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We study the mass-radius relation and the second Love number of compact objects made of ordinary
matter and non-self-annihilating fermionic dark matter for a wide range of dark matter particle masses, and
for the cases of weakly and strongly interacting dark matter. We obtain stable configurations of compact
objects with radii smaller than 10 km and masses similar to Earth- or Jupiter-like stellar objects. In certain
parameter ranges, we find second Love numbers which are markedly different compared to those expected
for neutron stars without dark matter. Thus, by obtaining the compactness of these compact objects and
measuring their tidal deformability from gravitational wave detections from binary neutron star mergers,
the extracted value of the second Love number would allow us to determine the existence of dark matter
inside neutron stars irrespective of the equation of state of ordinary matter.
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I. INTRODUCTION

Astrophysical and cosmological observations indicate
that most of the mass of the Universe appears in the form of
dark matter (DM) [1–3]. The nature of DM is, however, still
elusive. Whereas there are direct methods for detecting DM
using particle accelerators [4,5] or analyzing DM scattering
off nuclear targets in terrestrial detectors [6], constraints on
the properties of DM can be extracted by studying the
effects of DM on compact objects, such as white dwarfs
and neutron stars. Indeed, the possible gravitational col-
lapse of a neutron star due to accretion of DM can set
bounds on the DM properties [7–10]. Also, constraints on
DM can be obtained from stars that accrete DM during their
lifetime and then collapse into a compact star, inheriting the
accumulated DM [11]. Moreover, the cooling process of
compact objects can be affected by the capture of DM,
which subsequently annihilates [12–18]. At the same time,
self-annihilating DM accreted onto neutron stars may
significantly change their kinematical properties [19] or
provide a mechanism to seed compact objects with long-
lived lumps of strangelets [20]. Furthermore, neutron stars

that accommodate non-self-annihilating DM have emerged
as an interesting astrophysical scenario for analyzing the
effects of DM on hadronic matter (or even quark matter)
under extreme conditions [16,21–39]. In this context,
the existence of compact objects with Earth- or Jupiter-
like masses but unusual small radii has been put forward
[40–42], allowing for a new scenario to determine the
existence and nature of DM.
Recently, the detection of gravitational waves (GWs)

from the merger of a binary neutron star system has opened
a new venue for probing the existence of DM [43,44].
Whereas the structure of neutron stars can be modified by
DM in the postmerger phase [45–48], the GW signal also
depends on the deformation of the binary neutron star
system in the inspiral stage. This information is encoded in
the second Love number, and hence in the tidal deform-
ability [49,50]. The presence of DM will change the tidal
deformability, thus allowing for constraining DM proper-
ties. Also, the combination of GW detections with x-ray
astronomy, from NICER [51,52] or eXTP [53], and radio,
e.g., SKA [54], will help us to determine the presence and
nature of DM in compact objects, such as neutron stars.
In this paper, we study compact stellar objects that are

made of ordinary neutron star matter (OM) admixed with
non-self-annihilating DM. In order to do so, we have
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corrected [55] and extended the previous works [40,41] by
analyzing the mass and radius configurations of these
compact objects for different DM particle masses, and
for weakly and strongly interacting DM. Indeed, in the
present manuscript we have performed a detailed and
deeper analysis of the different configurations, delineating
the trends with the mass and the strength of the DM
interaction—in particular, for the solutions that differ from
the neutron star and white dwarf branches. Our final goal is
to determine the second Love number of these new mass-
radius configurations in view of the recent results coming
from GW events. The tidal deformability has been inves-
tigated for boson stars in Refs. [56,57], for pure fermionic
dark stars in Refs. [58,59], and for a mixture of bosonic DM
and neutron star matter in Refs. [34,37]. Note that Ellis
et al. in Ref. [34] mention fermionic DM, but the
calculations are only done for bosonic DM. There is also
one recent work adding fermionic DM in neutron stars to
constrain DM parameters from pulsar data [60]. However, a
calculation of the Love number is missing. In all the above
cases, the parameters of DM are confined so that the
compact star configurations have masses of the order of
ordinary neutron stars. A systematic and parametric study
in terms of different DM masses and interactions has not
been done in the literature. To the best of our knowledge,
there is no work yet studying the second Love numbers as a
function of compactness for all different possible configu-
rations of mass and radius in the case of fermionic DM
admixed with fermionic OM, as discussed in the present
manuscript [61].

