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In the CHY-frame for the amplitudes, there are two kinds of singularities we need to deal with. The first
one is the pole singularities when the kinematics is not general, such that some of S, — 0. The second one
is the collapse of locations of points after solving scattering equations (i.e., the singular solutions). These
two types of singularities are tightly related to each other, but the exact mapping is not well understood.
In this paper, we have initiated the systematic study of the mapping. We have demonstrated the
different mapping patterns using three typical situations, i.e., the factorization limit, the soft limit and the

forward limit.
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I. MOTIVATION

In past years, there are huge processes in the effective
computation and deep understanding of scattering ampli-
tudes using the so-called “on-shell program”.' Among
these on-shell methods, the CHY-formalism [6—-10] pro-
vides a fantastic angle to study scattering amplitudes. In the
CHY-formalism, the tree-level amplitude is given by

(H?:l dz;)

A _/ vol(sL(2.0)) 2 ) :/ oo,

dw
(1.1)

where the integration is done over z;’s, which describe the
locations of n-external particles living on CP!. Although
there are n variables, because the Mobius SL(2,C) sym-
metry, three variables should be fixed, thus we need to

v dz,dz,dz, s _
divide the dw = =72 with z;; = z; — z; by the gauge

rsZstr

fixing. The Q(&) is given by

9(5) = ZijZjklki H 5(£a)’

atiojk

(1.2)
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'See for example, the tree-level on-shell recursion relation
[1,2] and one-loop unitarity cut method [3-5].
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where £,’s are the scattering equations defined as

ga52£

ba Za = Zp

~0, (1.3)

a=1,2,...,n,

with S,, = (k, + ky)? = 2k, - ky, and k,, a =1,2,....n
as n massless momenta for n-external particles. The F is
called the CHY-integrand, which defines the particular
theory we are considering. Since there are (n—3)
delta-functions for (n —3) variables, there is, in fact,
no integration to be done in (1.1) and amplitudes are
calculated as

2ijZjkZkiZrs<stler
A"221< thc! = F (1.4)

_)i+j+k+r+s+t|<b|;‘;li ’

where three arbitrary indices i, j, k correspond to three
removed scattering equations while three arbitrary indices
r, s, t correspond to three fixed locations mentioned above.
The sum is over the solution set of the scattering equations,
which is generically a discrete set of points. Furthermore, in
the above, the Jacobi matrix ® is calculated as (a for rows
and b for column)

T
O === " . (1)
0z, —;gaj a=>b
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and |® 77 is the determinant of @ after removing the ith,

jth, and kth rows and rth, sth, and tth columns.

From the above brief introduction, one can see that
unlike the familiar off-shell Lagrangian formalism where
the Feynman diagrams give a very intuitive picture to see
the interaction by vertexes and propagators, all physical
information in the CHY-formalism is coded by universal
scattering equations and special rational CHY-integrand of
a given theory. Thus it is crucial to understand how these
two total different descriptions are mapped to each other.
For example, the general tree-level amplitudes have the
factorization property, easily seen from the Feynman
diagrams when putting a particular propagator on-shell.
How do we see this in the CHY-formalism? Since it is a
general property, it cannot depend on F, and thus from
(1.4), the information must be coded in the solutions of
scattering equations.

There are many works on studying scattering equations,
and their solutions [11-30]. By these studies, now we have
an obvious picture about the factorization property in the
CHY-formalism. As shown in [13], if all S4 # 0, the values
of the z,’s are distinct (ie., z; #z;, V i,j) in every
solution for all (n — 3)! solutions of scattering equations.
However, suppose there is one and only one S, = 0, which
corresponds to a particular factorization channel. In that
case, we will find that there are (ny —2)! X (n —ny —2)!
solutions [8], where z; = 7o, V i € A.? For later conven-
ience, we will call a solution “regular” if all z;’s are distinct
and a solution to be ‘“singular” if some z; collapse to
the same value. Using this terminology, one can say the
solution singularity reflects that pole singularities. The
understanding of factorization in the CHY-formalism is
crucial because, through its study, the “integration rule” for
simple poles and its generalization for higher poles have
been proposed [31-33] and we can read out the analytic
expression for any CHY-integrand without solving the
scattering equations. One crucial concept coming out from
the “integration rule” is the pole index

x(A) =LAl =2(]A] - 1) (1.6)
where L[A] be the number’ of lines connecting these nodes
inside A and |A| is the number of nodes. The condition

x(A) >0 (1.7)

will be called the pole condition for a given subset. More
explicitly, each subset gives a possible nonzero pole

“In fact, because the gauge fixing of three z,’s, between the two
subsets of A, A, it is the one containing at most one gauge fixing
po%nt having z; = z,.

“Again more accurately it is the difference of number between
solid lines and dashed lines, which represent the factor z;; =
z; — z; in the denominator or the numerator respectively.

contribution when and only when y(A) > 0, and the pole
will be W, where Sy = (py, + Pa, + - + Pa,)* for

massless momentum p;.*

Factorization singularity is just one type of singularity of
tree-level amplitudes. There are other types of singularities,
for example, soft singularity and forward singularity. In fact,
forward singularity appearances naturally in the construction
of loop-level CHY-formalism and dealing with it is impor-
tant for the whole construction [15,25,34-53]. Different
from factorization singularity, where we can arrange kin-
ematics so there is one and only one S, = 0, both soft
and forward limits will have multiple poles going to zero
simultaneously. For example, if k, — 0, we will have all
S —0,i=1,...,n—1. Similarly, for forward limit
k. = —k_, we will have all (k. +k_+k;)*>— 0. It is
natural to ask what is the solution behavior under these
limits. For forward limit, beautiful analysis has been done in
[53]. Motivated by these observations, in this paper, we will
start a systematical discussion about the relation of the
following two things: the kinematic singularities and the
singular solutions of scattering equations. More explicitly, at
one side, starting from the singular kinematic configuration
with one or more singular poles, we will ask:

(1) (A1) If there will be singular solutions of scattering

equations?

(i1) (A2) If there are, how many singular solutions?

(iii) (A3) What is the exact behavior of these singular
solutions? Are all of them have similar behavior or
different patterns?

(iv) (A4) What are the contributions of these singular
solutions when putting them into CHY-integrands?

(v) (AS) Do regular solutions contribute to a singular
part of scattering amplitudes?

On another side, starting from a given singular solution,

we will ask:

(i) (B1) Is there a singular kinematic configuration
implied by the solution?

(i) (B2) If there are, how many different singular
kinematic configurations? Are these poles compat-
ible or not compatible?

Although we cannot answer the above questions in this
paper, we will illustrate cases where two side problems can
be theoretically analyzed. Besides theoretical analysis, we
also provide numerical checking to support our arguments.

The plan of the paper is as follows. In. Sec. II, we have
discussed from singular solutions what is the kinematic
configuration we can infer. From Sec. III-V, we use
factorization limit, soft limit and forward limit to demon-
strate how to get pieces of information of singular solutions
from the singular kinematics. Finally, a summary is given

*Because the momentum conservation, we will treat the subset
A to be equivalent to its complement A = {1,2,...,n} — A when
taking the pole. However, as we will show, the behavior of
solutions will be very different between A A.
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in Sec. VI. In this paper, to better understand the theoretical
analysis, we have offered several numerical computations.
In the Appendix, how to implement the numerical kine-
matic configuration has been carefully discussed.

II. FROM SINGULAR SOLUTIONS TO
KINEMATICS

As discussed in the previous section, we will discuss
relations between singular solutions and kinematics in this
note. This section will assume the behavior of singular
solutions and derive the corresponding consequence of the
kinematics, especially the pole structure. Let us consider an
asymptotic behavior of the kinematics k;’s such that when
¢ — 0, the kinematics will reach the one we want:

k= ekl
a=0

With this asymptotic behavior, solutions z; have also
asymptotic behavior like:

(2.1)

(2.2)

;i = Zé‘uzga)-
a=0

Singular solutions will correspond to ZEO) — z¢ for some

i € § where the subset S has at least two elements.

A first important observation made in [13] is that if there
is at least one singular solution, then at least one kinematic
pole goes to zero. The argument in [13] is following.
Assuming there is at least one singular solution in (2.2)
satisfying following condition:

Cond A: z,(-o) = Zs,
& #0,

2y #0,
Y aeS b bes.

a e S;
(2.3)

Putting this back, the scattering equations (1.3) will be
factorized into two parts. For a € S, we will have

P L ALTNE T L AL
a ca Tt hgresfa T2t gs Za T X
1 Kir Kar + Kit” (K K
D R D D D Bt 1 EYCC RN CY)
t#ateS Zat t#a,t€S Zat t#a,teS (Zm) 12S Zar
where for simplicity we have defined z§;‘> =79 - 5“ and IC (ab) = la) k;b), while for a ¢ S, we have
k, -k k, -k K¢
f= 3 leky sk 5 K5 00, 25)
t#a,1¢S Za — %t Za — %

tes

t#a,1¢S Zar

tes <

An important point is that the scattering equation should hold for each order of ¢, thus from the leading order of (2.4), we

get the relation

K
Eger = Y =0 (2.6)
t#a,teS Zat
Using this result, we can see
0)y2 )’ ) (0) =2 0 L0
) = (Zka > = ZZkg = ZmZkg . kb
acs a{.ll;ebs n,hES a 2y
=20 =2 Z =2 a’ (2.7)
ahES Za — acs bes Za a€s

In other words, assuming the singular solution with behavior (2.3) we have derived the kinematic informa-
: N2 _
tion (Kg')* = 0.

The above derivation is beautiful, but if one checks it carefully, one can find a hidden assumption having been made, i.e.,

(1)

allz, ' — z<bl) # O0for a, b € S. In other words, points in the subset S going to the same location with the same order of speed,
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i.e., there is no subset such that points of this subset
collapse to each other faster. If there is a subset violating the
assumption, the leading term in (2.4) will be at least the
order of eiz and the conclusion will be modified. With this in
mind, we consider various generalizations of the above
derivation with different singular solution behaviors.

CondB: zgl) = zsl(i.e,zg}) =

24y #0,

).

) #0, Vaes.bbes\s,.

A. The first case

Let us start with the simplest generalization. Again, let us
assume there is at least one singular solution satisfying the
condition A given in (2.3). However, for these points going
together, a subset of points collapses to each other faster,
i.e., they satisfy one more condition.

240 Vaaes cs

With these two conditions, the scattering equation (2.5) is not modified, but Eq. (2.4) should be refined as

Ea

k, -k k, -k k, -k
Z Za—Ztt+ Z Za_ztt+zza_ztt

t#a,t€S, res\S, €S
1 1
Ly Sl s
t#a,l€S,
k, -k,
+

t#a.1€S,
when a € S; and
k, k
D i)
1#a,1€8\S, Za =% g5 fa T

{25
—_—— Z +
€ t#a.1€S

Ko

26

2

Ea

igs <a

(1)

(1
t#a,teS Zat

Zat

KoV 4+

Ka” + Ki”

KO
— St D h

es\s, Zat

(2.9)

D

t#a,1€S,

b+ o)

k, -k,
—Z

—(ZSHKE
EED D e

t#a,teS (Zat )2

K(OO)

at

(0)

Zat

(2.10)

>

18

} +0(e)

when a € S\S;. From the refined scattering equations (2.9) and (2.10), we obtain following identities

gaeSl e =

KOV 4 1
gaESl e — W

t#a,teS,

(00

Zat
at

>

t#a,1eS

t#a,t€S,

K
2

=0 (2.11)

(3) )]C((?O) ,C(OO)

_(Za a
> — o, ’

(222 W

(2.12)

00

Z 0

t#at€S Zat

gaGS\Sl el =

KO + ki

Zal

5a€S\S1 e = z

t#a,1€S

K
= Z (1t>

=)

+ Z _<Zat(1)

1#a,1€S (Zat

1€S\S, Zar
) ]C(OO)
at
+ > i
t#a,1€8\S, <at
at

+)° R

1S Zar

(2.13)
Zat

(2)) 0

at

)2

ic(00)

(2.14)

Now mimicking the previous argument, first using (2.11) one can show

2
0 0
)2 — § 2k<<1 ) . ké)
a,bes
a<b

0
(kS

= (Zkﬁ,")

aes,

)

&

(2) 2

(2)

abes| Lq
a#b

Zp

£

_ © 0
=) ok 'k

abes| Za b
a<b

2k k) =23 2P e 2 = 0.

a€s

(2.15)
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Second, let us consider following combination

_ (0)  ,(0)
2Ks, - Kgis, +Kag = > 2kiky) + Y
a€s;,bes\S, b.beS\S,.b<b

2k - kY

(1) ((1)_ )_((})_
_ Zah 1(0) ,(0) 2, —2s) = (3 =25) o) L0
- Z 2k k) + Z o 2ky, - k;

) . (1)
a€s,;.bes\S; Zab b.beS\S,.b<b L T

(I _ () _
_ Z (Zbliza)zkgm_k;jmJF Z My{g’).k@

(1) )
a€S),beS\S, (2" = zs, b.beS\S,.b#b b T L

! 1 0 40 1 o0 (0
= ZZ(Zy—Zsl)(Zmi)kE)-ké)Jr Z ﬁkg).k(g))

beS\S, acs, (7, — s, bes\S,.b#b b T %
1
= Y 202 — 25)Epesisyr =0 (2.16)
beS\S,

Combining (2.15) and (2.16) we have

kP =S"2 k) + Y 2l k)

In other words, under the limit ¢ — 0, two poles go to
zero at the same time.
The above case can be generalized to more configura-

o a€S1.beS\S) tions. To see that, let us first rephrase the condition A and B
0) ,(0) _ in (2.3) and (2.8) in Fig. 1. With the pictorial representation,

* ; Z ~2k” kl? =0 (2.17) we consider the more general one given in Fig. 2. We will
bbes\S.b<b call it the “Type A” structure, where each node has several
branches, but at most, one branch has a substructure. From

60 € 1 62 Fig. 2, we can read out the following kinematic informa-

tion. First, using the leading order part (at the order €7%) of
scattering equations of the subset S;.

