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In the early Universe above the weak scale, both baryon B and lepton L numbers are violated by
nonperturabive effects in the Standard Model while B − L remains conserved. Introducing new physics
which violates perturbatively L and/or B, one can generate dynamically a nonzero B − L charge and hence
a nonzero B charge. In this work, we focus on the former scenario, which is also known as leptogenesis. We
show how to describe the evolutions of lepton flavor charges taking into account the complete Standard
Model lepton flavor and spectator effects in a unified and lepton flavor basis–independent way. The recipe
we develop can be applied to any leptogenesis model with arbitrary number of new scalars carrying
nonzero hypercharges and is valid for cosmic temperature ranging from 1015 GeV down to the weak scale.
We demonstrate that in order to describe the physics in a basis-independent manner and to include lepton
flavor effect consistently it is necessary to describe both left-handed and right-handed lepton charges in
terms of density matrices. This is a crucial point since physics should be basis independent. As examples,
we apply the formalism to type-I and type-II leptogenesis models where in the latter case a flavor-covariant
formalism is indispensable.
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I. INTRODUCTION

In the early Universe, if the cosmic temperature is above
the weak scale, the thermal bath contains all the degrees
of freedom of the Standard Model (SM) and perhaps
other new physics degrees of freedom as well if they are
kinematically accessible. To generate a cosmic baryon
asymmetry dynamically (baryogenesis), one needs to
violate at least the baryon number B of the SM. Above
the weak scale when the SM B-violating process is in
thermal equilibrium [1], one needs to identify other charges
which are not in thermal equilibrium such that the charge is
effectively conserved and can remain nonzero. In the SM,
one identifies the baryon minus lepton number B − L as the
exactly conserved charge. If one introduces new physics
which perturbatively violates B − L, together with viola-
tion of charge C and charge parity CP, a nonzero B − L
charge can be dynamically generated. Since B is not
orthogonal to B − L, we have

B ¼ cðB − LÞ; ð1Þ

with c ≠ 0, implying a nonzero B is generated as well.
After baryogenesis is completed, i.e., (B − L)-violating
interaction goes out of equilibrium, while B − L charge
remains conserved, it is important to note that, since B is
not a conserved charge, it can (and in general will) evolve
with cosmic temperature. In other words, the coefficient c
that relates B and B − L in Eq. (1) is temperature dependent
since it depends on the effective charges of the thermal
bath. How can effective charges arise in the early Universe?
They arise as the cosmic temperature increases when some
of the SM interactions go out of equilibrium. In principle,
baryogenesis does not have to go through B − L but can
proceed through other effective charges Q which are not
completely orthogonal to B [2],

B ¼
X
Q

cQQ; ð2Þ

with cQ ≠ 0. In Ref. [3], we have classified all effective
charges of the SM and its minimal supersymmetric exten-
sion, 16 in the former and 18 in the latter, and this opens up
a new avenue for baryogenesis.
In this work, we focus on baryogenesis scenario through

the violation of B − L, which can come from perturbative
interaction which violates L and/or B. We consider the
former scenario, which is also known as leptogenesis [4].
First of all, we show that in order describe leptogenesis in a
basis-independent manner one needs to describe both the
number asymmetries in lepton doublet l and singlet E in
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term of matrices of number densities in their respective
flavor spaces (we will denote them densities matrices) [5].
It is of fundamental importance since physics should not
depend on a particular basis. While the computation of
leptogenesis is usually carried out in a charged lepton mass
basis, one should be cautious that this description has
limited validity, and in particular, if the result is basis
dependent, then it is a red flag that something must be
wrong. In this flavor-covariant formalism [6,7], the SM
lepton flavor effect is consistently taken into account.1 With
the effective charges identified in Ref. [3], we are able to
include the complete spectator effects due to quark Yukawa
and SM sphaleron interactions in a unified manner, which
to our knowledge has not been carried out before. (See
Ref. [9], in which the spectator effects related to tau and
bottom-quark Yukawa interactions are investigated.) In
Ref. [10], asymmetry in E is not taken in account, and
as a result, one cannot obtain a fully basis-independent
result. In Refs. [6,7], asymmetry in singlet E is considered
while other spectator effects [11,12] pertaining to quark
Yukawa and SM sphaleron interactions are not considered.
This article is organized as follows. In Sec. II, we review

the effective symmetries and charges of the SM in the early
Universe. In Sec. III, we write down the flavor-covariant
Boltzmann equations, taking into account the complete
lepton flavor and spectator effects due to quark Yukawa and
the SM sphaleron interactions. These results are completely
general and, together with the equations in Appendix C,
can be applied to any leptogenesis model (with arbitrary
number of new scalars carrying nonzero hypercharges) for
cosmic temperature ranging from 1015 GeV down to the
weak scale. In Sec. IV, we apply our results to type-I and
type-II leptogenesis models. Finally, we conclude in Sec. V.
In Appendix A, we discuss how number density asymmetry
matrices are related to matrices of chemical potentials; in
Appendix B, we show how the flavor-covariant structure
can be derived using Sigl-Raffelt formalism [5]; and in
Appendix D, we discuss how to determine the transition
temperatures related to spectator effects.

II. EFFECTIVE SYMMETRIES AND CHARGES

In the early Universe, due to the additional scale related
to cosmic expansion, one should consider effective sym-
metries and charges. To illustrate this point, let us consider
the early Universe which is dominated by radiation energy
density ρr ∝ T4 with temperature T and is expanding with
the Hubble rate H ∝ ffiffiffiffiffi

ρr
p

=MPl ∝ T2=Mpl, where MPl ¼
1.22 × 1019 GeV is the Planck scale. Taking all particles to
be massless, the interaction rates among the particles have
to scale as T. At sufficiently high T, all of those interactions

will be slower than the Hubble rate. In this case, if one
assigns a quantum number or charge to each type of
particle, the charge will be effectively conserved since
all particle-number-changing processes are out of thermal
equilibrium (effectively do not occur within a Hubble
time). In the SM, with three families α ¼ 1, 2, 3 of quark
Qα and lepton lα doublets, charged lepton Eα, up-type Uα

and down-type Dα quarks singlets, and a Higgs doublet,
one will expect to have up to 16 effective charges or the
associated global Uð1Þ symmetries. One can conveniently
choose linear combinations of Uð1Þ charges which are
subsequently broken as the cosmic temperature decreases.
This choice leads to Uð1Þx with [3]2

x ¼ ft; u; B; τ; u − b; u − c; μ; B3 − B2; u − s; B3

þ B2 − 2B1; u − d; e; B=3 − Lα; Yg; ð3Þ
where we have denoted the charge associated to each type
of particle as fU1; U2; U3g ¼ fu; c; tg, fD1; D2; D3g ¼
fd; s; bg, and fE1; E2; E3g ¼ fe; μ; τg and Bα refers to
baryon flavor number with the total baryon number
B ¼ B1 þ B2 þ B3, while Lα refers to lepton flavor number
with the total lepton number L ¼ L1 þ L2 þ L3. Out of
these 16Uð1Þx, only the last four remain exact before the
electroweak (EW) symmetry breaking: hypercharge gauge
symmetry Y and the three B=3 − La accidental (global)
symmetries. The rest of the effective symmetries are broken
by the Yukawa and nonperturbative sphaleron interactions.
In the absence of neutrino mass, the SM Lagrangian

contains four accidental Uð1Þ symmetries: the total
baryon number Uð1ÞB and three lepton flavors Uð1ÞLα

.
Nevertheless, there are fewer actual accidental symmetries
of the SM due to the Adler-Bell-Jackiw anomaly. We can
determine if any of the accidental symmetry Uð1Þx is
preserved from its anomaly coefficient associated with the
triangle diagram Uð1Þx − SUðNÞ − SUðNÞ,

AxNN ≡X
i

cðRiÞgiqxi ; ð4Þ

where the sum is over all fermions i of degeneracy gi,
charge qxi under Uð1Þx, and representation Ri under
SUðN ≥ 2Þ gauge group with cðRiÞ ¼ 1

2
in the fundamental

representation and cðRiÞ ¼ N in the adjoint representation.
Since the contribution of each fermion i to the SUðNÞ
sphaleron-induced effective operator is proportional to
cðRiÞ, the effective operator is given by [3]

OSUðNÞ ∼
Y
i

Ψ2gicðRiÞ
i : ð5Þ

In the SM, we see that Uð1ÞB and Uð1ÞLα
are anomalous

[13] with anomaly coefficients
1Reference [8] develops a flavor-covariant formalism which

takes into account the flavors of left-handed SM leptons as well as
the massive right-handed neutrinos in the type-I seesaw model.