II. FORMALISM

A. TOV equations for dark compact stellar objects

In the following, we investigate compact objects that are
made of OM admixed with non-self-annihilating DM,
following the steps of Ref. [40]. These two types of matter
are described by two fluids that only interact gravitationally
[24]. One proceeds by solving simultaneously the coupled
TOV (Tolman-Oppenheimer-Volkoff) equations for OM
and DM in dimensionless form as

dp0
OM

dr
¼ −ðp0

OM þ ε0OMÞ
dν
dr

;

dmOM

dr
¼ 4πr2ε0OM;

dp0
DM

dr
¼ −ðp0

DM þ ε0DMÞ
dν
dr

;

dmDM

dr
¼ 4πr2ε0DM;

dν
dr

¼ ðmOM þmDMÞ þ 4πr3ðp0
OM þ p0

DMÞ
rðr − 2ðmOM þmDMÞÞ

; ð1Þ

where p0 and ε0 are the dimensionless pressure and energy
density, respectively, defined as p0 ¼ p

m4
f
and ε0 ¼ ε

m4
f
, with

mf being either the neutron mass (mn) or the mass of the
fermionic DM particle (mF). We choose the latter one.
Then, the physical mass and radius for each species are
R ¼ ðMp=m2

FÞr and M ¼ ðM3
p=m2

FÞm, respectively, where
Mp is the Planck mass [64].
The equation of state (EOS) for OM is given by the

equation of state EOSI from Ref. [65]. The different EOSs
obtained in Ref. [65] are constrained by using input from
low-energy nuclear physics using chiral effective theory
and the high-density limit from perturbative QCD. The
regime between these two limits is described by inter-
polated piecewise polytropes that are restricted by obser-
vational pulsar data. In particular, the EOSI is the most
compact one, with maximum masses of 2 M⊙. We, more-
over, map EOSI with inner- and outer-crust EOSs using
Refs. [66,67], respectively. For ρ < 3.3 × 103 g=cm3, we
use the Harrison-Wheeler EOS [68].
In the case of DM, we consider non-self-annihilating

fermions. Two cases are studied, weakly and strongly
interacting DM. The strength of the interaction is controlled
by the strength parameter, y ¼ mF=mI , which is defined as
the ratio between the mass of the fermionic dark particlemF
and the interaction mass scale mI [see Eqs. (34) and (35) in
Ref. [64] ]. For strong interactions, mI ∼ 100 MeV (inter-
action scale related to the exchange of vector mesons),
while for weak interactionsmI ∼ 300 GeV (exchange of W
and Z bosons). We consider two extreme cases—that is,
y ¼ 10−1 and y ¼ 103 for weakly and strongly interacting
DM, respectively.
In order to solve the TOVs, one needs to determine the

initial central pressure for both species. Following
Ref. [40], we fix the ratio of central pressures to different
values to take into account different scenarios regarding the
impact of the DM component. In particular, in this paper we
consider

R ¼ p0;DM

p0;OM

�
mn

mF

�
4

; ð2Þ

where p0 is the central pressure for DM or OM.
Moreover, for the analysis of the compact objects with

