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In the early Universe above the weak scale, both baryon B and lepton L numbers are violated by
nonperturabive effects in the Standard Model while B — L remains conserved. Introducing new physics
which violates perturbatively L and/or B, one can generate dynamically a nonzero B — L charge and hence
anonzero B charge. In this work, we focus on the former scenario, which is also known as leptogenesis. We
show how to describe the evolutions of lepton flavor charges taking into account the complete Standard
Model lepton flavor and spectator effects in a unified and lepton flavor basis—independent way. The recipe
we develop can be applied to any leptogenesis model with arbitrary number of new scalars carrying
nonzero hypercharges and is valid for cosmic temperature ranging from 10'3 GeV down to the weak scale.
We demonstrate that in order to describe the physics in a basis-independent manner and to include lepton
flavor effect consistently it is necessary to describe both left-handed and right-handed lepton charges in
terms of density matrices. This is a crucial point since physics should be basis independent. As examples,
we apply the formalism to type-I and type-II leptogenesis models where in the latter case a flavor-covariant

formalism is indispensable.
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I. INTRODUCTION

In the early Universe, if the cosmic temperature is above
the weak scale, the thermal bath contains all the degrees
of freedom of the Standard Model (SM) and perhaps
other new physics degrees of freedom as well if they are
kinematically accessible. To generate a cosmic baryon
asymmetry dynamically (baryogenesis), one needs to
violate at least the baryon number B of the SM. Above
the weak scale when the SM B-violating process is in
thermal equilibrium [ 1], one needs to identify other charges
which are not in thermal equilibrium such that the charge is
effectively conserved and can remain nonzero. In the SM,
one identifies the baryon minus lepton number B — L as the
exactly conserved charge. If one introduces new physics
which perturbatively violates B — L, together with viola-
tion of charge C and charge parity CP, a nonzero B — L
charge can be dynamically generated. Since B is not
orthogonal to B — L, we have

B=c(B-L) (1)
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with ¢ # 0, implying a nonzero B is generated as well.
After baryogenesis is completed, i.e., (B — L)-violating
interaction goes out of equilibrium, while B — L charge
remains conserved, it is important to note that, since B is
not a conserved charge, it can (and in general will) evolve
with cosmic temperature. In other words, the coefficient ¢
that relates B and B — L in Eq. (1) is temperature dependent
since it depends on the effective charges of the thermal
bath. How can effective charges arise in the early Universe?
They arise as the cosmic temperature increases when some
of the SM interactions go out of equilibrium. In principle,
baryogenesis does not have to go through B — L but can
proceed through other effective charges © which are not
completely orthogonal to B [2],

B:ZCQQ, (2)
Q

with c¢g # 0. In Ref. [3], we have classified all effective
charges of the SM and its minimal supersymmetric exten-
sion, 16 in the former and 18 in the latter, and this opens up
a new avenue for baryogenesis.

In this work, we focus on baryogenesis scenario through
the violation of B — L, which can come from perturbative
interaction which violates L and/or B. We consider the
former scenario, which is also known as leptogenesis [4].
First of all, we show that in order describe leptogenesis in a
basis-independent manner one needs to describe both the
number asymmetries in lepton doublet # and singlet E in
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term of matrices of number densities in their respective
flavor spaces (we will denote them densities matrices) [5].
It is of fundamental importance since physics should not
depend on a particular basis. While the computation of
leptogenesis is usually carried out in a charged lepton mass
basis, one should be cautious that this description has
limited validity, and in particular, if the result is basis
dependent, then it is a red flag that something must be
wrong. In this flavor-covariant formalism [6,7], the SM
lepton flavor effect is consistently taken into account. With
the effective charges identified in Ref. [3], we are able to
include the complete spectator effects due to quark Yukawa
and SM sphaleron interactions in a unified manner, which
to our knowledge has not been carried out before. (See
Ref. [9], in which the spectator effects related to tau and
bottom-quark Yukawa interactions are investigated.) In
Ref. [10], asymmetry in E is not taken in account, and
as a result, one cannot obtain a fully basis-independent
result. In Refs. [6,7], asymmetry in singlet E is considered
while other spectator effects [11,12] pertaining to quark
Yukawa and SM sphaleron interactions are not considered.

This article is organized as follows. In Sec. II, we review
the effective symmetries and charges of the SM in the early
Universe. In Sec. III, we write down the flavor-covariant
Boltzmann equations, taking into account the complete
lepton flavor and spectator effects due to quark Yukawa and
the SM sphaleron interactions. These results are completely
general and, together with the equations in Appendix C,
can be applied to any leptogenesis model (with arbitrary
number of new scalars carrying nonzero hypercharges) for
cosmic temperature ranging from 10" GeV down to the
weak scale. In Sec. IV, we apply our results to type-I and
type-II leptogenesis models. Finally, we conclude in Sec. V.
In Appendix A, we discuss how number density asymmetry
matrices are related to matrices of chemical potentials; in
Appendix B, we show how the flavor-covariant structure
can be derived using Sigl-Raffelt formalism [5]; and in
Appendix D, we discuss how to determine the transition
temperatures related to spectator effects.

II. EFFECTIVE SYMMETRIES AND CHARGES

In the early Universe, due to the additional scale related
to cosmic expansion, one should consider effective sym-
metries and charges. To illustrate this point, let us consider
the early Universe which is dominated by radiation energy
density p, o« T* with temperature T and is expanding with
the Hubble rate H o \/p,/Mp; « T?/My;, where Mp =
1.22 x 10" GeV is the Planck scale. Taking all particles to
be massless, the interaction rates among the particles have
to scale as T. At sufficiently high 7', all of those interactions

'Reference [8] develops a flavor-covariant formalism which
takes into account the flavors of left-handed SM leptons as well as
the massive right-handed neutrinos in the type-I seesaw model.

will be slower than the Hubble rate. In this case, if one
assigns a quantum number or charge to each type of
particle, the charge will be effectively conserved since
all particle-number-changing processes are out of thermal
equilibrium (effectively do not occur within a Hubble
time). In the SM, with three families @ = 1, 2, 3 of quark
0, and lepton Z, doublets, charged lepton E,, up-type U,
and down-type D, quarks singlets, and a Higgs doublet,
one will expect to have up to 16 effective charges or the
associated global U(1) symmetries. One can conveniently
choose linear combinations of U(1) charges which are
subsequently broken as the cosmic temperature decreases.
This choice leads to U(1), with [3]*

x={t,u,B,7,u—b,u—c,u,By—Br,u—5,B3
+Bz—2B],M—d,€,B/3—La,Y}, (3)

where we have denoted the charge associated to each type
of particle as {U,,U,,Us} = {u,c,t}, {Dy,D,,D3} =
{d,s,b}, and {E|,E,,E3} = {e,u,7} and B, refers to
baryon flavor number with the total baryon number
B = B; + B, + Bj, while L, refers to lepton flavor number
with the total lepton number L = L; + L, + L3. Out of
these 16U(1),, only the last four remain exact before the
electroweak (EW) symmetry breaking: hypercharge gauge
symmetry Y and the three B/3 — L, accidental (global)
symmetries. The rest of the effective symmetries are broken
by the Yukawa and nonperturbative sphaleron interactions.

In the absence of neutrino mass, the SM Lagrangian
contains four accidental U(1) symmetries: the total
baryon number U(1)p and three lepton flavors U(1), .
Nevertheless, there are fewer actual accidental symmetries
of the SM due to the Adler-Bell-Jackiw anomaly. We can
determine if any of the accidental symmetry U(1), is
preserved from its anomaly coefficient associated with the
triangle diagram U(1), — SU(N) — SU(N),

Ay = ZC(Ri)gif]fv (4)

where the sum is over all fermions i of degeneracy g;,
charge ¢} under U(1),, and representation R; under
SU(N > 2) gauge group with ¢(R;) = 1 in the fundamental
representation and c¢(R;) = N in the adjoint representation.
Since the contribution of each fermion i to the SU(N)
sphaleron-induced effective operator is proportional to
c(R;), the effective operator is given by [3]

Osupn ~ [[#77. (5)

In the SM, we see that U(1), and U(1), are anomalous
[13] with anomaly coefficients

’In the minimal supersymmetric SM, there are 18 effective
symmetries and corresponding charges.
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1 1 3
A322=§x3<3x§>—§, (6)

1 1
A =-—x1=-—. 7
Lm=yx1=3 ™)
Out of four anomalous symmetries, one can form three
linear combinations which are anomaly free. It is conven-
ient to choose the following three anomaly-free symmetries
U(1)p/3-;, we mentioned earlier. Then, the anomalous

symmetry U(1)g,, with anomaly coefficient

1 1
A(B+L)22:§X3<3X§+l>:3. (8)

From Eq. (5), one obtains the EW sphaleron effective
operator

3
OSU(Z) ~ H 0,090 o (9)
a=1

The operator above violates only U(1) , and the interaction
due to this operator is in thermal equilibrium [1] from
Tp~2x10'2 GeV [9] up to Tp_ ~ 132 GeV [14].