2In the minimal supersymmetric SM, there are 18 effective
symmetries and corresponding charges.
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AB22 ≡ 1

2
× 3

�
3 ×

1

3

�
¼ 3

2
; ð6Þ

ALα22
≡ 1

2
× 1 ¼ 1

2
: ð7Þ

Out of four anomalous symmetries, one can form three
linear combinations which are anomaly free. It is conven-
ient to choose the following three anomaly-free symmetries
Uð1ÞB=3−Lα

we mentioned earlier. Then, the anomalous
symmetry Uð1ÞBþL with anomaly coefficient

AðBþLÞ22 ¼
1

2
× 3

�
3 ×

1

3
þ 1

�
¼ 3: ð8Þ

From Eq. (5), one obtains the EW sphaleron effective
operator

OSUð2Þ ∼
Y3
α¼1

QαQαQαlα: ð9Þ

The operator above violates onlyUð1ÞB, and the interaction
due to this operator is in thermal equilibrium [1] from
TB ∼ 2 × 1012 GeV [9] up to TB− ∼ 132 GeV [14].
The SM quark Yukawa terms are given by

−L ⊃ ðyUÞabUaQbϵH þ ðyDÞabDaQbH� þ H:c:; ð10Þ

where the SUð2ÞL contraction between the left-handed
quark Qb and the Higgs H doublets is shown explicitly
with the SUð2Þ antisymmetric tensor ϵ01 ¼ −ϵ10 ¼ 1. If
these terms are absent, one has a chiral symmetry Uð1Þχ
where qχQa

¼ −qχUa
¼ −qχDa

≡ q. Nevertheless, this chiral
symmetry is anomalous with

Aχ33 ¼
1

2
× 3ð2 × qþ qþ qÞ ¼ 6q: ð11Þ

From Eq. (5), one can construct the QCD sphaleron
effective operator as [15]

OSUð3Þ ∼
Y3
α¼1

QαQαUc
αDc

α: ð12Þ

The operator above violates the chiral symmetryUð1Þu, and
the interaction due to this operator is in thermal equilibrium
for T ≲ Tu ∼ 2 × 1013 GeV [9].
The rest of the effective symmetries in Eq. (3) are broken

when the corresponding Yukawa interactions get into
thermal equilibrium, starting from the one involving top
Yukawa, tau Yukawa, and so on. We can estimate the
temperature Tx in which Uð1Þx is broken from the con-
dition when the Uð1Þx-violating rate is equal to the Hubble
rate ΓxðTxÞ ¼ HðTxÞ and obtain [3]

Tt ∼ 1 × 1015 GeV;

Tu ∼ 2 × 1013 GeV;

TB ∼ 2 × 1012 GeV;

Tτ ∼ 4 × 1011 GeV;

Tu−b ∼ 3 × 1011 GeV;

Tu−c ∼ 2 × 1010 GeV;

Tμ ∼ 109 GeV;

TB3−B2
∼ 9 × 108 GeV;

Tu−s ∼ 3 × 108 GeV;

TB3þB2−2B1
∼ 107 GeV;

Tu−d ∼ 2 × 106 GeV;

Te ∼ 3 × 104 GeV; ð13Þ

and we have assumed thermalization at T ∼ 1015 GeV
[16,17]. In principle, one will need to track the evolutions
of all the effective charges, starting from some initial
condition. For instance, after reheating at the end of
inflation with temperature TRH, we can take the initial
condition to be when all the effective charges are zero. The
charge density associated to each effective charge can be
written as

nΔx ¼
X
i

qxi nΔi; ð14Þ

where the number density asymmetry of particle i is
defined as nΔi ≡ ni − ni, where niðnīÞ is the number
density of particle i (antiparticle ī). In this case, the initial
condition will be nΔxðTRHÞ ¼ 0 for all the charges. One
should then track the evolutions of all the nΔxðTÞ with
the Boltzmann equations including all the SM interactions.
To generate some nonzero charges, the three Sakharov
conditions should be fulfilled [18]:

(i) Violation of Uð1Þx,
(ii) C and CP violation corresponding to the process

violating Uð1Þx,
(iii) Out-of-equilibrium condition for the process violat-

ing Uð1Þx.
If the Sakharov conditions are not met for any of the
charges in Eq. (3), one will always have nΔx ¼ 0. If the
Sakharov conditions are met for some of the Uð1Þx (this
does not happen in the SM, and hence physics beyond the
SM is required), one will have nΔxðTgÞ ≠ 0, where Tg is the
temperature when the charge nΔx is being generated. If all
other Uð1Þy≠x remain effective, we have nΔy ¼ 0, while for
Uð1Þy≠x which are not effective, we will necessarily have
nΔy ∝ nΔx. This does not necessarily imply that nΔy ≠ 0

since the constant of proportionality can be zero; i.e.,Uð1Þy
and Uð1Þx are orthogonal to each other. At TB− < T < Te,
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since Uð1ÞB is not effective, we can construct the baryon
charge density from Eq. (14) as

nΔB ¼ c
X
α

nΔðB=3−LαÞ; ð15Þ

where we have assumed zero hypercharge density nΔY ¼ 0.
The coefficient c is not zero since B and B=3 − Lα are
not orthogonal to each other. With the SM degrees of
freedom and assuming that the EW sphaleron interaction
freezes out at 132 GeVafter the EW symmetry breaking at
160 GeV [14], we obtain

nΔBðTB−Þ ¼
30

97

X
a

nΔðB=3−LaÞðTB−Þ; ð16Þ

where we have excluded the top-quark contribution.
Next, we will review briefly how to relate the number

density asymmetries of the SM particles to their corre-
sponding chemical potentials. Since all the SM particles
participate in the gauge interactions, they can thermalize at
a cosmic temperature T ≲ 1015 GeV [16,17] and follow the
equilibrium phase-space distribution

fi ¼
1

e
Ei−μi
T þ ξi

; ð17Þ

where Ei is the energy of particle i, μi is its chemical
potential, and ξi ¼ 1ð−1Þ for i a fermion (boson). For gauge
bosons, their numbers are not conserved, and their chemical
potentials are zero. For the rest of the SM particles, due to the
scatterings with the gauge bosons, the chemical potential of
an antiparticle is related to the corresponding particle by a
negative sign μī ¼ −μi. To take into account flavor corre-
lation of particle i, one can generalize μi to a matrix in its
flavor space. (See Appendix A for details.) In this work,
since we are interested in the lepton flavor effect, we will
generalize μl and μE to matrices in their lepton flavor spaces
(see the next section).
Integrating the phase space distribution (17) over

3-momentum, at leading order in jμij=T ≪ 1 (assuming
that the number density asymmetries of the SM particles are
much smaller than their total number densities in the early
Universe in accordance with observation), the number
density asymmetries are linearly proportional to their
respective chemical potentials

nΔi ≡
Z

d3p
ð2πÞ3 ðfi − fīÞ ¼

T2

6
giζiμi; ð18Þ

where gi is the gauge degrees of freedom and ζi ¼ 1ð2Þ for
i a massless fermion (boson).3 To scale out the effect of

dilution purely due to the Hubble expansion, we will
normalize the matrix of number densities Yi ≡ ni=s by
the cosmic entropy density s ¼ 2π2

45
g⋆T3 with g⋆ being the

effective relativistic degrees of freedom of the Universe
(g⋆ ¼ 106.75 for the SM), and we obtain

YΔi ≡ Yi − Yī ≡ Ynorgiζi
2μi
T

; ð19Þ

where we have defined Ynor ≡ 15
8π2g⋆

. Then, one can relate

YΔi to normalized charge density YΔx ≡ nΔx=s as [2]

YΔi ¼
X
x

giζi
X
y

qyi ðJ−1ÞyxYΔx; ð20Þ

where

Jxy ≡
X
i

giζiqxi q
y
i : ð21Þ

The relation above is completely general (the charges are
completely fixed for any given model), and the temperature
dependence appears only in ζi for particles which are not
massless and in YΔxðTÞ, which should be solved from the
relevant Boltzmann equations. In the next section, we will
discuss how to consider lepton flavor charges and their
coherences with density matrices while treating the effects
of baryons as spectators [11,12].

III. LEPTON FLAVOR EFFECT

In the SM, we have the charged lepton Yukawa term4

−L ⊃ ðyEÞαβEαlβH� þ H:c:; ð22Þ

where lβ and H are, respectively, the left-handed lepton
and Higgs SUð2ÞL doublets, while Eα is the right-handed
charged lepton SUð2ÞL singlet with family indices α,
β ¼ 1, 2, 3. The charged lepton Yukawa coupling can
be diagonalized by two unitary matrices UE and VE,

ŷE ¼ UEyEV
†
E; ð23Þ

where ŷE ¼ 1
v diagðme;mμ; mτÞ with v≡ hHi ¼ 174 GeV

the Higgs vacuum expectation value and me, mμ, and mτ

are, respectively, the electron, muon, and tau lepton masses
(at certain scale). In the charged lepton mass basis, which
is also known as the (leptonic) flavor basis, we have
E0 ¼ UEE and l0 ¼ VEl, where they are labeled as l0 ¼
fl0

e;l0
μ;l0

τg and E0 ¼ fE0
e; E0

μ; E0
τg.

In this work, since we are interested in studying the
flavor coherence of the lepton charges, from Eq. (19),

3For a particle i with mass mi, ζi ¼ 6
π2

R∞
mi=T

dxx×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

i =T
2

p
ex

ðexþξiÞ2.
4In the minimal supersymmetric SM, the corresponding term

in the superpotential is W ⊃ ðyEÞαβEc
αlβϵHd.
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we will consider matrices of number density asymmetries
of l and E (see Appendix A for details),

YΔl ¼ Ynorglζl
2μl
T

; YΔE ¼ YnorgEζE
2μE
T

; ð24Þ

where YΔl, YΔE, μl, and μE are 3 × 3 Hermitian matrices
in the leptonic flavor spaces (one for l and the other
for E). The diagonal elements denote the number density
asymmetries in the “flavors” for any chosen basis (not
necessarily the charged lepton mass basis), while the off-
diagonal elements encode the correlations between the
flavors. As we will see later, this generalization is necessary
such that physics is independent of basis. Nevertheless, a
convenient basis is usually useful to interpret the physics at
hand. Including the EW sphaleron [19] and scatterings due
to charged lepton Yukawa, the flavor-covariant Boltzmann
equations can be written as [5–7,9]5

sHz
dYΔl

dz
¼ −

γEW
4Ynor

�
TrYΔl

glζl
þ 3

TrYΔQ

gQζQ

�
I3×3

−
γE

2Ynor

�
y†EyE;

YΔl

glζl

�
þ γE
Ynor y

†
EyE

YΔH

gHζH

þ γE
Ynor y

†
E
YΔE

gEζE
yE; ð25Þ

sHz
dYΔE

dz
¼ −

γE
2Ynor

�
yEy

†
E;

YΔE

gEζE

�
−

γE
Ynor yEy

†
E
YΔH

gHζH

þ γE
Ynor yE

YΔl

glζl
y†E; ð26Þ

where we have defined the anticommutator fA;Bg≡
ABþ BA, z≡ Mref

T with an arbitrary reference mass scale
Mref and H ¼ 1.66

ffiffiffiffiffi
g⋆

p
T2=MPl is the Hubble rate for a

radiation-dominated Universe. The charged lepton Yukawa
reaction density was determined in Refs. [7,20] to be
γE ≈ 5 × 10−3 T4