DM content, one first has to perform an analysis of the
stable configuration for both OM and DM. The stability
arguments can be found, for example, in Ref. [69], where
the stability of the different radial modes in a star is
analyzed. In the following, we give a short description.
In order to check the stability of a given configuration,

one has to consider small radial perturbations of the
equilibrium configuration by solving the Sturm-Liouville
eigenvalue equation, which yields eigenfrequencies ωn
[69]. The eigenfrequencies of the different modes form a
discrete hierarchy ω2

n < ω2
nþ1, with n ¼ 0; 1; 2… being real

numbers. A negative value of ω2
n leads to an exponential

growth of the radial perturbation and collapse of the star.
The determination of the sign of the mode results from the
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analysis of the mass of the star versus the mass density or
radius. When the mass reaches an extremum, a mode
changes sign. What mode changes sign depends on whether
the mass-radius relation is going clockwise or counter-
clockwise at the extremum. A clockwise orientation leads
to a eigenfrequency going positive again—that is, a mode
becoming stable again. A counterclockwise orientation
leads to an additional unstable mode. Thus, starting at
low mass densities where all eigenfrequencies are positive,
one can perform the stability analysis for higher mass
densities by studying the changes of sign of the different
modes while keeping the hierarchy among them. Only
when all eigenfrequencies are positive will the star be
stable [70,71]. In this way, one can study the simultaneous
stable regions for OM and DM, as done in Ref. [40].
We close this discussion on the stability of two-fluid

configurations in general relativity with a word of caution.
While our prescription is valid for one-fluid configurations
(see Ref. [70]), a full stability analysis for two fluids would
require us to solve the coupled Sturm-Liouville eigenvalue
equations. More rigorous investigations in this direction
just appeared recently involving time-consuming numerical
computations [72–74] (for earlier work, see Refs. [25,26]).
For neutron stars with an admixture of noninteracting dark
matter, stable solutions were found in parameter regions
which did not seem feasible in a naive analysis [72,73]. The
stability of quark stars admixed with DM was studied by
solving the combined Sturm-Liouville eigenvalue equa-
tions for the two-fluid TOV equations in Ref. [74]. Their
results show that only small quark matter masses are
dynamically stable, leading to stable dark strange planets
and dark strangelets, and that the stability of DM stars are
mainly affected for small fermion masses. We leave a full
stability analysis on the stability of the OM and DM
configurations studied here as a topic of investigation for
future numerical studies.

B. Tidal deformability for dark compact stellar objects

The detection of gravitational waves of binary neutron
star mergers, in particular from the GW170817 event [43],
has posed recent constraints of the EOS through the so-
called tidal deformability during the inspiral phase.
The tidal deformability λ measures the induced quadru-

pole moment, Qij, of a star in response to the tidal field of
the companion, Eij [49,50]:

Qij ¼ −λEij: ð3Þ
The tidal deformability is connected to the dimensionless

second Love number k2 as

λ ¼ 2

3
k2R5; ð4Þ

where R is the radius of the star. The tidal Love number can
be calculated from

k2 ¼
8C5

5
ð1 − 2CÞ2½2þ 2CðyR − 1Þ − yR�

× f2C½6 − 3yR þ 3Cð5yR − 8Þ�
þ 4C3½13 − 11yR þ Cð3yR − 2Þ þ 2C2ð1þ yRÞ�
þ 3ð1 − 2CÞ2½2 − yR þ 2CðyR − 1Þ� lnð1 − 2CÞg−1;

ð5Þ

with C being the compactness parameter, that for the case
of dark compact objects is given by C ¼ M=R, with
M ¼ MDM þMOM and R ¼ RmaxðROM; RDMÞ. The quan-
tity yR ≡ yðRÞ is obtained by solving, together with the
TOVs of Eq. (1), the following differential equation
for y [75]:

