On the other hand, if τβ=τdyn ≲ 1,
the configuration undergoes a dynamical instability
which ultimately leads to a spectacular explosion
[99,100,139,140]. We note that a condition for the base
EOSs in this work is chemical equilibrium between the
quark and hadronic phases [21], and as such the stellar
configurations we consider are in cold beta-equilibrium.
For minimum-mass neutron stars, the conditions for the

instability may be achieved by mass-stripping, which has
the effect of lowering the total mass while keeping the ratio
of electrons to baryons fixed. Dynamically, a removal of
mass similar to that considered in [99] in the context of
hybrid stars may take place in close or eccentric black hole-
hybrid star binaries [97,141–143]. To incite an initial
perturbation similar to that considered in [99] for the
hybrid stars considered in our work, we place a rest-mass
density cutoff ρb;cutoff on the minimum mass, nonrotating
configuration for the T9 EOS. To impose the density
cutoff, we set all rest-mass densities below ρb;cutoff to the
value of the tenuous atmosphere at the start of the
simulation. Motivated by findings which show that eccen-
tric or close black hole-neutron star binaries can unbind
Oð10Þ% or more of the rest mass of one of the binary
components during close encounters [142–144], we set
ρb;cutoff ¼ 1 × 1014 g cm−3, such that approximately 2% of
the initial rest mass is removed. The removal of 2% of the
rest mass also ensures that the constraint violations
remain small.
In Fig. 9 we show the central rest-mass density for model

MMT9−2%1.4 as a function of time. In Fig. 10 we also show
equatorial snapshots of the rest-mass density at times t ¼ 0
(left panel), t ≈ 7tdyn (center panel) and t ¼ 19tdyn (right
panel). We find an initial expansion of the model as the
central rest-mass density decreases quickly, and falls below
the upper density of the phase transition region, which
marks the disappearance of the quark core. At the peak of
the expansion, a small under-density momentarily develops
at the center of the configuration (shown in the center panel
of Fig. 10). The expansion eventually halts and the core
partially recollapses. The core oscillates strongly between
the quark and hadronic phases, but eventually settles with a
central density lower than that of the original minimum-
mass hybrid solution (as shown in the right panel of
Fig. 10). In short, we do not observe a runaway expansion
of the model analogous to the explosions observed for
minimum mass neutron stars. After t ≈ 10τdyn the model
exhibits small (∼5%) oscillations in the central rest mass
density, close to the central rest-mass density corres-
ponding to the hadronic-branch model with rest mass
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M0 ≈ 0.98MMMT9
0 , where MMMT9

0 is the rest mass of the
initial minimum-mass hybrid solution. We find that the rest
mass of the initial configuration, after 2% has been
removed, is conserved to within 1 part in 105.
The evolution of model MMT9−2%1.4 suggests that there is

enough binding energy present in the initial minimum-mass
model to keep the configuration bound despite the initial

expansion. We note that the results presented in this section
are an exploratory case-study into the minimum-mass
instability for hybrid stars. More studies are required to
definitively state that the minimum-mass instability does
not lead hybrid stars to explode.

VI. DISCUSSION

In this section we discuss the results presented in Sec. V.
In particular, we discuss the final state of rotating models in
the context of constant rest massM0 sequences and discuss
the GW signals associated with the evolution of rotating
models which exhibit strong oscillations.

A. Final state in the context of evolutionary sequences

A solution space feature associated with the quasiradial
turning-point instability is that unstable branch models near
the turning-point may spin up as they lose angular
momentum along sequences of constant rest mass M0

(so called “evolutionary sequences”) [102,103]. This type
of evolution holds in situations where the dynamics happen
on a long enough timescale that the models have time to
settle into a series of neighboring equilibria as they evolve.
However, in marginally stable or unstable cases where the
timescale associated with the key features of evolution is
shorter, the angular momentum is expected to remain
approximately constant as the models spin up [145,146].
For EOSs with strong phase transitions this “back-bending”
instability is coupled to the dynamical migration of stars
between phases [70]. In this section we discuss the
evolution and final states for the set of rotating models
in our study in the context of their respective evolutionary
sequences.