500 1)

—_— t pr—
Eaespet = Z & _ (k) 0
t#a,t€S; Za 2y

(2.18)

we can derive

——

Sk
FIG. 1. Thepictorial representation of conditions A and B exhibited
in (2.3) and (2.8). Since zigs ’s are different values, we represent them e Sy 4

by anode under the column of €°. For the subset S, they have the same .
ng = zg, whichis represented by a node with several lines under the 28, Le° .
column of €. Similarly, for the subset S;, they have the same S5
zEQSl = zg,, which is represented by a node with several lines under 28,

the column of e!. The ending of each line has meaning too. Different So
positions in a given column mean the different z;’s at the given order of zs,

e. For the subset S, the ending under the column of €” means that all S,

zgg)g and zg are different, so the leading scattering equation is at the

: S
order of ¢® as givenin (2.5). Similarly, for the subset S\ S|, the ending

under the column of €' means the leading scattering equation is at the
orderofe! as givenin (2.13), while for the subset S, the ending under
the column of €2 means the leading scattering equationis at the order of
€? as given in (2.11).

FIG. 2. The pictorial representation of the Type A generaliza-
tion. For this type, where each node has several branches, but at
most one branch has substructure. We have also used the z to
denote the common position at each order of e.
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(k)
0)y2 — § : 0) 0 _ § : Za 0)  1(0)
) = 2ka = ) © Zka 'kb
a,beSy a.beSy Za - Zb
a<b a#b
=2) g = 0. (219)

a€sy

Next we consider the leading order part (at the order
~(k=1)) of scattering equations of the subset S,_,

0) ,(0) 0) ,(0)
kg’ - k; ko' - k;
gaeSk_l;e‘“'“) = ZW+ Z C(k=1) _(k-1)
eS8, Za — 25,  t#a,1€8_; Za —
0 0
Ok W
T _(k=1) + Z (k=1) (k—=1) —
Za —12s, t#areS_, Za —
(2.20)
Using it, we can show
2K, - K, ""Ksk 1
B D VR
a€S;_, Za - Zsk
o (ng 1) _ZSk)k((lo) 0)
1#a, tESk . ng—l) - ng_l)
=23 (@7 —25)0es, ewn =0, (221)
aes;_,

When combining (2.19) and (2.21), we reach
nguSk_l = 0. Similarly from the leading order part (at

the order e~(¥=2)) of scattering equations of the subset S;_,

KL, (9.4

_ KUSk—1 _

Eaesypietd = =2 _ (k=2) _ (k=2) 0
a I8,  tFareS,,Za — 3

(2.22)

we can derive 2K, - Kg,, + K5 =0 and further
2

K, 05, us,, = 0- Tterating the procedure, one can easily
see that from the Fig. 2, we can derive

KZ

u"S

=0, j=1,...k (2.23)

An important point of the above iterating procedure is
that when going to the lower orders of €, see for example
(2.22), the detail structure of the node zg,_ does not appear.
In other words, we can treat the subset S; U S;_; as an
effective single leg when considering the subset S;_,.

B. The second case

In the first case, we have required that in the pictorial
representation of solution z;’s, although each node has
several branches, there is at most one branch having a
substructure. Now we consider the case that there are at
least two branches having substructures. For simplicity, let
consider the situation given in Fig. 3. For a € S5, we have
the scattering equations as

Eues —l{ > —kg’m.kgm}
a€S; —
’ €2 t;éa,teS3Z<a2)—Z§2)

1 { k) D
t#a,t€Sy

+ —
o

—(z =z K

_|_
t#a,1€S;3 (Zgzz) 5 >)
0) [(1) k( )
+Z }+O( 0 (2.24)
€S, T8y — Z, teS2 18, T X5,
thus we get
(0) , ,(0)
k' -k
5aesg;€’2 = Z 2.0 =0 (2.25)
t#a,1€8; <a <t
k(O) . k;l) + k(l) 'kEO)
gaeS e = . -
’ t#a,1€S; ZE:Z) - Z£2>
0
~(z) =)k - K1)
+ SR
1#a,1€83 (Z — I )
kfzo) . k(o) kl(l) . K( )
+ R %0, (2.26)
€8, 28, — 283 T L8,
Similarly, for a € S, we get
KO
‘S‘aeSz;e’2 = Z DRG] e =0 (227)

60 61 62
Z85
S
252
ZSy So
S1
: S

FIG. 3. The pictorial representation of one simple case of the
Type B, where a node has two branches having substructure.
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(0) (1) 1, (3)y(1,0)  1(0) (0) . 1(0) 0) | g0
kg k +k —Z; )(ka 'kt ) ka 'kt ka 'KS
Euesyet = + + + = =0. (2.28)
z;éaz,t;sz 2512) Zz z;é;;sz 252))2 gs:,zs2 - ZEU L5, T L8,
For a € §| we get
A
bresier = 3 ML ST sl
t#a,1€S, Za - Zt €S, Za — s, €Sy Za — s,
k((IO) yiQ k((f) Q) kz(JO) Q)
_ ! 5 55 . (2.29)

+ +
t#a,t€S) Zgzl) - Zgl) Zgl) —Zs, Zgzl) —Zs,

Now let us see which kinematic information can be derived using above identities. First, using (2.25) and (2.27) we get

K3 =0, K3 =0. (2.30)

Second, using (2.26) and (2.28) we get

0) ,(0) 0)  %(0)
KS; - k; KS3 -KS2
0= E ‘c/‘aeSs;E’1 = E : ) + zs, — 2s, (2-31)

aESy €8, L85 —

KO0 KKy

O - EuES7;€_] - + (232)
(;sz ) ; Zs, — zgl) Zs, — s,
Now we consider
VRO Y KD KD K k) 2 Y kD k)
aESl t<a,t,a€s,
-2 _252) (Zgl) — Z52>k(0) k( ) 2 ( ! Zsz)K(O) k(U)
Z om0 + Z 1 s, “fa
t<a taESI Za  — % a€es, (Za - ZSZ)
a +
+23° (20 Zsz) (25, = 2s,) Ky -k 2k K
ags, - st) ' i '
—2Y W) 3 Ao ) T
ags, 1#a,1€S, Za - Zz = Z ZS2>
0)  ,(0) (0) , 1(0)
Ky, - ka Ky, - ka 0 0
+22 -, )74—2(@2 —zs3)Zm—+2K§2) -ng
a€es, Za — s, a€es, (Za - 253)
=23 (2 = 25,)€ e =0 (2.33)
aes,
where (2.31) has been used to reach the last line. When combining (2.33) with (2.30) we arrive at
K3, us,us, = 0- (2.34)
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We can generalize the above argument for more than two

branches having substructure. Let us assume that (1)
(0) (1)

wheni € S,z;7 =zp;(2)wheni € §;CS,z;" = zs, with
j=1L..m @3) S=SuUSuvu..Uus,. For each
a€S;,j=1,...,m, we have following two identities
) ,(0)
ko' - ky
SaeS i€ -2 = Z m == O (235)
t#a,t€S; Za 2t
0) (1) (1) 1(0)
kg’ -k 4 ko -k
Eaes et = Z 2 _ .
t#a,t€S; Za 2
3 3 0) (0
Y —(28" = ) (k- k)
t#a €S, (2512) - Z§2))2
©0) ,(0) m k0. O
ky' -k a
T > 20 (2.36)
€8y <s; — <t p=lp#j 5; T %S,

and using them we get

= > k{ KO+ zm: Sk K+

0= K%j,
0) ,(0) (0) (0)
Ks. - k; m KSY . KS
0= ZgaeSj;e“ = Z ’ o T Z o
acs; 1€y T8, ~ % p=Tp#j <8, T XS,
(2.37)

For a € S, the leading part of scattering equations is

guGSo;e“ Z + Z Z
t#a,t€S Za - [ j=1 t€s; Za - Zs;
) K(O)
— Z @+ Z . (2.38)
t#a,t€S Za a

One important point of expressions (2.37) and (2.38) is
that the subset §; has been effectively treated as a single leg.
This fact is very useful to see in an arbitrary tree graph, how
the computation done explicitly here is generalized. Using
the above results, we can see

>

1<i<j<m Jj=1 t€S, t<ala,t€S,
m _ @ _

- Za — % (0) . (0) ZSi Za J (0)
- Z n _ (1>k“ ki + — 25, — s, +ZZ K fa

t<ala.r€Sy Za 2t 1<i<j<m *Si j=1 a€$, Za

2 2" (0)
:#Zes—z“)—z +ZZS_Z +ZZZ K ki
a;a,teSy La t i#j j=1 a€Sy<a
© 0  m g0 O m KO k<0> m kO g0

_ (1) ka” - ki S T S 4 S; Si
R DI }+_2sz{§:_ z* -

aEs, t#a,1€8y Za Z; j=1 Za s, =1 aes,y Is; ~ Za i=1.i#j *S; Si
=0, (2.39)

where (2.38) and (2.37) have been used to reach the last
line. When combining (2.39) and (2.37) we get
K

0 (2.40)

Summary: Although we have considered only a tree
graph with two levels for type B, it is easy to see combining
results for type A and B. The above observation can be
easily generalized to a tree graph with an arbitrary structure.
The basic conclusion is that for each node in the tree graph,
we have (Y;cpoqe ki)? = 0. One important remark is that
for all subsets S; with K %i = 0, they are compatible to each
others, i.e., either §; N S; =@ or §; C ;.

With results in this section, one can also show that if
k% #0 for all subsets S with between 2 and (N —?2)
elements, the values of the z,,a € A, are distinct, i.e.,
there are no singular solutions. This claim is proved in [13]
by contradiction. Assuming there is a singular solution, by
analysis in this section, we will reach at least one S, — 0
no matter which configuration of the singular solution is.

III. FROM SINGULAR KINEMATICS TO
SOLUTIONS I: THE FACTORIZATION LIMIT

Starting from this section, we discuss what we can learn
about the solutions of scattering equations when there are
one or more poles going to on-shell.
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A. With only one S, — 0

This case has been well studied in [8,13]. Under the limit
€ — 0, assuming there is one and only one S, — 0, what
we can say about the solutions of scattering equations?
Under the limit, we could have two possibilities: (R1)
There is still no singular solution; (R2) There are some
singular solutions.

Let us argue that the possibility (R1) could not be true
first. We could assign a particular CHY-integrand, such as
the multiplication of two PT-factors, which produces
amplitude containing one and only one cubic Feynman
diagram having the pole S,. Since S, — 0, the amplitude
will be divergent. Now let us check the expression (1.4) for
the amplitude with gauge choice (ijk) = (rst) and three
fixed points at the finite locations. We see that the
numerator (z;;2;;2x;)* is not divergent, as well as the factor

m and the particular CHY-integrand if the possibility
(R1) is true. Thus by the contradiction, we see that the
possibility (R1) could not be true.

Now the possibility (R2) is realized, and we discuss the
properties of singular solutions. For a given singular
solution, from the careful analysis in section two, we see
that (a) the singular set can be and only be the subset A”;
(b) there is no substructure in A, i.e., every point in A going
to the same location with the same speed. If (a) is not true,
we will have Sz — 0 with B # A. If (b) is not true, we
will have other Sz — 0 with B C A. In fact more informa-
tion is given in [8]: the number of singular solution is
(ny+1-=3)! x (nj +1-3)! where ny,n; are the num-
ber of elements in the subsets A, A. The counting of the
number of singular solutions can be easily seen from the

left picture given in Fig. 4.
|

where matrix ® is defined in (1.5), one can check that

(21 —22)(22 = 23) (23 = 20) (20 = 2u=1) (Znmt = Zu2) (Zn2 = 20) ~ { N

For the integrand part, the leading behavior is e~VtAl

where the L[A] is the linking number. Adding all together,
we get the behavior e NEAIR2(AIEDHD — (=NGAID),

> Again, we use A to denote the one with at most one gauge
fixed point among the subsets A, A.

®For the regular solutions, both measure and integrand will
give € contributions.

g e 2,
/N

N,
PR

FIG. 4. The effective Feynman diagrams: the above is for only
one singular poles, while the below is for two compatible singular
poles.

In fact, we can get more accurate information, i.e., the
speed of every point in A going to the same location.
Assuming |z; — z;| ~ N Vi, j € A, let us study the ¢ order
of various part in the formula® (1.4). Without loss of
generality, we choose Sy, ; — 0 and fix {r, st} =
1,2,3 and {i,j,k} =(n,n—1,n—2). And choose
Si2.x — 0. For the measure part

(2= 2z — 2 (@ — 2)(z — 7)) (2 — 2) (2 — )
a D[
(3.1)
eV, Al =2
eV, Al =3
|7t ~ {60’ 4] =2
ijk e20A1=3)N A] >3
J ~ eIAIZIN (3.2)

|
From the integration rule [31-33], the behavior is

S;MA]H) ~ ¢ A1) thus the match up of arbitrary choice
of y[A] requires N = 1. One interesting point of the above
analysis of contributions of singular solutions is that when
x[lA] = =1, we will have €°. In other words, to get the right
numerical result in the ¢ — 0 limit, we must include the
contributions of singular solutions although analytic
expression does not contain the pole Sy,.
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1. The numerical checking

Now we present some numerical computations to verify the above analysis. In numerical computation, one key is the
construction of the kinematics having the wanted limit behavior. The detailed discussion has been given in Appendix.
For the current case, i.e., with one and only one S, — 0, a straightforward way is to use the Britto—Cachazo—Feng—Witten
(BCFW)-deformation
[see (A8)-(A10)].

