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We reconstruct ghost and gluon spectral functions in 2þ 1 flavor QCD with Gaussian process
regression. This framework allows us to largely suppress spurious oscillations and other common
reconstruction artifacts by specifying generic magnitude and length scale parameters in the kernel function.
The Euclidean propagator data are taken from lattice simulations with domain wall fermions at the physical
point. For the infrared and ultraviolet extensions of the lattice propagators as well as the low-frequency
asymptotics of the ghost spectral function, we utilize results from functional computations in Yang-Mills
theory and QCD. This further reduces the systematic error significantly. Our numerical results are
compared against a direct real-time functional computation of the ghost and an earlier reconstruction of the
gluon in Yang-Mills theory. The systematic approach presented in this work offers a promising route
toward unveiling real-time properties of QCD.
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I. INTRODUCTION

The resolution of many open questions in QCD
requires the knowledge of timelike observables and hence
the computation of real-time correlation functions.
Applications range from the hadronic resonance spectrum
over scattering processes to transport and nonequilibrium
phenomena in heavy-ion collisions. For example, the
computation of the glueball spectrum via Bethe-Salpeter
equations relies on the timelike propagators for gluon and
ghost, both of which are reconstructed in the present work.
Likewise, QCD transport coefficients used in hydrody-
namic simulations can be computed diagrammatically
from the real-time gluon propagator. Similarly, phenom-
enological QCD transport models with their underlying
assumption of a quasiparticle nature of the gluon can
hugely benefit in multiple ways from the present results.
First of all, a reliable computation of the gluon spectral
function may offer much-needed support for the quasipar-
ticle assumption of these models, as well as give access to

its limitations. Second, the QCD gluon spectral function
itself can feature as a direct input and pivotal building block
in these models. Together with further timelike correlation
functions, this offers a path for a systematic quantitative
improvement of phenomenological transport approaches
toward first-principle transport in QCD.
By now, Euclidean correlation functions in QCD are

accessible within first-principle approaches such as lattice
simulations or functional equations. In contradistinction,
accessing real-time properties remains a notoriously hard
task.Minkowski correlation functions may be obtained from
Euclidean data via spectral reconstruction, exploiting the
Källén-Lehmann (KL) representation [1,2]. This requires
computing the spectral function via an inverse integral
transform. In the present work, we approach the problem
withGaussian process regression (GPR). The applicability of
GPR to inverse problems of this type has been discussed in
Ref. [3]. Specifically, it was shown how Gaussian processes
(GP) can be used to obtain probabilistic models of functions
for which only weighted averages are available.
We apply GPR to the reconstruction of ghost and gluon

spectral functions based on recent results from 2þ 1 flavor
lattice QCD with domain wall fermions at a pion mass of
139 MeV [4,5]. Furthermore, we improve the systematic
error control by incorporating additional data in the IR and
UV regimes from functional renormalization group (fRG)
and Dyson-Schwinger (DSE) computations in Yang-Mills
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theory and QCD [6–12], mostly obtained within the fQCD
Collaboration.

II. SPECTRAL REPRESENTATION

The KL spectral representation of the two-point corre-
lation function in momentum space reads

Gðp0Þ ¼
Z

∞

0

dω
π

ωρðωÞ
ω2 þ p2

0

¼
Z

∞

0

dωKðp0;ωÞρðωÞ; ð1Þ

with the KL kernel Kðp0;ωÞ and ρð−ωÞ ¼ −ρðωÞ. In the
vacuum, the spatial momentum dependence of the propa-
gator can be obtained via a Lorentz boost, simply by p2

0 →
p2 with p2 ¼ p2

0 þ p⃗2.
With Eq. (1), the spectral function is obtained from the

retarded propagator via

ρðωÞ ¼ 2ImGð−iðωþ i0þÞÞ: ð2Þ

For asymptotic states, the spectral function is the prob-
ability density for (multi)particle excitations created
from the vacuum in the presence of the corresponding
quantum field. Consequently, in this case, the spectral
function is positive semidefinite. For propagators of
“unphysical” fields, such as gauge fields, the spectral
representation may still hold. However, the spectral
function can then also have negative parts, and the
existence of a spectral representation simply constrains
the allowed complex structure of correlation functions;
see, e.g., Refs. [8,12–15].
In this work, we reconstruct ghost and gluon spectral

functions of 2þ 1 flavor QCD under the assumption that
both admit a KL representation. It can be shown that the
total spectral weight vanishes,