6
, where thermal corrections and scatterings

involving gauge fields and quark fields are taken into
account. The EW sphaleron reaction density was deter-

mined in Ref. [14] to be γEW ≈ 18α52T
4, where α2 ¼ g2

2

4π with
g2 the weak coupling. Under arbitrary flavor rotations

E → UE; l → Vl; yE → UyEV†; ð27Þ

the Boltzmann equations (25) and (26) are manifestly
covariant if

YΔl → VYΔlV†; YΔE → UYΔEU†: ð28Þ

The above transformations can be easily ensured when
constructing the matrix of number density asymmetry as
shown in Appendix A. Hence, we can use the freedom
above to work in any basis while the observables; i.e.,
TrYΔl and TrYΔE remain unaffected by our choice of basis.
For instance, we can choose U ¼ UE and V ¼ VE, which
correspond to flavor basis (23).6

In the SM, the Boltzmann equation for the evolution of
total baryonic charge YΔB is the following [19]:

sHz
dYΔB

dz
¼ −

3γEW
4Ynor

�
TrYΔl

glζl
þ 3

TrYΔQ

gQζQ

�
: ð29Þ

The additional factor of 3 comes from the fact that for each
scattering the change of the total baryon number is ΔB ¼ 3
while for the lepton flavors we have ΔLα ¼ 1 for each
flavor. In this work, our focus is only on the lepton flavor
effect, and hence we have considered YΔB as the total
baryon charge instead of matrix in the baryon flavor space.
The baryon flavor effect will be considered elsewhere.
Hence, we will parametrize the transitions across Tx due to
quark interactions, i.e., with x ≠ fe; μ; τg, as some expo-
nential functions that we will discuss in the next section.
Ignoring baryon flavor effect, let us define the charge
matrix

YΔ̃ ≡ 1

3
YΔBI3×3 − YΔl; ð30Þ

which transforms like YΔl as in Eq. (28) under flavor
rotations (27). From Eqs. (25) and (29), we obtain the
Boltzmann equation for YΔ̃ as follows:

sHz
dYΔ̃
dz

¼ γE
2Ynor

�
y†EyE;

YΔl

glζl

�
−

γE
Ynor y

†
EyE

YΔH

gHζH

−
γE
Ynor y

†
E
YΔE

gEζE
yE: ð31Þ

Now, we only need to solve (26) and (31), treating YΔ̃ and
YΔE as the only independent variables.
One could have defined the B=3 − La charge matrix

YΔ ≡ 1

3
YΔBI3×3 − YΔl − YΔE; ð32Þ

where one would have to keep in mind that YΔl and YΔE
transform differently as in Eq. (28). Clearly, the physics
will remain the same, but in order to avoid remembering the
different transformations within YΔ, we will resort to using
YΔ̃. Nevertheless, it is instructive to look at the Boltzmann5We ignore flavor oscillations which are damped by gauge

interactions [6]. These equations have been derived in Refs. [6,7]
using the closed time path formalism. See Appendix B for
discussion on how the flavor-covariant structures can be derived
from the evolution equation of a Heisenberg operator [5].

6Including the Renormalized Group Evolution (RGE) of
charged lepton Yukawa coupling, UE and VE will in general
be scale dependent.
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equation for YΔ in the flavor basis where we can construct
from Eqs. (25), (26), and (29) as follows:

sHz
dYΔ

dz
¼ γE

2Ynor

�
ŷ2E;

YΔl

glζl

�
−

γE
Ynor ŷE

YΔE

gEζE
ŷE

þ γE
2Ynor

�
ŷ2E;

YΔE

gEζE

�
−

γE
Ynor ŷE

YΔl

glζl
ŷE

¼ −
γE

2Ynor

�
ŷE;

�
ŷE;

YΔl

glζl
þ YΔE

gEζE

��
: ð33Þ

In the last step above, we have defined the commutator
½A;B�≡ AB − BA. One can easily check that in the flavor
basis the double anticommutator term projects out only the
off-diagonal entries of YΔl and YΔE. Hence, TrYΔ remains
a constant as it should be since the SM interactions do not
break B − L. Clearly, the same conclusion holds also in
any other basis. While it is not necessary to work in flavor
basis, it makes the interpretation easier since in the flavor
basis one can identify the diagonal elements of YΔ as the
flavor charges YΔðB=3−LeÞ, YΔΔðB=3−LμÞ, and YΔðB=3−LτÞ. In
Eq. (33), it is apparent that for a consistent description
of evolution of lepton flavor charges which is basis indepen-
dent both YΔl and YΔE need to be described by density
matrices: if off-diagonal terms of YΔl are induced, off-
diagonal terms forYΔE will be induced aswell and vice versa.
In the rest of the work, we will use Eqs. (26) and (31),

which are valid in any basis. Including new physics
interactions that generate either YΔE and/or YΔ̃ in the
two Boltzmann equations, from Eq. (16), the final baryon
asymmetry will be frozen at TB− to be

YΔBðTB−Þ ¼
30

97
ðTrYΔ̃ − TrYΔEÞ

				
T¼TB−

: ð34Þ

Next, we will write down the relations between YΔl and
YΔH in terms of YΔ̃ and YΔE for the SM and the SM
augmented with arbitrary scalar fields carrying nonzero
hypercharges.

A. Standard Model

With the SM field content, from Eq. (20), we obtain7

ðYΔlÞαα ¼
2

15
cBTrYΔ̃ − ðYΔ̃Þαα; ð35Þ

YΔH ¼ −cHðTrYΔ̃ − 2TrYΔEÞ; ð36Þ

where cB and cH are coefficients which vary with temper-
ature. In obtaining the expressions above, we have assumed
all effective charges in Eq. (3), except ðYΔ̃Þαα and ðYΔEÞαα,
to be zero. Comparing with Eq. (30), one recognizes

B
3
¼ 2

15
cBTrYΔ̃. The relations above are completely general

and capture all the spectator effects in the SM. At
T > TB ∼ 2 × 1012 GeV when the EW sphaleron interac-
tion is out of equilibrium, we have cB ¼ 0, while at T < TB
when the baryon number is no longer conserved, we have
cB ¼ 1. This shows that an asymmetry in the lepton sector
is being shared with the baryon sector and vice versa
at T < TB. To capture this effect in a continuous manner,
one should consider YΔla ¼ B

3
− YΔ̃a

and include the
Boltzmann equation for YΔB in Eq. (29) and then solve
for cBðTÞ. To within percent-level precision, one can use
the fitting function8

cBðTÞ ¼ 1 − e−
TB
T ; ð37Þ

where TB ¼ 2.3 × 103 GeV. In Appendix D, we discuss
how to determine a precise value of TB.
The rest of the spectator effects pertaining to quark sector

are encapsulated in the coefficient cH with

cHðTÞ ¼

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

1 T > Tt
2
3

Tu < T < Tt

14
23

Tu−b < T < Tu

2
5

Tu−c < T < Tu−b
4
13

TB3−B2
< T < Tu−c

3
10

Tu−s < T < TB3−B2

1
4

Tu−d < T < Tu−s
2
11

T < Tu−d

. ð38Þ

In the equation above, we can see explicitly that the
asymmetry carried by the Higgs is diluted as more charges
come into equilibrium. Since the transitions due to the rate
Γ ∝ T as compared to the Hubble rate H ∝ T2 always have
an exponential behavior, one can parametrize the transi-
tions with the following function:

cHðTÞ ¼
�
2

3
þ 1

3
e−

Tt
T

�
−
�
2

3
−
14

23

�
ð1− e−

Tu
T Þ

−
�
14

23
−
2

5

�
ð1− e−

Tu−b
T Þ−

�
2

5
−

4

13

�
ð1− e−

Tu−c
T Þ

−
�
4

13
−

3

10

�
ð1− e−

TB3−B2
T Þ

−
�
3

10
−
1

4

�
ð1− e−

Tu−s
T Þ−

�
1

4
−

2

11

��
1− e−

Tu−d
T

�
:

ð39Þ

7The number asymmetries of quark fields in term of YΔ̃ and
YΔE are collected in Appendix C.

8One can also use a theta function cBðTÞ ¼ θðT − TBÞ,
keeping in mind that the effect can be of the order of 1 if
leptogenesis happens around TB.
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For the purpose of this work, we use the transition
temperatures as shown in Eq. (13). Precise determination
of the transition temperatures can be carried out following
the procedure shown in Appendix D.
From the definition of YΔ̃ in Eq. (30), the off-diagonal

terms α ≠ β are

ðYΔ̃Þαβ ¼ −ðYΔlÞαβ: ð40Þ

Hence, we can rewrite the matrix YΔl as

YΔl ¼ 2

15
cBI3×3TrYΔ̃ − YΔ̃: ð41Þ

B. Standard Model with additional scalar fields

If one introduces additional scalar fields ϕi with hyper-
charge qYϕi

to the system, Eq. (35) remains the same, while
Eq. (36) changes to

YΔH ¼ −cH
�
TrYΔ̃ − 2TrYΔE þ 2

X
i

qYϕi
YΔϕi

�
; ð42Þ

where YΔϕi
defined in Eq. (19) takes into account additional

gauge multiplicity gϕi
as well as mass of ϕi in ζϕi

(implicitly,
we have assumed ϕi to be in kinetic equilibrium but not
necessarily in chemical equilibrium). The relation above is
general, independently of whether ϕi are in chemical
equilibrium or not. If some of the ϕi do not achieve chemical
equilibrium, one will have effective Uð1Þϕi

in which YΔϕi

remains constant. Otherwise, the evolution of YΔϕi
will have

to be described by the corresponding Boltzmann equation.
For instance, for type-II seesaw leptogenesis with a

heavy triplet Higgs T with hypercharge qYT ¼ 1, one can
apply Eq. (42) and obtain

YΔH ¼ −cHðTrYΔ̃ − 2TrYΔE þ 2YΔT Þ: ð43Þ

IV. APPLICATIONS

Now, we will apply the flavor-covariant Boltzmann
equations (26) and (31) to some well-motivated lepto-
genesis scenarios. One just needs the general expressions
(41) and (42) to close the equations. Even for leptogenesis
models involving quarks, one can use the general relations
in Appendix C (ignoring baryon flavor effect). Hence, one
no longer needs to solve for flavor matrices for a particular
model and which hold only in a particular temperature
regime as has been done, for example, in Refs. [21,22].
In the first example, we will apply the formalism to type-I
leptogenesis, while in the second example, we will apply it
to type-II leptogenesis where flavor-covariant formalism is
indispensable as first pointed out in Ref. [22]. In particular,

we will demonstrate that the results obtained are indepen-
dent of basis, showing that it is necessary to take into
account flavor correlation in both l and E. In other words,
it is inconsistent to consider flavor correlation only in l or
only in E.