FIG. 9. Central rest-mass density ρb;c for model MMT9−2%1.4
(minimum mass model for the T9 EOS in the case where 2% of
the rest mass was removed at the start of the evolution) as a
function of time (scaled by the dynamical time τdyn). The gray
band corresponds to the phase transition region, and the lower
(upper) black line corresponds to the start (end) of that region.

FIG. 10. Left panel: equatorial snapshot of the rest-mass density for model MMT9−2%1.4 (minimum mass model for the T9 EOS in the
case where 2% of the rest mass was depleted at the start of evolution) at time t ¼ 0. The white region surrounded by a dashed black line
around the stellar center corresponds to the quark phase. Center panel: same as the left panel but at time t ≈ 7τdyn. At this stage the model
has undergone maximal expansion and a small underdensity can be seen to develop at the center. Right panel: same as the left panel but
at time t ≈ 19τdyn near the end of the evolution. By this stage the model has roughly settled to a lower-density steady state.
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In Fig. 11 we show the dimensionless angular momen-
tum as a function of the angular velocity for several
evolutionary sequences corresponding to the T9 EOS.
For each sequence, we use solid (dashed) lines to mark
the segments where hadronic (hybrid) stars reside, such that
their central rest-mass densities fall below (above) ρib;tr as
listed in Table I. We highlight the evolutionary sequence
corresponding to the T901.3a0.6 model using red lines and
mark the corresponding initial configuration with a circle of
the same color. In [70] it was observed that marginally
stable rotating configurations could be forced toward
steady states in the stable hybrid branch by use of density
perturbations. It was found that these configurations tend to
spin up while keeping a roughly constant angular momen-
tum as they settle into the stable hybrid branch. For the
rotating models in our study we find that, even with
pressure depletion (which tends to temporarily drive
models away from the hadronic branch—the second
family), rotating unstable configurations ultimately settle
into the stable hadronic branch.
The tendency for the unstable branch models in our

study to migrate toward the second-family branch happens
on a dynamical timescale. The angular momentum in each
of the rotating cases decreases by less than approximately

0.5%, consistent with the absence of angular momentum
emission in gravitational waves from axisymmetric con-
figurations, and with the level of angular momentum
conservation that our code typically achieves. An approxi-
mation of the angular velocity using coordinate velocities,
i.e., Ω ¼ vϕ ¼ dϕ=dt, reveals that our initial configura-
tions tend to spin down as they settle into the hadronic
branch. We note that the such an approximation of the
angular velocity is not gauge invariant, and we only use it
as a rough indicator to discern whether the angular velocity
tends to decrease or increase as the models evolve. The
initial configurations discussed in [70] are analogously
positioned near the cusp of the red dashed line in Fig. 11
and evolve toward the right on a line of roughly constant
angular momentum (for instance, see Fig. 4 of [70]). The
T901.3a0.6 model (represented by the red circle in Fig. 11)
instead evolves toward the left roughly along the dotted line
corresponding to constant angular momentum. The migra-
tion of model T901.3a0.6 toward the stable hadronic branch
happens on a dynamical timescale and we can interpret the
configuration as quickly transitioning from its initial state
to its final state (after a period of oscillation early on) while
keeping J roughly constant, suggesting that the model does
not evolve along an evolutionary sequence. The final state
of model T901.3a0.6 should roughly reside at the endpoint of
the red dotted line which meets the solid red line (consisting
of hadronic models) in Fig. 11. We note that the angular
velocity of the model marked by the circle in Fig. 11 is
much larger than that of the galactic population of neutron
stars [147]. We focus on this model for illustrative
purposes, and find that the same general arguments can
be made for the models in our study with lower angular
velocities.

B. Gravitational waves

We now turn to the possibility that an unstable branch
hybrid configuration could arise as a result of different
astrophysical phenomena [85–92]. Of particular interest is
the prospect of white-dwarf accretion-induced collapse or
that a WDNS merger results in compression of the neutron
star [90–95], which moves part of its core into the phase
transition region where the EOS softens and then the
neutron star continues to shrink. The subsequent develop-
ment may be the star dynamically crossing into the unstable
twin star regime and undergoing strong oscillations like the
ones discussed in this work. Moreover, it may be possible
for stable twin stars to dynamically transition into the
unstable regime if they are sufficiently close to the
minimum mass twin star and are perturbed. Strongly
oscillating rotating stars can be a promising source of
gravitational waves, and the oscillations driven by the
repeated changing of phase in unstable configurations can
lead to a characteristic periodicity in the waves. In this
section we discuss the gravitational wave radiation asso-
ciated with the systems we consider as a preliminary