Example I: Six points with Si53 — 0

The kinematics is given by

k; — {-0.152 — 0.593i,—-1.019 — 0.9817,0.106 + 2.464i, —0.560 + 1.268i, —2.642 + 0.175i}
+{0.254,0.4205, —0.238 — 0.484i,—0.1242 — 0.248i,0.461 — 0.317i}e

k, — {1.220,-0.852,-0.262, —0.825,0.115}

ky — {1.586,-0.999, —0.459, —0.664,0.931}

ky — {1.203,-0.240,0.419,0.968, 0.527}

ks — {—1.416,-0.0899, —0.750, —0.688,0.980}

ke — {—2.441 + 0.5935i, +3.201 + 0.981i, +0.946 — 2.464i,+1.770 — 1.267i,0.089 — 0.175i}
—{0.254,0.4205, —0.238 — 0.484i,—0.1242 — 0.248i,0.461 — 0.317i}¢ (3.3)

We fix the gauge of 7, = 1, z5 = 0, zg = 1. There are 6 solutions with one singular and 5 regular solutions. The solutions
are shown below as the series of € up to €' terms:

21 = —(0.701112 — 0.144145{) + (—3.14275 — 0.280886()e
Singular (1) { z, — —(0.701112 — 0.144145{) + (—3.20442 — 0.255032i)e (3.4)
23 — —(0.701112 — 0.144145{) + (—3.18786 — 0.260227i)e

21 = (0.0452115 + 0.6367817) — (0.0913283 + 0.0933938i)e
Regular (1) { 2, — —(2.63638 + 0.252226i) + (1.32192 + 0.0640334i)e (3.5)
23 — —(8.15521 — 3.66499i) + (7.11037 — 9.61685i)e

21 = (0.0308196 + 0.774219i) — (0.0791472 + 0.145376i)e
Regular (2) { z, — —(0.71447 + 6.1477i) 4 (—6.30372 + 0.80879i)e (3.6)
23 — —(1.67537 — 0.0415368i) + (0.253797 — 0.132973i)e

21 — —(0.28604 — 0.376317i) + (—=0.0471353 — 0.097799i)e
Regular (3) { 2, — —(4.08226 + 0.917673i) + (2.66599 + 1.09849i)e (3.7)
23 = —(0.377007 — 0.515852i) + (—=0.0729845 — 0.0909321i)e

21 — —(0.435329 — 0.28238) + (0.0150451 — 0.0647125i)e
Regular (4) { z, — —(0.297746 — 0.197856i) + (—0.0197837 — 0.00948061/)e (3.8)
23 — —(3.40278 — 1.35514i) + (0.562885 — 0.896193i)e

21 = —(0.72372 = 0.14116i) + (0.0430294 — 0.0225452i)e
Regular (5) { z, — —(0.558638 — 0.130488i) + (—0.00452728 — 0.0035687)e (3.9)
23 — —(0.855428 — 0.12072i) 4 (=0.0054946 — 0.00384179i )¢

The measure part of each solution is shown in Table I. which is indeed the behavior ¢?4I=3) = ¢23-3 = 3. Now we

choose three different CHY-integrands with pole index of y[S1,3] = 0, —1, =2 respectively to calculate the contribution of
each solution.
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TABLE 1. The measure part of each solution.

Measure

(1.08633 x 1077 — 3.24352 x 1078})¢’

Solution

Singular (1)

Regular (1) —(516.832 + 220.062i)
Regular (2) —(6.23504 + 50.32451)
Regular (3) (0.0453058 — 0.1414811)

Regular (4)
Regular (5)

(0.0188278 + 0.02025731)
—(3.4399 x 107° + 8.80267 x 1076})

TABLE II. The contribution of each solution for the CHY-
Integrand PT(123456)PT(124563).

Integration

1(0.0801588 + 0.0445719:i)
—(0.00189857 + 0.00277649i)
(0.00417627 + 0.00436192)
—(0.00185648 + 0.00211634i)
—(0.00963083 — 0.000139444;)
(0.0509707 + 0.00619341i)

Solution

Singular (1)
Regular (1)
Regular (2)
Regular (3)
Regular (4)
Regular (5)

TABLE III. The contribution of each solution of CHY-Inte-
grand PT(123456)PT(124536).

Solution Integration

—(0.0188869 — 0.003214641)

Singular (1)

Regular (1) (0.00236768 + 0.00127038i)
Regular (2) —(0.00430291 + 0.00290199;)
Regular (3) (0.000865392 -+ 0.000279345)
Regular (4) (0.011857 — 0.00567046i)

Regular (5) —(0.0254912 — 0.00146168i)

TABLE 1IV. The contribution of each solution of CHY-Inter-
grand PT(123456)PT(143526).

Solution Integration
Singular (1) (0.00100813 — 0.000287969i )¢
Regular (1) —(0.001916 + 0.00405212i)

Regular (2)
Regular (3)
Regular (4)
Regular (5)

(0.000756028 + 0.000975639:)
—(0.0000417965 — 0.0005730954)
—(0.00286251 — 0.003305384)
—(0.0012266 + 0.00080199i)

(i) I, = PT(123456)PT(124563) with yx[S;23] = 0.
The contribution of each solution is shown in
Table II.

Summing up all six solutions, we have

0.0801588 +- 0.0445719i n

. 0(e")

(3.10)

If we substitute the numerical kinematics (3.3) to the
analytic expression

1 1
+
SIZS455123 S12S56S123
_ 0.0802693 + 0.0448299i
€

0(e%) (3.11)

This result is essentially in agreement with (3.10).
For this case, the leading contribution comes from
the singular solution only.

(i) I, = PT(123456)PT(124536) with y[S;»] = -1.
The result is shown in Table III. The summation
of six solutions is

—(0.033591 + 0.0023464i) + Oe¢) (3.12)

which is identical with the numerical result by
substituting (3.3) to analytic expression

1 1
+
S12S45S126 S16S45S126
= —(0.033591 + 0.0023464) + O(e),

(3.13)

This shows the correctness of (3.4) and (3.9). From
Table III we see all solutions (including the singular
solution) gives €” contribution.

(iii) I = PT(123456)PT(143526) with y[S|,3] = —2.
The result is shown in Table IV. The summation
of all six solutions is

—0.00529087 + O(e) (3.14)

which is identical to the analytic expression with the
numerical kinematic (3.3)

1

—————— =—0.00529087 + O(e
Sl6S345126 )

(3.15)

where singular solution will give no contribution
when € — 0.
Example 1I: six points with S|, — 0. The choice of
numerical kinematics is
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ky — {0.111 + 0.3844, —1.887 — 0.493i,0.221 — 2.605i, —0.751 — 1.544i,2.344 — 0.627i}
+{0.361,0.755 + 0.428i, —0.363 -+ 0.731i, —0.123 + 0.466i, —0.589 }¢

ky — {0.894, —0.453,-0.411,0.647, —0.0763}

ks — {1.065,—0.183,0.780,0.557,0.427}

ky — {1.387,-0.0137,-0.981, 0.840, 0.504}

ks — {—1.7085,1.1005, —1.083,0.2038, —0.7025}

ke — {—1.748 — 0.384i,1.436 + 0.493i,1.475 + 2.605i, —1.497 + 1.544i, —2.497 + 0.627i}
—{0.361,0.755 + 0.428i, =0.363 + 0.731i, —0.123 + 0.466i, —0.589}e. (3.16)

We fix the gauge choice z4 = 1, z5 = 0, z¢ = 1, there are two singular and four regular solutions:

21 = (0762074 + 0.364077i) — (0.0646452 + 0.838813i)e
Singular (1){ z, — (0.762074 + 0.364077i) + (0.515056 — 0.754896i )¢
23 — —(0.0322539 — 0.06151081) + (0.01392 + 0.00452414i)e
z1 = (0.112028 — 0.54179i) — (0.047236 — 0.318322i)e
Singular (2){ z, — (0.112028 — 0.54179i) + (0.225107 + 0.143289i)e (3.17)
23 — (0.396924 + 0.04531547) — (0.0887612 — 0.0250629i )¢

21 = (1.05565 + 0.418985i) — (0.51277 + 0.296097i)e

Regular(l){ 2 — (4.03218 + 1.32966i) + (6.55886 + 28.4338i)e
23 — —(0.0320861 — 0.0733717i) + (=0.0125772 + 0.00408331i)e
21 — (0.305812 — 0.703593i) — (0.205823 — 0.327967i)e
(2) {
(3) {

Regular(2){ z, — —(4.30772 4 0.1295817) + (15.332 + 1.98828i)e

23 — (0.452278 — 0.0114679i) — (0.109894 — 0.0917084i)e

21 — (0.932462 + 0.5083451) — (0.0889137 + 0.704417i)e

2 — —(0.147739 — 0.337423i) 4 (—=0.0381437 + 0.0380429i)e

23 — —(0.0558585 — 0.162427i) + (—0.0398685 — 0.0252863i)e

21 = (0.290776 — 0.394965i) — (0.208807 — 0.274043i)e

Regular(4){ z, — (0.548109 + 0.0301496i) — (0.132396 — 0.052737i)e (3.18)

z3 = (0.296957 + 0.0219136i) — (0.142326 — 0.0932441i)e

Regular

The measure part of each solution is shown in Table V. which agrees with our analysis €” for regular solutions and 2413
for singular solutions. Again we choose three different CHY-integrands with pole index y[S;,] = 0, —1, =2 respectively.
(i) I; = PT(123456)PT(124563) with y[S|,] = 0. The result is shown in VI. The summation of six solutions is

_ 0.0109398 — 0.0160091:
€

O(e) (3.19)
which is identical with the analytic expression with the numerical kinematic (3.16)

1 1 0.0109398 — 0.01600911 "

+ O(e 3.20
S128455123  S125565123 € ©) ( )

where the leading contribution comes from the singular solutions only.

(i) I, = PT(123456)PT(134526) with y[S;,] = —1. The result is shown in Table VII. The fact that summation of six
solutions
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TABLE V. The measure part of each solution for S, — 0.

Measure

—(0.000529048 + 0.0005798i)e
(0.000892278 + 0.000357788i)e
—(0.186684 + 0.9283031)

Solution

Singular (1)
Singular (2)
Regular (1)

Regular (2) —(1.95152 — 1.51335i)

Regular (3) —(0.0000405857 — 0.000616897:)
Regular (4) —(0.000169266 — 0.0000142748:)
TABLE VI. The contribution of each solution of CHY-inte-

grand PT(123456)PT(124563).

Solution Integration

1(0.00333026 + 0.00227831i)
-1(0.0142701 - 0.0137308i)

—(0.00260062 — 0.0012496i)
(0.00122598 — 0.00527255i)

Singular (1)
Singular (2)
Regular (1)
Regular (2)

Regular (3) —(0.000501431 — 0.000889243)
Regular (4) (0.0115214 — 0.00241242i)
TABLE VII. The contribution of each solutions of CHY-

integrand PT(123456)PT(134526).

Solution Integration

—(0.000196838 — 0.000292468:)
—(0.000377502 — 0.0182017i)
—(0.000561198 — 0.000217058:)
(0.00839347 — 0.0144827i)
(0.00167404 — 0.00059116i)

Singular (1)
Singular (2)
Regular (1)
Regular (2)
Regular (3)

Regular (4) —(0.00221397 + 0.00363733i)
0.006718 + O(e) (3.21)
is identical with analytic result
1
=0.006718+0(¢) (3.22)

+
5165345126 SI6S4SSI26

shows that when ¢ — 0, both regular and singular
solutions give nonzero contributions.

(iii) I3 = PT(132456)PT(134526) with pole index
x[S12] = —=2. The result is shown in VIII. The
summation of six solutions is

—(0.00372607 + 0.00225224i) + O(e)  (3.23)
which agrees with the analytic result
1 1
+
S13545S136  S16545S136
= —(0.00372607 + 0.00225224i) + O(e).
(3.24)

TABLE VIII. The contribution of each solutions of CHY-
integrand PT(132456)PT(134526).

Solution Integration

—(0.000557274 — 0.000151919i)e
Singular (2) —(0.00394239 — 0.00346853i)e
Regular (1) (0.00033303 — 0.00039:)
Regular (2) —(0.00932611 + 0.006470141)
Regular (3) —(0.00153402 — 0.00062326i)
Regular (4) (0.00680103 + 0.003984641)

Singular (1)

For this case, when ¢ — 0, the regular solutions give
whole contribution and singular solutions give no
contributions.

B. With S, 55 — 0

Now we consider the factorization limit where two poles
S4, Sp go to zero at the same time. As discussed in the
Appendix, a way to reach the kinematic configuration is to
use two pairs of BCFW-deformations, for example,

pi(wi) = p1 +wiq1,, Pa(W1) = Py = Wi4q1n,
4y =10 P1 =410 P =0
P2(W2) = P2+ Waqop, Pm(W2) = P — Walo,

B = Gom* P1 = Gom* Pm = 0. (3.25)
Using S4 = S = 0 we can solve wj,wj, then we write
wi=wj+e and w,=w;+¢€ and e—0 will give
S4,Sp — 0 at the same time.

A new feature of two poles going to zero at the same time
is that there are two different cases we should consider. The
first case is that two poles are compatible, i.e., two poles
appear in a single Feynman diagram. The second case is
that two poles are not compatible, so there is no Feynman
diagram containing them simultaneously. While the second
case is that they are not compatible, let us discuss them one
by one.

1. S,, Sp are not compatible

For this case, we will have AZ B and AZ B, so at least one
intersection A N Bor A N B will be the true nonempty subset.
Therefore, the first claim we can give is that there are singular
solutions for S, and Sg. The second question is that are there
“common singular solutions”? If there is a common singular
solution, z; > z4, YV i€A and z; - z3, V jE€B will
lead z4 = zp, thus by the analysis in Sec. II. We will get
Siug = 0, which is a conflict with our assumption of
kinematic configuration. Therefore, we conclude that there
is no common singular solution when S,, Sz are not
compatible. This result should be easy to guess since there
is no Feynman diagram containing them simultaneously.

Third, we discuss the collapse speed of singular sol-
utions, i.e., |z; — Zj\ ~eV, v i, j € A. The analysis will be
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the exact same as in a previous subsection and we conclude
that N = 1, thus contributions of singular solutions of a4
will be the order ¢~'**) (similar for Sg). Finally the
number of singular solutions for S, and Sy will be (ny —
2)!(n—ny —2)! and (ng —2)!(n — ng — 2)! respectively.

2. S4, Sp are compatible

For this case, we can make A N B = @. Again the first
result is that there are singular solutions for S, and Sp. To
see if there is any common singular solution, we can
consider the CHY-integrands, which give Feynman dia-
grams containing both poles S,, Sp. If there is no common
singular solution, by the same analysis [see (5.4)], we can
see that the measure gives either ¢41=3)Na or ¢(2IAI=3)Ns
thus the leading behavior will be either e NalA+1) or
e~ NeWlA+D | but from Feynman diagrams, we see the
leading behavior ¢~ WA+De=UBlH1) We cannot get the
match result since N,, Np are fixed while choosing
different y[A], y[B]. Thus the contradiction tells us that
there are common singular solutions.