Z
∞

0

dω
π

ωρA=cðωÞ ¼ 0; ð3Þ

respectively, for both the ghost and gluon spectral func-
tions, ρc and ρA. For the gluon, this is the well-known
Oehme-Zimmermann superconvergence (OZS) condition
[16,17]; for recent discussions with general fields, see
Refs. [8,12,15]. These works also include a treatment of the
analytic low-frequency behavior of continuous parts of the
spectral functions, initiated in Ref. [8].
A general spectral function ρ consists of a continuous

part ρ̃ and a sum of particle and resonance peaks (propor-
tional to the δ-function and its derivatives). In this work,
we assume that the gluon spectral function only consists
of a continuous part ρA ¼ ρ̃A satisfying Eq. (3). This is
the generic structure suggested by all functional equations
describing the gluon propagator due to the ghost being
massless. While derivatives of δ-functions are formally
also allowed, we exclude these structures from our
ansatz due to the absence of a generic mechanism

generating the required roots of the inverse gluon propa-
gator on the real momentum axis. In turn, due to the 1=p2

behavior of the Euclidean lattice ghost propagator in the
IR, the associated spectral function exhibits a particle
peak at vanishing frequency in addition to its continuous
part, i.e.,

ρcðωÞ¼
π

Zc

δðωÞ
ω

þ ρ̃cðωÞ;
Z

∞

0

dω
π
ωρ̃cðωÞ¼−

1

Zc
; ð4Þ

where δðωÞ=ω has to be understood as a limiting
process δðω −mÞ=ω with m → 0þ. Evidently, for Zc ¼
1 and ρ̃c ¼ 0, the ghost propagator reduces to the
classical one.
Euclidean correlators obtained from lattice simulations

are generally only available in terms of discrete sets of
observations Gi at NG Euclidean momenta pi with finite
precision. Relating the results to the associated
Minkowski propagators via Eq. (2) is problematic; see,
e.g., Refs. [18,19]. In such a numerical setup, the analytic
continuation via p → −iðωþ i0þÞ is ill conditioned,
since further assumptions about the complex structure
need to be made. Instead, the usual strategy is the
numerical inversion of the integral transformation. A
variety of approaches has been explored to tackle this
issue, such as the maximum entropy method [20–22],
Bayesian inference techniques [23,24], suitable expan-
sions in functional spaces [8,18,19,25,26], Padé-type
approximants [27,28], Tikhonov regularization [29–31],
neural networks [32–35], and kernel ridge regression
[36,37]. Alternative approaches based on the existence of
complex conjugate poles have also been considered, see,
e.g., Refs. [27,38–45], but are orthogonal to the present
work.

III. RECONSTRUCTION WITH GPR

Starting from early developments in the context
of geostatistics in the 1950s [46], today GPR is widely
employed in a variety of settings for the probabilistic
modeling of functions from a finite number of obser-
vations; see Refs. [47,48] for reviews and [49] for a
modern textbook account. Recently, the method
has been applied to the reconstruction of parton dis-
tribution functions from lattice QCD [50]. In this
section, we summarize the main ingredients for spectral
reconstruction with GPR based on the developments
reported in Ref. [3]. A short introduction to GPR for
function prediction and further details and references are
provided in Appendix A.
We assume our knowledge of the spectral function ρðωÞ

to be described by a GP, written as

ρðωÞ ∼ GPðμðωÞ; Cðω;ω0ÞÞ; ð5Þ
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where μðωÞ, Cðω;ω0Þ denote the mean and covariance
functions. Importantly, in this approach, we do not restrict
the space of possible solutions by choosing a specific
functional basis, which often leads to spurious artifacts in
the reconstruction in order to compensate for unrepresent-
able features. Instead, the GP defines a distribution over

families of functions with rather generic properties, speci-
fied via the kernel parametrization described below.
The KL integral in Eq. (1) is a linear transformation that

preserves Gaussian statistics. Hence, given Eq. (5), one
may obtain statistical predictions Gi at NG specified
momenta pi as

Gi ∼N
�Z

dωKðpi;ωÞμðωÞ;
Z

dωdω0Kðpi;ωÞCðω;ω0ÞKðpj;ω0Þ
�
≡N ðμ̃i; C̃ijÞ: ð6Þ

Here, N denotes a multivariate normal distribution, to be
distinguished from distributions over function space de-
noted by GP. Statistical uncertainties associated with
individual prediction points μ̃i may be computed from
the diagonal of the covariance matrix as σ̃i ¼

ffiffiffiffiffiffi
C̃ii

p
.