The SM quark Yukawa terms are given by

—L2 () UaQpeH + (yp)apyD,OQpH* +Hec., (10)

where the SU(2), contraction between the left-handed
quark Q, and the Higgs H doublets is shown explicitly
with the SU(2) antisymmetric tensor ¢y, = —€jg = 1. If
these terms are absent, one has a chiral symmetry U(1),
where ¢, = —q;, = —q}, = q. Nevertheless, this chiral
symmetry is anomalous with

1
A;(33=5><3(2><q+q+q):6q- (11)

From Eq. (5), one can construct the QCD sphaleron
effective operator as [15]

3
Osui) ~ [ [ QeQaUsD5- (12)
a=1

The operator above violates the chiral symmetry U(1),, and
the interaction due to this operator is in thermal equilibrium
for T<T,~2x 10" GeV [9].

The rest of the effective symmetries in Eq. (3) are broken
when the corresponding Yukawa interactions get into
thermal equilibrium, starting from the one involving top
Yukawa, tau Yukawa, and so on. We can estimate the
temperature 7, in which U(1), is broken from the con-

dition when the U(1),-violating rate is equal to the Hubble
rate I'(T,) = H(T,) and obtain [3]

T,~1x 105 GeV,
T, ~2x 10 GeV,
Tp~2x 102 GeV,
T.~4x 10! GeV,
T, ,~3x 10 GeV,
T, ~2x10'0 GeV,
T, ~10° GeV,
Ty, ~9 x 10° GeV,
T, . ~3x 108 GeV,
Ty on, 25 ~107 GeV.
T, ~2x10° GeV,
T, ~3x10* GeV, (13)

and we have assumed thermalization at 7 ~ 10'5 GeV
[16,17]. In principle, one will need to track the evolutions
of all the effective charges, starting from some initial
condition. For instance, after reheating at the end of
inflation with temperature TRy, we can take the initial
condition to be when all the effective charges are zero. The
charge density associated to each effective charge can be
written as

Nax = Z‘I?‘”Ai» (14)

where the number density asymmetry of particle i is
defined as n,; =n; —n;, where n;(n;) is the number
density of particle i (antiparticle 7). In this case, the initial
condition will be ns,(Try) = 0 for all the charges. One
should then track the evolutions of all the n,,(7) with
the Boltzmann equations including all the SM interactions.
To generate some nonzero charges, the three Sakharov
conditions should be fulfilled [18]:

(i) Violation of U(1),,

(i) C and CP violation corresponding to the process

violating U(1),,
(iii) Out-of-equilibrium condition for the process violat-
ing U(1),.

If the Sakharov conditions are not met for any of the
charges in Eq. (3), one will always have n,, = 0. If the
Sakharov conditions are met for some of the U(1), (this
does not happen in the SM, and hence physics beyond the
SM is required), one will have n5,(7;) # 0, where T, is the
temperature when the charge n,, is being generated. If all
other U(1),, remain effective, we have n,, = 0, while for
U(1),., which are not effective, we will necessarily have
nyy & nay. This does not necessarily imply that n,, # 0
since the constant of proportionality can be zero; i.e., U(1),
and U(1), are orthogonal to each other. At Ty_ < T < T,,
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since U(1)g is not effective, we can construct the baryon
charge density from Eq. (14) as

nap = CZ”A(B/3—Ln)v (15)

where we have assumed zero hypercharge density n,y = 0.
The coefficient ¢ is not zero since B and B/3 — L, are
not orthogonal to each other. With the SM degrees of
freedom and assuming that the EW sphaleron interaction
freezes out at 132 GeV after the EW symmetry breaking at
160 GeV [14], we obtain

30
nAB(TB—) = 9_7 ZnA(B/S—La)<TB—)7 (16)

where we have excluded the top-quark contribution.

Next, we will review briefly how to relate the number
density asymmetries of the SM particles to their corre-
sponding chemical potentials. Since all the SM particles
participate in the gauge interactions, they can thermalize at
a cosmic temperature 7 < 105 GeV [16,17] and follow the
equilibrium phase-space distribution

1
fi = Ei—pi ’ (17)
€T +¢;

where &; is the energy of particle i, u; is its chemical
potential, and &; = 1(—1) for i a fermion (boson). For gauge
bosons, their numbers are not conserved, and their chemical
potentials are zero. For the rest of the SM particles, due to the
scatterings with the gauge bosons, the chemical potential of
an antiparticle is related to the corresponding particle by a
negative sign y; = —u;. To take into account flavor corre-
lation of particle i, one can generalize y; to a matrix in its
flavor space. (See Appendix A for details.) In this work,
since we are interested in the lepton flavor effect, we will
generalize y, and ug to matrices in their lepton flavor spaces
(see the next section).

Integrating the phase space distribution (17) over
3-momentum, at leading order in |u;|/T < 1 (assuming
that the number density asymmetries of the SM particles are
much smaller than their total number densities in the early
Universe in accordance with observation), the number
density asymmetries are linearly proportional to their
respective chemical potentials

B d3p N T2
na; = /W(fi _fi) = ngéfiﬂi’ (18)

where g; is the gauge degrees of freedom and ¢; = 1(2) for
i a massless fermion (boson).3 To scale out the effect of

For a particle i with mass m; (=% [ dxxx

dilution purely due to the Hubble expansion, we will
normalize the matrix of number densities Y; = n;/s by
the cosmic entropy density s = % g, T3 with g, being the
effective relativistic degrees of freedom of the Universe
(g, = 106.75 for the SM), and we obtain

2u.
Y=Y, -Yi= Ynorgiﬁfi%a (19)

where we have defined Y™ = % Then, one can relate

YA; to normalized charge density Y Ax = Na, /S as [2]
Ypi = Zgigizcﬁl(]_l)nyAxv (20)
x y
where
Jo = ZQ;’C;’CI}VQ?’- (21)

The relation above is completely general (the charges are
completely fixed for any given model), and the temperature
dependence appears only in {; for particles which are not
massless and in Y,,(7T), which should be solved from the
relevant Boltzmann equations. In the next section, we will
discuss how to consider lepton flavor charges and their
coherences with density matrices while treating the effects
of baryons as spectators [11,12].

III. LEPTON FLAVOR EFFECT

In the SM, we have the charged lepton Yukawa term”
—L D (yg)sElLsH* +Hee., (22)

where £; and H are, respectively, the left-handed lepton
and Higgs SU(2), doublets, while E, is the right-handed
charged lepton SU(2), singlet with family indices a,
p =1, 2, 3. The charged lepton Yukawa coupling can
be diagonalized by two unitary matrices Uy and Vg,

Ve = UEYEV}E:, (23)

where 95 = 1diag(m,,m,, m,) with v = (H) = 174 GeV
the Higgs vacuum expectation value and m,, m,, and m,
are, respectively, the electron, muon, and tau lepton masses
(at certain scale). In the charged lepton mass basis, which
is also known as the (leptonic) flavor basis, we have
E' = UgE and ¢’ = V¢, where they are labeled as £/ =
{¢..¢,.¢;} and E' = {E,.E, E.}.