FIG. 11. Dimensionless measure of spin, (where J is the total
angular momentum and M0 is the rest mass) as a function of
angular velocity for constant rest mass sequences corresponding
to the T9 EOS. The solid (dashed) lines correspond to sequences
that only include models with central rest-mass densities below
(above) ρib;tr as listed in Table I. The red solid and dashed lines
correspond to the sequence with rest mass fixed to that of the
initial configuration of model T901.3a0.6. We mark model T901.3a0.6
with a dark red circle. We also draw a (dotted) line of constant
angular momentum representing the expected evolution of model
T901.3a0.6.
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consideration of the kinds of gravitational wave signals we
may expect from systems that produce hybrid stars.
We generally find that the gravitational radiation asso-

ciated with the evolution of all rotating models in our study
may be detectable only out to the Andromeda galaxy.
Depending on the rotation of the system in question, we
find evidence of features in the GWs which may point to the
evolution of unstable branch hybrid stars as a source. In
Fig. 12 we show the plus polarization hþ of the GW strain
as a function of time for the rotating models in our study,
assuming a source at 10 kpc. The solid (dashed) lines in the
left, center, and right panels of Fig. 12 correspond to
models T901.3a0.2 (T9−0.011.3 a0.2), T901.3a0.4 (T9−0.011.3 a0.4), and
T901.3a0.6 (T9

−0.01
1.3 a0.6), respectively. We compute the strain

using the FFI method [136] and adopt a low-frequency
cutoff f0 ¼ 0.2=τdyn which is lower than the peak fre-
quency observed in the power spectrum of all signals. We
focus on the dominant l ¼ 2, m ¼ 0 mode and optimal
orientation. We find that, as expected, models with stronger
rotation produce stronger GWs. Moreover, models with
initial negative pressure perturbations produce stronger
gravitational waves than cases wherein no perturbation is
considered, which is consistent with the stronger oscilla-
tions in the rest-mass density observed in cases with
pressure depletion.
In [70] it was posited that the dynamical migration of

marginally stable hadronic configurations toward the stable
hybrid branch (labeled in that study as a “mini collapse”)
led to a possibly detectable burst of GWs at current and
future generation detectors for an event at a distance of
10 kpc. In our cases we do not observe a “mini collapse”
scenario (since we do not start with hadronic configura-
tions), but expect the strength of the GWs to be comparable
to the mini collapse scenario of [70] because of the similar
size of oscillations within similar mass stars. Thus, we

calculate the strain associated with sources at the same
distance as [70] for comparison. The strong quasiperiodic
oscillations observed throughout the evolution of all rotat-
ing models allows for rotating systems which produce
gravitational waves with a strong periodicity. The signal
associated with these systems builds up strength at roughly
constant oscillation frequency as the central region con-
tinues to bounce between phases, thereby increasing the
detectability of such sources. In Fig. 13 we show the

FIG. 12. Left panel: plus polarization of the GW strain hþ as a function of time (scaled by the dynamical time τdyn) for models
T901.3a0.2 (solid line) and T9−0.011.3 a0.2 (dashed line) at a distance of 10 kpc assuming an ideal detector orientation. Center panel: same as
the left panel, but for models T901.3a0.4 and T9−0.011.3 a0.4. Right panel: same as the left and center panels, but for models T901.3a0.6 and
T9−0.011.3 a0.6.