A. Type-I leptogenesis

In the type-I seesaw model, the SM is extended by right-
handed neutrinos Ni as

−L ⊃
1

2
MiNiNc

i þ yiαNilαϵH þ H:c:; ð44Þ

where Mi is the Majorana mass of Ni and we will work in
the arbitrary basis where yE is not necessarily diagonal.
While two generations of Ni are already sufficient to
explain neutrino oscillation data, as an example, we will
consider three generations i ¼ 1; 2; 3.
After the EW symmetry breaking with v≡ hHi ¼

174 GeV, the light neutrino mass matrix for jyjv ≪ Mi is

mI
ν ¼ −v2yTM−1y; ð45Þ

where M ¼ diagðM1;M2;M3Þ. The mass matrix can be
diagonalized with UT

νmνUν ¼ m̂≡ diagðm1; m2; m3Þ,
where UPMNS ¼ VEUν is identified with the leptonic
mixing matrix.
For type-I leptogenesis, an asymmetry is generated

through the CP-violating decays Ni → lαH. In addition
to the Boltzmann equation for YNi

,

sHz
dYNi

dz
¼ −γNi

�
YNi

Yeq
Ni

− 1

�
; ð46Þ

where we have defined z≡M1=T, we have to append to
the right-hand side of Eq. (31) a source and washout terms,
respectively, given by [10]

SI ≡ −
X
i

ϵiγNi

�
YNi

Yeq
Ni

− 1

�
; ð47Þ

WI ≡ 1

2

X
i

γNi

Ynor

�
1

2

�
Pi;

YΔl

glζl

�
þ Pi

YΔH

gHζH

�
; ð48Þ

where to close the equations we apply Eqs. (36) and (41).
Assuming the Maxwell-Boltzmann distribution for Ni, we

have Yeq
Ni

¼ 45
2π4g⋆

M2
i

T2 K2ðMi
T Þ, withKnðxÞ the modified Bessel

function of the second kind of order n, and the decay
reaction density γNi

is given by
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γNi
¼ sYeq

Ni
ΓNi

K1ðMi=TÞ
K2ðMi=TÞ

; ð49Þ

with ΓNi
¼ ðyy†ÞiiMi

8π the total decay width of Ni.
9

The matrix of CP-violation parameter ϵi and flavor rotation matrix Pi are, respectively, given by [10]

ðϵiÞαβ ¼
1

16π

i
ðyy†Þii

X
j≠i

½ðyy†Þjiyjβy�iα − ðyy†Þijyiβy�jα�g
�
M2

j

M2
i

�
þ 1

16π

i
ðyy†Þii

X
j≠i

½ðyy†Þijyjβy�iα − ðyy†Þjiyiβy�jα�
M2

i

M2
i −M2

j
;

ð50Þ

Pi ¼
1

ðyy†Þii

0
BB@

jyiej2 y�ieyiμ y�ieyiτ
yiey�iμ jyiμj2 y�iμyiτ
yiey�iτ yiμy�iτ jyiτj2

1
CCA: ð51Þ

Under flavor rotations (27) and (28), we have

ϵi → VϵiV†; Pi → VPiV†; ð52Þ

and the whole Boltzmann equation for YΔ̃ remains flavor covariant as required.
For illustration, we choose the best-fit point from Ref. [24] for the SO(10) model with Higgs content 10H þ 126H for the

Yukawa sector with no-RGE

y ¼

0
B@

ð2.508 − 1.101iÞ × 10−4 ð1.224 − 5.313iÞ × 10−4 ð−1.988þ 0.646iÞ × 10−2

ð1.893þ 0.0359iÞ × 10−3 ð−2.100þ 20.365iÞ × 10−3 ð−8.560þ 1.384iÞ × 10−2

ð1.446 − 9.365iÞ × 10−3 ð2.217þ 1.373iÞ × 10−2 0.1356þ 0.4602i

1
CA; ð53Þ

yE ¼

0
B@

ð1.0077þ 1.0449iÞ × 10−5 ð−3.8245þ 0.0226iÞ × 10−5 ð−3.2332 − 1.8088iÞ × 10−4

ð−3.8245þ 0.0226iÞ × 10−5 ð5.2064 − 2.2026iÞ × 10−4 ð8.0184 − 7.4693iÞ × 10−4

ð−3.2332 − 1.8088iÞ × 10−4 ð8.0184 − 7.4693iÞ × 10−4 ð8.5102þ 4.4337iÞ × 10−3

1
CA; ð54Þ

M ¼ f1.445 × 1010; 7.244 × 1011; 5.663 × 1012g GeV: ð55Þ

We will solve the Boltzmann equations in the original basis
(as above) and in the flavor basis where yE is diagonalized
through a flavor rotation as in Eq. (23) assuming zero initial
abundance YNi

ðziÞ ¼ 0 with zi ¼ 10−4.
In Fig. 1, we show the numerical solutions comparing

the results in the nonflavor basis yE (solid curves) and in the
flavor basis ŷE (dashed curves). In the top row, we show the
diagonal elements of jYΔ̃j and jYΔEj, while in the bottom

row, we show their off-diagonal elements (they are
Hermitian matrices). Here, we see that independent of
basis, once off-diagonal elements of YΔ̃ develop from
leptogenesis, unavoidably, off-diagonal elements of YΔE
will be induced as well. In the flavor basis ŷE, the off-
diagonal elements start to become suppressed at various
temperatures as the charged lepton Yukawa interactions
subsequently get into thermal equilibrium and finally at
z≳ 100, ðYΔ̃Þ12 and ðYΔEÞ12 start to become suppressed,
indicating a transition to the three-flavor regime.
In Fig. 2, top row, we plot jTrYΔ̃j and jTrYΔEj in the two

different bases: nonflavor basis yE (red solid curve) and
flavor basis ŷE (blue dashed curve). Reassuringly, TrYΔ̃
and TrYΔE are basis independent, although the entries of
YΔ̃ and YΔE differ among the two bases by the flavor
rotations as in Eq. (28) with V ¼ VE and U ¼ V�

E since yE
is symmetric. Clearly, the physics is invariant under basis

9Here, we consider only decay and inverse decay. We have
ignored the helicities of Ni and scattering processes which will be
relevant for leptogenesis in the weak washout regime
ΓNi

=HðT ¼ MiÞ ≪ 1 since in this case the physics at T ≫ Mi
will play a relevant role [23]. We have also assumedNi to be well-
separated states jMi −Mjj ≫ ΓNi;j

such that the effect of Ni

oscillations is not relevant. Otherwise, one should use the flavor-
covariant formalism which also includes the flavor of Ni [8].
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transformation, and the benefit of the flavor basis is to help
us to interpret the results. For instance, we can read the
diagonal entries of YΔ̃ and YΔE in the ŷE basis as the flavor
charges in the e, μ, τ (red, blue and green dashed curves in
the top row of the Fig. 1) and also deduce when the system
transits to a different flavor regime from the suppression of
off-diagonal entries. In the bottom plot of Fig. 2, we see
that, while jYΔðB−LÞj ¼ jTrYΔ̃ − TrYΔEj is conserved at the
end of leptogenesis z≳ 10, jTrYΔ̃j and jTrYΔEj, not being
conserved charges, continue to evolve. For a final remark,
the final baryon asymmetry produced in this example is
YΔBðTB−Þ ¼ 6.1 × 10−11, consistent in sign but smaller
than the observed value by about 30%.10

B. Type-II leptogenesis

In the type-II seesaw model, the SM is extended by a
massive triplet scalar T under SUð2ÞL with hypercharge
qYT ¼ 1 as

−L ⊃M2
T TrðT †T Þ þ 1

2
ðfαβlc

αϵT lβ þ μHTϵT †HþH:c:Þ;
ð56Þ

where

T ¼
 1ffiffi

2
p T þ T þþ

T 0 − 1ffiffi
2

p T þ

!
: ð57Þ

Since T couples to two lepton doublets which in general do
not align in flavor space, one needs to describe them with
density matrix as first pointed out in Ref. [22].

FIG. 1. Numerical solutions for type-I leptogenesis. In the top row, we plot the diagonal elements of jYΔ̃j and jYΔEj in the two different
bases: nonflavor basis yE (solid curves) and flavor basis ŷE (dashed curves). In the bottom row, we plot the off-diagonal elements of jYΔ̃j
and jYΔEj in the yE (solid curves) and ŷE (dashed curves) bases. Colors (thickness) denote different matrix elements as indicated in the
plots. See the text for further discussions.