r
dyðrÞ
dr

þ y2ðrÞ þ yðrÞFðrÞ þ r2QðrÞ ¼ 0; ð6Þ

with

FðrÞ ¼ r − 4πr3ððε0OM þ ε0DMÞ − ðp0
OM þ p0

DMÞÞ
r − 2ðmOM þmDMÞ

; ð7Þ

QðrÞ ¼ 4πr
r − 2ðmOM þmDMÞ

×

�
5ðε0OM þ ε0DMÞ þ 9ðp0

OM þ p0
DMÞ

þ ε0OM þ p0
OM

c2s;OM
þ ε0DM þ p0

DM

c2s;DM
−

6

4πr2

�

− 4

�ðmOM þmDMÞ þ 4πr3ðp0
OM þ p0

DMÞ
r2ð1 − 2ðmOMþmDMÞ

r Þ

�
2

; ð8Þ

where csðrÞ2 ¼ dp0=dε0 is the squared speed of sound for
OM (cs;OM) and DM (cs;DM). The starting condition for y in
the center of the star is yðr ¼ 0Þ ¼ 2. Once k2 is known, the
dimensionless tidal deformabilityΛ can then be determined
by the relation

Λ ¼ 2k2
3C5

: ð9Þ

III. RESULTS

In this section, we show our results for the mass-radius
relation and second Love number of compact stellar objects
with DM content.
Figure 1 shows the stable solutions for compact stellar

objects with DM content. We show the total mass of the
compact object as a function of the radii of OM (visible
matter) for different masses of the dark particle (different
rows) and two extreme interaction strengths for the
DM component—that is, weakly interacting DM, y ¼ 0.1
(left column), and strongly interacting DM, y ¼ 1000
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(right column). In each panel, we show the masses and radii
for three different ratios between the central pressure of DM
with respect to that of OM [R in Eq. (2)], using red (thin),
blue (medium), and gray (thick) lines. Depending on this
ratio, one, two or even three stable branches might appear.
Note that we number the stable branches with “1,” “2” or
“3” for the middle value of the ratio (blue lines). Also, note
that the present calculation corrects and extends the
computation done in Refs. [40,41] for a larger set of
DM particle masses.
For low values of the ratio R (red lines), the DM

content is negligible. Therefore, two stable branches are
clearly visible resulting from the dominance of the OM
component—that is, the branch associated with white
dwarfs that appears for radii larger than 103 km with

maximum masses of 1 M⊙, and the neutron star branch
for radii 10–102 km and maximum masses of 2 M⊙.
As we increase the ratio R up to 102 (gray lines),

whereas we still obtain the white dwarf branch for the
weakly interacting case, for higher central pressures, a new
branch appears, which is dominated by the DM component.
The masses and radii of this branch depend on the mass of
the DM particle and the interaction strength. The total mass
is dominated by the mass of the DM component, scaling
with the inverse of the square of the dark particle mass, as
discussed in Ref. [64]. Moreover, as seen in Ref. [64], for
the weakly interacting case, the slope of the mass-radius
curve for masses well below the maximum mass is propor-
tional to R−3

DM. For strongly interacting DM, the mass-radius
relation is constant for a given RDM, as presented in

FIG. 1. The total mass as a function of the radius of ordinary matter for compact stellar objects using different DM particle masses
(different rows), and for weakly interacting DM (left column) and strongly interacting DM (right column).
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Ref. [64]. Note that this behavior cannot be seen in Fig. 1,
as the total mass of the star is plotted against the radius of
the OM and not the radius of DM.
We now turn our attention to intermediate values of the

ratio R (blue lines) in Fig. 1. For that case, we labeled the
different curves in Fig. 1 with “1,” “2,” or even “3,” with 1
being the curve closer to the white dwarf branch for low
values of R. Moreover, we show in Table I the amount of
DM mass with respect to the total mass (in percent) at the
maximum mass for 2 in Fig. 1. Note that for the strongly
interacting case with mF ¼ 1 GeV, there is only one stable
branch, labeled with “1.” We consider weakly interacting
DM (WI DM) and strongly interacting DM (SI DM). The
number in the brackets corresponds to the amount of DM
mass at the maximum mass for the 3 stable branch (in the
case where it exists), labeled with “3” in Fig. 1.
We start by analyzing the weakly interacting DM and