FIG. 13. Characteristic strain hc for a source at 10 kpc for
models T9−0.011.3 a0.2 (blue solid line), T9−0.011.3 a0.4 (magenta dashed
line) and T9−0.011.3 a0.6 (orange dotted line). We also show the noise
curves for future GW observatories including Advanced LIGO
(upper line, labeled aLIGO) Einstein Telescope (middle line,
labeled ET), and Cosmic Explorer (lower line, labeled CE).
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characteristic strain hc ¼ 2fjh̃j (where h̃ is the frequency-
domain signal associated with the GWs in Fig. 12) for all
rotating models with negative pressure perturbations at a
distance of 10 kpc along with the noise curves of several
future GWobservatories. The peak frequency for all signals
is fpeak ≈ 2 kHz, which falls within a low-sensitivity band
for these detectors. We note that the short lived hybrid star
remnant observed in [78] underwent oscillations which
produced GWs with a peak frequency of approximately
3 kHz, which is comparable to our findings. For the
distance considered, the GWs for the rotating cases in
our study would be detectable by Advanced Ligo (aLIGO)
[148], Einstein Telescope (ET) [149] and Cosmic Explorer
(CE) [150]. Specifically, we assume a signal-to-noise ratio
(SNR) detection threshold of 8 at each detector (see [151]
for the standard definition of SNR we use here). At this
SNR threshold, all rotating models in our study are
detectable at the three observatories we consider. The
detectability increases for models with stronger rotation.
We note that near monochromatic GWs may also be
expected from oscillating neutron stars. We leave the
exploration of how the signals associated with the oscil-
lations of hybrid stars may be distinguishable from those
associated with oscillating neutron stars to future work.
Following a GW signal associated with the inspiral of a

WDNS, a distinct higher-frequency signal may be observed
which could indicate that the remnant underwent strong
oscillations between the hadronic and quark phases, similar
to the rotating models in our study. We intend to study this
scenario in a future work. For sources at a distance of
dsource ≳ 1 Mpc, only the models with high spin (models
with a ≥ 0.4) produce detectable signals at all observato-
ries. At this increased distance, models T901.3a0.2 and
T9−0.011.3 a0.2 are not detectable at aLIGO but are detectable
at ET and CE, while all other rotating models in our study
are detectable at the observatories we consider. Thus, third-
generation observatories could potentially see such events
out to the Andromeda galaxy.

VII. CONCLUSION

Our simulations suggest that unstable branch hybrid
configurations tend to migrate toward the hadronic
branch—the second family of compact objects—on a
dynamical timescale. We find that different types of
perturbations drive unstable branch hybrid stars away from
the stable hybrid (third-family) branch or incite models to
temporarily undergo strong oscillations. Specifically, we
find that quasiradial perturbations induced by positive
pressure perturbations drive the stars toward the hadronic
(second-family) branch, and that pressure depletion tem-
porarily drives the stars away from the stable hadronic
branch. Despite being able to temporarily drive the stars
away from settling into a second family configuration, we
were not able to force any configurations to settle into a

stable third-family model. This is despite the fact that
during the evolution the maximum density reaches and
exceeds the counterpart stable twin star central density.
In select cases we confirmed that the final states reached

by models which tend toward the hadronic branch are
consistent with evolutions of the corresponding stable
lower-density equilibrium model with the same rest mass
as that of the initial configuration. In cases exhibiting small
oscillations near the end of the simulations, features of the
evolution (such as a decaying amplitude of rest-mass
density oscillations) suggest that given enough time, all
models will settle into a configuration resembling their
respective stable lower-density counterparts. We find that
rotating models also naturally tend toward the second-
family branch. In rotating cases with pressure depletion, we
find that the quasiperiodic oscillations can persist on
significant timescales.
After investigating the stability of the stable twin star, we

find that these configurations are stable (as expected from
the turning point theorem), and they do not exhibit large
oscillations that would lead them to transition to the
unstable regime. This suggests, that these stable twin star
configurations may need to be reached in a quasistatic way
for them to naturally form. However, this could be
challenging in standard astrophysical scenarios where
low mass hybrid stars may be born (such as systems which
produce proto-neutron stars [72,79,85–89], following white
dwarf–neutron star mergers [90–95], or a slow increase in
central density due to magnetic field decay [152] or stellar
spin-down [153]. This is because as the central density
increases the hadronic branch is encountered first, and if the
density increases further to cross over into the phase
transition, the EOS softens, and the star may undergo
collapse until the density becomes high enough for a
bounce to take place and enter the oscillation cycles we
observed here in the case of unstable twin stars. Our
findings suggest that if the hadron-quark phase transition is
over a large energy density range, it may be difficult to form
stable twin stars in nature. If quark matter deconfinement
takes place in compact star interiors, it appears that stable
hybrid stars more massive than the twin star regime may be
preferably formed. This also provides a alternative for-
mation scenario for stable twin stars, whereby a massive
hybrid star just above the maximum mass second-family
configuration first forms, which subsequently loses
mass (e.g., through winds) and enters the stable twin star
regime.
Our results show that for sufficiently rapidly spinning