Conversely, the framework also enables inference in the
opposite direction. The inherent analytic tractability asso-
ciated with Gaussian statistics allows formulating the
conditional distribution for ρðωÞ given observations Gi
in closed form. The full expression may then be derived as

ρðωÞjGi ∼ GP
�
μðωÞ þ

XNG

i;j¼1

Z
dηKðpi; ηÞCðη;ωÞðC̃þ σ2n · 1Þ−1ij ðGj − μ̃jÞ; Cðω;ω0Þ

−
XNG

i;j¼1

Z
dηdη0Kðpi; ηÞCðη;ωÞðC̃þ σ2n · 1Þ−1ij Kðpj; η0ÞCðη0;ω0Þ

�
: ð7Þ

The GP in Eq. (7) encodes our knowledge of the
spectral function after making observations of the
propagator and accounting for observational noise
with variance σ2n. The corresponding expressions for
the dressing function instead of the propagator can be
immediately obtained by inserting an additional factor
of p2

i at every occurrence of the KL kernel Kðpi;ωÞ in
Eqs. (6) and (7).
The flexibility of the approach makes it possible to also

incorporate further available prior information in various
forms into the predictive distribution in the same manner,
yielding similar though somewhat more complicated
expressions. This may include, e.g., direct observations
of ρ and its derivatives, assumptions about the asymptotic
behavior, or global normalization constraints.
In order for GPs to be useful for modeling, the

covariance Cðω;ω0Þ may be defined via the a so-called
kernel function. It is commonly parametrized using a small
number of hyperparameters, which may be subjected to
optimization based on the associated likelihood. The mean
function μðωÞ is often set to zero, since its contribution can
be fully absorbed by the kernel. Typically, the latter is the
sole focus of the optimization procedure. However, a
custom mean function may still be useful in certain
situations in order to incorporate prior beliefs about the
functional form of the expected solution, which can
improve the calculation by providing a better starting point
for the optimization routine.

A frequently used kernel parametrization is the radial
basis function (RBF) kernel, also called squared exponen-
tial. It is defined as

Cðω;ω0Þ ¼ σ2C exp

�
−
ðω − ω0Þ2

2l2

�
; ð8Þ

where the parameter σC controls the overall magnitude and
l is a generic length scale. The RBF kernel has been
established as the standard choice for many applications
due to a number of attractive features, such as universality
[51] and every function in its prior being infinitely differ-
entiable. It is also used for our first results on spectral
reconstruction with GPR presented in this work.
Nevertheless, designing custom kernels for specific

problems has been shown to greatly increase the useful-
ness of the approach in various settings and is also
promising here. In particular, it may be interesting to
construct kernel functions that can be integrated analyti-
cally against the KL kernel, such that the frequency
integrals in Eqs. (6) and (7) may be carried out analytically
instead of numerically. To this end, one could potentially
employ functions of Breit-Wigner type as done for the
spectral function itself in Ref. [8]. In contradistinction, we
may use them to instead define a suitable GP kernel,
thereby still avoiding the restriction to a specific functional
basis as previously mentioned. We comment on this and
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other possible improvements to our reconstruction
approach in the conclusion.
Furthermore, we emphasize that the present approach in

principle does not require us to choose a specific set of
nodes ωi. In fact, instead of computing a discrete set of
point predictions or coefficients of a predefined functional
basis, the prediction for ρ is obtained as a function of ω,
albeit only implicitly via the kernel formulation. In par-
ticular, the GP also allows computing all of the derivatives
of the prediction analytically at any point—including the
associated statistical uncertainties—by differentiating the
expressions in Eq. (7) with respect to ω (as well as ω0 for
the covariance). A finite set of nodes ωi is chosen only at
inference time in order to evaluate the GP; however, the
choice is completely arbitrary within the given domain.
This property is one of the most attractive features of GPR
for spectral reconstruction and probabilistic function pre-
diction in general.

IV. INPUT DATA

In the past two decades, increasing interest in the
momentum behavior of the fundamental two-point
Green’s functions in QCD as well as further correlation
functions of higher order has triggered respective lattice
calculations in particular of Yang-Mills and QCD propa-
gators; see, e.g., Refs. [52–66]. The lattice data for the
ghost dressing function and gluon propagator employed in
this work are shown in Fig. 1. They are obtained from

recent simulations of 2þ 1 flavor QCD at the physical
point [4,5]; see Appendix B 1 for further details and
references. Additional input data and benchmarks are
provided by one-parameter families of solutions from
functional computations in Yang-Mills theory and QCD
[6,8,11,12], which are matched to the continuum-
extrapolated lattice data as shown in Figs. 3 and 4; see
Appendix B 2 for details.