One intuitive way to see the number of common singular
solution is to draw the effective Feynman diagram (see

Fig. 4). For only one S, — 0, the left effective Feynman
diagram gives the right accounting. For two compatible
poles, the effective Feynman diagrams are given at the
below of Fig. 4. Thus all legs have been divided into three
parts: the left part contains n4 + 1 external legs, the middle
part contains n,;z + 2 external legs, and the right part
includes np + 1 external legs. With the picture, the whole
n-point will contains (n4 + 1 —3)! x (nggp +2—3)! x
(np+1=3)! = (ny —2)!(nz55 — 1)!(np —2)! common
singular solutions.

Now we discuss the collapse speed of singular solutions,
ie, |z;—zj| ~€Y, V i,j € A(B). For the three types of
singular solutions, by matching up the singular behavior of
Feynman diagrams, one can see that for the singular
solution of S, only, we will have |z; —z;|~e, V i,j€
Aand |z; - zj| ~€°, V i,j € B. Similar result holds for
singular solution of Sy only, i.e., [z; —z;|~€, V i,jEB
and |z; —zj|~€", V i,j €A. For the common singular
solutions, the analysis is tricky. Because the asymptotic
behavior depends on the choice of gauge fixing z;, z;, zx.
we can have two types of asymptotic behavior. The first
one is

type—II ZieA_)ZA‘i‘aieNl, |ai_aj|?é0’ l,JeA
Ziep = 2p + a,eM?, la, — as| # 0, t,s €B, A # 2B (3.26)
The second type is
type — I1:z;eq = 25 + 246V + a;e™2, la; —a;| #0, i,jEA, N, > N,
ZieB\A — 2 T a,eM, la, — za| #0, la, — a,| #0, t,s € B\A (3.27)

The type-I can be realized that if we take one gauge fixed point in A, one gauge fixed point in B and the third point in
A U B with the choice A N B = @&. The type-II can be realized by taking one gauge fixed point in B\A and two gauge-fixed
points in B with the choice A C B. Suppose the gauge choice makes the type-I behavior by analyzing the leading behavior
of measure and integrand in the previous subsection. In that case, one can check that we should have N; = N, = 1 to match
up the result from Feynman diagrams. If the gauge choice makes the type-II behavior, a similar argument leads
Ny =1,N,=2.

Knowing the value of N, N,, we see the measure part of the common singular solutions gives €273 . ¢2/81-3 while the
leading contribution gives e~ @A) . ¢~(Bl+1) B

3. Numerical check

In this part, we will present several numerical examples to demonstrate above analysis.

Example I: n =17, S1, = S45 =0

We first consider the case of S, is compatible with Sz. We will choice n =7, A = {1,2}, B = {4,5}. The kinematics
configuration is

7Noticing that we have assumed A N B = @. Otherwise, we use B to replace B.

8Although the asymptotic behavior of type-/ and type-II are different, their leading behavior of measure and contribution have the
same e-order. Which can be calculated by the same procedure of the previous subsection staring by staring with (3.26) and (3.27)
respectively.
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ky — {0.502 + 0.165i, —0.303 + 0.197i, —0.326 — 0.315i, —0.109 — 0.0949i, —0.409 — 0.0717i}
+{0.616¢, (0.336 — 0.195)e, (=0.119 + 0.516i)e, (~0.719 — 0.177i)e, —0.269¢}

ky — {1.2,-0.256,—0.731,0.424, —0.818}

ks — {1.19 = 0.165,0.728 — 0.197i,0.11 + 0.315i, —0.99 + 0.0949i,0.102 + 0.0717}
+ {=0.616¢, (=0.336 + 0.195i)e, (0.119 — 0.516i)e, (0.719 + 0.177i)e, 0.269¢}

ky — {0.361 + 0.689i, —0.646 — 0.902i,0.705 — 0.421i,0.0459 — 0.54i, —0.162 + 0.0756}
+ {0.96¢, (=0.779 + 0.414i)e, (=0.99 — 0.349i)e, (—0.0376 + 0.619i)e, 0.105¢}

ks — {1.,—0.394,0.288, —0.796,0.366}

ke — {—1.76,0.214,—1.52,0.246, —0.82}

ky — {~2.49 — 0.689i,0.657 + 0.902i, 1.48 + 0.421i, 1.18 + 0.54i, 1.74 — 0.0756i}

+ {=0.96¢, (0.779 — 0.414i)¢, (0.99 + 0.349i)e, (0.0376 — 0.619i)e, —0.105¢} . (3.28)
We fix z3 = 1,z = 5,27 = —7, thus the type-I behavior is realized. There are 10 singular solutions in total:
— (=0.19 + 7.49i) — (19.4 — 1.93i)e — (21.3 + 32.7i)e?
) 75 = (=0.19 + 7.49i) — (4.74 + 3.58i)e + (3.28 — 6.28i)¢>
Singular S,8,5(1)
74 = (11.4 +0.699i) + (7.43 — 8.4i)e + (2.68 — 4.86i)¢?
— (11.4 4 0.699i) + (3.62 + 1.88i)e — (4.62 — 7.69i)¢>

— (=8.16 — 2.93i) + (4.47 + 4.09i)e — (2.34 + 4.47i)e?
) 7 = (=8.16 — 2.93i) + (2.59 — 1.07i)e + (2.6 — 5.33i)¢?
Singular §1,S45(2)
74 = (241 +2.42i) + (1.69 + 6.53i)e — (1.56 + 0.251i)€>
(

25 — (241 + 2.42i) + (0.484 + 0.193i)e — (1.83 — 1.95)¢>

— (6.09 +26.5i) — (147. — 111.i)e — (850. + 129.i)€?
7, — (6.09 +26.5i) — (36.3 — 28.2i)e — (129. — 2.6i)¢?
74 = (23.2 - 27.i) — (423 + 79.6i)e + (173. — 208.i)¢?
25 = (2.47 + 1.81i) — (1.14 — 0.729i)e — (5.27 + 1.87i)¢?
—0.326 + 7.62i) — (21.1 = 5.41i)e — (45.6 + 41.3i)¢e?

Singular S, (1)

_ 7, = (—0.326 + 7.62i) — (4.44 + 0.898i)e + (1. — 3.95i)¢?
Singular §,(2)
24 = (6.96 4+ 16.3i) — (11.6 — 14.i)e — (17.4 + 30.4i)e?
8.34 +0.879i) — (3.38 + 4.78i)e + (7.54 + 1.7i)€?
_ 7 — (—8.34 +0.879i) — (5.22 4 2.61i)e — (2.47 + 2.18i)¢?
Singular S1,(3)
24 — (1.54 4 1.85i) — (0.644 — 3.99i)e — (4.87 + 1.35i)€>
75 = (—4.29 — 5.26i) + (18.2 + 3.21i)e — (5.86 — 9.66i)¢>
—7.12 —3.13i) + (6.76 + 4.i)e — (10.1 + 10.1i)€?
—~7.12 = 3.13i) + (6.87 — 1.01i)e — (0.647 + 10.5i)€>
Singular S, (4) @ 2 iJe = ( i)e

2o = (1.67 + 1.96i) — (0.965 — 3.22i)e — (2.25 — 6.98i)¢>
25 = (2.82 4 6.01i) + (5.02 + 19.3i)e¢ + (30.2 — 13.2i)¢>

= (
(
(
(
= (=
(-
(
25 = (4.61 —4.29i) — (2.76 + 1.31i)e + (1.47 — 1.54i)€?
- (=
(=
(
(-
- (=
(-
(
(
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2 = (0.596 + 6.55i) —
2o = (144 +2.230) +
25 — (144 +2.230) +

Singular S45(1)

2 — (4.6 +6.79i) —
24 — (8.42 - 0.152i) +
25 — (8.42 — 0.152i) +

Singular S;5(2)

i ™
2 — (244 2.42i) +
25 — (244 2.42i) +

1.06 +2.21i) —

Singular S45(3)

_)
Singular Sys(4){

Among them there are two common singular solutions,
six solutions for S;,, six solutions for S4s. The quantity and
the asymptotic behaviors confirm our claim. The measure
part for common singular solutions are given by Table IX,
where for common singular solutions it is €241+2181-0 = ¢2,
and for singular solutions of only one pole it is ¢241=3 =
e2lBl-3 — o1

We choose a few CHY-integrands to see the effects of
singular solutions. For the first integrand

2.33 +29.4i) —

—0.959 + 1.13)
(7.89 — 6.2i)e — (9.72 + 0.0344i)e>
(5.02 — 4.83i)e + (3.21 — 5.33i)¢?
(4.05 — 0.0335i)e + (3.11 + 3.2i)€?
(2.51 + 0.646i)e — (1.06 + 0.197i)€?
—5.6 —7.92i) — (2.68 — 2.24i)e + (1.2 + 5.65i)¢>

- (-

(

(

(

- (-

(

(

(

- (=2.69 4+ 1.77i) —
(=

(

(

- (

(=

74 = (3.47 +3.83i) +
(

(85.6 + 2.5i)e + (24.1 — 22.3i)¢?
(6.3 +2.18i
(15.6 —21.3i
(6.56 — 4.88i)e + (11.8 + 0.324i)¢?

— (1.06 4 0.33i)e — (1.02 + 0.891i)€>

€ — (1.86 + 8.77i)¢?

)
Je + (21.6 — 13.2i)€?

(1.74 + 6.79i)e — (0.271 — 3.09i)€?
(0.631 + 0.616i)e — (2.43 — 3.81i)¢?
(3.67 — 1.251)e — (5.58 + 1.63i)¢>
—4.1 — 6.76i) — (0.276 — 0.326i)e — (1.36 — 0.429i)¢>
3.84 4 5.81i)e + (0.612 + 0.62i)e>
25 — (3.47 + 3.83i) + (0.535 + 0.828i)e — (2.6 — 0.521)¢>

1

2 2 2
7127717%23%24%34235237245346%56267

I = (3.29)

with y(12) = 0 and y(45) = —1. The contribution of each
singular solution is in Table X. The summation is

0.0839 + 0.0704i

. + 0(e")

(3.30)

while the corresponding amplitude result by substitute
numerical kinematics is

1 1 _0.0839 +0.0704:
0.0809 + 0.209i) — (0.128 — 0.302i)e + O(€?). 3.31
S1255651275456 SI7S565127S456 € * )= ) () (3:31)
The second integrand as
1

with y(12)

2 2 2
212213217223%26434235245%47356267

= y(45) = 0. The contribution of each singular solution is in Table XI. The summation is

0.000722 - 0.007211 +

62

0] 1 3.33
) (3:33)

while the amplitude result by substitute numerical kinematics is

1 1

0.00438 — 0.00799i

2

8128458618123 S12S45S6783s €

0.000722 - 0.00721i n

— (0.0122 = 0.00712i) + O(e) (3.34)
€
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TABLE IX. Measure part of each singular solution of S, = S45 = 0.

Solution

Measure

Singular S]2S45 (1)
Singular S;,S45 (2)

Singular S, (1)
Singular S;, (2)
Singular S;, (3)
Singular S}, (4)
Singular S5 (1)
Singular Sy5 (2)
Singular Sy5 (3)
Singular Sy5 (4)

(3.7 x 10" 4 (6.26 x 10'1)i)e? + O(€?)
—(1.83 x 108 4 (1.23 x 10%)i)e? + O(€?)
(5.41 x 10 + (1.2 x 10')i)e 4 O(€?)
(3.74 x 10" + (1.57 x 10'2)i)e + O(€?)
—(1.22 x 10% — (6.38 x 107)i)e + O(€?)
(1.53 x 10° — (1.66 x 10%)i)e + O(€?)
—(9.4 x 10 = (5.12 x 10"?)i)e + O(€?)
—(3.92 x 107 + (1.17 x 10%)i)e + O(€?)
—(9.05 x 10% + (2.25 x 10%)i)e + O(e?)
(6.1 x 108 — (4.74 x 10%)i)e + O(€?)

From the result of these two integrands, we can verify the Example II: n =17, S;53, =8, =0
behavior of the singular solutions. The contribution of the Next we consider another compatible case A C BwithA =
common singular solution is exact =2 #(12=x(43)  ¢=1-x(12) {12}, B = {123}. Our gauge choice is that z;,z i & B,
for the singular solutions of S;, and e '*®5 for the  thusthetype-Ilbehaviorisrealized. The kinematics of 7-point
singular solutions of S45, which agree with our analysis. construction numerically we choose as

TABLE X. Contribution of each singular solution of /.

Solution

Contribution

Singular S12S45 (1)
Singular S;,S45 (2)

Singular Sy, (1)
Singular S;, (2)
Singular S;, (3)
Singular S}, (4)
Singular S5 (5)
Singular S5 (6)
Singular S5 (7)
Singular S5 (8)
All Regulars

_0400877—v0.00326i + 0(6‘0)
0'107j0'13i+ 0(60)
0.00589+€0.000659i + 0(60)
0400559+€0.00778i + 0(60)
__0.00599-0.0111: + 0(60)
_0.0197420.08281‘ + 0(60)
(0.00198 — 0.00667i) + O(e!)
(0.00348 + 0.00699i) + O(e")
(0.0172 4+ 0.0341i) + O(e")
(0.000144 — 0.001117) + O(e")
—(0.0285 + 0.0362i) — (0.0596 + 0.314i)e + O(€?)

TABLE XI.

Contribution of each singular solution of 7,.