In this work, since we are interested in studying the
flavor coherence of the lepton charges, from Eq. (19),

“In the minimal supersymmetric SM, the corresponding term
in the superpotential is W D (yg)4sEq¢ seHy.
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we will consider matrices of number density asymmetries
of Z and E (see Appendix A for details),

2u 2u
Yae =Y""g,C, Tf, Yap = YnorgECETE’ (24)

where Yz, Yap, #y, and pg are 3 x 3 Hermitian matrices
in the leptonic flavor spaces (one for ¢ and the other
for E). The diagonal elements denote the number density
asymmetries in the “flavors” for any chosen basis (not
necessarily the charged lepton mass basis), while the off-
diagonal elements encode the correlations between the
flavors. As we will see later, this generalization is necessary
such that physics is independent of basis. Nevertheless, a
convenient basis is usually useful to interpret the physics at
hand. Including the EW sphaleron [19] and scatterings due
to charged lepton Yukawa, the flavor-covariant Boltzmann
equations can be written as [5—7,9]5

dy TrY TrY
sHz —2% = — }’Enwor < A3 AQ) I3,3
dz 4y e gQé’Q
_VE yhy Yar YE iy Yau
2vmr B gLy B E gy
YE _+ Yar
) 25
+YmryEgECEyE (25)
stdYAE:— TE yT YrE _VEny Ysu
dz 2y |78 E’gEgE yroroF EQHCH
y Y
Eye—=5yE, (26)

" yror 9¢8r

where we have defined the anticommutator {A,B}=

AB+ BA, 7= % with an arbitrary reference mass scale

M, and H = 1.66,/9,T?/Mp, is the Hubble rate for a

radiation-dominated Universe. The charged lepton Yukawa

reaction density was determined in Refs. [7,20] to be
T4

Ye~5x1073 ‘c» Where thermal corrections and scatterings

involving gauge fields and quark fields are taken into
account. The EW sphaleron reaction density was deter-

mined in Ref. [14] to be ygy ~ 1823T*, where @, = £ with
g» the weak coupling. Under arbitrary flavor rotations

E - UE, - Ve, ye = UygV',  (27)

the Boltzmann equations (25) and (26) are manifestly
covariant if

SWe ignore flavor oscillations which are damped by gauge
interactions [6]. These equations have been derived in Refs. [6,7]
using the closed time path formalism. See Appendix B for
discussion on how the flavor-covariant structures can be derived
from the evolution equation of a Heisenberg operator [5].

YAf g VYAKVT, YAE = UYAEU} (28)
The above transformations can be easily ensured when
constructing the matrix of number density asymmetry as
shown in Appendix A. Hence, we can use the freedom
above to work in any basis while the observables; i.e.,
TrY 5, and TrY o remain unaffected by our choice of basis.
For instance, we can choose U = Uy and V = Vg, which
correspond to flavor basis (23).6

In the SM, the Boltzmann equation for the evolution of
total baryonic charge Y3 is the following [19]:

dYAB __ 3]/EW (TI'YAK n 3 TI'YAQ> . (29)

sHz
dz 4yt \ g.L, QQCQ

The additional factor of 3 comes from the fact that for each
scattering the change of the total baryon number is AB = 3
while for the lepton flavors we have AL, =1 for each
flavor. In this work, our focus is only on the lepton flavor
effect, and hence we have considered Y, p as the total
baryon charge instead of matrix in the baryon flavor space.
The baryon flavor effect will be considered elsewhere.
Hence, we will parametrize the transitions across 7', due to
quark interactions, i.e., with x # {e, u, 7}, as some expo-
nential functions that we will discuss in the next section.
Ignoring baryon flavor effect, let us define the charge
matrix

1
Yi E§YABI3><3 = Yar (30)

which transforms like Y,, as in Eq. (28) under flavor
rotations (27). From Egs. (25) and (29), we obtain the
Boltzmann equation for Yz as follows:

stdYA _re Ly Yae | 7E yhy Yau
dz 2y TE R gl )yt gy
YE _+ Yar (31)

- yrer VE 9eCE =

Now, we only need to solve (26) and (31), treating Yz and
Y ar as the only independent variables.
One could have defined the B/3 — L, charge matrix

1
Yy= 3 Yaplsws = Yar — Yag, (32)

where one would have to keep in mind that Y, and Y,g
transform differently as in Eq. (28). Clearly, the physics
will remain the same, but in order to avoid remembering the
different transformations within Y, we will resort to using
Y 5. Nevertheless, it is instructive to look at the Boltzmann

6Including the Renormalized Group Evolution (RGE) of
charged lepton Yukawa coupling, Ur and Vi will in general
be scale dependent.
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equation for Y, in the flavor basis where we can construct
from Eqgs. (25), (26), and (29) as follows:

dYA: YE 5)2 Yar VE)A)
dz 2 P g ) T gt
YE 5 YM R

+ VE 52 Yae | 5
2y B gl ) T gt
Yar | Y AE:|:|

y ) j\) T o
2Y“°r [ . { 9.0 gele

YAEA

sHz

(33)

In the last step above, we have defined the commutator
[A, B = AB — BA. One can easily check that in the flavor
basis the double anticommutator term projects out only the
off-diagonal entries of Y, and Y. Hence, TrY, remains
a constant as it should be since the SM interactions do not
break B — L. Clearly, the same conclusion holds also in
any other basis. While it is not necessary to work in flavor
basis, it makes the interpretation easier since in the flavor
basis one can identify the diagonal elements of Y, as the
flavor charges Ya(p/3-r,), YAA(B/3_L”), and Yap/3-1,)- In
Eq. (33), it is apparent that for a consistent description
of evolution of lepton flavor charges which is basis indepen-
dent both Y,, and Y,y need to be described by density
matrices: if off-diagonal terms of Y,, are induced, off-
diagonal terms for Y 5 g will be induced as well and vice versa.

In the rest of the work, we will use Egs. (26) and (31),
which are valid in any basis. Including new physics
interactions that generate either Y,p and/or Y3 in the
two Boltzmann equations, from Eq. (16), the final baryon
asymmetry will be frozen at Tz_ to be

30
— (TrYx — TrY ag) . (34)

Yap(Tp-) =
Y/ T

Next, we will write down the relations between Y, and
Yap in terms of Yz and Y, for the SM and the SM
augmented with arbitrary scalar fields carrying nonzero
hypercharges.

A. Standard Model
With the SM field content, from Eq. (20), we obtain’

2
(YAf)aa - ECBTTYA - (Yﬁ)aa’ (35)
YAH = —CH(TI‘YA — ZTYYAE), (36)

where cp and cy are coefficients which vary with temper-
ature. In obtaining the expressions above, we have assumed
all effective charges in Eq. (3), except (Yz)., and (Y ax)gqs
to be zero. Comparing with Eq. (30), one recognizes

"The number asymmetries of quark fields in term of Y; and
YA are collected in Appendix C.

g = 12—5 cpTrYz. The relations above are completely general

and capture all the spectator effects in the SM. At
T > Ty ~2 x 10" GeV when the EW sphaleron interac-
tion is out of equilibrium, we have cy = 0, while at T < T’
when the baryon number is no longer conserved, we have
cg = 1. This shows that an asymmetry in the lepton sector
is being shared with the baryon sector and vice versa
at T < Tg. To capture this effect in a continuous manner,
one should consider Y,, =%-Y 4, and include the
Boltzmann equation for Y,z in Eq. (29) and then solve
for c(T). To within percent-level precision, one can use
the fitting function®

Tp

cg(T)=1—e¢7T, (37)

where T = 2.3 x 10> GeV. In Appendix D, we discuss
how to determine a precise value of T'p.

The rest of the spectator effects pertaining to quark sector
are encapsulated in the coefficient ¢y with

1 T>T,
: T, <T<T,
B T,py<T<T,
cwmy= {5 ey
3 TIpyp, <T<T,.
i Tus <T <Tp_p,
r Ty <T<T,,
2 T<T,y

In the equation above, we can see explicitly that the
asymmetry carried by the Higgs is diluted as more charges
come into equilibrium. Since the transitions due to the rate
I' « T as compared to the Hubble rate H « T? always have
an exponential behavior, one can parametrize the transi-
tions with the following function:

| 2 14 T

(39)

One can also use a theta function cg(T) = 0(T — Tp),
keeping in mind that the effect can be of the order of 1 if
leptogenesis happens around 7.
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For the purpose of this work, we use the transition
temperatures as shown in Eq. (13). Precise determination
of the transition temperatures can be carried out following
the procedure shown in Appendix D.