V. RECONSTRUCTION RESULTS

The GPR for the reconstruction of the ghost spectral
function is performed using the aforementioned standard
RBF kernel. We extend the lattice input data for the
dressing function into the deep IR and simultaneously fix
the low-frequency asymptotics of the spectral function
using a direct real-time result in Yang-Mills theory
obtained via the spectral ghost DSE [12] (see also
Appendix B 2). This is achieved by treating the spectral
DSE result as an additional observation. Our procedure
uniquely determines the nonzero value of ρc for ω → 0þ
but also increases the reliability of the solution in the most
interesting central region with respect to the kernel
hyperparameters. Using just the lattice data without the
extension by the spectral DSE result leads to a much
higher variance in the solution space, with widely differ-
ent asymptotic behaviors of solution candidates in the IR.
The kernel hyperparameters are chosen by optimizing the
associated likelihood of observations with an additional

FIG. 1. Plots showing the ghost dressing function (a) and gluon propagator (b) from 2þ 1 flavor lattice QCD simulations, extended by
functional computations in Yang-Mills theory and QCD and compared against the correlators obtained from the reconstructed (Rec.)
spectral functions shown in Fig. 2. The results agree within the given statistical uncertainties as shown in the bottom panels, where the
posterior GPs for the correlators are evaluated at the fixed momenta provided by the lattice data, which is then subtracted leaving the
error bars intact. The total mean squared errors amount to ∼5e–6 for the ghost and ∼4e–5 for the gluon.
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Gaussian hyperprior, which we achieve through a fine-
grained grid scan; see Appendix C for details. The
reconstructed spectral function in Fig. 2(a) accurately
reproduces the dressing function data within the uncer-
tainties displayed in Fig. 1(a), with a total mean squared
error of ∼5e–6.
The features of our prediction are strikingly similar to the

aforementioned Yang-Mills result shown in Fig. 4(a) in
Appendix B, even though only the IR limit is incorporated
into the reconstruction. This is expected heuristically, since
the ghost only interacts with the quarks indirectly via the
gluon vertices, and the effects of introducing dynamical
quarks must hence be of higher order. The similarity is
particularly notable considering that the methods are
conceptually very different.
For the reconstruction of the gluon spectral function, the

lattice input data are extended into the UV using an earlier
fRG computation [8], which is quantitatively reliable in this
regime. We discuss this in more detail in the next paragraph
and in Appendix B 2. As for the ghost, this extension leads
to greatly enhanced stability of the reconstruction with
respect to the kernel hyperparameters. In particular, it
ensures convergence to zero for ω → ∞, whereas with
just the lattice data, we often observe convergence to a
nonzero constant and in some cases even pathological
divergences. A modified frequency scale is used in the RBF
kernel in order to suppress spurious oscillations in the IR
and UV tails. The hyperparameters are again obtained via
optimization of the likelihood with Gaussian hyperpriors
while approximately enforcing the OZS condition; see
Appendix C for details. The reconstruction shown in

Fig. 2(b) accurately reproduces the lattice data within
the given uncertainties, as shown in Fig. 1(b), with a total
mean squared error of ∼4e–5. While also being fully
consistent, deviations from the lattice propagator are some-
what stronger than for the ghost dressing function and seem
to become more pronounced in the IR. This is likely caused
by the comparably large uncertainties of the lattice data at
small momenta.
The peak structure of the spectral function appears

similar to an earlier reconstruction of the Yang-Mills
propagator in the fRG framework [8], shown in Fig. 4(b)
in Appendix B. We emphasize that the UV extension is
done with the Yang-Mills data of Ref. [6] instead of the
full 2þ 1 flavor results from Ref. [11]. This is detailed in
Appendix B 2 and facilitates the comparison with the
Yang-Mills reconstruction [8]. In particular, the positions
of the leading positive peaks approximately coincide,
with ω ≈ 0.818 for the present result and ω ≈ 0.835 for the
fRG reconstruction. This reflects the approximate coinci-
dence of the peaks of the Euclidean gluon dressing
functions shown in Fig. 3(a) in Appendix B. We also
note that a small peak to the right of the second local
minimum is present in both reconstructions. This feature
may be a generic reconstruction artifact since it is not
necessitated by theoretical considerations but is observed
in both results from conceptually very distinct methods.
However, the comparably large uncertainties in this region
also include plausible solutions without additional zero
crossings.
Significant differences between the two reconstructions

are observed mainly in the overall peak height and width.

FIG. 2. Plots showing the continuous part of the ghost (a) and the gluon spectral function (b) reconstructed from the lattice QCD
correlators shown in Fig. 1 using GPR. Shaded areas represent the 1σ-bands of plausible solutions around the mean prediction based on
the available observations and precision. The ghost spectral function ρc features an additional massless particle pole in the origin;
cf. Eq. (4).
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Generally, the QCD result for the gluon is expected to
differ more strongly from the pure gauge theory than the
ghost due to the direct coupling to quarks. However,
differences may also be attributed in part to the limited
availability and precision of data and the resulting
difficulty in resolving highly peaked structures. We find
that generating narrower peaks with greater amplitudes by
allowing the kernel’s magnitude parameter σC to increase
and the length scale l to decrease leads to stronger
oscillations in the solution. This is a common feature
of conceptually similar reconstruction approaches, such
as linear regression with a Tikhonov regularizer (also
called ridge regression), which has been applied, e.g., in
Ref. [30]. Introducing such a regularization scheme,
which is equivalent to assuming a Gaussian prior, leads
to a favoring of solutions that are closer to zero. This
additional bias can introduce the unwanted oscillations.
Within the GPR approach, the kernel hyperparameters
provide more detailed control over the regularization and
can be tuned to deliberately suppress such unphysical
features. However, this may result in reconstructions that
are naturally flatter, which must be taken into account
when interpreting and utilizing the result. This demon-
strates one of the key advantages of GPR, namely, the
possibility to dynamically adjust the resolution depending
on the available amount and quality of the input data,
while still matching the observations as accurately as
possible.
Although the obtained spectral functions reproduce the