Solution

Contribution

Singular S12545 (1)
Singular S12545 (2)

Singular S, (1)
Singular S}, (2)
Singular S;, (3)
Singular S}, (4)
Singular Sy5 (1)
Singular S5 (2)
Singular S5 (3)
Singular S;5 (4)
All Regulars

_ 0.0013%0.000968i _, 0(60;
— 0.000436:+0.000344i 1 ()
— 0.00963-000522i | ()(0)
— QO0I7+0.001041 1 ) (€0)
— 0.00234:+0.001021 1 () (¢0)
0.00355-0.00477¢ 4 () (¢0)
— L000814+0.000133 | ()(¢P)

(0.0112 — 0.006417) + (0.00411 + 0.0247i)e + O(¢?)
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ky — {5.78 + 1.74i,21.2 = 7.05,0.742 + 0.329i, —3.03 + 14.8i, —11.8 — 17.3i}
+{0.638¢, (2.15 — 1.77i)e, 0.12¢, (0.2 + 1.95i)e, (-2.23 — 1.53i)e}

ky — {1.27 +0.0208i, —0.315 — 1.17i,0.27 4 0.0766i, —0.115 + 0.124, —1.69 + 0.206/}
+ {0.106¢, (0.0134 + 1.151)e, 0.389%, (0.817 + 0.036i)e, (0.726 — 0.0618i)¢}

k; — {0.875,0.379, -0.717,0.329, —=0.00131}

ky — {1.7,-0.972,0.513,-0.912,0.918}

ks — {1.05 — 0.0208i,0.283 + 1.17i, —0.234 — 0.0766i, 0.655 — 0.124i, 1.41 — 0.206}
+ {=0.106¢, (—0.0134 — 1.15i)e, —0.389¢, (~0.817 — 0.036i)e, (—0.726 -+ 0.0618i)e}

ke — {=7.17 = 1.74i,—20.1 + 7.05i,0.435 — 0.329i,5.4 — 14.8i, 13.6 + 17.3i}
+ {=0.638¢, (=2.15 + 1.77i)e, —0.12¢, (=0.2 — 1.951)e, (2.23 + 1.53i)¢}

ky — {=3.51,-0.482, —1.01,-2.33, —2.37} (3.35)

We fix z5 = 1,z¢ =5, z7 = —7, the singular solutions are

Singular S123S12(1)

Singular §1,351,(2)

Singular S, (1)

Singular S;,(2)

Singular S1,(3)

Singular S, (4)

— (4.96 — 0.203) 4 (0.0866 + 0.743i)¢ + (17.9 + 39.6i)¢>
2 — (4.96 — 0.203i) + (0.0866 + 0.743i)e — (94.6 — 51.5)>
23 = (4.96 = 0.2037) + (0.502 — 14.i)e + (224. — 904.i)>
2 = (3.51 4 1.78i) + (3.4 + 1.59i)e — (2.95 — 7.46i)>
— (4.89 — 0.552i) + (0.158 +2.21i)e + (49. + 119.i)e?
2 — (4.89 — 0.552i) + (0.158 +2.21i)e — (254. — 148.i)¢>
23 — (4.89 — 0.552i) + (1.68 — 37.7i)e + (539. — 2460.i)¢>
24y = (1.88 + 3.74i) + (3.94 4 3.07i)e + (59.4 — 0.813i)é>

— (4.9 4+ 0.163i) — (0.148 — 1.15i)e + (0.803 + 3.69i)e>
z5 — (4.9 +0.163i) — (2.89 + 0.276i)e — (18.6 — 1.77i)€?
73 = (1.46 — 0.781i) — (0.66 + 0.418i)e — (3.94 + 1.17i)€?
74 = (8.4 —0.412i) + (20.3 — 13.4i)e + (55.5 — 60.9i)¢>

— (4.99 — 0.209i) — (0.974 — 1.16i)e — (17. + 23.2i)€?
2o = (4.99 —0.209i) + (1.95 + 2.3i)e — (72.1 + 13.i)€?

73 — (4.56 —0.333i) + (13.8 — 7.47i)e + (44.9 + 397.i)€?
74 = (3.47 + 1.82i) + (4.5 — 2.73i)e + (107. + 67.9i)€?
— (4.94 —0.54i) — (3.24 — 0.525i)e + (11.7 — 45.7i)é?
2 — (4.94 = 0.54i) + (3.78 4+ 3.17i)e — (77.5 + 23.5i)¢?
73 — (3.88 — 0.729i) + (28.6 — 16.3i)e + (208. + 725.i)€?
74 = (1.99 + 3.72i) — (1.77 — 7.54i)e — (39.6 + 131.i)¢?
— (4.81 —0.807i) — (2.27 + 1.54i)e — (13.8 + 5.69i)¢>
7, — (4.81 —0.807i) + (7.88 — 1.43i)e + (28.9 — 7.46i)¢>
73 — (2.35 4 0.69i) — (3.98 — 0.141i)e — (15.2 — 5.13i)€>
74 — (1.46 4+ 5.15i) — (10.9 — 10.i)e — (44.2 — 60.1i)€?

There are two common singular solutions and six solutions for Sy, only. The quantity and asymptotic behavior are same
as our analysis. The measure part is shown in Table XII.
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TABLE XII. Measure part of each singular solution of Si,3 = S, = 0.

Solution Measure

Singular S},35, (1) (691000. — (5.97 x 10%)i)e* + O(e’)

Singular S35}, (2) —(3.53 x 10° = (2.51 x 10%)i)e* + O(€)

Singular S}, (1) —(50.8 + 792.i)e + O(€?)

Singular S, (2) (158. 4 104.i)e + O(€?)

Singular S}, (3) —(27300. + 65900.i)e + O(€?)

Singular Sy, (4) (153000. + 66900.i)e + O(e?)

All Regulars —(84300. + (3.87 x 100)i) + (3.42 x 107 — (1.04 x 107)i)e + O(e?)

TABLE XIII. Contribution of each singular solution of ;.

Solution Contribution
Singular S35, (1) — 5:93x1074(632x1077)i 0(e°)
€
Singular S;538;, (2) L62x10704(445x10T)i | 0(e)
Singular S}, (1) 1.17 x 1078 + (5.19 x 107%)i
Singular Sy, (2) 0.0000351 + (6.06 x 1076)i
Singular S;, (3) —0.0000613 + (6.88 x 107%)i
Singular S}, (4) —=2.07 x 1077 + (2.57 x 107)i
All Regulars —(0.000127 + 0.00005117) — (0.0426 + 0.0299i)e + O(€?)
The measure part of common singular solutions is exact ~ with pole index y(123) = 0, ¥(12) = —1. The contribution
e2AIF2UBI=6 — (2x242x3-6 — 4 gapd 2AIF3 = 2x2-3 — (] of each solution is in Table XIII. The summation is
for the solutions only for pole Sy,.
The first integrand we have chosen is 1.03 x 107 — (1.88 x 1077)i
( ) +0(%)  (3.37)
€
1
I =~ 2 2.2 2 (3.36) . . . . . .
212213214217223227%34245856%67 We verify the summation with numerical kinematics
|
1 1 1 1 1

 S5S455615138 5235455123545 5235565135456 5355651238567 8235678123856
B 1.03 x 107¢ — (1.88 X 10‘7)1'
€

+(7.19 x 1077 = (5.16 x 1076)i) + O(e) (3.38)

The second integrand is

1

2.2 2 2 (3.39)
214%716%23%25%34237247256257867

with pole index y(123) = -2, y(12) = —2. The contribution of each solution is in Table XIV. The summation is
—(0.000476 — 0.0000642i) — (0.0000339 + 0.0000789%)e + O(?). (3.40)

We verify the summation with numerical kinematics:

1 1 1 1
S14S23S]465235 S]6S23S146S235 S14SZ5S146S235 Sl6SQSSl465235
= —(0.000476 — 0.0000642i) — (0.0000339 + 0.0000789i)e + O(?). (3.41)
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TABLE XIV. Contribution of each singular solution of 7,.

Solution Contribution

Singular S},35;, (1) —(0.00292 — 0.0564i)e* + O(e?)

Singular 15351, (2) (0.0703 — 0.0516i)e* + O(€?)

Singular S, (1) —(0.0000246 + (3.35 x 107%)i)e + O(€?)

Singular S, (2) (0.00186 — 0.000129i)e + O(€?)

Singular S;, (3) —(0.00148 + 0.00198i)e + O(e?)

Singular S;, (4) —(0.000134 — 0.000217i)e + O(€?)

All Regulars —(0.000476 — 0.0000642{) — (0.000257 — 0.00181i)e + O(e?)

From the result of these two integrands, we verify the contribution of common singular solution is e~>#(12=2(123) "and
e~1=%(12) for singular solutions of S,.

Example Il: n = 7, 5123 - S234 =0

Now we consider the case two poles are not compatible with each other, we choose A = {123} and B = {234}. The
numerical kinematics are

ky — {—0.198 — 0.128i,—0.0155 — 4.35i,—3.65 + 0.112i, —0.829 — 0.0698i, —2.23 — 0.138{}
+{0.16¢, (0.0591 + 0.504i)e, (0.499 — 0.06i)e, (0.0301 + 0.00534i)e, 0.172¢}
ky — {1.54,0.667,0.963,0.368, —0.931}
ky — {1.17,-0.525,-0.27,0.459, —0.902}
ky — {0.524 — 0.123i,0.1 + 0.999i,0.406 — 0.0327i,0.343 — 0.73i, —1.23 — 0.0812i}
+ {0.83%, (=0.951 — 0.84i)e, (0.187 + 0.00511i)e, (—0.942 + 0.85)e, 0.552¢}
ks — {0.951,-0.376,—0.594,0.164, —0.618}
ke — {—1.17 4 0.123i,0.325 — 0.999i, 1.23 + 0.0327i,0.0673 + 0.73i,1.12 + 0.0812i}
+ {=0.839¢, (0.951 + 0.84i)e, (=0.187 — 0.00511i)e, (0.942 — 0.85i)e, —0.552¢}
ky — {—2.82 +0.128i, —0.176 + 4.35i,1.92 — 0.112i, —0.573 + 0.0698i,4.78 + 0.138i}
+ {=0.16¢, (=0.0591 — 0.504i)e, (—0.499 + 0.06i)e, (—0.0301 — 0.00534i)e, —0.172¢} (3.42)

We fix z5 = 1, zg¢ = 5, z; = —7, the singular solutions are

—6.59 + 5.61i) + (0.988 — 7.57i)e + (13.1 + 2.66i)€>
—6.59 + 5.61i) + (0.622 — 8.5i)e + (16.5 + 10.3)¢>
+

—6.59 + 5.61i) + (0.143 — 8.57i)e + (21.1 + 11.i)>

- (=
. 2= (=
Singular Sy»3(1)
3= (=
74 = (5.71 +5.41i) — (2.95 — 11.1i)e — (12. + 9.39i)€?

— (=5.2-0.937i) — (0.505 + 0.588i)e — (1.03 + 0.394i)¢>

75 = (5.2 -0.937i) — (0.839 + 0.422i)e — (0.412 + 0.42i)¢?
73 = (=5.2-0.937i) — (0.852 4 0.241i)e — (0.226 + 0.714i)¢?
(

74 = (1.42 = 1.1i) — (3.76 + 0.476i)e — (2.6 + 0.484i)¢?

Singular S,3(2)
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TABLE XV. Measure part of each singular solution of Sj53 = Sy34 = 0.

Solution Measure
Singular S,3 (1) (6.05 x 106 — (7.15 x 10%)i)e3 + O(e*)
Singular Sy,5 (2) (1020. + 829.i)e3 + O(e*)
Singular Sas4 (1) (4.46 x 108 + (2.5 x 108)i)e® + O(e*)
Singular S»34 (2) (2.8 x 10° + (6.32 x 10%)i)e® + O(e*)
All Regulars —(1.62 x 10 + (2.12 x 10')i) + (5.05 x 10'! 4 (8.03 x 10'?)i)e + O(e?)
71 — (0.948 + 9.i) — (14.1 + 3.67i)e — (40.7 + 39.5i)¢?
) 2 = (6.25 4 3.19i) — (0.79 — 13.5i)e — (31.8 — 47.6i)¢?
Singular Sy34(1)
73 = (6.25 4+ 3.19i) — (3.64 — 7.5i)e — (32.8 — 22.1i)é?
74 — (6.25 4+ 3.197) + (0.0579 + 8.31i)e — (20.6 — 16.6i)¢>
7; = (=6.25 — 0.445i) + (7.43 + 7.67i)e + (11.3 — 45.2i)¢?
) 7 = (=2.7 — 1.43i) — (4.19 — 3.88i)e + (37.1 + 13.9i)¢?
Singular Sy34(2)
73 = (=2.7 = 1.43i) + (28.6 + 19.4i)e — (9.49 + 134.i)€?
74 = (=2.7 = 1.43i) + (10.2 + 28.8i)e + (49.1 — 127.i)€?

The quantity and asymptotic behavior is conform with our analysis. The measure part given in the Table XV shows
A3 = 2IBI=3 — 233 — &3 which fit our analysis.
We choose the first integrand as

1
I =- 2 2.2 .2 (3'43)
212213214217223%27234%45%56%67

with pole index y(123) = 0, y(234) = —1. The contribution of each singular solution is in Table XVI. The summation

0.188 — 0.277i

. + 0(€%) (3.44)

and can be verified with the amplitude after putting the kinematics

1 1 1 1 1
SZSS45867S123 SZ3S4SS12SS456 523S56S1235456 SZ3SS6S123S567 S23S675123S567
0.188 — 0.277i , , )
=2 T L (178 = 0.469i) + (6.24 + 3.76i)e + O(€2). (3.45)

We choose the second integrand as

1
12 = - 2 2 2 2 (346)
212215217%223%25734245%246%56 267

TABLE XVI. The contribution of each singular solution of /;.

Solution Integration

Singular S;3 (1) 0.00281:0.0541‘ +0(e%)

Singular 5123 (2) 0.185—603311' + 0(60)

Singular Sy34 (1) 0.0000327 + 0.000439i

Singular Sy34 (2) —0.00337 + 0.0353i

All Regulars —(0.0143 + 0.0791i) + (1.62 — 0.868i)e + O(€?)
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TABLE XVII. The contribution of each singular solution of /,.