From the definition of Y3 in Eq. (30), the off-diagonal
terms a # f§ are

(Y&)aﬁ = —(YM)H/;- (40)

Hence, we can rewrite the matrix Y,, as

2
YM’:ECBIMBTTYA_YA- (41)

B. Standard Model with additional scalar fields

If one introduces additional scalar fields ¢; with hyper-
charge qgi to the system, Eq. (35) remains the same, while
Eq. (36) changes to

Yay = —Cp (TrYA —2TrYap +2) g} YA,/,I_>, (42)
i

where Y 5, defined in Eq. (19) takes into account additional
gauge multiplicity g, as well as mass of ¢; in £, (implicitly,
we have assumed ¢; to be in kinetic equilibrium but not
necessarily in chemical equilibrium). The relation above is
general, independently of whether ¢; are in chemical
equilibrium or not. If some of the ¢; do not achieve chemical
equilibrium, one will have effective U(1),, in which Y,
remains constant. Otherwise, the evolution of ¥, will have
to be described by the corresponding Boltzmann equation.

For instance, for type-Il seesaw leptogenesis with a
heavy triplet Higgs 7" with hypercharge qg =1, one can
apply Eq. (42) and obtain

YAH = —CH(TI'YA — ZTYYAE + 2YAT)~ (43)

IV. APPLICATIONS

Now, we will apply the flavor-covariant Boltzmann
equations (26) and (31) to some well-motivated lepto-
genesis scenarios. One just needs the general expressions
(41) and (42) to close the equations. Even for leptogenesis
models involving quarks, one can use the general relations
in Appendix C (ignoring baryon flavor effect). Hence, one
no longer needs to solve for flavor matrices for a particular
model and which hold only in a particular temperature
regime as has been done, for example, in Refs. [21,22].
In the first example, we will apply the formalism to type-I
leptogenesis, while in the second example, we will apply it
to type-1I leptogenesis where flavor-covariant formalism is
indispensable as first pointed out in Ref. [22]. In particular,

we will demonstrate that the results obtained are indepen-
dent of basis, showing that it is necessary to take into
account flavor correlation in both # and E. In other words,
it is inconsistent to consider flavor correlation only in £ or
only in E.

A. Type-I leptogenesis

In the type-I seesaw model, the SM is extended by right-
handed neutrinos N; as

1 _
—E D 51‘411\711\71L + yiaNifaeH =+ H.C., (44)

where M; is the Majorana mass of N; and we will work in
the arbitrary basis where y is not necessarily diagonal.
While two generations of N; are already sufficient to
explain neutrino oscillation data, as an example, we will
consider three generations i = 1,2, 3.

After the EW symmetry breaking with v = (H) =
174 GeV, the light neutrino mass matrix for |y|v <« M; is

ml = —2yTMy, (45)

where M = diag(M, M, M3). The mass matrix can be
diagonalized with UI'm,U, = i = diag(m,, m,, m3),
where Upyns = VU, is identified with the leptonic
mixing matrix.

For type-lI leptogenesis, an asymmetry is generated
through the CP-violating decays N; — £,H. In addition
to the Boltzmann equation for Yy,

vy, Yy,
SHZd—Z = ~IN; <Y—el\;]’ - 1> , (46)

where we have defined z = M, /T, we have to append to
the right-hand side of Eq. (31) a source and washout terms,
respectively, given by [10]

Yy
s (Gr)
N

1 YN, <1{ YM} YAH)
WI = — . — Pi7— +Pl N 48
2=y \2 9¢8e 9uCH (48)

where to close the equations we apply Egs. (36) and (41).
Assuming the Maxwell-Boltzmann distribution for N;, we

2
have Yy! = %% Iy (M), with IC,,(x) the modified Bessel
function of the second kind of order n, and the decay
reaction density yy, is given by
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Ki(M;/T)
_ qur 1 i , 49
yN,- S N~ N; ’CZ(M,/T) ( )
with Ty, = @i the total decay width of N,.’
The matrix of CP-violation parameter ¢; and flavor rotation matrix P; are, respectively, given by [10]
(€ = e S 05t = 9 il (od) + e S 0 i = 05 il
i)ap 167 (yy;)ii — yy ]zyjﬂym yy z]ylﬂyja g M,2 167 (yyl)i,' e yy l_]yjﬂyla yy ]lylﬂyja M,2 _Mi
(50)
| Yiel> YieYi  YieVie
P; = AT VieYiu |)’i;4|2 Viyie |- (51)
Oy . ) )
YieYie ViV Vil
Under flavor rotations (27) and (28), we have
€ — Ve, VT, P; - VP, VT, (52)

and the whole Boltzmann equation for Yz remains flavor covariant as required.
For illustration, we choose the best-fit point from Ref. [24] for the SO(10) model with Higgs content 10, + 126, for the

Yukawa sector with no-RGE

(2.508 — 1.1017) x 107*
y = (1.893 +0.0359i) x 1073
(1.446 — 9.365i) x 1073

(1.0077 + 1.0449i) x 107>
(—3.8245 + 0.0226i) x 107>
(—3.2332 - 1.8088i) x 107*

YE =

(1.224 - 5.313i) x 107*
(=2.100 + 20.365i) x 1073
(2217 4 1.373i) x 1072

(—3.8245 + 0.0226i) x 1073
(5.2064 — 2.2026i) x 10~
(8.0184 — 7.4693i) x 10~*

(—1.988 + 0.646i) x 1072
(—8.560 + 1.384i) x 1072 |, (53)
0.1356 + 0.4602i

(=3.2332 — 1.8088i) x 107*
(8.0184 —7.4693i) x 1074 |,  (54)
(8.5102 + 4.4337i) x 1073

M = {1.445 x 10'°,7.244 x 10'',5.663 x 10'?} GeV. (55)

We will solve the Boltzmann equations in the original basis
(as above) and in the flavor basis where yg is diagonalized
through a flavor rotation as in Eq. (23) assuming zero initial
abundance Yy (z;) = 0 with z; = 107*.

In Fig. 1, we show the numerical solutions comparing
the results in the nonflavor basis yj (solid curves) and in the
flavor basis y (dashed curves). In the top row, we show the
diagonal elements of |Yx| and |Y zg|, while in the bottom

Here, we consider only decay and inverse decay. We have
ignored the helicities of N; and scattering processes which will be
relevant for leptogenesis in the weak washout regime
Ty, /H(T = M;) < 1 since in this case the physics at T > M;
will play a relevant role [23]. We have also assumed N, to be well-
separated states [M; —M;| > Ty, such that the effect of N;
oscillations is not relevant. Otherwise, one should use the flavor-
covariant formalism which also includes the flavor of N; [8].

row, we show their off-diagonal elements (they are
Hermitian matrices). Here, we see that independent of
basis, once off-diagonal elements of Yz develop from
leptogenesis, unavoidably, off-diagonal elements of Y,g
will be induced as well. In the flavor basis y, the off-
diagonal elements start to become suppressed at various
temperatures as the charged lepton Yukawa interactions
subsequently get into thermal equilibrium and finally at
22100, (Yz),, and (Yg),, start to become suppressed,
indicating a transition to the three-flavor regime.

In Fig. 2, top row, we plot |TrY 3| and |TrY o] in the two
different bases: nonflavor basis yz (red solid curve) and
flavor basis y5 (blue dashed curve). Reassuringly, TrY 3
and TrY g are basis independent, although the entries of
Yx and Y,p differ among the two bases by the flavor
rotations as in Eq. (28) with V = V and U = V7 since yg
is symmetric. Clearly, the physics is invariant under basis
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COSMIC EVOLUTION OF LEPTON FLAVOR CHARGES

PHYS. REV. D 105, 043004 (2022)

FIG. 1.