lattice data to high accuracy, the asymptotic behaviors of
the mean predictions in the deep IR and UV differ from
the analytic results derived in Ref. [8]. In particular,
different scaling exponents are observed, and the gluon
spectral function shows the opposite sign in the UV.
Nevertheless, the analytically expected behavior is still
plausibly contained within the computed errors, which are
comparably large in these regimes. This indicates that not
enough prior information is available to the GP from just
the data in order to accurately resolve the tails of the
spectral functions, which may come as no surprise. While
this issue does not affect the reconstruction in the region
of interest, it may be problematic for precision compu-
tations that use these results as inputs. In order to directly
enforce the correct asymptotics, potential approaches are
the incorporation of the analytically known behaviors into
the prior means of the GPs or finding more suitable
choices for the kernel functions. Furthermore, exploiting
the available analytic results to provide additional prior
information about the derivative structure may be par-
ticularly helpful in stabilizing the tail behavior. To achieve
this, one may again write down the joint distribution of the
predicted spectral function at any frequency and its
associated derivatives to arbitrary order in closed form
and derive the conditional posterior distribution similar
to Eq. (7).

VI. CONCLUSION

In this work, we apply Gaussian process regression to
the reconstruction of ghost and gluon spectral functions
in 2þ 1 flavor QCD at the physical point. These
spectral functions are the pivotal building blocks of
diagrammatic representations for bound state equations
such as Bethe-Salpeter and Faddeev equations (see, e.g.,
Refs. [67–69]) as well as transport coefficients (see, e.g.,
Refs [22,70]).
Importantly, the gluon spectral function has a pro-

nounced quasiparticle peak, the position of which is related
to the mass gap in QCD. This extends previous vacuum and
finite-temperature results in Yang-Mills theory [8,22] to
physical QCD. Our findings provide nontrivial QCD
support to the phenomenological use of quasiparticle gluon
spectral functions for transport computations; see Ref. [71]
for a recent review. Moreover, the present results can be
directly employed as first-principle QCD inputs in order to
systematically improve the respective phenomenological
approaches toward a first-principle treatment of QCD
transport processes.
These promising phenomenological applications of the

present results also highlight the necessity of further
improving the reconstruction approach itself, for which
a number of potential directions can be envisaged. This
includes the aforementioned possibility of designing
custom kernels for the problem at hand, potentially with
analytic integrability against the KL kernel. Constructing
suitable, expressive kernels may also be automated and
improved through the use of hyperkernels [72] or tech-
niques such as deep kernel learning [73]. To account for
some variability in the kernel hyperparameters, one may
replace the maximum likelihood approach by an integral
over parameter space using a suitable hyperprior which
encodes any prior assumptions. Alternatively, optimal
hyperparameters may also be selected based on a data-
driven machine learning approach, using datasets con-
sisting of pairs of correlators and associated spectral
functions.
Furthermore, the flexibility of the GPR framework

allows the incorporation of various supplementary con-
straints derived from theoretical arguments, such as infor-
mation about derivatives, known asymptotic behaviors, or
normalization conditions. This is expected to further
improve the accuracy and reliability of the reconstruction,
in particular for the IR and UV tails of the spectral functions
that are otherwise difficult to resolve. This will be the
subject of future work, accompanied by direct functional
computations of further spectral properties along the lines
of Ref. [12,74].
The immediate next steps in our endeavor toward

unveiling real-time properties of QCD are the application
and extension of the present numerical method to quark
propagators as well as correlation functions computed at
finite temperature. This will enable quantitative studies of
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hitherto theoretically inaccessible nonequilibrium dynam-
ics of QCD in the transport phase of heavy-ion collisions
within a first-principle approach.
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APPENDIX A: INTRODUCTION TO GPR