stars, these quasiperiodic oscillations the stars may
undergo, can produce GW signatures characteristic of
sharp phase transition with a large jump in energy density
(driven by the softening and stiffening of the EOS over) that
can be detectable by ground based observatories as long as
these sources are Galactic, but could be detectable out the
Andromeda galaxy by third-generation observatories.
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We conclude by pointing out caveats of the present
study. Our work provides only some example cases of
hybrid hadron quark EOSs that lead to the emergence of a
third-family of compact objects. Since the solution space of
hybrid stars is EOS-dependent [29], a more extensive study
should treat additional EOSs (with varying ranges over
which the hadron-to-quark phase transition takes place),
different types of perturbations, and probing other parts of
the solution space of equilibrium models. For instance, one
may consider a wider variety of rotating models to under-
stand the interplay between rotation and their quasiperiodic
oscillations. In addition, one can consider the role of
rotation and the growth of nonaxisymmetric instabilities
(see [26] for a comprehensive review on the types of
instabilities relevant to rotating relativistic stars). Finally,
differential rotation and magnetic fields can be important
following mergers, which significantly affect the dynamics
of possible BNS merger remnants [133,154–158] or
following a WDNS merger. We leave the investigation
of a more extensive solution space on the dynamics and
mergers to future studies.
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APPENDIX A: TEST OF STABILITY AND
RESOLUTION STUDY

To test that our modified EOSs allow for stable evolu-
tions, we consider the evolution of a stable branch hybrid
star with the A4 EOS with ϵc ¼ 20 × 1015 g cm−3 (model
A402.0) and for the T9 EOS with ϵc ¼ 2.3 × 1015 g cm−3
(model T902.3). In the left panel of Fig. 14 we show the
fractional change in central rest-mass density for models
A402.0 and T902.3. We note that these models are not twin
stars, and we discuss the stability of stable branch twin stars
in Appendix B. We find that the test models are stable over
several dynamical timescales, and showed oscillations in
the rest-mass density of at most 2.5% (1%). These tests
ensure that the migration of unstable branch hybrid stars
toward the hadronic branch are not caused by a lack of
stability of hybrid star models using our modified EOSs.
We also consider the effect of the initial pressure

perturbations on the constraints during evolution. We focus
on the cases of model A401.15, A4

−0.01
1.15 , and A4þ0.01

1.15 . In the
center panel of Fig. 14 we show the L2 norm of the
Hamiltonian H constraint for these models. We find that
the constraints are initially small and quickly saturate to
approximately constant values. The size and steady state
value of the Hamiltonian constraint is only weakly affected
by the inclusion of pressure perturbations. This behavior
holds for all cases where we include initial perturbations,
including the case where we perturb the initial solution with

FIG. 14. Left panel: fractional change in the central rest mass density ρb;c for stable hybrid branch models A402.0 (magenta solid line)
and T902.3 (blue dashed line). Center panel: L2 norm of the Hamiltonian H constraint for models A4−0.011.15 (red line), A401.15 (dark blue
line), and A4þ0.01

1.15 (yellow line) as a function of time (scaled by the dynamical time τdyn). The constraints in cases where a pressure
perturbation was excited at t ¼ 0 are comparable to the case of equilibrium evolution. Right panel: L2 norm of the Hamiltonian H
constraint as a function of time (scaled by the dynamical time τdyn) for model A4−0.011.25 at three different grid resolutions. We show results
for the canonical (blue line), medium (green line) and high (red line) resolution grids which employ 64, 80, and 96 grid points per hybrid
star radius, respectively.
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larger or smaller size negative pressure perturbations (see
right panel of Fig. 6). As such, our systematic use of
changes to the pressure of form Eq. (11) are justified as
small perturbations to the initial equilibria that are smaller
than the truncation error of the calculation as also illustrated
by the convergence plot in the right panel of Fig. 14.
To assess the convergence of our solutions, we perform a