intermediate values of R. For that case and a DM particle
mass of 1 GeV (close to the nucleon mass), the mass-radius
relation 2 for R ¼ 1 is close to the neutron star branch of
R ¼ 10−2, being slightly shifted to lower masses and radii.
The amount of DM mass with respect to the total mass at
the maximum mass-radius configuration is 21%, as shown
in Table I. When the mass of the DM particle is increased,
the 2 branch drops below the neutron star branch (observed
for low values of R), and the mass-radius stable configu-
rations appear closer to the DM-dominated branch (seen for
large values of R) and away from the neutron and white
dwarf branches (obtained for low values of R). The mass
and radii of these solutions, already described as dark
compact planets (DCPs) in Ref. [40], scale with the inverse
of the DM mass squared. Note that the larger the DM mass
is, the larger the central pressure of DM is needed in order
to obtain the DCPs [see Eq. (2)]. Moreover, the amount of
DM for the 2 stable branch increases with increasing DM
particle mass, getting closer to the DM-dominated branch
(observed for large values of R), whereas the 3 branch

(when it exists) lies closer to the neutron star branch (seen
for small values of R), and hence contains a small amount
of DM.
For the strongly interacting case and intermediate values

of R, the masses and radii of the 2 branch are larger
compared to those of the neutron star branch (seen for low
values of R). These solutions for different DM masses
contain large amounts of DM, as seen in Table I. Note that
for the DMmass of 10 GeV, we have a neutron star inside a
larger heavy DM halo. Only for a DM mass of 100 GeV
does the 2 branch drop below the neutron star branch
(observed for low values of R). Moreover, for a DM mass
of 100 GeV, a branch labeled with “3” appears close to the
neutron star branch (obtained for low values of R),
repeating the pattern seen for the weakly interacting case.
This solution contains a small fraction of DM at the
maximum mass, as also seen for the 3 branch in the
weakly interacting case.
Next, we analyze the second Love number k2 of the

different star configurations shown in Fig. 1. As seen in
Eq. (9), a large second Love number means that the star is
deformed easily by an external tidal field (large values ofΛ).
Figure 2 shows k2 against the compactness of the star C

for the same star configurations displayed in Fig. 1—that is,
for different DM masses (different rows) and for weakly
interacting DM, y ¼ 10−1 (left column), and for strongly
interacting DM, y ¼ 103 (right column). Note that the
white dwarf branch is not visible in the plots for all cases,
because the compactness is too low (C ≈ 10−4).
We start by considering low values of R for all masses

and both strengths (red lines). Those are associated with the
neutron star branch—that is, configurations dominated by
OM with only a small amount of DM. The values of k2
follow the expected pattern for neutron stars with a
hadronic core, as described in Ref. [50]. By increasing
the central pressure, one moves from k2 → 0 at C → 0 to
larger values of k2. At a compactness of C ≈ 0.1, k2 reaches
the maximum value and then decreases for large compact-
ness. The maximum compactness of ≈0.29 is achieved by
neutron stars with R ∼ 10 km with a mass of 2 M⊙.
Then, we study large values of R for all masses and both

strengths (gray lines). As expected, the mass-radius configu-
rations are close to the purely fermionic case [64]. The larger
the central pressure is, the smaller the k2 is with increasing
compactness. Moreover, for strongly interacting DM (right
column), larger values for k2 andC are achieved as compared
to the weakly interacting case. Note that the compactness
reached for DM-dominated stars should be smaller than the
limits dictated for pure fermionicmatter.Without interactions,
this limit is given by C ¼ 0.11, whereas for strongly
interacting matter it results in C ¼ 0.21 [76].
We finally turn to intermediate values of the ratioR (blue

lines). Starting with the weakly interacting case and a DM
particle mass of 1 GeV, one notices that the curve follows
the trend of the neutron star branch (red line for small

TABLE I. Amount of DM mass (MDM) with respect to the total
mass (M) in percent at the maximum mass-radius configuration
for the 2 stable branch (labeled with “2” in Fig. 1) for different
values of the DM particle (mF) and for the case of intermediate
values of the ratio of pressures between the DM and OM
components. We consider weakly interacting DM (WI DM)
and strongly interacting DM (SI DM). Note that for the strongly
interacting case with mF ¼ 1 GeV, there is only one stable
branch, labeled with “1.” The number in the brackets corresponds
to the amount of DM mass for the 3 stable branch (if it exists),
labeled with “3” in Fig. 1.