This Appendix serves as a brief introduction to GPR for
function prediction using a finite number of direct or
indirect observations, based primarily on Ref. [3]. We
adopt the notation used in the main text for consistency;
however, the general formalism presented here is also
applicable outside of the specific context of spectral
reconstruction for quantum field theory. For a modern,
comprehensive textbook treatment of the topic, we refer the
interested reader to Ref. [49]. For a brief, pedagogical
introduction to GPR with simple code examples, we
recommend Ref. [75]. In the context of inverse theory,
Ref. [76] provides a recent review.
We first discuss GPR for the case where direct obser-

vations are available for the function to be modeled. We
assume our knowledge of the function ρðωÞ to be encoded
in a GP with mean and covariance functions μðωÞ,
Cðω;ω0Þ, denoted by

ρðωÞ ∼ GPðμðωÞ; Cðω;ω0ÞÞ; ðA1Þ

where the covariance is assumed to be symmetric, i.e.,
Cðω;ω0Þ ¼ Cðω0;ωÞ. As per the definition of a GP, any
finite set of function evaluations at N sample points ωi
follows a multivariate normal distribution,

0
BBB@

ρðω1Þ
..
.

ρðωNÞ

1
CCCA

∼N

0
BBB@

0
BBB@

μðω1Þ
..
.

μðωNÞ

1
CCCA;

0
BBB@

Cðω1;ω1Þ … Cðω1;ωNÞ
..
. . .

. ..
.

CðωN;ω1Þ … CðωN;ωNÞ

1
CCCA

1
CCCA:

ðA2Þ

Similarly, we can write down the joint distribution of a
set of observations ρ̂i at points ω̂i and the value of the
function at an arbitrary point ω as

�
ρðωÞ
ρ̂

�
∼N

��
μðωÞ
μ̂

�
;

�
Cðω;ω0Þ ĈTðωÞ
Ĉðω0Þ Ĉþ σ2n · 1

��
;

ðA3Þ

where boldface type denotes vector and matrix quantities.
Here, we have defined μ̂≡ μðω̂iÞ, ĈiðωÞ≡ Cðω̂i;ωÞ,
and Ĉij ≡ Cðω̂i; ω̂jÞ. σ2n defines the pointwise variance
of additional measurement noise which may be present
in the observations ρ̂. Due to the analytic tractability of
multivariate Gaussians, the conditional distribution of
function values ρðωÞ given observations ρ̂ may then be
derived as

ρðωÞjρ̂ ∼N ðμðωÞ þ ĈTðωÞðĈþ σ2n · 1Þ−1ðρ̂ − μ̂Þ;
Cðω;ω0Þ − ĈTðωÞðĈþ σ2n · 1Þ−1Ĉðω0ÞÞ: ðA4Þ

The covariance is parametrized by a suitable kernel
function, whereby one may encode any prior beliefs about
the types of solutions one expects by choosing an appro-
priate form for the problem at hand. For an introduction to
constructing GP kernels of various types as well as
strategies to apply and combine them, we recommend
the kernel cookbook [77].
A kernel’s hyperparameters, denoted here by α̂, may be

subjected to optimization by maximizing the associated
likelihood,

pðρ̂jαÞ¼ðð2πÞN detðĈαþσ2n ·1ÞÞ−
1
2·

×exp

�
−
1

2
ðρ̂− μ̂ÞTðĈαþσ2n ·1Þ−1ðρ̂− μ̂Þ

�
; ðA5Þ

where we have written Ĉα̂ to emphasize the dependence on
the hyperparameters. Instead of directly maximizing
pðρ̂jαÞ as a function of α̂, one conventionally minimizes
the negative log likelihood (NLL),
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− logpðf̂jαÞ ¼ 1

2
ðρ̂ − μ̂ÞTðĈα þ σ2n · 1Þ−1ðρ̂ − μ̂Þ

þ 1

2
log det ðĈα þ σ2n · 1Þ þ

N
2
log 2π: ðA6Þ

Since simply finding and employing the maximum like-
lihood configuration of hyperparameters may ignore rel-
evant additional structures in the distribution, one can also
integrate out α̂ using suitable hyperpriors to account for
some variability.
Based on the formulation of GPR for direct observations

ρ̂ at points ω̂, one can derive the expressions for inference
from indirect observations Ĝ at points p̂ as discussed in the
main text by applying the forward process of the associated
linear inverse problem, in our case the KL integral defined
in Eq. (1). This involves all terms related to the observa-
tions that depend on the discrete set of points ω̂, which are
promoted back to the continuous domain and subsequently
integrated out to yield the nodes p̂ instead.

APPENDIX B: INPUT DATA

Combining the data from lattice simulations and func-
tional computations as described in the main text requires
matching the scales through renormalization. In this work,
we always rescale the functional methods results to match
the lattice data in the appropriate regime.