Solution Contribution

Singular S,3 (1) (0.00415 — 0.000281i) + O(e')
Singular S»3 (2) —(0.00517 — 0.0029i) + O(e")
Singular Sy34 (1) — DO00SST-0.00062i " (0

Singular Sy, (2) _0.0000737:0.008561‘ + 0(%)

All Regulars —(0.241 — 0.0685i) — (8.06 + 9.33i)e + O(e?)

with pole index y(123) = —1, y(234) = 0. The contribution of each singular solution is in Table XVII. The summation is

~0.000931 + 0.00794i n

- 0(€") (3.47)

which are the same as the amplitude after putting the kinematics

1 1 1 1
S1782351675234  $1753451675234  $2386751675234  $3456751675234
0.000931 + 0.00794i

= + (0.00343 — 0.0000467i) — (0.0108 + 0.0421i)e + O(€?). (3.48)
€

We choose the third integrand as

1
Iy =~ 2 2 2 2 (3.49)
212215217823%34%45247356%67

with pole index y(123) = y(234) = 0. The contribution of each singular solution is in Table XVIII. The summation is

0.0424 4 0.0109i
- OO, o) (3.50)
€
and the amplitude after putting the kinematics is
1 1 1 1 1
+ + + +
S12534856S567  S125345675567  S1255651238567  $2355651235567 51256751235 567
n 1 1 1 1 1
$2386751238567 5235565234567 S3485652345567  §2356752345567 53456752345 567
0.0424 4+ 0.0109
=- i L (0.154 4+ 0.0133i) — (0.397 — 0.0194i)e + O(€?). (3.51)
€

We found that the contribution of each singular solution is exact e~'#(4) and e~'~*(8) respectively.

TABLE XVIII. The contribution of each singular solution of /5.

Solution Contribution

Singular S35 (1) _w + 0(eY)

Singular S;,; (2) — 0.0223+0.00101i 1 ()

Singular S»34 (1) — 0000210000321 4 0
Singular Sy3, (2) _000196—6'_0.00286,' + 0(e°)

All Regulars (0.1 4 0.0492i) + (0.903 + 5.43i)e + O(€?)
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IV. FROM SINGULAR KINEMATICS TO
SOLUTIONS II: THE SOFT LIMIT

Now we consider the second type of singularity, the soft
limit, for example, the k; — 0. Different from the preview
case, when k; — 0, we have S|; > 0 forall i =2,...,n
automatically. If we naively use the picture from the
previous section, we will conclude that there will be some
singular solutions with z, — z; and some other solutions
with z3 — z;, etc. Since poles S;; are not compatible, the
singular solutions will be the union of all these z; — z;.
However, as will be shown in this section, the above naive
picture is wrong. In fact, for the soft limit, there is no
singular solution.

With the behavior k; = k(ll)e and kg;21 # 0 when ¢ — 0,
the scattering equation &, is

(1) 0
ky” - kg

& —e[ ! +0()| =0. (4.1)
ae{2..N} 17 %a

(21 = 22)(22 = 23)(23 = 21) (20 = Zu=1)(Tne1 = 20=2) (Zne2 — 20) ~ €

Thus it is the measure providing the singularity.

Assuming there is at most one location, for example,

7, — z; while other z;’s are separated from each other, the

1 0

e 4

terms, since in general k(ao) #+0, k(l1> . kfj” #0 and all

numerators in (4.1) are nonzero. Thus (4.1) could not be
satisfied under above assumption.

There are two possibilities to make (4.1) true. The first
possibility is that there are at least two locations, for
example, z;,z; — z;. Then by our careful analysis given
in Sec. II, we will have S, — 0 with 3 < |A| < n — 3, which
conflicts with our kinematic condition that under k; — O,
only S;; — 0. Thus there is left with only another possibility,
i.e., all z;’s are separated from each other and z;, so all terms
in (4.1) will have equivalent weight to make it zero.

Having proved that there is no singular solution for
scattering equations, we need to understand how soft
singularities are produced in the amplitude. The key is
the measure part. Unlike the one J ~ ¢24/=3 — 0 given in
(5.4), for soft limit

in (4.1) will be singular comparing to other

0

|q)|rxt N G], JN€_1

ik (4.2)

Now we present an example to demonstrate the behavior of soft limit. First we construct the kinematics for the soft limit.
According to the discussion given in the Appendix, we construct p;,i = 2, ..., n such that Zf”:z p; = 0, then we choose u,

v such that

p1=e€(u+v),

Py =Dpr—€u p3=p3—e€vn,

The u and v are not arbitrary. To make all momenta on-shell, they need to satisty

For space-time dimension D > 4, there are solutions for u, v.
Using above frame, let us present one example, i.e., the six point case with following choice of kinematics

k; — {0.774,-2.039 + 1.645i, —2.358 — 2.948i,2.216 — 1.623i, —0.0675}¢,
ky — {1.125,0.595,-0.105, 0.802,0.507}

+ {-0.162, -0.876, —0.059 — 0.969i, 0.454 — 0.127i, —0.0628i }¢,
k3 — {0.950, -0.683, -0.0312, —-0.572, —0.329}

+{-0.612,2.915 — 1.645i,2.417 4+ 3.917i, —2.668 + 1.750i,0.130}¢
ky — {1.17,-0.617,-0.284,-0.951,0.0575},
ks — {—1.247,-0.299,0.288, —0.936, —0.71},

ke — {—1.999,1.003,0.132,1.66,0.475}

Py=Ds a=4,....n (4.3)
u f?z = 0, v p3 = 0 (44)
(4.5)
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We fix the gauge choice z, = 1, z5 = 0, zg = —1 and find following six solutions

— (=0.236755 — 0.255543i) — (1.47022 — 0.800113i)e + O(¢?)
23 = (—0.0108264 + 0.011729i) + (0.0134425 4 0.0210137i)e + O(€?)
23 — (=0.28117 = 0.303133i) — (1.54701 — 0.967519i)e + O(€?)
— (=0.00979118 -+ 0.0111497) — (0.0327251 + 0.07134081)e + O(€?)
2 — (—0.0108264 + 0.011729i) + (0.0134425 + 0.0210137i)e + O(?)
— (=0.28117 — 0.303133i) — (1.54701 — 0.967519i)e + O(?)
= (0.261008 + 0.153645i) — (0.587951 — 0.0543757i)e + O(€?)
2 — (—0.0108264 + 0.011729i) + (0.0134425 + 0.0210137i)e + O(?) (4.6)
— (=0.28117 — 0.303133i) — (1.54701 — 0.967519i)e + O(?)

— (=0.19289 + 0.33945i) — (0.36536 + 0.659837i)e + O(€?)
75 = (=0.0108264 — 0.011729i) + (0.017517 + 0.0426134i)e + O(€?)
— (=0.28117 + 0.303133i) — (0.225438 + 0.604153i)e + O(€?)
— (=0.010308 — 0.0107239i) + (0.130698 + 0.227897i)e + O(€?)
7, — (—0.0108264 — 0.011729i) + (0.017517 4 0.0426134i)e + O(€?)
— (=0.28117 + 0.303133i) — (0.225438 + 0.604153i)e + O(€?)
— (0.214106 + 0.185642i) — (0.276318 + 0.500216i)e + O(€?)
7, — (—0.0108264 — 0.011729i) + (0.017517 4 0.0426134i)e + O(€?) (4.7)
73 — (—0.28117 + 0.303133i) — (0.225438 + 0.604153i)e + O(€?)

We have presented these six solutions into two groups. When checking carefully, one can see that the values of z,, z3 are
the same in each group. In fact, as shown in [7], for the general case of n points with soft limit k; — 0, all (n — 3)! solutions
can divided into (n —4)! groups: in each group the values of z;,i = 2, 3, ..., n are same while the (n — 3) values of z; are
different. More explicitly, at the leading order, the scattering equations become

"ok, ky

E,= 42 (4.8)
b:zz,h;éa Za —2p
fora=2,3,...,n and
k(l) k((;))
& = 6[ ! + O(€):| =0 (4.9)
{1 Zq

Using (4.8) we get (n — 4)! different solutions for z;, i = 2,3, ..., n. Putting them to (4.9) we get (n — 3) solutions for z;.

Using (4.6) and (4.7) the measure J = w of each solutlon is
456

8.28657 x 1076 4 5.97512 x 1075

J=— — (0.00010047 — 0.0001437337) + O(e)
€
9.27966 x 107° + 171473 x 1078
Jy = T X L (626664 x 1077 — 5.07552 x 107°7) + O(e)
€
0.0000888246 + 0.0000219678i
Jy=— i L (0.00413616 — 0.00188736i) + O(c)

€
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7.12674 x 1076 + 0.0000270679i
pe 0 L+ (0.000134457 + 0.000191776i) + O(e)
€
173122 x 1078 — 4.0953 x 10~
Js = x X (5.04811 x 1077 + 1.2758 x 10774) + O(e)
€

7 0.0000631231 — 0.0000764316i
6 =

— (0.0000541201 + 0.00243992i) + O(e) (4.10)

€

where each one has the leading behavior% indeed. Now we choose two different CHY-integrands: one contains pole S, and
another does not.

(1) Icpy = T W SR with pole S;,. The analytic result gives
1 1.83042 — 0.257211i
= l+(6.21704—21.8651i) + O(e) (4.11)
$12534556 €

after substituting (4.5). The contributions of each solution are

0.00419196 — 0.00814611i

S, — (0.00751988 — 0.01719017) + O(e)
€
0.635358 — 1.40928i
Sy: L (18.0379 + 34.60971) + O(e)
€
0838495 — 0.0761965i
5. 20838495 = 0.07619651 _ () 193397+ 2.663081) + 0(e?)

€
~0.0173534 + 0.0060881i

€

1.05731 + 1.13749i

Ss: + (23.2755 + 14.1021i) + O(e)
€

. 0.0670696 4 0.105014:
€

3 1.83042 — 0.257211i

€

+ (0.0108633 + 0.0298797i) + O(e)

+ (1.26947 + 1.258450) + O(e)

+ (621704 — 21.8651i) + O(e) (4.12)

. l . . . .
i) 1, = without the pole S,. The analytic expression gives
( ) CHY 112113223125132134141Z4SZ§GZ6]Z64 p la y P g

1

= -0.00611146 — (0.00176926 + 0.000337693i)¢ + O(€?) (4.13)
S23S56S123

which is not divergent when ¢ — 0. The contributions of each solution are

0294162 + 0. i
5,; 20294162 7005338011 _ ) 15479 1 005317827 — (0.399708 — 0.4920017)e + O(e2)
€

0.00502886 — 0.00214344

S,: — (0.0153742 4 0.0794493i) + (3.43002 4 0.885407i)c + O(€?)
€
0.0243873 + 0.0555235i
Syt — i L1 (0.166609 + 0.697732i) — (37.8097 + 16.3499i)e + O(¢?)
€
0.0936548 — 0.0110378i
5,; 209360548 L (0.0469898 + 0.1135231) + (0.563917 — 0.08924811)e + O(&?)

€
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0.00413562 + 0.00322131i

Ss: — + L (0.0000649134 — 0.07564827) — (0.337054 — 0.169771i)e + O(e?)

€
0.0895192 — 0.0142591i
Se: — L1 (0.043999 — 0.5272291) + (247751 + 42.7249i)e + O(&?)
€
6

>S50 = 0.00611146 — (0.00176926 + 0.000337693i)e + O(c>) (4.14)

i=1

For this CHY-integrand, the critical point is how the cancellation of % part happens. When checking carefully, one can
see the cancellation happens inside each group, i.e., for S; + S, 4+ S3 and S4 + S5 + Sg, the % part disappears. This is
a general phenomenon, and we can easily prove using the trick given in [7]:

A,(1 /Hdz 21w | 8EIPT(Las.....a,)PT(L Sy, ... )

a#n—2,n—1,n

Za,a 2B,
dz;6 T N 8(ED)PT (s .. ) PT (B s )22 122y 2o
/H i 1)Z1a2Z1an Zlﬂzzlﬁ” aﬂz ( a) ( 2 n) (/2 /n) n—-2.n—1%n—1,n*n,n-2

n—1n

Zn ﬂ”
= [ dziote) Sz e [T [T e TT 5EPT @0 o) PTG 522
ZlayZla, R14,21p, i— atln-2,

n—1ln

Lo,y Zﬂn/iz
= [ dz;8(E|) —2——2-A,_,(2,3,...,n) (4.15)
ZayZla, 215,214,

where at the leading part of ¢, the [ [, 6(E,) takes the form (4.8) so A,,_;(2, 3, ..., n) can be treated as a constant.

n—=1ln

(1)) .
KDk :
To carry out the contour integration of z;, using (4.9) we write £, = e} 1, L= = el (Zzl;;]izlz) , thus
Za,,a ﬂnti 1 Za,,a ﬂn,/f
[ et P f g L B
Zlay2la, 215,218, Iy 51 2l Rla, £15,218,
212213 2 Z 2B,
:% dZ] 12 .13 1n a,a) 53 (416)
T, ef(z1522, -+, 2n) Ly Lla, 215,218,

where the contour I'; means taking the sum only over poles coming from f. One can see that because the numerator
212213 - - Z1p» @S long as all aq, a,,, B, f,, are dlfferent there is no extra pole in the denominator besides these coming
from f thus by the Cauchy residue theorem,” the integral is zero, which is exact the case of the CHY-integrand
containing no poles of S;,. On the other hand, if there are at least two labels of a,,a,,,3,.5, same, the integral is
nonzero by the extra poles in the denominator, which corresponding to the CHY-integrand with pole S,. One further
point is that by (4.16), no matter if the S, is a single-pole or poles of higher degrees, the leading behavior is always é

V. FROM SINGULAR KINEMATICS TO SOLUTIONS III: THE FORWARD LIMIT

The last singular kinematics we will discussed in the paper is the forward limit
ki + k, =€eq — 0. (5.1)

As we have mentioned in the section on motivation, the forward limit is very useful when discussing the loop-level
CHY-integrands. In this section, we will give a general discussion of forward limit first, and then apply it to the one-loop
CHY-integrals.

9, . . et . . .
The large z, behavior is <155 ~ %, so there is no boundary contribution at z; = co.
zZ) 4
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EO 61
1
<2
_._
Zii#1,2
_._
FIG. 5. Singular-1.

A. The general discussion

Similarly to the soft limit, under the limit (5.1) we will
have Sy,; — 0 for all i = 3, ..., n automatically under the
forward limit (5.1). As we will see, the forward limit can be
considered as the mixture of the factorization limit and the
soft limit. While all poles S;,; are not compatible, all of
them contain the common pole S;, — 0. Now we ask what
the implication of the singular kinematics to the is the
behavior of solutions of scattering equations?