mFðGeVÞ WI DM (%) SI DM (%)

1 21 98.5
5 81 (8) 90
10 99 (2) 71
100 ∼100 (∼0) 81 (8)
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values of R), as one would expect by the behavior of
branch 2 in the upper-left plot of Fig. 1. However, starting
from a fast rise of k2 with compactness, two kinks occur at
C ≈ 0.012 and C ≈ 0.07. Those kinks result from the fact
that for the computation of k2, one takes the largest radius
of a given mass-radius configuration. The largest radius is
ROM for small compactness up to the first kink, where RDM
becomes the largest, and back to ROM being the largest in

the second kink. After the second kink, the values of k2 are
smaller compared to the OM-dominated case. The maxi-
mum compactness in this configuration is given byC ≈ 0.2.
When the DM particle mass is increased to 5 GeV for

weakly interacting DM, the behavior of the k2 for inter-
mediate values of the ratio R (blue lines) changes drasti-
cally as compared to the case of a DM particle mass of
1 GeV. This can be understood by analysing the behavior of

FIG. 2. The second Love number k2 as a function of compactness C for compact stellar objects using different DM particle masses
(different rows) and for both weakly interacting DM (left column) and strongly interacing DM (right column).
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the branches 2 and 3 as compared to the OM-dominated
case (low values of R) or the DM-dominated one (large
values of R) in Fig. 1. With increasing central pressure, k2
rises steeply until it reaches the DM-dominated mass-radius
configuration, displayed by the gray line. A kink occurs as
the largest radius moves from ROM to RDM. Afterwards, the
line follows the DM-dominated mass-radius configuration
and returns to C → 0. Then, the branch 3 appears, being
close to the OM-dominated mass-radius configuration. This
pattern repeats for larger DM particle masses. Note that the
values for k2 and C are similar for mF ¼ 5, 10, and
100 GeV, as both quantities are dimensionless and do
not scale with the DM particle mass.
As for the strongly interacting DM matter, the behavior

of the mass-radius configuration for intermediate values of
R changes with increasing DM particle mass, as expected
from the behavior of the mass-radius relation in Fig. 1. For
mF ¼ 1 GeV, branches 1 and 2 are connected without an
unstable regime in between, reaching values for the mass
larger than 20 M⊙ at large radii. As a result, k2 reaches
≈0.22, close to the DM-dominated branch for large values
ofR (gray line). The maximum compactness is then small,
at C ≈ 0.02. For mF ¼ 5 GeV, k2 first increases up to C ≈
0.18 and decreases afterwards. The maximum compactness
is reached at C ≈ 0.04. Note that the values of compactness
cannot be extracted directly from Fig. 1, as the OM radius
(or visible radius) is plotted there, regardless of the fact that
in some mass-radius configurations the largest radius is the
DM one. FormF ¼ 10 GeV, k2 first increases steeply up to
C ≈ 0.16, and then it decreases, following the pattern of the
DM-dominated case up to a value of k2 ≈ 0.04 at a
compactness of C ≈ 0.12. Finally, for mF ¼ 100 GeV,
branches 2 and 3 for the strongly interacting DM display
a similar behavior to the weakly interacting DM case in
Fig. 1, although the mass-radius configuration of the DM-
dominated case (gray line for large values of R) is well
below those of branches 2 and 3. Thus, a similar behavior
for k2 in the weakly and strongly interacting DM cases is
expected, in spite of the values of k2 being smaller than
those in the DM dominated case. The k2 in branch 2
increases to k2 ≈ 0.03. Afterwards, it decreases and
returns to zero for C ≈ 0.05. Branch 3 yields similar values
to the OM-dominated case and reaches a compactness
of C ≈ 0.04.
Our results for the neutron-star-like configurations can