1. Lattice simulations

The lattice data employed in this work were obtained
from configurations generated by the RBC/UKQCD
Collaboration—first introduced in Refs. [78–82]—with
2þ 1 dynamical quark flavors using the Iwasaki [83]
and domain wall fermion [84,85] actions, respectively,

for the gauge and quark sectors, at the physical point (a
pion mass amounting to 139 MeV) by the particular
implementation of the Möbius kernel [86]. These develop-
ments were then exploited in Refs. [4,5] in order to
calculate the gluon and ghost propagators as well as the
strong coupling in a particular scheme [87–89] and an
effective charge stemming from it [90]. A description of
this calculation is given, for instance, in Ref. [61].
In computing propagators that properly feature the

physical running with momenta, data should be thoroughly
cured from lattice regularization artifacts. In particular, as
explained in Ref. [4], our results are obtained after a careful
scrutiny of discretization artifacts, thereby accounting for
the continuum-limit extrapolation, following Ref. [91]. As
a noteworthy remark, a recent work [66] has revealed the
key role played by the procedure of Ref. [91] for an
adequate removal of discretization artifacts in achieving a
consistent description of Yang-Mills two- and three-point
correlators, involving both lattice and DSE results.
The resulting ghost dressing function and gluon propa-

gator data are displayed in Figs. 1(a) and 1(b), respectively.
They are compared against their counterparts obtained from
evaluating Eq. (1) for the reconstructed spectral functions
shown in Fig. 2, as well as the results from functional
methods described in the following section. The dressing
functions of all input datasets are compared in Fig. 3 to
further illustrate their similarities and differences.

2. Functional methods

We briefly summarize results from functional computa-
tions in Yang-Mills theory and QCD that are employed in
this work to provide additional prior information for the
reconstruction. For reviews on the application of functional
methods in this context, see, e.g., Refs. [92–95].

FIG. 3. Plots showing ghost (a) and gluon (b) dressing functions in 2þ 1 flavor QCD and Yang-Mills (YM) theory, obtained from the
lattice simulations and functional computations discussed in Appendix B.
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We use the real-time Yang-Mills results from Ref. [12] to
extend the lattice QCD data of the ghost dressing function
into the deep IR, as shown in Fig. 3(a). The approach also
provides direct access to the associated spectral function,
which we employ to fix the low-frequency asymptotic
behavior of the reconstruction. It is obtained via the spectral
ghost DSE, building upon the technique of spectral
renormalization [74]. Making use of Eq. (1) for the ghost
and gluon propagator, the momentum integrals appearing
in the loop diagrams of the ghost propagator DSE can be
solved analytically. This preserves the full analytic momen-
tum dependence and allows evaluating the equation on the
real momentum axis. The spectral function can then be
directly extracted from the real-time propagator DSE via
Eq. (2); see Fig. 4(a) for a comparison to the reconstruction
result of the present work. As input gluon spectral function,
the reconstruction result of Ref. [8] based on the scaling
solution obtained via the fRG in Ref. [6] is used. Assuming
a spectral representation for the gluon propagator, in both
the scaling and decoupling scenarios, the IR behavior of the
gluon spectral function follows directly from the propaga-
tor [8]. This is utilized to modify the given scaling spectral
function such that we obtain a decoupling-type gluon
propagator matching the value of the given lattice propa-
gator well within the given uncertainties. Due to its mild
momentum dependence, the ghost-gluon vertex is assumed
to be classical.
The lattice QCD data for the gluon propagator are

extended toward the UV using earlier results from func-
tional computations in Yang-Mills theory [6]. Differences
to the 2þ 1 flavor QCD result for the gluon propagator
reported in Ref. [11], being based on Ref. [7], are

comparably small in the relevant momentum range.
A stronger deviation can be observed in the dressing
functions, as shown in Fig. 3(b). Despite these differences,
the reconstruction still produces remarkably reliable
results, cf. Fig. 1(b). Nevertheless, we aim to replace
the Yang-Mills UV extension by the 2þ 1 flavor QCD
data from Ref. [11] in order to further optimize the
accuracy of the result and mitigate any potential issues.
For related results and further correlation functions, see
Refs. [9,10,96,97]. More specifically, the fRG results in
Ref. [6] are derived within an advanced approximation
where the momentum dependence of all vertices is
approximated at the symmetric point; for respective DSE
results, see Ref. [98]. For our purposes, this dataset
provides the optimal tradeoff for momentum range versus
accuracy. Due to the high numerical precision, the results
are particularly well suited as an input for spectral
reconstruction. The Yang-Mills data have already been
employed for this purpose in Ref. [8], and we use this
earlier reconstruction for comparison; see Fig. 4(b). In
summary, the extension of the 2þ 1 flavor lattice data with
the high precision Yang-Mills data up to momenta p2 ¼
102 GeV2 allows a more direct comparison (in terms of
scales) with the Yang-Mills reconstruction in Ref. [8],
while only modifying the large-frequency tail of the gluon
spectral function for frequencies ω≳ 5 GeV; see Fig. 4.