Let us start with the singular kinematics S, — 0. Unlike
the factorization limit where S, — €', the (5.1) implies
Sy, — €2. The difference will lead to the different behavior
of singular solutions, As given in [53], He and Yuan have
shown that there are two kinds of singular solutions

Singular — 1: |z, — 25| ~ €',

Singular — II: |z; — 25| ~ €. (5.2)

where each kind has (n — 4)! solutions. In other words, like
the factorization limit, the singular kinematics S, — 0
implies the singular solution. The counting of (n —4)! of
each type matches the counting of factorization limit of
pole S;, too. However, unlike the factorization limit with
only one type of singular solutions, there are two types of

(1= 23)(e2 = 2028 = 1) o = o) = )2 = 20) ~ £

€Y et €2

zZ1

<2

— ———

: } Zii#1,2
———

FIG. 6. Singular-II.

singular solutions (see Figs. 5 and 6), especially type II
with the limit behavior |z; — z,| ~ €2."°

Now we move to the automatic singular kinematics
S12i = 0. Do they imply the singular solution of
21, 22,2; = 2?7 With the experience from the soft limit,
we need to do more careful analysis. Assuming there is a
singular solution where, for example, z; tend to z;, while
all other z; are separated from each other. In the scattering
equation

k,-k2+
21 —2p

ki -k ki -k ki -k
! 3+ I 4+...+u
{1 — 13

=0.

512

21 — 24 21 — 1y

(5.3)

ik
2172
singular I or singular II solutions, while other terms
ki -k;
-z

since k; -k, = SQ—Zq, term ~¢€' /e’ depending if it is
~e i #2, 3 because k; - k; ~€” and |z, — z;| ~ €°.
But the term % will be singular because z; — z;, unless
S13 = 2k - k3 — 0, which is in conflict with our kinematic
configuration. Therefore, we learned that there is no other
z; i#1, 2) tend to z;,. The only possible asymptotic
behavior of singular solutions must be (5.1). Now let
us consider the contributions of singular solutions to
amplitudes. We chose (rst) = (123) and (ijk) = (n -2,
n — 1, n). For the measure part,

el Singular I
€-, SingularII
|5~ €'

Singular I
Singular I

'°A naive understanding is that (5.1) implies there are two kinematic singularities simultaneously. The first one is the (ky + k) — €q,
which is the soft limit type. The second one is the (k; — k,) — 2k, which is more like the factorization limit.
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With above knowledge we summary the contributions of each type of solutions as follows One interesting point is that the

singular I solutions will contribute /cyy ~ ﬁ at the order ¢€°, just like the regular solutions. Thus we can not naively
1

remove their contributions''

Having the above discussion, we present one numerical example to show the above conclusions. The choice of
kinematics has been given in Appendix. We choose the six-point example since it is the simplest nontrivial case under the
forward limit. The numerical kinematics is given by

k; — {0.824,-0.421,0.306, 0.283, —0.572, 0}
k, — {1.169,0.705,0.291,0.341, -0.817,0}
ky — {-0.677,0.284,0.136, -0.316, +0.509,0}
+ {-0.323,-0.387 + 0.282i,—0.185 — 0.5914,—-0.320, 0.496, 0} ¢
ky = {-1.315,-0.568, —0.733, —0.309, 0.880, 0}
+{-0.714,0.417,0.0996, —0.443 — 1.142i,1.262 — 0.401i,0}¢
k, — {0.410,-0.158,0.186 + 0.0370i, —0.0794 + 0.0870i, —0.333,0}
+{0.518,-0.0148 — 0.1414,0.043 + 0.295#,0.382 + 0.571i, —0.879 + 0.2014,0.128 — 0.442i}e
k_ — —{0.410,-0.158,0.186 + 0.0370i, —0.0794 + 0.0870i, —0.333,0}
+ {0.518,-0.0148 — 0.141,0.043 4 0.295i,0.382 4 0.571i, —0.879 + 0.201i, —0.128 + 0.442i}e.  (5.5)

We fix the gauge z; = 1, 2, = 2, z3 = 3. There are two singular-I solutions, two singular-II solutions and two regular
solutions:

24 — (1.925 — 0.124i) + (0.0527 + 0.03641)e + (0.330 — 0.043i)¢>
Regular (1) z, — (2.079 — 0.567i) + (0.654 + 0.288i)e + (1.460 + 1.530i)€>
2. — (1,549 + 0.129i) — (0.590 — 0.787i)e + (0.296 + 1.238)¢>
24 — (1,996 + 0.04017) + (0.0904 + 0.0436)e + (0.141 — 0.512i)¢>
Regular (2)4 z, — (2.049 + 0.132i) + (0.0966 — 0.03837)e + (—0.346 — 1.292i)> (5.6)
2. — (1,590 — 0.2867) — (0.123 — 2.415i)¢ + (9.723 — 7.520i)é>

24 = 1.911 = (0.267 = 0.2651)e + (=0.599 + 1.144i)e>
SingularI(l){ 2y = (1726 — 0.479i) + (0.112 — 1.692i)e + (—0.604 — 4.715i)¢2
z_ = (1.726 — 0.479i) — (0.112 = 1.692i)e + (0.604 + 4.715i)>
24 = 1.911 + (0.152 + 0.0200i)e + (0.0931 — 0.514i)¢>
(2){ 2, — (1.785 4+ 0.232i) + (0.158 — 0.509i)¢ + (—1.055 — 0.466i)> (5.7)
(1){

z_ = (1.785 4 0.232i) — (0.158 — 0.509i)e + (1.055 + 0.466i)¢>

Singular I

24 = 1.911 = (0.130 — 0.336i)e + (0.359 + 1.232i)¢>

2z, — (1.958 — 0.123i) + (0.285 — 0.0967i)e — (0.0694 + 0.129i)>

z_ = (1.958 = 0.123i) + (0.285 — 0.0967i)e + (0.0694 + 0.129i)¢>

24 = 1.911 + (0.0151 — 0.0503i)e + (0.231 — 0.189i)>

Singular I1(2)4 z, — (2.064 + 0.345i) 4 (0.0666 + 1.0254i)¢ — (0.223 — 0.747i)¢> (5.8)
z_ = (2.064 + 0.3451) + (0.0666 + 1.0254i)e + (0.223 — 0.747i)€2.

Singular IT

"In [52] it has been shown that although singular I solutions give nonzero contributions at the integrand level, it can be removed for
some theories since the one-loop CHY-integrand is defined up to terms integrated to zero.
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TABLE XIX. Contribution of two singular solutions and regular respectively.

a-n Measwre gy ~poom e~y e~y

Singular-I € -2 e! 1
Singular-IT €2 € e €72 1
Regular 1 1 1 1 1
Contribution of Singular-I -2 e! 1
Contribution of Singular-II 3 ¢! €
Contribution of Regular 1 1 1 1 1
TABLE XX. The measure part of each solution in forward limit.

Solution Measure

Regular (1) 0.201709 + 0.315957i + O(e¢)

Regular (2) 0.00828429 + 0.000758566i + O(¢)

Singularl (1)
Singularl (2)
Singularll (1)
Singularll (2)

0.09663 — 0.37947i + O(e)

~0.0222706 — 0.0106388i + O(e)
(~0.000290196 + 0.0000925484i)e + O(€?)
(0.606991 + 0.0403871i)e + O(€?)

The measure part of each solution is in Table XX. which
agree with our computation (the third column of
Table XIX). Next we choose three different CHY-inte-
grands with pole index y[S,_| = 0, —1, =2 respectively to
show the behavior of Table XIX:

(i) I, = PT(1234 + —)PT (1342 — +) with ¥[S,_] =0:
For this example (see Table XXI), there are poles
S,_~e? and S;,_~e!, so the leading contribu-
tion comes only from Singular II solutions.

(i) I,=PT(1234+—)PT(1+4234—) with y[S,_|=-1:
For this example (see Table XXII), there is pole
Si,._ ~e€ !, so the leading contribution comes from
both Singular I and Singular II solutions.

(iii) I3 = PT(123 +4—)PT(1 +423—) with y[S,_] =
—2: For this example (see Table XXIII), there is
no singular pole, so the leading contribution comes
from regular solutions as well as Singular I sol-
utions.

TABLE XXI. The contribution of each solution of CHY-
integrand PT(1234 4+ —)PT (1342 — +).

Solution

Regular (1)
Regular (2)

Integration

—(9.3103 + 1.98347i)
(2.81938 — 6.61778i)

Singularl (1) — ei (0.622372 + 0.426007:)
Singularl (2) - E% (0.726396 + 1.70513i)
Singularll (1) EL; (0.657355 + 0.819951i)

Singularll (2)
Summation

~1(0.862234 — 0.0145693i)
~1(0.204879 — 0.83452i)
1

Amplitude T SuS, S

Numerical amplitude - S% (0.204879 — 0.83452i)

B. Applications in one-loop CHY-Integrands

One main motivation of our current study is to understand
that under the forward limit, what is the contributions of
singular solutions for one-loop CHY-integrands constructed

TABLE XXII. The contribution of each solution of CHY-
integrand PT(1234 + —)PT(1 + 234-).

Solution Integration

Regular (1) —(2.00263 — 7.49773i)
Regular (2) (3.43278 + 1.47441i)

Singular I (1)
Singular I (2)

~1(0.0475165 — 1.0134i)
—1(1.25809 + 1.02357i)

Singular II (1) —% (0.423532 + 0.0715691i)
Singular I (2) —1(0.524593 + 0.208376i)
Summation 1(1.20454 — 0.126638i)
Amplitude S TSRS

Numerical amplitude % (1.20454 — 0.126638i)

TABLE XXIII. The contribution of each solution of CHY-
integrand PT (123 + 4—)PT(1 4 423—).

Solution Integration
Regular (1) (36.3435 — 21.9682i)
Regular (2) —(49.0302 — 26.65361)

Singular I (1)
Singular I (2)
Singular II (1)

(19.3907 — 18.341)
—(18.0838 + 0.6898131)
. + 0. i)e

1.43509 + 0.475868

Singular 1T (2) —(10.9922 + 0.404811i)e
Summation —(11.3798 + 14.34441)
Amplitude m

Numerical amplitude —(11.3798 + 14.34441)

036015-29



BO FENG, CHANG HU, and YAOBO ZHANG PHYS. REV. D 105, 036015 (2022)

using the forward limit method. In this subsection, we will use two types of one-loop CHY-integrands of the bi-adjoint scalar
theory to provide some general picture, especially the different patterns of cancellation of singularities.

1. The first type of integrands
In [52] the one-loop CHY-integrand is given by
Pl 1
1-loop _ li e
my - [zlp] = / pp k im. Z M [—a + | — f+] (5.9)

agcye(
pecyc )

where a and f are two PT factors and

myS[—a+ | = p+] = /dQCHYPT(—, a(l),...,a(n),+)PT(-,p(1),....p(n),+) (5.10)

is the tree-level amplitudes of (n 4 2) particles defined by the CHY-integrand of two PT factors.
To have a concrete picture, let us consider a simple example, i.e., one loop integrands m1 1°°p[1234| 1243]. From (5.9),

this loop integrand is given by the sum of all possible combinations of PT-factor sets {PT(1 + —234),PT(12 +
—34),PT(123 + —4),PT(1234 + —)} and {PT(1 + —243),PT(12 + —43),PT(124 + -3),PT(1243 4+ —)}. As in the
previous section, a set of momentum with forward limit parameter ¢ has been taken as following:
k; — {1.04,0.113,-0.156,0.775,0.667,0}
k, — {1.43,-0.913,-0.771,-0.727,-0.295,0}
ky — {—0.931,0.383, -0.508, —0.344, —0.587,0} + {—0.699¢, (0.4 + 0.304i)¢, (—0.529 + 0.23i)¢, 0.0745¢, —0.434¢,0}
ky — {—1.54,0.417,1.43,0.296,0.215,0} + {—1.15¢, (0.354 — 0.641i)e, (1.22 + 0.186i )¢, —0.191¢, —0.342¢, 0}
k, — {0.45,-1.02 — 0.34i,-0.548,0.287 — 1.21i,-0.597, 0}
+{0.923¢, (—0.377 + 0.168i)e, (—0.344 — 0.208i)e, 0.0584¢, 0.388¢, (0.714 — 0.0115i)e}
k_ — {-0.45,1.02 4+ 0.34i,0.548, -0.287 + 1.21i,0.597, 0}
+ {0.923¢, (—0.377 + 0.168i)e, (—0.344 — 0.208i)e, 0.0584¢,0.388¢, (—0.714 + 0.0115i)e}. (5.11)

For current example, there are (n —3)! = 6 solutions. Under the forward limit, they are divided into three classes
according to the asymptotic behavior, i.e., regular solutions, singular I and singular II solutions, and each of them contains
two solutions:

74 = (1.99 + 0.074i) — (0.21 — 0.0669i)e + (0.0316 — 0.313i)¢?
Regular (1) z, — (2.3 +0.135i) — (0.283 — 0.543i)e — (1.36 + 1.09i)¢?

— (2.01 4+ 0.175i) — (0.0946 — 0.132i)e + (0.0981 — 0.0337i)e?
74 — (2.04 — 0.483i) — (0.496 + 0.172i)e — (0.182 — 1.33i)¢?

— (1.78 = 0.594i) — (0.234 — 0.198i)e + (0.678 + 1.02i)¢>

— (2.52+0.273i) 4 (0.516 + 0.15i)e + (0.354 — 0.104i)¢>

Regular (2

= (1.82 + 0.0335i) + (0.00702 — 0.103i)e + (0.207 — 0.0868)e>
= (1.82 + 0.0335i) — (0.00702 — 0.103i)e — (0.207 — 0.0868i)e>
4 — 1.89 — (0.0845 + 0.0676i)e — (0.0545 + 0.0212i)e>
= (2.39 + 0.1844) — (0.344 — 0.0399i)e + (0.176 — 0.03087)¢>
z_ — (2.39 + 0.184i) + (0.344 — 0.0399i)e — (0.176 — 0.03081)¢>

Singular I(1

{ 74 — 1.89 — (0.0953 + 0.0598i)e — (0.469 + 0.562i)¢>
Singular I(2 {
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24 — 1.89 — (0.0923 + 0.236i)e + (0.317 + 0.0928i)¢>
SingularII(1){ z, — (1.89 — 0.376i) + (0.103 + 0.191i)e — (6.61 — 1.44i)e>
— (1.89 — 0.376i) + (0.103 + 0.191i)e — (6.37 — 1.27i)¢>
24 — 1.89 — (0.0874 — 0.109i)e — (0.00897 — 0.2651)¢>
SingularI1(2){ z, — (1.97 + 0.1967) + (0.0645 -+ 0.0918i)e — (2.57 — 1.42i)¢>
= (1.97 + 0.196i) + (0.0645 + 0.09187)e — (2.64 — 1.18i)¢>

For the numerical evaluation, we will take two different approaches. In the first approach, for each term in the 16
combinations of CHY-integrand (5.9), we sum over 6 solutions first, and the result is given in the Table XXIV.