I(YAE)myl

(YaE)ag

Numerical solutions for type-I leptogenesis. In the top row, we plot the diagonal elements of | Y3 | and |Y 5| in the two different

bases: nonflavor basis yz (solid curves) and flavor basis $ (dashed curves). In the bottom row, we plot the off-diagonal elements of |Y x|
and |Y 5g| in the yg (solid curves) and $; (dashed curves) bases. Colors (thickness) denote different matrix elements as indicated in the

plots. See the text for further discussions.

transformation, and the benefit of the flavor basis is to help
us to interpret the results. For instance, we can read the
diagonal entries of Yz and Y in the y basis as the flavor
charges in the e, y, 7 (red, blue and green dashed curves in
the top row of the Fig. 1) and also deduce when the system
transits to a different flavor regime from the suppression of
off-diagonal entries. In the bottom plot of Fig. 2, we see
that, while [Yp_r)| = |Tr¥z — TrY g is conserved at the
end of leptogenesis z 2 10, |TrYz| and |TrY sz, not being
conserved charges, continue to evolve. For a final remark,
the final baryon asymmetry produced in this example is
Yap(Tg_) = 6.1 x 107!, consistent in sign but smaller
than the observed value by about 30%."°

!%This can be compared with Ref. [25], which also obtained a
final baryon asymmetry, which is of the right sign but a factor of a
few smaller than the observed baryon asymmetry. Besides the
improved treatment discussed in the work, we also correct the
wrong basis used in Ref. [25].

B. Type-II leptogenesis

In the type-II seesaw model, the SM is extended by a
massive triplet scalar 7 under SU(2), with hypercharge
Y
qr =1 as

1 _
—LOMETe(T'T) + 3 (fupls€T¢s+uH €T 'H+H.c.),
(56)
where
L7+ TH+
T — ﬁTO 1 T+>. (57)
V2

Since 7 couples to two lepton doublets which in general do
not align in flavor space, one needs to describe them with
density matrix as first pointed out in Ref. [22].
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—— yp basis

----- yp basis

TrYA‘

yp basis

----- yp basis
9 YE ]

[TrYapl

10712 il sl e
0% 10% 10?7 10t 1 10 100 10°
z V4
T
2
—”’ ”
10-10k |
9l _ ‘TI‘YA—TTYAE‘
----- T,
\\\\\\\\\\ T‘IY
10-11 Ll I‘ éEl
2 3
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FIG. 2. Numerical solutions for type-I leptogenesis. In the top row, we plot |TrYz| and |TrY 5| in the two different bases: nonflavor
basis yg (red solid curve) and flavor basis y (blue dashed curve). In the bottom plot, we plot |TrYz — TrY ag| (purple solid curve),
|TrY ;| (red dashed curve), and |TrY 5| (blue dotted curve) for z > 10. See the text for further discussions.

The CP violation in the decays of 77 — . and
T — HH can arise at one-loop level from the contribution
of heavier particles of mass scale A > M, which generate
the Weinberg operator below A,

lKa/}
4 A

Eeff = fg;eHHTef/; + H.c. (58)
After the EW symmetry breaking, the light neutrino mass
receives contributions from integrating out the scalar triplet

T as well as the Weinberg operator as

ml = my + my, (59)
where
1 V2
=—uf—, 60
1 02
=—Kx— 61
my 2KA (61)

In the following, we will utilize the interaction terms
derived in Ref. [22] but include only decay, inverse decay,
and gauge scattering processes (other scattering effects are
negligible in the parameter space we will consider below).
The Boltzmann equations to describe the evolution of
YZTE Y’]’+Y’TT and YATEYT_Y’TT are [22]

1)=2 iy -1 62
YA eq.2 ’ ( )
Y T

dY¥ar _ ~ (YAT+ Tr(ff Y ar)
dz PAYS T TR ()Y gL,

Y
- BH norAH ) ’
Y™ guly

where we have defined z=M7/T and to close the
equations we apply Egs. (41) and (43). The branching
ratios for the decays of 7 to lepton doublets and Higgses
are, respectively,

sHz

dYsr (YZT
- D

dz Yo

sHz

(63)
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g, TS o
Te(ff) +
]\Z_I;
B 7. 65
T i o

For the generation of Y5, we have to append to the right-
hand side of Eq. (31) a source and washout terms,
respectively, given by [22]

Ysr
S = —eyp <Y2q - 1> , (66)
T
2vp Y
wi=— =10 P [(ff*) =
Tr(ff) + 4
—— (2fYT T Ty Y T
+4yn0rgf§f( fYpe "+ Yae +Yacff )]
(67)
where the matrix of the CP-violation parameter is
i M meT — mym)
€=§UT«/B,,»BHH—HT_ (68)

Te(mjmy)

167[

—96[4g597(x = 2) + gy(x = 2) + 4g5(x = 1)]In

Taking into account the RGE of the gauge couplings at one
100p,” we obtain an accurate parametrization within 10%
up to z < 20,

ya _ 5.5035x 105 GeV
sHz gi/zMT

6_1_49Z].0735' (73)

Notice that under flavor rotations in Eq. (27), from
Egs. (56) and (68), we observe that

ffH=Viffive, e— VeVl (74)

"The one-loop RGE equations of a, = g—% and ay —f—;
are  given by [27.28], a(u)=

2ray (my)
ay(u)= 20may (mz) respectively, where we take y =

127—19a, (mz)+19ay (mz) Inp °
20r+41lay(mz)—41lay(mz)In2u’
27T and fix ay(m;)=0.0337 and ay(m;) = 0.0169 with
my = 91.2 GeV.

Assuming Maxwell-Boltzmann distribution for 7, we have
Yor = Y74+ Y0 = 2135* 7>K5(z), and the decay reaction

density yp is given by

Ki(z)
= sy, 69
YD s >T T}CZ(Z) ( )
where the total decay width is
Mr ul?
M= [TUM ] o)

Finally, assuming Maxwell-Boltzmann distributions for
all the particles, the gauge scattering reaction density for
TT" < yipr, where y refers to the SM fields, is

M4
6477

o NN N

YA =

where the reduced cross section is given by [26]

{ﬁfx A96RR (x +4) + g (65x — 68) + 264(172 + 65x)]

(\/—fﬂc 1)} (72)

[
For the source and washout terms (66) and (67) to trans-

form the same way,

SH — V*SHVT, WII N V*WHVT, (75)

one requires
YA/ g V*YAKVT. (76)

This can be obtained by a particular choice of ordering of
flavor indices as discussed in Appendix A. Hence, we will
take yp — y in Egs. (26) and (31) such that the trans-
formation is consistent with the one above. Equivalently,
we can take Y, — Y Az in Egs. (26) and (31).

For illustration, we choose a benchmark point from
Ref. [22],

my = iml = my = (1 —i)mll, (77)
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| (YAE )(m'l

FIG. 3.

Numerical solutions for type-II leptogenesis. In the top row, we plot the diagonal elements of |Y;| and |Yag| in the two

different bases: nonflavor basis yz (solid curves) and flavor basis y; (dashed curves). In the bottom row, we plot the off-diagonal
elements of |Yx| and |Y sz in the y (solid curves) and 9 (dashed curves) bases. Colors (thickness) denote different matrix elements as

indicated in the plots. See the text for further discussions.

My =5x10"2 GeV, (78)
Ul = 017, (79)

and we fix the neutrino mass matrix to be
m, = rng;MNSdiag(ml’ my, m3)U:;MNSVE’ (80)

with m; = 1073 eV, while for the rest of the parameters,
we choose the best-fit parameters for normal mass ordering
from the global fit [29]. The effect of RGE up to scale
around M7 is accounted for approximately by taking
r=1.4. We ignore the RGE of charge lepton Yukawa
and fix it to be

yE:VJrEj}EVE’ (81)

where $; = diag(2.8 x 107%,5.9 x 107, 1.0 x 1072). We
will solve the Boltzmann equations in two different bases:

nonflavor basis yy with V= U]T,MNS and flavor basis y;
with VE = I3><3-

In Fig. 3, we show the numerical solutions comparing the
results in y (solid curves) and y (dashed curves) bases. In
the top row, we show the diagonal elements of |Y;| and
|Y o], while in the bottom row, we show their off-diagonal
elements. In the flavor basis y, the off-diagonal elements
start to become suppressed at various temperatures as the
charged lepton Yukawa interactions subsequently get into
thermal equilibrium. We see that at z ~ 1000 (Y3),, and
(Yag);, remain large, indicating that one has not entered
the three-flavor regime.