APPENDIX C: IMPLEMENTATION

In this section, we comment on certain points of the
implementation in more detail. We first address numerical
aspects of the optimization and a discussion of the required

FIG. 4. Plots comparing the continuous part of the ghost (a) and the gluon spectral function (b) from different approaches in 2þ 1
flavor QCD and Yang-Mills (YM) theory, as discussed in the results section and Appendix B. The ghost spectral function ρc features an
additional massless particle pole in the origin; cf. Eq. (4).
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computational effort. Subsequently, we provide further
information about data usage, kernel design choices, and
theoretical constraints for the particular reconstructions
reported in this work.

1. Hyperparameter optimization and
computational cost

To find optimal values for the kernel’s hyperparameters,
we perform a fine-grained grid scan of the NLL with
additional hyperpriors where necessary. Alternatively, the
NLL may also be minimized with a gradient-based ansatz
using a standard optimizer such as L-BFGS. However,
mapping out the posterior distribution in more detail tends
to be highly instructive for the problem at hand. It is also
less prone to numerical problems such as unstable direc-
tions and violation of positive definiteness of the covari-
ance, as these can be identified early on, and should hence
be preferred when feasible. This is also where the bulk of
the computational effort goes, as it involves calculating for
each individual grid point the comparably expensive
inverse and determinant of the covariance matrix, which
naively scales like OðN3Þ. For very large datasets where
their direct evaluation becomes infeasible, one may resort
to cheaper linear solvers for the inverse and stochastic
approximations of the determinant, but this is unlikely to
become necessary in this particular context. Cost may also
be mitigated by scanning the parameter space hierarchi-
cally, starting at low resolution and zooming into the
interesting regions.
The whole procedure is trivially parallelizable,

as each grid point can be treated independently. At the
scale of the present work, each instance was handled by a
standard CPU node with low performance requirements.
Some first tests were also conducted on a single machine,
where mapping out the parameter space for each
reconstruction with medium resolution took a few hours
at most. In comparison to finding the optimal hyper-
parameters, the subsequent inference step is negligibly
cheap. Of course, the total computational effort for
the reconstruction is dwarfed by the requirements of the
large-scale lattice simulations described in Appendix B 1,
which are orders of magnitude more expensive.

2. Reconstruction details

a. Ghost

In the case of the ghost spectral function, we treat the
low-frequency asymptotics extracted from the direct
DSE computation in Yang-Mills theory as an additional
observation for the GP. This is only possible for the
ghost, as a similarly direct determination of the Yang-
Mills gluon spectral function is currently not available.
The procedure is implemented by including the value of ρ
at ω ¼ 0 in the construction of the joint distribution of
observations and predictions. In particular, one needs to

compute additional expressions for the covariances of the
point ρð0Þ and the correlator data. This requires some
programming headache but carries no further conceptual
difficulty.
As stated in the main text, we use the standard

RBF kernel and identify optimal hyperparameters
via a high-resolution grid scan. We note an unstable
direction in the magnitude parameter σC, which is cured
by subjecting it to a zero-mean Gaussian hyperprior. As an
illustrative example, the heat map for the NLL including
this additional regularization term for σC is shown
in Fig. 5.

b. Gluon

In the case of the gluon spectral function, no real-time
result in Yang-Mills theory is available to fix the asymp-
totics. However, as an additional theoretical constraint,
we require the solution to respect the aforementioned
OZS condition defined in Eq. (3). While one might expect
this to further complicate the reconstruction, it actually
helps in narrowing down the space of plausible solutions.
The condition can simply be enforced approximately by
treating it as an additional indirect observation and
checking it a posteriori. The associated transformation
here is just the convolution with ω instead of the KL
integral. We confirm that the OZS condition is fulfilled
with a relative accuracy of ∼1%, computed by evaluating
the ratio of the left-hand side of Eq. (3) and the same
expression using the modulus of the integrand, i.e.,R
∞
0 dωjωρAðωÞj.
As mentioned in the main text, we find it helpful

to modify the standard RBF kernel by nonlinearly
rescaling the frequency as ω → ω̃ ¼ ω4ð1þ ω4Þ−1 before

FIG. 5. Heat map of the NLL as a function of the RBF kernel
hyperparameters σC; l for the reconstruction of the ghost spectral
function, with an additional zero-mean Gaussian hyperprior for
σC. A unique minimum can be identified, which provides the
optimal values used for the results shown in Figs. 1(a) and 2(a).
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computing the squared distance. This leads to a strongly
improved asymptotic stability of the reconstructed spectral
function, in particular at large frequencies, compared to just

using ω itself. The procedure may be interpreted either as a
nonstationary modification of the kernel or as a prepro-
cessing step for the data to the same effect.
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