be compared with previous work on the tidal deformability
for neutron stars with an admixture of DM [33,34]. In
Ref. [33], it was found that interacting DM fermions in the
MeV–GeVmass rangewill form a DM halo around neutron
stars increasing the tidal deformability. We see such an
increase in the radius and therefore in the tidal deform-
ability Λ for the strongly interacting case and particularly
pronounced for low fermion masses. In Ref. [34], the
presence of a DM core was leading to a reduced tidal
deformability for neutron-star-like configurations for

weakly interacting bosons. We find similar configurations
with a reduced radius for the weakly interacting case and
light fermion masses, which would give a reduced tidal
deformability Λ [see Eq. (9)].
As a final remark, we should comment on the different

possibilities for the formation of compact objects with DM
content—that is, by means of the accretion mechanisms of
DM onto neutron stars and white dwarfs, as well as by the
primordial formation of DM clumps surrounded by OM.
As argued in Ref. [40], the accretion mechanism (taking
into account the local standard DM density) might not
explain the quantity of DM obtained inside these compact
objects, whereas a larger DM component is expected in the
second case. Moreover, there exists the possibility of
having dark compact configurations coming from structure
formation from DM perturbations growing from primordial
overdensities, as shown in Ref. [77]. Initial density per-
turbations can produce compact objects of DM ranging
from substellar masses to several million solar masses. The
key inputs are vector boson interactions of fermionic DM,
which allows for creating out of the initial primordial
density perturbations compact objects of various mass
scales. The larger the interaction, the smaller the compact
objects can be. E.g., compact objects of planetary size can
be produced for large interaction strengths or by fragmen-
tation or mergers of compact objects. We note that the
interaction used in Ref. [49] via vector boson exchange
gives the kind of EOS for DM we are using in our
investigations.

IV. SUMMARY

In this paper, we have studied compact objects that are
made of OM admixed with non-self-annihilating DM. We
have analyzed their masses and radii for different DM
particle masses for the weakly and strongly interacting DM.
We confirm our previous finding of stable configurations of
OM and DM with radii smaller than 10 km and masses
similar to Earth- or Jupiter-like stellar objects [40].
Moreover, we have determined the second Love number
of these compact objects in view of the recent first
measurements of the tidal deformability from the obser-
vation of gravitational waves from neutron star mergers.
We find that the mixture of OM and DM in compact

objects leads to the appearance of new mass-radius stable
solutions with very distinct second Love numbers. Whereas
a compact star containing small amounts of DM is almost
indistinguishable from normal neutron stars, a large amount
of DM inside neutron stars will lead to compact objects
with radii smaller than 10 km and masses similar to Earth-
or Jupiter-like stellar objects. The second Love numbers of
these dark compact stellar objects (or dark compact planets)
will then be very different from those of normal neutron
stars. The tidal deformability of these dark compact stellar
objects will make them distinguishable and detectable in
the merger of compact objects with future GW detectors.

SECOND LOVE NUMBER OF DARK COMPACT PLANETS AND … PHYS. REV. D 105, 043013 (2022)

043013-7



In addition, it turns out that for a not-too-small
admixture of DM inside neutron stars, the second
Love number is significantly different compared to
ordinary neutron stars or strange quark stars without
DM. As an example, Love numbers of stars made only of
strange quark matter are much higher than those pre-
sented here for the same compactness, as shown in
Ref. [50]. Those are closer to the Buchdahl limit for
incompressible stars, and therefore strange quark stars
will be distinguishable from the dark compact objects
shown in the present manuscript. This feature can serve
as an experimentally accessible observable for the
presence of DM inside neutron stars for a known
compactness and tidal deformability of the merging
compact star which does not rely on the EOS of OM.
We expect that future improved measurements coming
from next-generation gravitational interferometers will

be able to utilize this observable to assess the DM
content of merging compact stars, as emphasized in
Refs. [34,37,56,57,60].
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