In Fig. 4, top row, we plot |TrY 3| and |TrY 5| in the two
bases: yp (red solid curve) and y (blue dashed curve). As
expected, TrYz and TrY,p are basis independent, while
the entries of Yz and Y 5 differ among the two bases by the
flavor rotations as in Eq. (28) with V = U = V. In the
bottom plot of Fig. 4, we see that, while |Yp_1)| =
|TrYz — TrYag| is conserved at the end of leptogenesis,
7220, while |TrY;| and |TrY,z| continue to evolve.
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FIG. 4. Numerical solutions for type-II leptogenesis. In the top row, we plot | TrY ;| and |TrY s | in the two different bases: nonflavor
basis yg (red solid curve) and flavor basis §5 (blue dashed curve). In the bottom plot, we plot |TrY; — Tr¥ 5| (purple solid curve) and
|TrY | (red dashed curve) for z > 10. |TrY 5| is too small to be shown here but one can easily deduced its value from the plot. See the

text for further discussions.

In this example, the final baryon asymmetry obtained
iS YAB(TB—> == 36 X 10_9

V. CONCLUSIONS

In this work, we have developed a recipe to describe the
evolution of lepton flavor charges from cosmic temperature
ranging from 10'> GeV down to the weak scale, taking into
the full SM lepton flavor and spectator effects in a unified
and lepton flavor basis—independent manner. This recipe
can be applied to any leptogenesis model with the addition
of arbitrary number of new scalars with nonzero hyper-
charges. We have shown that in order to describe lepto-
genesis in a basis-independent way and to take into account
lepton flavor effect consistently it is necessary to describe
both the charges of # and E in term of density matrices in
their respective flavor spaces. To summarize, to apply this
formalism to a leptogenesis model is to add the corre-
sponding new physics interactions to the Boltzmann
equations (26) and (31), and then the equations can be
closed with Eqgs. (41), (42), and those in Appendix C.

To demonstrate the applicability of this formalism, we have
applied it to type-I and type-II leptogenesis models. Future
direction will be to take into account baryon flavor effect.
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APPENDIX A: MATRIX OF NUMBER DENSITIES

The density matrix operator of the SM in thermal
equilibrium at temperature 7 is given by
Z—le—%(ﬁsm—ziﬂiﬁx) ,

Psm = (Al)
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where Z= Tr[e_lT(HSM_Zf”'N")], with Hgy the SM
Hamiltonian and g; and N; the chemical potential and
number operator of a SM field i, respectively. If we are
interested in the correlation between a particle species of
different flavors, we can generalize the chemical potential
and number operators to matrix in flavor space as

/

no sumover a, f3,

A

dp
(:uiNi)(I/)’ =

:
(2n) (Mi)ap(ai, pai, p b

:
- bia.p iﬂ*p)’

(A2)

where « and f are flavor indices and we have made use of
the fact that in chemical equilibrium with gauge bosons we
have p; = —u;. The operator aj;“p creates a particle i, of
momentum p from the vacuum ajmp |0) = |p, i,) while bZ,,p
creates an antilepton i, of momentum p as prP|O) =
p. i,). For fermions (bosons), they fulfill anticommutator

. T _ T _
(commutator) relations [aiﬂ,pr,aimp] o= [biﬂ,pr , bi,,,p] o=
(27)363)(p—p’)8,5, where we have defined [A,B], =
{A,B} =AB+BA and [A,B|_=[A,B|=AB-BA.
Other operator combinations are zero. Sandwiching the
operator (A2) between two states with particle of type i of
the same momentum p (but their flavors can be different),
we have, for example, (ig, P|(4ilN;)gplic: P) = (Hi)gp Tt
also follows that (1), = (#;)3p-

Next, we will define the generalized phase-space dis-
tribution f;; for particle i and antiparticle i, respectively,

transformations in flavor space, £ — V¢ and E — UE,

we have fyz)p = Viez oV and frip = UfpepU
If we have defined Eqs. (A3) and (A4) with (f;,) 4o and

p = Vifuz V" and
B)p U”. Notice that f,;, and fip are

(fip) s they will transform as fz)

fE(E)p - U*fE(
Hermitian.
In what follows, we would like to solve for (f; p)

(fip) g

of whether ,u,N ; 18 a matrix in flavor space or not, we will
suppress the flavor indices. Notice that

and
. Since the derivation below follows 1ndependently

Z = Tr[e_%(HSM—Z’.M,N,-)]
= Z(states|e‘%(ﬁsm—ziuiﬁ,-)

states

= Z <states|e_%zi ()N, |states)

states

= H[] + e—%(gf—ﬂf)]H[] — e—%(gh—ﬂb)rl.
f b

)

(AS)

The traces are taken over multiparticle states with energy
&;. For fermion f, the occupation number is either O or 1,
and each of them contributes a factor of 1+ e (E#7),
while for boson b, each of them contributes a factor
of Z;‘;O e~ E—mp)n — [1 - e—%(gh—ﬂb)]_l.

For a fermion i, we have

as [5] Tr[a1 aipPsm] = Z ' Sppre —HEm)
$ N X —|—g15f—ﬂf 1_g,5b/4b -1
5pp’ (fi.p)a/j = Tr[ai/,,paia,p’pSM]’ (A3) };[I 1;[
_%(Ei_”i)
Spp' (fip) gy = Tr(b7, pbi, P (A4) L
pp'\Jip [ wP ipP Psul; Spp 1 + e—HEmm)
where we have defined 8,, = (27)°5")(p — p’). Notice s, 1 (A6)
that the order of flavor indices in f;; , determines how it PP or(Emi) 4 17
transforms under flavor rotation of the field. For instance,
considering the fields to be 7, and E,, under unitary For a boson i, we have
|
Tr[a al p,pSM] Z_lépp,Zne_%(gz —Hi nH + e -T g[_”/ H[l —_ e_%(gb_ﬂla>]_l
n f b#i
h e_f(g-—ﬂt ((‘: ) 1 ]((‘: ) 1
=7 —— T\ ~Hf — e T\CvTHL) | T
Z7'8,, . 5“1;[ + e~ ]L[i[ e ]
~(Ei~p)
e T
= ) ———— 1 —_ (5 —Hi )
5pp [1 _ e—%(gi—ﬂi)]z [ e ]
= 71 A7
pp’ l(51—14[) -1 ’ ( )
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have used

o HEH)

In the second line above, we

i — _ 1 d ~H(E—ui)n —
5 e et = 5 e

One can repeat the exercise above for antiparticle i with
a; = b;, and the only change is y; - —u;. Hence, from the
definitions (A3) and (A4), we obtain the desired results

[1—e T

1 1
Giv = Uiels = oo

+¢ T
(A8)

where & =1(-1) for i a fermion (boson) and
E; = +/|p|* + m?. Integrating the phase space distributions
above over 3-momentum, we obtain (matrices) of number
densities

d3
(ni)a/} = gi/(zﬂ_[))?,(fi-l’)aﬁ’

d

3
(=i [ G Fia)y (A9)

where we have included g; to take into account additional
gauge degrees of freedom.

Expanding to linear order in chemical potential
|ui]/T < 1 and integrating over 3-momentum, the differ-
ence between the phase-space distributions of i and i, we
obtain the (matrix of the) number density asymmetry

3 2
(nai)ap = 9i / {217’;3 [(fi,p)a/} - (f?,p)a/;] = %gigi(ﬂi)(zﬂy
(A10)

where we have defined

6 [ e*
= dxxy\/x* —m?|T? ———.. All
: ﬂz/nf/T ey (e +£)? (A1)

For massless particle m; = 0, we have {; = 1(2) for i a
massless fermion (boson). The transformation of (1;) s
follows directly from Eqs. (A3) and (A4). For instance,
considering the fields to be 7, and E,, under unitary
transformations in flavor space, £ - V£ and E — UE, we
have ny, — Vinp, V' and nap — UnygU'. Alternatively, if
we have defined Egs. (A3) and (A4) with (f;,) fa and
(fip) o the transformations will be na, — Vina VT
and nyp — U'napUT.