10This can be compared with Ref. [25], which also obtained a
final baryon asymmetry, which is of the right sign but a factor of a
few smaller than the observed baryon asymmetry. Besides the
improved treatment discussed in the work, we also correct the
wrong basis used in Ref. [25].
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The CP violation in the decays of T † → lαlβ and
T → HH can arise at one-loop level from the contribution
of heavier particles of mass scale Λ ≫ MT , which generate
the Weinberg operator below Λ,

Leff ¼
1

4

καβ
Λ

l̄c
αϵHHTϵlβ þ H:c: ð58Þ

After the EW symmetry breaking, the light neutrino mass
receives contributions from integrating out the scalar triplet
T as well as the Weinberg operator as

mII
ν ¼ mT þmH; ð59Þ

where

mT ≡ 1

2
μf

v2

M2
T
; ð60Þ

mH ≡ 1

2
κ
v2

Λ
: ð61Þ

In the following, we will utilize the interaction terms
derived in Ref. [22] but include only decay, inverse decay,
and gauge scattering processes (other scattering effects are
negligible in the parameter space we will consider below).
The Boltzmann equations to describe the evolution of
YΣT ≡ YT þ YT † and YΔT ≡ YT − YT † are [22]

sHz
dYΣT

dz
¼ −γD

�
YΣT

Yeq
ΣT

− 1

�
− 2γA

�
Y2
ΣT

Yeq;2
ΣT

− 1

�
; ð62Þ

sHz
dYΔT

dz
¼ −γD

�
YΔT

Yeq
ΣT

þ Bl
Trðff†YΔlÞ

Trðff†ÞYnorglζl

− BH
YΔH

YnorgHζH

�
; ð63Þ

where we have defined z≡MT =T and to close the
equations we apply Eqs. (41) and (43). The branching
ratios for the decays of T to lepton doublets and Higgses
are, respectively,

FIG. 2. Numerical solutions for type-I leptogenesis. In the top row, we plot jTrYΔ̃j and jTrYΔEj in the two different bases: nonflavor
basis yE (red solid curve) and flavor basis ŷE (blue dashed curve). In the bottom plot, we plot jTrYΔ̃ − TrYΔEj (purple solid curve),
jTrYΔ̃j (red dashed curve), and jTrYΔEj (blue dotted curve) for z > 10. See the text for further discussions.
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Bl ¼ Trðff†Þ
Trðff†Þ þ jμj2

M2
T

; ð64Þ

BH ¼
jμj2
M2

T

Trðff†Þ þ jμj2
M2

T

: ð65Þ

For the generation of YΔ̃, we have to append to the right-
hand side of Eq. (31) a source and washout terms,
respectively, given by [22]

SII ≡ −ϵγD
�
YΣT

Yeq
T

− 1

�
; ð66Þ

WII ≡ 2γD

Trðff†Þ þ jμj2
M2

T

�
ðff†ÞYΔT

Yeq
T

þ 1

4Ynorglζl
ð2fYT

Δlf
† þ ff†YΔl þ YΔlff†Þ

�
;

ð67Þ

where the matrix of the CP-violation parameter is

ϵ ¼ i
8π

MT

v2
ffiffiffiffiffiffiffiffiffiffiffiffi
BlBH

p mT m
†
H −mHm

†
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Trðm†
T mT Þ

q : ð68Þ

Assuming Maxwell-Boltzmann distribution for T , we have
Yeq
ΣT ¼ Yeq

T þ Yeq
T † ¼ 135

2π4g⋆
z2K2ðzÞ, and the decay reaction

density γD is given by

γD ¼ sYeq
ΣT ΓT

K1ðzÞ
K2ðzÞ

; ð69Þ

where the total decay width is

ΓT ¼ MT

32π

�
Trðff†Þ þ jμj2

M2
T

�
: ð70Þ

Finally, assuming Maxwell-Boltzmann distributions for
all the particles, the gauge scattering reaction density for
T T † ↔ ψψ̄ , where ψ refers to the SM fields, is

γA ¼ M4
T

64π4z

Z
∞

4

dx
ffiffiffi
x

p
K1ðz

ffiffiffi
x

p Þσ̂AðxÞ; ð71Þ

where the reduced cross section is given by [26]

σ̂AðxÞ ¼
1

16πx2

� ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffi
x − 4

p
½96g22g2Yðxþ 4Þ þ g4Yð65x − 68Þ þ 2g42ð172þ 65xÞ�

− 96½4g22g2Yðx − 2Þ þ g4Yðx − 2Þ þ 4g42ðx − 1Þ� ln
� ffiffiffiffiffiffiffiffiffiffiffi

x − 4
p ffiffiffi

x
p þ x
2

− 1

��
: ð72Þ

Taking into account the RGE of the gauge couplings at one
loop,11 we obtain an accurate parametrization within 10%
up to z≲ 20,

γA
sHz

¼ 5.5035 × 1015 GeV

g3=2⋆ MT

e−1.49z
1.0735

: ð73Þ

Notice that under flavor rotations in Eq. (27), from
Eqs. (56) and (68), we observe that

ff† → V�ff†VT; ϵ → V�ϵVT: ð74Þ

For the source and washout terms (66) and (67) to trans-
form the same way,

SII → V�SIIVT; WII → V�WIIVT; ð75Þ

one requires

YΔl → V�YΔlVT: ð76Þ

This can be obtained by a particular choice of ordering of
flavor indices as discussed in Appendix A. Hence, we will
take yE → y�E in Eqs. (26) and (31) such that the trans-
formation is consistent with the one above. Equivalently,
we can take YΔl → YT

Δl in Eqs. (26) and (31).
For illustration, we choose a benchmark point from

Ref. [22],

mT ¼ imII
ν ⇒ mH ¼ ð1 − iÞmII

ν ; ð77Þ

11The one-loop RGE equations of α2 ¼ g2
2

4π and αY ¼ g2Y
4π

are given by [27,28], α2ðμÞ ¼ 12πα2ðmZÞ
12π−19α2ðmZÞþ19α2ðmZÞ ln μ ;

αYðμÞ¼ 20παY ðmZÞ
20πþ41αY ðmZÞ−41αY ðmZÞ ln2μ ; respectively, where we take μ ¼

2πT and fix α2ðmZÞ¼0.0337 and αYðmZÞ ¼ 0.0169 with
mZ ¼ 91.2 GeV.
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MΔ ¼ 5 × 1012 GeV; ð78Þ

jμj ¼ 0.1MT ; ð79Þ

and we fix the neutrino mass matrix to be

mν ¼ rVT
EU

�
PMNSdiagðm1; m2; m3ÞU†

PMNSVE; ð80Þ

with m1 ¼ 10−3 eV, while for the rest of the parameters,
we choose the best-fit parameters for normal mass ordering
from the global fit [29]. The effect of RGE up to scale
around MT is accounted for approximately by taking
r ¼ 1.4. We ignore the RGE of charge lepton Yukawa
and fix it to be

yE ¼ V†
EŷEVE; ð81Þ

where ŷE ¼ diagð2.8 × 10−6; 5.9 × 10−4; 1.0 × 10−2Þ. We
will solve the Boltzmann equations in two different bases:

nonflavor basis yE with VE ¼ U†
PMNS and flavor basis ŷE

with VE ¼ I3×3.
In Fig. 3, we show the numerical solutions comparing the

results in yE (solid curves) and ŷE (dashed curves) bases. In
the top row, we show the diagonal elements of jYΔ̃j and
jYΔEj, while in the bottom row, we show their off-diagonal
elements. In the flavor basis ŷE, the off-diagonal elements
start to become suppressed at various temperatures as the
charged lepton Yukawa interactions subsequently get into
thermal equilibrium. We see that at z ∼ 1000 ðYΔ̃Þ12 and
ðYΔEÞ12 remain large, indicating that one has not entered
the three-flavor regime.
In Fig. 4, top row, we plot jTrYΔ̃j and jTrYΔEj in the two

bases: yE (red solid curve) and ŷE (blue dashed curve). As
expected, TrYΔ̃ and TrYΔE are basis independent, while
the entries of YΔ̃ and YΔE differ among the two bases by the
flavor rotations as in Eq. (28) with V ¼ U ¼ VE. In the
bottom plot of Fig. 4, we see that, while jYΔðB−LÞj ¼
jTrYΔ̃ − TrYΔEj is conserved at the end of leptogenesis,
z≳ 20, while jTrYΔ̃j and jTrYΔEj continue to evolve.

FIG. 3. Numerical solutions for type-II leptogenesis. In the top row, we plot the diagonal elements of jYΔ̃j and jYΔEj in the two
different bases: nonflavor basis yE (solid curves) and flavor basis ŷE (dashed curves). In the bottom row, we plot the off-diagonal
elements of jYΔ̃j and jYΔEj in the yE (solid curves) and ŷE (dashed curves) bases. Colors (thickness) denote different matrix elements as
indicated in the plots. See the text for further discussions.
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In this example, the final baryon asymmetry obtained
is YΔBðTB−Þ ¼ 3.6 × 10−9.

V. CONCLUSIONS

In this work, we have developed a recipe to describe the
evolution of lepton flavor charges from cosmic temperature
ranging from 1015 GeV down to the weak scale, taking into
the full SM lepton flavor and spectator effects in a unified
and lepton flavor basis–independent manner. This recipe
can be applied to any leptogenesis model with the addition
of arbitrary number of new scalars with nonzero hyper-
charges. We have shown that in order to describe lepto-
genesis in a basis-independent way and to take into account
lepton flavor effect consistently it is necessary to describe
both the charges of l and E in term of density matrices in
their respective flavor spaces. To summarize, to apply this
formalism to a leptogenesis model is to add the corre-
sponding new physics interactions to the Boltzmann
equations (26) and (31), and then the equations can be
closed with Eqs. (41), (42), and those in Appendix C.

To demonstrate the applicability of this formalism, we have
applied it to type-I and type-II leptogenesis models. Future
direction will be to take into account baryon flavor effect.

ACKNOWLEDGMENTS

C. S. F. acknowledges the support by FAPESP Grant
No. 2019/11197-6 for the project “Precision baryogenesis”
and CNPq Grant No. 301271/2019-4. All the Boltzmann
equations are solved with Mathematica sponsored by a
colleague (who asked not to be named), while all the
figures are prepared using Graphics Layout Engine [30].
A public code is currently under development.