In the Table XXIV, although most of the terms will have leading divergence e%, when summing over 16 terms, all
divergences will cancel each other, and we are left with finite results under the forward limit as expected.

Although the divergence is not shown at the final, how the cancellation happens is not clear. To better understand, we take
the second approach: for each solution, we put it to all 16 terms and sum them up first, and then sum up six solutions. One
very interesting observation is that the divergence will cancel each other after summing 16 terms for each solution as shown
in Table XXV. We could also verify this matter by summing 16 terms analytically, which is given by:

N = (21420-(21322423-24+ 24— + 212234 (204 23424— — 20423-244)) — 21221-224+23423-24+ 24-)

X (21221224234 23244 Zam + 215020 (21-241 (224 23423 + 223234.24-) — 214224 234.33-24-))

= al (5.12)

2 2 2 2 2 2.2 2 2 2 2
1221321421121 22322422 23234431 233244 24T -

As one can check, for each solution, the N will give e* factor to cancel the singular from the denominator and the measure.

|
The cancelation pattern observed above for the integrand ~ CHY-integrand, the tadpole contribution under the forward
(5.9) is not a coincident. In fact, in the construction of the limit is manifest avoid, while the massless bubble must be
canceled by different terms in the combinations.

TABLE XXIV. Leading order of the tree integrand. .
g £ 2. The second type of integrands

Asymptotic level  Leading A different idea to remove the tadpole and massless

Integrand of integrand order bubble singularities has been used in [54]. Based on this
PT(l + —234)PT(1 + —243 L 0.07440.006i idea, different one-loop CHY-integrand has been con-
1 4+ —234)PT(12 + —43 t{ — 0.032+0.0013i structed by multiplying each term with the proper pole-
PT(1 + —234)PT(124 + -3 ZZT OE picking operators. For the example m) '°"[1234]1243],
B “- 00424000471 there are only three terms as given in the Table XXVI. By

PT(1 +-234)PT(1243 + 2 = R the construction, for each term, the cancellation of diver-
PT(12+ -34)PT(1 + -243 2 — 0032000130 gence comes from the summing over six solutions as shown
PT(12 + —34)PT(12 + —43 7:1_ w in the second column of the Table XXVI. The front of the
PT(12 + —34)PT(124 + —3 ”7*1‘ _ 0.04-0,0093i PT integrand is the pick-pole factor, which is used to pick
. e out the divergence part refer to [47,55]. More accurately,

PT(12 + -34)PT(1243 + zl w the cancellation happens when and only when summing

— 1
I

29
— £ 19|
I

_0029+00087i ~ TABLE XXV.  Leading order of the loop integrand.

&3

29
— £ 19
1

)PT( )
PT( )PT( )
( )PT( )
( )PT( -)
( )PT( )
( )PT( )
( )PT( )
( )PT( -)

PT(123 + —4)PT(1 + —243) L 0

( )PT( )
( )PT( )
( )PT( -)
( —)PT( )
( —)PT( )
( )PT( )
( —)PT( -)

PT(123 + —4)PT(124 + =3 1 =0.072-0.00057  Solution Leading order
75 &’

PT(123 + —4)PT(1243 + . 00400093 Regular (1) (0.0738 — 0.128i) + O(e)
By ; Regular (2) —(0.126 + 0.00619i) + O(e)

PT(1234 PT(1 24 1 __0.04240.0047i

34t 2 i e Singular I (1) (0.0277 4 0.2i) + O(e)

PT(1234 + —)PT(12 + 43 = QO2L000870 Singular T (2) —(0.055 — 0.214i) + O(e)

PT(1234 + —)PT(124 + —3 1 — 0.029+0.0087i Singular II (1) (0.00452 + 0.00782i)e + O(€?)
- g Singular 1I (2) (0.0145 + 0.0407i)e + O(€?)
1 0.042+0.0047i

PT(1234 + -)PT(1243 + - Total —(0.079 — 0.28i) + O(e)
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TABLE XXVI. Leading order of the tree integrand.
Integrand Leading order
(1- et Snte 200 pr(] 4 —234)PT(1 + ~243) 0.015 + 0.03
(1 - e 520 pT(12 4 —34)PT(12 + —43) 0.00063 + 0.0163i
(1 = b3 5oty pr(1234 4 —)PT(1243 4 —) 0.00087 4 0.01731

21422214224

24-21+

over singular I and singular II solutions. Just summing over
singular I solutions or singular II solutions, the divergence
will not be cancelled.

VI. CONCLUSION

Motivated by our curiosity of the singular solutions and
potential application to other frontiers of researches, for
example, the construction of two-loop CHY-integrands by
double forward limits, in this paper, we have initiated the
systematic study of the relation between the singular
kinematic configurations and the singular solutions of
scattering equations. We find that the singular solutions
will always lead to singular kinematics. Furthermore, the
layer structure of singular solutions gives a clear picture of
the structure of singular kinematics. However, the reverse is
not always transparent, as shown by the soft limit and
forward limit. From these examples, we guess the compat-
ibility of various singular poles can characterize the
singular kinematics. Although we can not give rigorous
proof, from the examples discussed in this paper, it seems
that compatible singular poles will lead to singular sol-
utions, but noncompatible will not give singular solutions.

Although we have discussed several types of singularities
in this paper, it is obvious that there are many other types of
singularities. One-by-one analysis can be done using the
method presented in the paper. However, it is more desirable
to have a systematical algorithm so that the relation between
the singular kinematic configurations and the singular
solutions of scattering equations can be well established.
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APPENDIX: KINEMATICS

In this note, we focus on solutions of scattering equations
defined by (1.3) or the equivalent polynomial equations
given in [13]

O0=h,= Y Kz

SeA.|S|=m

2<m<n-2, (Al

nl subsets S of A =

(n—m)!m!
{1,2,...,n} with exactly m elements and kg = > cq kp

Where the sum is over all

and zg = [[,eq 2. It is worth pointing out that there are
exactly (n —3) independent equations of the form (Al),
since the cases of m = 1,n—1,n are trivially true by
momentum conservation plus the on-shell conditions. For
general kinematics, it is impossible to write down analytic
results for n > 6, thus to study the properties of solutions,
we need to rely on the numerical method. One important
step of the numerical calculation is the parametrization of
kinematics, especially when we try to study different limit
processes, such as the factorization limit, the forward limit
and the soft limit, etc.

There are two ways to define a kinematic configuration.
The first way is to use the Lorentz invariant combination
ki - k;. With momentum conservation and null conditions,

=3) . 12 . .
there are "("2 ) independent contractions. ~ To see it, using

momentum conservation, we can eliminate p,,. For remain-

ing (n — 1) momenta, there are (";') = % contrac-
tions. A further constraint comes from
n 2
0=k = (Z ki> = 2ki-k; (A2)
i=1 i<j

thus we get ("_l)zﬁ— 1= "<"2_ 3 contractions. Let us

apply this method to the kinematic configuration of forward
limit of (n 4 2) legs defined by

L,+L_=2q, L,-L_=2¢*>, ¢*#0 (A3)

where ¢t = 0 is the forward limit. For general ¢ # 0, we take
following data to parameterize kinematics:

q2; P1P1,1§l<]§n—1, L+'Pi9CI‘Pi’
i=1,...,n—-1 (A4)
There are W—l—l—i—Z(n—l):%—i—l com-

binations, thus they are not independent. One extra con-
straint comes from the on-shell condition P2 =0, i.e.,

“To get this counting, we have neglected the constraints
coming from the dimension of space-time.
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1 n—1 2
0 =5 (;Pi +2€q>

n—1
= Y Pi-Pj+2q-Y Pi+2¢7 (AS)
i=1

1<i<j<n—1

Using above data, other Lorentz contractions are given
by

L_'Pi:—L+‘Pi+2€Q'Pi;

n—1

l"Pn:—2€Q'Pi— Z PlP]
J=1j#

n—1

L, -P,==2¢=> L, P
j=1
n—1

L_-P,=-2%+) (L, -P;—2¢q-P))
j=1

(A6)

By momentum conservation. With the above choice, we
need to determine how data in (A4) depend on € to describe
the limit process. This is not a trivial task. For example, a
naive choice is to take g%, L, - P;, q- P; as well as all
P; - P; except one by constraint (A5) as invariant data under
the limit. This naive choice will have the maximum number
of combinations, which are independent of e. However, this
choice is wrong because now we will have L, to be
invariant under the forward limit, thus

L2 = (=L, +2eq)* = L% —4eL, - q + 4e*q*

= —del, - g+ 4e*q? (A7)
can not be zero for all value of e. The lesson from this
example is the following. Although taking Lorentz invari-
ant combinations to be the independent input data for the
kinematics looks simple, it is not easy to determine how
they depend on the parameter €, which prescribes the limit
process.

To avoid the above-mentioned subtlety, we take the
second parametrization method, i.e., parametrising directly
in the momentum component form. The first step to set up a
general kinematic configuration is that there is no subset of
A such that §, = 0. Starting from this choice, we can make
various limit procedure:

(1) The factorization limit: For this case, we consider
several situations. The first situation is there is one
and only one S, — 0. To reach this goal, a simple
way is to use BCFW-deformation, i.e., while keep-
ing all other p;’s invariant, we deform

p1(z) = p1 + zq. pu(2) = Py — 24,

*=q-pi=q-p,=0 (A8)

(i)
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For any subset 1 € A,n & A, it is easy to know
that when

7
2P, - q

a4 = = Sa(za) =0 (A9)

Now we parametrize the kinematic as

Pu(€) = Py — 249 — €9,
(A10)

pi(€) =pi + 249 +eq,

=q-Pr=q p,=0
so when ¢ — 0 the factorization limit has been
reached. A similar idea can be used to putting

several S, — 0 at the same time. For example, using
two different pairs of BCFW deformations

Pa(W1) = Py = Wiq1,,
(A1)

pi(w1) = p1 +wiqu,,
41 =qin P1 =410 P =0

P2(w2) = pa + wagas, p3(wa2) = p3 — waga,
453 =qx D1 =q2 p3 =0 (A12)
we can set two poles Sy, S > Owithl1 € A,n & A
and 2 € B,3 ¢ B at the same time. We want to
emphasize that the poles S4, Sp can be compatible or
not compatible. Different patterns will give different
behaviors of singular solutions. A special variation

of two BCFW-deformations is that they share one
common node, for example, p;, i.e.,

pi1(w1) = p1 +wiq1, + waq2,

Pn(W1) = Pp = W14, P2(w2) = p2 = waqy,,
41 =910 P1 = qin" Pu =0,
dh=qn P =q92-P2=0  qu,-q12=0,

(A13)

The forward limit: For the pair of the forward limit,
we take them as

L+ = (L +€q’/’l)’
q*, L* #0,

L= (_L + €q, _Iu)
(A14)

where we have lifted L, to be null in higher
dimension. To make sure the null condition for
any value of e, we need to impose conditions
q-L=0, —> =L+ e*q*>  (A15)
For other n momenta, we find n pairs of p;, g;,
i=1,...,n such that



BO FENG, CHANG HU, and YAOBO ZHANG PHYS. REV. D 105, 036015 (2022)

PP=q=pi-q;=0. i=1..n > p;=0 > q,=2q (Al6)
i=1 i=1

and use them to define

P;=p;—eq; (A17)

Above choice of the forward limit is very general. We can make a simple choice with the minimum numbers of P;
depending on €. The procedure is the following:
(al) First setting q;=0,j=1,....,n=2,s0 P; = p;.
(a2) Taking a null momentum k,_;, we construct

K2 K2 n-2

—— k4 pu=—-K+—k,,, K= : Al8
2K'kn_] n—1 p + 1 p] ( )

Pn-1= 2K -k,

(a3) Taking null momenta ¢,,_, g, such that p, - g, =0,a =n—1,nand g, - g,,_; # 0 and choosing b,_;, 5, such that
L-(Bu1qn_1 + Pug,) =0, we can write down

Pn—l = Pn-1— 26ﬁn—1‘]n—1’ Pn = Pn— 26ﬁn¢]n’ q :ﬂn—IQn—l +ﬁnqn7 (Al9)

Above construction (A18) and (A19) have two exceptions. The first case is K = 0, i.e., the case n = 2. For this one,
we can trivially take p, = —p,_, in (A18). The second case is that K # 0, but K> = 0, which will happen when n = 3
(for general momentum configuration, it could not be true for n > 4). For this one, we can take

Py =—=py— ps, Py = py —2eq, P3 = p3 —2eqs,
L= (L+eq.u), L_=(-L+eq.-pn). q=q+q. pP=L"+q (A20)
with conditions
pi=q;=0=p3-py=L-q. i=273
g P> =0=¢q3" p3, 929392 P393 - P2 # 0 (A21)

(iii) The soft limit: The kinematic parametrization is following [56]. Assuming the p, is the soft particle, we take two
arbitrary momenta, for example, a, n and make the shifting

o (ls)s s als)s 50 -
)va(e) = /1a + (1 - 6) <n|a> ﬂs, /1n<€) = ’In + (1 - 6) <a|n> /1s7 ’1&(6) = els (A22)
It is easy to see that
Ak + Iy + Ashs = Aaha(€) + Andndn(€) + A2 (€) (A23)

and € — 0 gives the soft limit. Although we have used the spinor formalism special for D =4, for general
D-dimension, we can make the Lorenz transformation to put p,,, p,, p, to the 4-dimensional subspace, thus above
construction is general.
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