Normalizing Eq. (A10) by the cosmic entropy density
s = % g, T3 with g, being the effective relativistic degrees
of freedom of the Universe, we have

(nAi)a/} = yrorg.¢, 2(ﬂi)a/f ’
s T

(YAi)aﬁ = (A12)

where we have defined Y"" = %. The relation above also
holds for a particle which does not carry a flavor index, e.g.,
for the SM Higgs, which is taken to be massless at high
temperature, we have Y,y = 4Y"" 2’% where gy = 2 for
the SU(2), gauge degrees of freedom and &y =2 for
massless boson.

APPENDIX B: COVARIANT FLAVOR
STRUCTURES OF KINETIC EQUATIONS

The complete flavor-covariant kinetic equations have
been derived in Refs. [6,7] using the closed time path
formalism. Here, we would like to sketch how the same
flavor structures of the kinetic equations for £ and E arise
by considering the evolution equation of a Heisenberg
operator [5].

We will start by deriving some relations relating the
equilibrium phase-space distributions with the (matrices) of
number density asymmetries. As shown the previous
section, for a particle i which is in kinetic equilibrium,
its phase-space distribution is given by Eq. (AS8). For a
process ab... <> ij... which is in chemical equilibrium
Mg + Mp + -+ = p; +p; + ... [if a particle carries a family
index, e.g., i,, the chemical potential refers to the corre-
sponding diagonal element (y;),,], we can verify that the
following identity is satisfied,

Fafvee (L= EF)(L = E:f ).

=fifj--(L=&af ) (L = Ep )., (B1)
where we have used energy conservation £, + &, + -+ - =
&+ &+ ... and we have suppressed the subscript of
momentum/energy in the distribution functions. In general,
we cannot make use of the identity above since chemical
equilibrium condition is not necessarily fulfilled when the
corresponding process is slower than the Hubble expansion
rate. Defining the distribution of a particle i in kinetic
equilibrium with zero chemical potential as f5%, the
following identity is clearly satisfied:

fafyl (L=&f (1= &5

= fifi (L= Eafa) (1 =& f3)... (B2)

In the following, let us consider all the particles are in
kinetic equilibrium (this holds for all the SM particles
which experience gauge interactions). Expanding in chemi-
cal potentials |p;|/T < 1 up to linear order for all the
particles, we have
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falp---(A=&f ) (1= &if ).
fafy (L=&fH (=&

=1+ s - g+

Hi e Hj e
X <1 _Tgifiq_?]‘fjqu“’"')

Hr_ KI g peq _ HE ¢ req
—1+Iiz T 72 T§1f1 Z TfFfF
=a,b,... I=a,b,... =i,j,...
Yar Yanéafy!
=1+ — —2 2 (B3)
1=a2,1;...2yn0r91§1 A=a,l;i,j,...2Yn0rgACA

where in the last step we have used Eq. (A12). Similarly, we
have the relation for antiparticles by changing the sign of
the chemical potentials,

fafp--(L=Ef:) (A =&f3)...
fa g (=& =& ).

Yl Yanéafy
= 1 - Z zynor + Z 2ynor :
I=ab.... 9GET peabii 9ala

(B4)

The evolution equations of the Heisenberg opera-

tors (Oi.p)aﬂ(t) Eafﬂ’p(t)a,-mp(t) and (O;!p)aﬂ(t) =

bja!p(t)b,»ﬂ,p(t) are given by

9O0ip)es . » NOip)es . s

— PEilH(O),) g P =L (),
(B5)

where H = H, + H,, is the Hamiltonian of the system with
H denoting the free field Hamiltonian, while H int TEpresents
all possible interactions among the fields. In the following,
we will write down the derivation only for the equation of
motion of O;, since those for O;,, will be analogous.

Taking the ensemble average on both sides of Eq. (BY),
we have

fip)as

o= HH(Oip) ). (B6)

where we have denoted (O) = Tr[Opgy]. The effect of
cosmic expansion can be taken into account by adding the
following:

a(fi,p)
ot

a(fi,p)aﬂ
Ilp|

Integrating the equation above over momentum p on both
sides, we have

P — Hp|

= i([H.(Os),s).  (BY)

‘W+3H(ni)aﬂ = i/g;)’3<[ﬁ1, (Oip)ggl)s (B8

where we have defined the number density (matrix) as

3
(ni)ey = / %(ﬁ,p)aﬁ, (B9)

and assume that f; , goes to zero at large momentum. In the

absence of interactions H;, = 0, the phase space will
evolve purely due to the Hubble expansion. In terms of
Y; = n;/s, we can rewrite

d(ni)aﬂ

d(Yi)aﬁ
dt '

3 . =
+ H(nl)aﬂ s dt

(B10)

For massless fields, H,, does not contribution to the right-
hand side of Eq. (B8). Next, we would like to write the
terms in right-hand side of evolution equation also in terms
of number densities. Doing a perturbative expansion on the

Heisenberg operator [H;,. (Oi-p)aﬂ] to the first order in
H,y, and considering that the interaction timescale is much
shorter than the evolution timescale, we can take the time

integral to infinity and obtain [5]

d(y;
s ( t)aﬂ
dt

3
- i/ (Cle}; ([Hini0(0). (O1p) 0 (0))

3 © A A
_/(‘217:)’3A dt([Hinio(): [Hint0(0). (Oip) g0 (0)]])-

(B11)

where the subscript 0 denote operators consist of free fields,
ie., Hy, =0.

Considering only the SM charged lepton Yukawa inter-
action term, we have

Hy = / Px((E) o Fal yH* + ()2 ZpEaH]. (B12)

Since this interaction is linear in the each type of field, it
will only contribute to the second term. Considering
thermal mass [31], there is a contribution to the first term
of Eq. (B11), which results in oscillation among ¢ flavors.
Reference [6] showed that flavor oscillations are damped
by gauge interactions, and hence we will ignore this term.
Expanding the fields in momentum modes, we have
d3p s s) _ip- )t (s ip-
‘= / (27:)3@2:(61;&)@”5’,;6 R b;ﬂ).p”»(/’,i)eﬂp "),

(B13)
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d*p

_ NOIS
Ea_/(Zﬂ)3J2_5252< E,.p

d3p —ipx il +ip-x
"= (27:)3,/25(“H,pe Pt by pe),

]

. (B14)

(B15)

where p - x = £t — p - x and the sum s is taken over the two spin states. Substituting the fields above into Eq. (B11), we

obtain the evolution equation of £ as

&dp  dpp  dpy

Sd(Yf)aﬁ_l/
dat  2) (22)%2&, (27)*2E; (27)328y

2p - pE

X {6p5—pf+pl-1 [{ff,p’ yZ?(I - fE,pE)yE}aﬂ(l + fH.pH) - {(1 - ff.p)’ yEfE,pEyE}aﬁfH.pH]
+ 5p5—pf—py [{ff,p’ y;r;"(I - fE,pE)yE}aﬂfI:I,pH - {(I - ff,p)’ y;rffE,pEyE}aﬁ(l + fl:l,py)]
+ 5]75+]7f—[7[-[ [{ff,pv ysz,pEyE}a/}(l + fH,pH) - {(1 - ff,p)» )’2(1 - fE,pE)yE}aﬁfH,pH]

+ 5pE+pf+pH [{ff,pv yTEfE,pEyE}a/}fH,pH - {(1 - ff,p)7 yTE(I - fE,pE)yE}a/}(l + ff{.pH)]}’

where 8, = (27)*5¥(p) with p a 4-momentum, I is a
3 x 3 identity matrix, and we have assumed all external
fields to be massless. Clearly, the whole term vanishes
since p - pp « p% = 0.

For nonvanishing result, one should consider thermal
masses and scattering processes involving another external
field [20]. For instance, a gauge field can be attached to
either Z, E, or H. One can also attach a fermion-antifermion
pair to the Higgs fields, and the process involving the top-
quark Yukawa coupling will be the dominant one. Since the
flavor structures involving £ and E will remain exactly the
same, we will not carry out the exercise here.'” Notice that
the last term in the big curly brackets of Eq. (B16) will still
be zero due to energy-momentum conservation.