APPENDIX A: MATRIX OF NUMBER DENSITIES

The density matrix operator of the SM in thermal
equilibrium at temperature T is given by

ρ̂SM ¼ Z−1e−
1
TðĤSM−

P
i
μiN̂iÞ; ðA1Þ

FIG. 4. Numerical solutions for type-II leptogenesis. In the top row, we plot jTrYΔ̃j and jTrYΔEj in the two different bases: nonflavor
basis yE (red solid curve) and flavor basis ŷE (blue dashed curve). In the bottom plot, we plot jTrYΔ̃ − TrYΔEj (purple solid curve) and
jTrYΔ̃j (red dashed curve) for z > 10. jTrYΔEj is too small to be shown here but one can easily deduced its value from the plot. See the
text for further discussions.
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where Z≡ Tr½e−1
TðĤSM−

P
i
μiN̂iÞ�, with ĤSM the SM

Hamiltonian and μi and N̂i the chemical potential and
number operator of a SM field i, respectively. If we are
interested in the correlation between a particle species of
different flavors, we can generalize the chemical potential
and number operators to matrix in flavor space as

ðμiN̂iÞαβ ≡
Z

d3p
ð2πÞ3 ðμiÞαβða

†
iβ ;p

aiα;p − b†iα;pbiβ ;pÞ;

no sumover α; β; ðA2Þ

where α and β are flavor indices and we have made use of
the fact that in chemical equilibrium with gauge bosons we
have μī ¼ −μi. The operator a†iα;p creates a particle iα of

momentum p from the vacuum a†iα;pj0i ¼ jp; iαiwhile b†iα;p
creates an antilepton īα of momentum p as b†iα;pj0i ¼
jp; īαi. For fermions (bosons), they fulfill anticommutator
(commutator) relations ½aiβ ;p0 ;a†iα;p�þð−Þ¼½biβ ;p0 ;b†iα;p�þð−Þ¼
ð2πÞ3δð3Þðp−p0Þδαβ, where we have defined ½A;B�þ ≡
fA; Bg ¼ ABþ BA and ½A;B�− ≡ ½A; B� ¼ AB − BA.
Other operator combinations are zero. Sandwiching the
operator (A2) between two states with particle of type i of
the same momentum p (but their flavors can be different),
we have, for example, hiβ;pjðμiN̂iÞαβjiα;pi ¼ ðμiÞαβ. It
also follows that ðμiÞβα ¼ ðμiÞ�αβ.
Next, we will define the generalized phase-space dis-

tribution fiðīÞ for particle i and antiparticle ī, respectively,
as [5]

δpp0 ðfi;pÞαβ ≡ Tr½a†iβ ;paiα;p0 ρ̂SM�; ðA3Þ

δpp0 ðfī;pÞαβ ≡ Tr½b†iα;pbiβ ;p0 ρ̂SM�; ðA4Þ

where we have defined δpp0 ≡ ð2πÞ3δð3Þðp − p0Þ. Notice
that the order of flavor indices in fiðīÞ;p determines how it
transforms under flavor rotation of the field. For instance,
considering the fields to be lα and Eα, under unitary

transformations in flavor space, l → Vl and E → UE,
we have flðl̄Þ;p → Vflðl̄Þ;pV† and fEðĒÞ;p → UfEðĒÞ;pU†.
If we have defined Eqs. (A3) and (A4) with ðfi;pÞβα and

ðfī;pÞβα, they will transform as flðl̄Þ;p → V�flðl̄Þ;pVT and

fEðĒÞ;p → U�fEðĒÞ;pUT . Notice that fi;p and fī;p are
Hermitian.
In what follows, we would like to solve for ðfi;pÞαβ and

ðfī;pÞαβ. Since the derivation below follows independently

of whether μiN̂i is a matrix in flavor space or not, we will
suppress the flavor indices. Notice that

Z ¼ Tr½e−1
TðĤSM−

P
i
μiN̂iÞ�

¼
X
states

hstatesje−1
TðĤSM−

P
i
μiN̂iÞjstatesi

¼
X
states

hstatesje−1
T

P
i
ðEi−μiÞN̂i jstatesi

¼
Y
f

½1þ e−
1
TðEf−μfÞ�

Y
b

½1 − e−
1
TðEb−μbÞ�−1: ðA5Þ

The traces are taken over multiparticle states with energy
Ei. For fermion f, the occupation number is either 0 or 1,
and each of them contributes a factor of 1þ e−

1
TðEf−μfÞ,

while for boson b, each of them contributes a factor
of
P∞

n¼0 e
−1
TðEb−μbÞn ¼ ½1 − e−

1
TðEb−μbÞ�−1.

For a fermion i, we have

Tr½a†i;pai;p0 ρ̂SM� ¼ Z−1δpp0e−
1
TðEi−μiÞ

×
Y
f≠i

½1þ e−
1
TðEf−μfÞ�

Y
b

½1 − e−
1
TðEb−μbÞ�−1

¼ δpp0
e−

1
TðEi−μiÞ

1þ e−
1
TðEi−μiÞ

¼ δpp0
1

e
1
TðEi−μiÞ þ 1

: ðA6Þ

For a boson i, we have

Tr½a†i;pai;p0 ρ̂SM� ¼ Z−1δpp0
X
n

ne−
1
TðEi−μiÞn

Y
f

½1þ e−
1
TðEf−μfÞ�

Y
b≠i

½1 − e−
1
TðEb−μbÞ�−1

¼ Z−1δpp0
e−

1
TðEi−μiÞ

½1 − e−
1
TðEi−μiÞ�2

Y
f

½1þ e−
1
TðEf−μfÞ�

Y
b≠i

½1 − e−
1
TðEb−μbÞ�−1

¼ δpp0
e−

1
TðEi−μiÞ

½1 − e−
1
TðEi−μiÞ�2 ½1 − e−

1
TðEi−μiÞ�

¼ δpp0
1

e
1
TðEi−μiÞ − 1

: ðA7Þ
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In the second line above, we have usedP
n ne

−1
TðEi−μiÞn ¼ − 1

1
TðEi−μiÞ

d
dn

P
n e

−1
TðEi−μiÞn ¼ e−

1
TðEi−μiÞ

½1−e−1TðEi−μiÞ�2
.

One can repeat the exercise above for antiparticle ī with
ai → bi, and the only change is μi → −μi. Hence, from the
definitions (A3) and (A4), we obtain the desired results

ðfi;pÞαβ ¼
1

e
Ei−ðμiÞαβ

T þ ξi
; ðfī;pÞαβ ¼

1

e
EiþðμiÞαβ

T þ ξi
;

ðA8Þ

where ξi ¼ 1ð−1Þ for i a fermion (boson) and
Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

i

p
. Integrating the phase space distributions

above over 3-momentum, we obtain (matrices) of number
densities

ðniÞαβ ≡ gi

Z
d3p
ð2πÞ3 ðfi;pÞαβ;

ðnīÞαβ ≡ gi

Z
d3p
ð2πÞ3 ðfī;pÞαβ; ðA9Þ

where we have included gi to take into account additional
gauge degrees of freedom.
Expanding to linear order in chemical potential

jμij=T ≪ 1 and integrating over 3-momentum, the differ-
ence between the phase-space distributions of i and ī, we
obtain the (matrix of the) number density asymmetry

ðnΔiÞαβ ≡ gi

Z
d3p
ð2πÞ3 ½ðfi;pÞαβ − ðfī;pÞαβ� ¼

T2

6
giζiðμiÞαβ;

ðA10Þ

where we have defined

ζi ≡ 6

π2

Z
∞

mi=T
dxx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

i =T
2

q ex

ðex þ ξiÞ2
: ðA11Þ

For massless particle mi ¼ 0, we have ζi ¼ 1ð2Þ for i a
massless fermion (boson). The transformation of ðnΔiÞαβ
follows directly from Eqs. (A3) and (A4). For instance,
considering the fields to be lα and Eα, under unitary
transformations in flavor space, l → Vl and E → UE, we
have nΔl → VnΔlV† and nΔE → UnΔEU†. Alternatively, if
we have defined Eqs. (A3) and (A4) with ðfi;pÞβα and

ðfī;pÞβα, the transformations will be nΔl → V�nΔlVT

and nΔE → U�nΔEUT .
Normalizing Eq. (A10) by the cosmic entropy density

s ¼ 2π2

45
g⋆T3 with g⋆ being the effective relativistic degrees

of freedom of the Universe, we have

ðYΔiÞαβ ≡
ðnΔiÞαβ

s
≡ Ynorgiζi

2ðμiÞαβ
T

; ðA12Þ

where we have defined Ynor ≡ 15
8π2g⋆

. The relation above also

holds for a particle which does not carry a flavor index, e.g.,
for the SM Higgs, which is taken to be massless at high
temperature, we have YΔH ¼ 4Ynor 2μH

T , where gH ¼ 2 for
the SUð2ÞL gauge degrees of freedom and ξH ¼ 2 for
massless boson.