resolution study of the A4−0.011.25 model. We consider two
additional, higher resolution runs with 1.25 and 1.5 times
the resolution of the canonical grid, which we label as our
medium- and high-resolution runs, respectively. In the right
panel of Fig. 14 we show the L2 norm of the Hamiltonian
and momentum constraints in the case of the A4−0.011.25 model
for our canonical- (blue lines), medium- (green lines), and
high- (red lines) resolution grids, which employ at least 64,
80, and 96 grid-points per hybrid star radius, respectively.
We find that the salient features of evolution (including the
initial contraction of the configuration and subsequent
bounce between phases) are generally invariant through
higher resolution simulations. Increasing the resolution
leads to a slightly later initial bounce and a slightly smaller
maximum amplitude of the central rest-mass density, but
the evolution of the model is qualitatively invariant after
increasing the resolution. We find that the constraints
converge to zero with increased grid resolution at approx-
imately second-order, as expected for our numerical
scheme.

APPENDIX B: EVOLUTION OF STABLE
HYBRID TWIN STARS

As an exploration of possible transitions between fam-
ilies of compact stars, we consider the evolution of stable
branch hybrid twin stars. We focus on the T9 EOS. We
construct a model which is the stable hybrid twin star
counterpart to the third entry on Table II. We consider this
model under both equilibrium evolution (which we label
T901.48) and a large positive pressure perturbation of 5% in
an effort to drive the model toward a lower density
equilibrium (which we label T9þ0.05

1.48 ). In Table IV, we list
some relevant properties of the stable hybrid twin stars we
consider.

In Fig. 15, we present the evolution of the maximum
rest-mass density for the models listed in Table IV. The
evolution of these models is both an important test of the
stability of the stable branch hybrid stars built with our
modified EOSs, and serves as a case study of whether
stable branch hybrid stars could conceivably migrate to
the unstable regime and thereby dynamically transition
toward the stable hadronic branch. Our findings suggest
that stable branch hybrid stars may not easily transition
into the unstable branch. Model T901.48 exhibits very small
radial oscillations over the simulation time of t ∼ 15τdyn
(shown using the solid blue line in Fig. 15). Model T9þ0.05

1.48
undergoes much stronger oscillations than T901.48, but the
central rest-mass density never dips below the value of
ρfb;tr for EOS T9 (see Table I for the value of ρfb;tr for this
EOS), indicating that the central region remains in the
quark phase and that the configuration is oscillating about
the initial stable hybrid branch model. Oscillations in the
rest-mass density for model T9þ0.05

1.42 do not grow above
5%. The evolution of this model demonstrates that it is
stable to radial perturbations, as predicted by the turning-
point theorem. In conclusion, this case study demonstrates
that it may require strong perturbations for configurations
on the stable hybrid twin branch to dynamically transition
to the unstable branch and thereby migrate toward lower
density equilibria. On the other hand approaching these
solutions dynamically from the second family requires
strong perturbations whose outcome based on our study of

TABLE IV. Properties of the stable hybrid models we consider,
as a case study of possible dynamical transitions from stable
hybrid twin stars to lower density equilibria. For each model, we
list the model name, the size of the pressure perturbation
parameter ξ [see Eq. (11)], the central energy density ϵc and
rest-mass density ρb;c (in units of 1015 g cm−3), the gravitational
mass M and rest mass M0 (in units of M⊙), and the compactness
C. All models in this case study are built using the T9 EOS.

Model ξ ϵc ρb;c M M0 C

T901.48 0.00 1.48 1.25 1.53 1.68 0.18
T9þ0.05

1.48
0.05 1.48 1.25 1.53 1.68 0.18

FIG. 15. Central rest-mass density ρb;c as a function of time
(scaled by the dynamical time τdyn) for the models on the stable
hybrid branch listed in Table IV. In blue we show results for the
evolution of models T901.48 and T9þ0.05

1.48 using solid and dashed
lines, respectively.
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the unstable twin stars is that the stable twin stars are not
the preferred end states. Instead the second-family sol-
utions appear to be the natural end states. This suggests
that stable twin star solutions may be reached through
quasistatic changes from heavier stable hybrid stars that
lose mass, e.g., through winds, to end up into the twin star
regime. A closer analysis of the dynamics of stable and

marginally stable hybrid twin stars under different types
of EOS descriptions and perturbations is warranted before
we can be conclusively state that stable hybrid twin stars
ubiquitously cannot transition to the unstable regime;
we leave a more detailed investigation of dynamical
transitions away from the stable hybrid branch to
future work.
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