Dividing and multiplying the terms in the right-hand
side of Eq. (B16) by fil(1—fgp)(1+1H,,)=

pp Hpy (1= f7), which follows from Eq. (B2) and
expanding up to linear term in |y;|/T < 1, the first three
terms in the big curly brackets in Eq. (B16) all have the
same flavor structure,

dY, 1 i Yar YEY aEYE
s ~ = or YEYE- -2
dt 2yt e 9eSE

Yan
—2(yLy }
( E E)gHézH

(B17)

where we have made used of Eq. (B3). Similarly, we obtain
the evolution equation of Z by changing the sign of all
chemical potentials,

For the scatterings involving two quarks instead of the Higgs
fields, one can still rewrite in terms of Higgs number density
asymmetry for T < T, ~ 10> GeV when interactions involving
the top-quark Yukawa are in equilibrium.

(B16)
|
dY; 1 HT YM} ()JE’QEYE)
s—L Ao (JETAETE
dr "2y |\UEF e, 9:CE
Y
—2(y} AH} BI1S
(yEyE)gHCH (B18)

Hence, the evolution equation for Y, = Y, — Y has the
following form:

s d¥ae 1 Yy Yar
dt yrer BB 9.8,
ZyTEYAEyE ) Ty AH
e — E
9eCE £ 9uCH

]. (B19)

Repeating the exercise above, we obtain the evolution
equation for Y p =Yg — Yy with the following flavor
structure:

dY z 1 s Yag VeY aryh
~ ™ Jnor YEYE» -2
dt Y 9eCE 9¢8r
Y
| (B20)
IuCH

Under rotations in flavor spaces E — UE, ¢ — V¢,
yg — UygV', the kinetic equations above will have the
same form (flavor covariant) since Y, — VY,,V' and
Yap = UY U,

As a final remark, in a radiation-dominated Universe and
assuming entropy conservation, we can trade the time
variable with temperature 7" using the relation

dz_

= (B21)

043004-17



CHEE SHENG FONG

PHYS. REV. D 105, 043004 (2022)

where we have defined z =
mass scale.

@ with M an arbitrary

APPENDIX C: QUARK NUMBER ASYMMETRIES

Here, we list the relations between quark number
asymmetries with Yz and Y,p assuming all other con-
served charges are zero. We have included the contributions
from possible new scalar fields ¢; with hypercharge q;i.

For T > T, all quark number asymmetries are independent
of Y&, YAE’ and YA¢i'
For T, < T < T,, we have

1
Yag, =3 (TrYA —2TrYap +2) g}, YA¢‘,>, (C1)

1
Ya==3 (Tﬂ/A —2TrY ap + 22}1;{ Ym_), (C2)

while the rest are independent of Yz, Yap, and Yy,
For Ty < T < T,, we have

3
Yag, =Yag, =53 (TrYA 2TrY o + 22% YM,I)
(C3)

Yag, = 263 (TrYA —2TrYap + 22% Y ag, ) (C4)
Yau=Yaa=Yac=Yas=Ynp

- 436 (TrYA —2TrY g + 221:45,- YA(,,[), (C5)
Yo = 4112 (TrYA —2TrY,p + 22% Y g, > (C6)

For T,_, < T < Tp, we have

2
YAQ] = YAQ2 115 (4TrYA + ISTTYAE 152‘14, YA¢ >

(C7)
1

YAQ3 = 115 <53TI'YA 60TI'YAE + 6OZQ¢ YA¢,>
(C8)

Yae=Yaa=Yac=Yas=TYap

1
=113 <19Tr1/A 15TrY 5 + 152% YA(/),>

(C9)

1
Ya = -5 (26TrYA TSTrY ap + 752% YA¢,>

(C10)

ForT,..<T<T,_, we have

1
YAQ] = YAQZ = YAQ3 = gTI'YA, (Cll)
1
Yau=Ypra=Yac=Ya = ETTYA’ (C12)
1

Ya=-3 (Tﬂ/A —3TrYap + 323%{[ YM,_), (C13)

Ynp =

N | —

(2TrYA = 3TrYap +3) g}, YA¢I_>. (C14)
For Tg,_p, <T <T,_., we have

1
Ya0, =135 (11TrYA + 30TrY 5p — 302% Y ag, )

(C15)

1
Ya0, =135 (41TrYA 3OTrYAE+3OZq¢ YM,,)

(C16)
1
YAu = YAd = YAS
1
T <41Tr1/A 30TrY 5p + 302% Y g, )
(C18)

1
YAc = 260 <19TYYA 90TTYAE + 9OZQ¢ YA(/'1>

(C19)

1
Yar =135 <17TrYA 60TrY sf + 602% YA(,)>

(C20)

1
Yar =135 <43TrYA — 60TrY p + 6OZq£i YA(,,i).

(C21)
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For T,_; < T < Tg,_p,, we have
Yao, =15 (TrYA +2TrY o — 22% YA¢> (C22)
1
YAQZ YAQz 20 <5TrYA — ZTYYAE —+ 2Zq(/) YA(]) >
(C23)

1
Yau=Yaa=Ys=5; (3TrYA —2TrYap+2) 4 YA(/,i> ,

(C24)

1
YAC = YA[ = ——0 <TI'YA —4TrYAE -+ 4Zq£iYA¢i)’
i

(C25)
1
Yar =55 <7Tr1/A 10TrYAE—|—IOZq¢ YA¢> (C26)

ForT,_,<T<T,_,, we have

1
YAQ] == YAQZ — YAQ3 — gTrYA, (C27)
YA — YAd — TI'YA, (C28)
1
Vae=Ya==¢55 <7TrYA = 30TrY g + 30> g} YA(,,,),
(C29)
1
Yas=Ya=g5 <23TryA —30TrY ap + 302%3 YA,/,,_>.
(C30)
Finally, for T < T,_,, we have
1
YAQ] = YAQ2 = YAQ3 = ETI'YA, (C31)
YAu = YAC = YAt
1
== <2Tr1/A 15TrY o+ 152% Y ag, ) (C32)

YAd:YAs:YAb

1

APPENDIX D: TRANSITION TEMPERATURES

To estimate the transition temperature due to the EW
sphaleron interaction 75, we define

3 Yap(T)
T D1

CB( ) ZTTYA(T) ( )

where Y; = %13% — Y ap. Then, we solve

dYy 3 TrY TrY
sHz A }’1;:1\21< ar 4 r AQ)
dz 4Y’ 9:Cr QQ§Q
9}’Ew
= 16Y”°r (3YAB ZTIYA), (D2)
where z = M,¢/ T together with Egs. (26) and (31) with the
condition

14
YAH = —g(TI'YA - 2TI'YAE), (D3)

which is valid for T > T,_,,. For a,, the RGE at one loop is
[27,28]

127a,(my)
127 — 19a,5(my) + 19ay(mz) Inp’

@ (p) = (D4)

where we take p =2zT and a,(my) = 0.0337 with
mz = 91.2 GeV. Here, we ignore the milder RGE of the
charged lepton Yukawa and fix it in the flavor basis to be
$r = diag(2.8 x 107°,5.9 x 107, 1.0 x 1072) (the result
is independent of basis).

We set M,; = 10'? GeV, and for initial conditions, we
take Yap(z;) =0 with z; =107 and choose arbitrary
values for Y (z;) ~ 10710 and Y 5z (z;) ~ 1071°. The behav-
ior of the curve is rather insensitive to a particular choice of
Ya(z;) and Y 5z (z;). Solving up to z; = 10, to an accuracy
within percent level, one obtains the fitting function

Tp

cg(T)=1—¢"T, (D5)

where Ty = 2.3 x 10! GeV.
To estimate the transition temperatures related to quark
Yukawa interactions, one needs to solve for ¢y (T) as

Yanu(T)

cu(T) = T TrY(T) = 2TeY pu(T)

(D6)

Here, Y,y should be treated as an independent variable,
and one will need to construct a Boltzmann equation for
Yy taking account all the interactions that change the
number of Higgs.
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