APPENDIX B: COVARIANT FLAVOR
STRUCTURES OF KINETIC EQUATIONS

The complete flavor-covariant kinetic equations have
been derived in Refs. [6,7] using the closed time path
formalism. Here, we would like to sketch how the same
flavor structures of the kinetic equations for l and E arise
by considering the evolution equation of a Heisenberg
operator [5].
We will start by deriving some relations relating the

equilibrium phase-space distributions with the (matrices) of
number density asymmetries. As shown the previous
section, for a particle i which is in kinetic equilibrium,
its phase-space distribution is given by Eq. (A8). For a
process ab… ↔ ij… which is in chemical equilibrium
μa þ μb þ � � � ¼ μi þ μj þ… [if a particle carries a family
index, e.g., iα, the chemical potential refers to the corre-
sponding diagonal element ðμiÞαα], we can verify that the
following identity is satisfied,

fafb…ð1 − ξifiÞð1 − ξjfjÞ…
¼ fifj…ð1 − ξafaÞð1 − ξbfbÞ…; ðB1Þ

where we have used energy conservation Ea þ Eb þ � � � ¼
Ei þ Ej þ… and we have suppressed the subscript of
momentum/energy in the distribution functions. In general,
we cannot make use of the identity above since chemical
equilibrium condition is not necessarily fulfilled when the
corresponding process is slower than the Hubble expansion
rate. Defining the distribution of a particle i in kinetic
equilibrium with zero chemical potential as feqi , the
following identity is clearly satisfied:

feqa f
eq
b …ð1 − ξif

eq
i Þð1 − ξjf

eq
j Þ…

¼ feqi f
eq
j …ð1 − ξaf

eq
a Þð1 − ξbf

eq
b Þ… ðB2Þ

In the following, let us consider all the particles are in
kinetic equilibrium (this holds for all the SM particles
which experience gauge interactions). Expanding in chemi-
cal potentials jμij=T ≪ 1 up to linear order for all the
particles, we have
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fafb…ð1− ξifiÞð1− ξjfjÞ…
feqa f

eq
b …ð1− ξif

eq
i Þð1− ξjf

eq
j Þ…

¼
�
1þ μa

T
ð1− ξaf

eq
a Þþμb

T
ð1− ξbf

eq
b Þþ � � �

�

×

�
1−

μi
T
ξif

eq
i −

μj
T
ξjf

eq
j þ� � �

�

¼ 1þ
X

I¼a;b;…

μI
T
−
X

I¼a;b;…

μI
T
ξIf

eq
I −

X
F¼i;j;…

μF
T
ξFf

eq
F

¼ 1þ
X

I¼a;b;…

YΔI

2YnorgIζI
−

X
A¼a;b;…;i;j;…

YΔAξAf
eq
A

2YnorgAζA
; ðB3Þ

where in the last step we have used Eq. (A12). Similarly, we
have the relation for antiparticles by changing the sign of
the chemical potentials,

fāfb̄…ð1 − ξifīÞð1 − ξjfj̄Þ…
feqa f

eq
b …ð1 − ξif

eq
i Þð1 − ξjf

eq
j Þ…

¼ 1 −
X

I¼a;b;…

YΔI

2YnorgIζI
þ

X
A¼a;b;…;i;j;…

YΔAξAf
eq
A

2YnorgAζA
:

ðB4Þ

The evolution equations of the Heisenberg opera-
tors ðOi;pÞαβðtÞ≡ a†iβ ;pðtÞaiα;pðtÞ and ðOī;pÞαβðtÞ ≡
b†iα;pðtÞbiβ ;pðtÞ are given by

∂ðOi;pÞαβ
∂t ¼ i½Ĥ; ðOi;pÞαβ�;

∂ðOī;pÞαβ
∂t ¼ i½Ĥ; ðOī;pÞαβ�;

ðB5Þ

where Ĥ ¼ Ĥ0 þ Ĥint is the Hamiltonian of the system with
H0 denoting the free field Hamiltonian, while Ĥint represents
all possible interactions among the fields. In the following,
we will write down the derivation only for the equation of
motion of Oi;p since those for Oī;p will be analogous.
Taking the ensemble average on both sides of Eq. (B5),

we have

∂ðfi;pÞαβ
∂t ¼ ih½Ĥ; ðOi;pÞαβ�i; ðB6Þ

where we have denoted hOi≡ Tr½Oρ̂SM�. The effect of
cosmic expansion can be taken into account by adding the
following:

∂ðfi;pÞαβ
∂t −Hjpj

∂ðfi;pÞαβ
∂jpj ¼ ih½Ĥ; ðOi;pÞαβ�i: ðB7Þ

Integrating the equation above over momentum p on both
sides, we have

dðniÞαβ
dt

þ 3HðniÞαβ ¼ i
Z

d3p
ð2πÞ3 h½Ĥ; ðOi;pÞαβ�i; ðB8Þ

where we have defined the number density (matrix) as

ðniÞαβ ≡
Z

d3p
ð2πÞ3 ðfi;pÞαβ; ðB9Þ

and assume that fi;p goes to zero at large momentum. In the
absence of interactions Ĥint ¼ 0, the phase space will
evolve purely due to the Hubble expansion. In terms of
Yi ≡ ni=s, we can rewrite

dðniÞαβ
dt

þ 3HðniÞαβ ¼ s
dðYiÞαβ

dt
: ðB10Þ

For massless fields,H0 does not contribution to the right-
hand side of Eq. (B8). Next, we would like to write the
terms in right-hand side of evolution equation also in terms
of number densities. Doing a perturbative expansion on the
Heisenberg operator ½Ĥint; ðOi;pÞαβ� to the first order in

Ĥint, and considering that the interaction timescale is much
shorter than the evolution timescale, we can take the time
integral to infinity and obtain [5]

s
dðYiÞαβ

dt

¼ i
Z

d3p
ð2πÞ3 h½Ĥint;0ð0Þ; ðOi;pÞαβ;0ð0Þ�i

−
Z

d3p
ð2πÞ3

Z
∞

0

dth½Ĥint;0ðtÞ; ½Ĥint;0ð0Þ; ðOi;pÞαβ;0ð0Þ��i;

ðB11Þ

where the subscript 0 denote operators consist of free fields,
i.e., Ĥint ¼ 0.
Considering only the SM charged lepton Yukawa inter-

action term, we have

Ĥint ¼
Z

d3x½ðyEÞαβEαlβH� þ ðyEÞ�αβlβEαH�: ðB12Þ

Since this interaction is linear in the each type of field, it
will only contribute to the second term. Considering
thermal mass [31], there is a contribution to the first term
of Eq. (B11), which results in oscillation among l flavors.
Reference [6] showed that flavor oscillations are damped
by gauge interactions, and hence we will ignore this term.
Expanding the fields in momentum modes, we have

lβ ¼
Z

d3p

ð2πÞ3 ffiffiffiffiffiffi
2E

p
X
s

ðaðsÞlβ ;p
uðsÞl;pe

−ip·x þ bðsÞ†lβ ;p
vðsÞl;pe

þip·xÞ;

ðB13Þ

CHEE SHENG FONG PHYS. REV. D 105, 043004 (2022)

043004-16



Eα ¼
Z

d3p

ð2πÞ3 ffiffiffiffiffiffi
2E

p
X
s

ðaðsÞEα;p
uðsÞE;pe

−ip·x þ bðsÞ†Eα;p
vðsÞE;pe

þip·xÞ; ðB14Þ

H ¼
Z

d3p

ð2πÞ3 ffiffiffiffiffiffi
2E

p ðaH;pe−ip·x þ b†H;pe
þip·xÞ; ðB15Þ

where p · x ¼ Et − p · x and the sum s is taken over the two spin states. Substituting the fields above into Eq. (B11), we
obtain the evolution equation of l as

s
dðYlÞαβ

dt
¼ −

1

2

Z
d3p

ð2πÞ32El

d3pE

ð2πÞ32EE

d3pH

ð2πÞ32EH
2p · pE

× fδpE−plþpH
½ffl;p; y†EðI − fE;pE

ÞyEgαβð1þ fH;pH
Þ − fðI − fl;pÞ; y†EfE;pE

yEgαβfH;pH
�

þ δpE−pl−pH
½ffl;p; y†EðI − fE;pE

ÞyEgαβfH̄;pH
− fðI − fl;pÞ; y†EfE;pE

yEgαβð1þ fH̄;pH
Þ�

þ δpEþpl−pH
½ffl;p; y†EfĒ;pE

yEgαβð1þ fH;pH
Þ − fðI − fl;pÞ; y†EðI − fĒ;pE

ÞyEgαβfH;pH
�

þ δpEþplþpH
½ffl;p; y†EfĒ;pE

yEgαβfH̄;pH
− fðI − fl;pÞ; y†EðI − fĒ;pE

ÞyEgαβð1þ fH̄;pH
Þ�g; ðB16Þ

where δp ≡ ð2πÞ4δð4ÞðpÞ with p a 4-momentum, I is a
3 × 3 identity matrix, and we have assumed all external
fields to be massless. Clearly, the whole term vanishes
since p · pE ∝ p2

H ¼ 0.
For nonvanishing result, one should consider thermal

masses and scattering processes involving another external
field [20]. For instance, a gauge field can be attached to
either l, E, orH. One can also attach a fermion-antifermion
pair to the Higgs fields, and the process involving the top-
quark Yukawa coupling will be the dominant one. Since the
flavor structures involving l and E will remain exactly the
same, we will not carry out the exercise here.12 Notice that
the last term in the big curly brackets of Eq. (B16) will still
be zero due to energy-momentum conservation.
Dividing and multiplying the terms in the right-hand

side of Eq. (B16) by feql;pð1 − feqE;pE
Þð1þ feqH;pH

Þ ¼
feqE;pE

feqH;pH
ð1 − feql;pÞ, which follows from Eq. (B2) and

expanding up to linear term in jμij=T ≪ 1, the first three
terms in the big curly brackets in Eq. (B16) all have the
same flavor structure,

s
dYl

dt
∼ −

1

2Ynor

��
y†EyE;

YΔl

glζl

�
− 2

�
y†EYΔEyE
gEζE

�

− 2ðy†EyEÞ
YΔH

gHζH

�
; ðB17Þ

where we have made used of Eq. (B3). Similarly, we obtain
the evolution equation of l̄ by changing the sign of all
chemical potentials,

s
dY l̄

dt
∼

1

2Ynor

��
y†EyE;

YΔl

glζl

�
− 2

�
y†EYΔEyE
gEζE

�

− 2ðy†EyEÞ
YΔH

gHζH

�
: ðB18Þ

Hence, the evolution equation for YΔl ¼ Yl − Yl̄ has the
following form:

s
dYΔl

dt
∼ −

1

Ynor

��
y†EyE;

YΔl

glζl

�

− 2
y†EYΔEyE
gEζE

− 2y†EyE
YΔH

gHζH

�
: ðB19Þ

Repeating the exercise above, we obtain the evolution
equation for YΔE ¼ YE − YĒ with the following flavor
structure:

s
dYΔE

dt
∼ −

1

Ynor

��
yEy

†
E;

YΔE

gEζE

�
− 2

yEYΔly
†
E

glζl

þ 2yEy
†
E
YΔH

gHζH

�
: ðB20Þ

Under rotations in flavor spaces E → UE, l → Vl,
yE → UyEV†, the kinetic equations above will have the
same form (flavor covariant) since YΔl → VYΔlV† and
YΔE → UYΔEU†.
As a final remark, in a radiation-dominated Universe and

assuming entropy conservation, we can trade the time
variable with temperature T using the relation

dz
dt

¼ zH; ðB21Þ

12For the scatterings involving two quarks instead of the Higgs
fields, one can still rewrite in terms of Higgs number density
asymmetry for T < Tt ∼ 1015 GeV when interactions involving
the top-quark Yukawa are in equilibrium.
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where we have defined z≡ Mref
T with Mref an arbitrary

mass scale.

APPENDIX C: QUARK NUMBER ASYMMETRIES

Here, we list the relations between quark number
asymmetries with YΔ̃ and YΔE assuming all other con-
served charges are zero. We have included the contributions
from possible new scalar fields ϕi with hypercharge qYϕi

.
For T > Tu, all quark number asymmetries are independent
of YΔ̃, YΔE, and YΔϕi

.
For Tu < T < Tt, we have

YΔQ3
¼ 1

3

�
TrYΔ̃ − 2TrYΔE þ 2

X
i

qYϕi
YΔϕi

�
; ðC1Þ

YΔt ¼ −
1

3

�
TrYΔ̃ − 2TrYΔE þ 2

X
i

qYϕi
YΔϕi

�
; ðC2Þ

while the rest are independent of YΔ̃, YΔE, and YΔϕi
.

For TB < T < Tu, we have

YΔQ1
¼ YΔQ2

¼ −
3

23

�
TrYΔ̃ − 2TrYΔE þ 2

X
i

qYϕi
YΔϕi

�
;

ðC3Þ

YΔQ3
¼ 6

23

�
TrYΔ̃ − 2TrYΔE þ 2

X
i

qYϕi
YΔϕi

�
; ðC4Þ

YΔu ¼ YΔd ¼ YΔc ¼ YΔs ¼ YΔb

¼ 3

46

�
TrYΔ̃ − 2TrYΔE þ 2

X
i

qYϕi
YΔϕi

�
; ðC5Þ

YΔt ¼ −
15

46

�
TrYΔ̃ − 2TrYΔE þ 2

X
i

qYϕi
YΔϕi

�
: ðC6Þ

For Tu−b < T < TB, we have

YΔQ1
¼YΔQ2

¼ 2

115

�
4TrYΔ̃þ15TrYΔE−15

X
i

qYϕi
YΔϕi

�
;

ðC7Þ

YΔQ3
¼ 1

115

�
53TrYΔ̃ − 60TrYΔE þ 60

X
i

qYϕi
YΔϕi

�
;

ðC8Þ

YΔu ¼ YΔd ¼ YΔc ¼ YΔs ¼ YΔb

¼ 1

115

�
19TrYΔ̃ − 15TrYΔE þ 15

X
i

qYϕi
YΔϕi

�
;

ðC9Þ

YΔt ¼ −
1

115

�
26TrYΔ̃ − 75TrYΔE þ 75

X
i

qYϕi
YΔϕi

�
:

ðC10Þ

For Tu−c < T < Tu−b, we have

YΔQ1
¼ YΔQ2

¼ YΔQ3
¼ 1

5
TrYΔ̃; ðC11Þ

YΔu ¼ YΔd ¼ YΔc ¼ YΔs ¼
1

10
TrYΔ̃; ðC12Þ

YΔt ¼ −
1

5

�
TrYΔ̃ − 3TrYΔE þ 3

X
i

qYϕi
YΔϕi

�
; ðC13Þ

YΔb ¼
1

5

�
2TrYΔ̃ − 3TrYΔE þ 3

X
i

qYϕi
YΔϕi

�
: ðC14Þ

For TB3−B2
< T < Tu−c, we have

YΔQ1
¼ 1

130

�
11TrYΔ̃ þ 30TrYΔE − 30

X
i

qYϕi
YΔϕi

�
;

ðC15Þ

YΔQ2
¼ 1

130

�
41TrYΔ̃ − 30TrYΔE þ 30

X
i

qYϕi
YΔϕi

�
;

ðC16Þ

YΔQ3
¼ 1

5
TrYΔ̃; ðC17Þ

YΔu ¼ YΔd ¼ YΔs

¼ 1

260

�
41TrYΔ̃ − 30TrYΔE þ 30

X
i

qYϕi
YΔϕi

�
;

ðC18Þ

YΔc ¼ −
1

260

�
19TrYΔ̃ − 90TrYΔE þ 90

X
i

qYϕi
YΔϕi

�
;

ðC19Þ

YΔt ¼ −
1

130

�
17TrYΔ̃ − 60TrYΔE þ 60

X
i

qYϕi
YΔϕi

�
;

ðC20Þ

YΔb ¼
1

130

�
43TrYΔ̃ − 60TrYΔE þ 60

X
i

qYϕi
YΔϕi

�
:

ðC21Þ
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For Tu−s < T < TB3−B2
, we have

YΔQ1
¼ 1

10

�
TrYΔ̃ þ 2TrYΔE − 2

X
i

qYϕi
YΔϕi

�
; ðC22Þ

YΔQ2
¼ YΔQ3

¼ 1

20

�
5TrYΔ̃ − 2TrYΔE þ 2

X
i

qYϕi
YΔϕi

�
;

ðC23Þ

YΔu¼YΔd¼YΔs¼
1

20

�
3TrYΔ̃−2TrYΔEþ2

X
i

qYϕi
YΔϕi

�
;

ðC24Þ

YΔc ¼ YΔt ¼ −
1

10

�
TrYΔ̃ − 4TrYΔE þ 4

X
i

qYϕi
YΔϕi

�
;

ðC25Þ

YΔb ¼
1

20

�
7TrYΔ̃ − 10TrYΔE þ 10

X
i

qYϕi
YΔϕi

�
: ðC26Þ

For Tu−d < T < Tu−s, we have

YΔQ1
¼ YΔQ2

¼ YΔQ3
¼ 1

5
TrYΔ̃; ðC27Þ

YΔu ¼ YΔd ¼
1

10
TrYΔ̃; ðC28Þ

YΔc ¼ YΔt ¼ −
1

80

�
7TrYΔ̃ − 30TrYΔE þ 30

X
i

qYϕi
YΔϕi

�
;

ðC29Þ

YΔs ¼ YΔb ¼
1

80

�
23TrYΔ̃ − 30TrYΔE þ 30

X
i

qYϕi
YΔϕi

�
:

ðC30Þ

Finally, for T < Tu−d, we have

YΔQ1
¼ YΔQ2

¼ YΔQ3
¼ 1

5
TrYΔ̃; ðC31Þ

YΔu¼YΔc¼YΔt

¼−
1

55

�
2TrYΔ̃−15TrYΔEþ15

X
i

qYϕi
YΔϕi

�
; ðC32Þ

YΔd¼YΔs¼YΔb

¼ 1

55

�
13TrYΔ̃−15TrYΔEþ15

X
i

qYϕi
YΔϕi

�
: ðC33Þ

APPENDIX D: TRANSITION TEMPERATURES

To estimate the transition temperature due to the EW
sphaleron interaction TB, we define

cBðTÞ ¼
3

2

YΔBðTÞ
TrYΔ̃ðTÞ

; ðD1Þ

where YΔ̃ ¼ YΔB
3
I3×3 − YΔl. Then, we solve

sHz
dYΔB

dz
¼ −

3γEW
4Ynor

�
TrYΔl

glζl
þ 3

TrYΔQ

gQζQ

�

¼ −
9γEW
16Ynor ð3YΔB − 2TrYΔ̃Þ; ðD2Þ

where z≡Mref=T together with Eqs. (26) and (31) with the
condition

YΔH ¼ −
14

23
ðTrYΔ̃ − 2TrYΔEÞ; ðD3Þ

which is valid for T > Tu−b. For α2, the RGE at one loop is
[27,28]

α2ðμÞ ¼
12πα2ðmZÞ

12π − 19α2ðmZÞ þ 19α2ðmZÞ ln μ
; ðD4Þ

where we take μ ¼ 2πT and α2ðmZÞ ¼ 0.0337 with
mZ ¼ 91.2 GeV. Here, we ignore the milder RGE of the
charged lepton Yukawa and fix it in the flavor basis to be
ŷE ¼ diagð2.8 × 10−6; 5.9 × 10−4; 1.0 × 10−2Þ (the result
is independent of basis).
We set Mref ¼ 1012 GeV, and for initial conditions, we

take YΔBðziÞ ¼ 0 with zi ¼ 10−3 and choose arbitrary
values for YΔðziÞ ∼ 10−10 and YΔEðziÞ ∼ 10−10. The behav-
ior of the curve is rather insensitive to a particular choice of
YΔðziÞ and YΔEðziÞ. Solving up to zf ¼ 103, to an accuracy
within percent level, one obtains the fitting function

cBðTÞ ¼ 1 − e−
TB
T ; ðD5Þ

where TB ¼ 2.3 × 1012 GeV.
To estimate the transition temperatures related to quark

Yukawa interactions, one needs to solve for cHðTÞ as

cHðTÞ ¼ −
YΔHðTÞ

TrYΔ̃ðTÞ − 2TrYΔEðTÞ
: ðD6Þ

Here, YΔH should be treated as an independent variable,
and one will need to construct a Boltzmann equation for
YΔH taking account all the interactions that change the
number of Higgs.
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