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When one considers a shock wave in the frame where the shock is at rest, on either side one has a steady
flow which converges to equilibrium away from the shock. However, hydrodynamics is unable to describe
this flow if the asymptotic velocity is higher than the characteristic speed of the theory. We obtain an exact
solution for the decay rate to equilibrium for a conformal fluid in kinetic theory under the relaxation time
approximation, and compare it to two hydrodynamic schemes, one accounting for the second moments of
the distribution function and thus equivalent, in the small deviations from equilibrium limit, to an Israel-
Stewart framework, and another accounting for both second and third moments. While still having a finite
characteristic speed, the second model is a significant improvement on the first.
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I. INTRODUCTION

Shock waves are one of the most interesting phenomena
in relativistic hydrodynamics [1] and as such have spawned
a significant literature [2—18]. In this work we want to focus
on one aspect of the problem, which has been long
considered critical for the development of viscous relativ-
istic hydrodynamics [19].

When one has a stationary shock wave, on both sides of
the shock there is a steady flow which converges to
equilibrium as we move away from the shock; the flow
is supersonic on one side (which we shall define to be the
left side) and subsonic on the other. This would seem to be
a very simple configuration, nevertheless relativistic hydro-
dynamics is uncapable to describe it unless the asymptotic
velocity, on the supersonic side, is below some threshold.
The reason is that viscous relativistic hydrodynamics is
built to transmit signals at a definite characteristic speed
strictly less than that of light [20,21]; we show this
explicitly in Appendix E. We will comment further on
why the characteristic velocity sets a limit for the existence
of smooth solutions in Sec. V. Similar problems arise
already when studying shocks in nonrelativistic dilute gases
[22-26], see [27].

As a way out of this situation, we shall endorse the view
that viscous relativistic hydrodynamics must be regarded
not as a single theory but rather as a hierarchy of theories of
increasing complexity. The more complex theories allow
for faster signal propagation than the simpler ones, and so,
although every single theory has a finite threshold, any
shock wave in nature may be described by a sophisticated
enough theory [28,29].
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In models whose fundamental description is kinetic
theory, a particular way of building this theoretical hier-
archy is by parametrizing the one particle distribution
function in such a way that the parametrized distribution
function reproduces the evolution of N moments of
the actual distribution function [30-33]. In this class of
models it may be proved that the fastest speed of propa-
gation increases with N and tends to the speed of light as
N — oo [34].

In this work we shall demonstrate a particular realization
of this scenario. We shall consider a conformal fluid [35]
and we shall assume that its first principles description is
given by kinetic theory under the relaxation time or
Anderson-Witting approximation [36—40]. We shall derive
an exact expression for the decay constant of the solution
away to equilibrium, and compare it with two hydro-
dynamic models of the divergence type theory (DTT) class
[41-48]. The first is built to match the second moments of
the distribution function, and the second is an improved
version that also matches the third moments.

It should be noted that both these theories have some
interest on their own. The first one has been used to analyze
flows on Bjorken and Gubser backgrounds [49] and also
the interaction between viscous fluids and gravitational
waves in the early Universe [50,51]. It has been extended to
include thermal [52] and turbulent [53] fluctuations. It
has also been extended to charged plasmas to study
the amplification of magnetic fields in the early Universe
[54]. By adding also the third moments, one obtains a
theory which reproduces the propagators of the energy
momentum tensor as derived from kinetic theory [40]; it
also recovers the dynamics of the spin 2 degrees of
freedom in the fluid as wave like, and not simply
relaxational.

© 2022 American Physical Society
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The paper is organized as follows. In next section we fix
our notation by considering shock waves in ideal [1],
Landau-Lifshitz [12,55], and Israel-Stewart [12,56-60]
fluids. The Landau-Lifshitz framework does yield a finite
decay rate for any asymptotic speed, but it seems to be an
artifact beyond the limit of weak shocks. When one regards
hydrodynamics as rooted in kinetic theory, the Chapman-
Enskog framework leads to the Landau-Lifshitz theory, and
the Grad approximation to the Israel-Stewart one [56]. We
shall show this connection in Appendix A. This means that
the Israel-Stewart decay rate (with its limitations) will
obtain in any theory that reduces to Grad’s in the small
deviations from equilibrium limit, such as anisotropic
hydrodynamics [61-63] or our first DTT.

In Sec. III we analyze the same problem within kinetic
theory with an Anderson-Witting collision term. We show
that there is a finite decay rate for any value of the
asymptotic fluid velocity in the shock frame. That settles
the issue that the problem of theory breakdown for strong
shocks lies entirely within hydrodynamics. The depend-
ence of the decay rate on the asymptotic velocity resembles
that derived from holography [12] but the divergence of the
decay rate as the asymptotic velocity approaches light
speed is stronger.

In Sec. IV we consider the decay rate in our DTT. Since
we already know the first DTT will revert to Israel-Stewart,
the emphasis is on the second one, including third
moments. This theory still has a highest propagation speed
strictly less than light, and therefore also breaks down for a
finite asymptotic velocity, but nevertheless it is a significant
improvement on the Israel-Stewart result, both on the left
and right sides of the shock.

We summarize our results and conclusions in the final
section.

We have left some further details for the Appendixes.
Appendix A shows the connection of the approaches in
Sec. II to kinetic theory. The following two appendixes
have purely technical details. Appendix D shows that
consideration of the entropy current [64—66] makes the
dynamics of viscous relativistic fluids essentially unique. In
Appendix E we compute the speed of signal propagation in
both DTTs, thus allowing to check directly that it is the
speed of propagation that defines the maximum asymptotic
velocity the theory can handle [20], and finally in
Appendix F we shall discuss the straightforward modifi-
cations of our argument to compute the decay rates in the
subsonic side of the shock.

II. COMMON APPROACHES TO
RELATIVISTIC FLUIDS

A. Shocks in ideal fluids

An ideal fluid may be at equilibrium at each side (L, R)
of the shock, with a discontinuity in temperature and
velocity across the shock. We assume the shock lies at

the z = 0 plane and is isotropic and translation invariant in
this plane, and that all quantities depend only on the
distance to the shock z. The discontinuity is restricted
by energy momentum tensor (EMT) conservation 7' = 0,
so we must have

ng _ T%Z
TZLZ — T%Z
Ty =T 0

a = x, y, where (L) refers to the half space z < 0 and R to
z > 0. The fluid is characterized by its temperature 7" and

its four velocity u# with u?> = —1, which may be further
parametrized:
u® = ]
Vi
ut = v
V1—1?
u® =0. (2)

The energy-momentum tensor has the ideal form for a
conformal fluid (for simplicity we assume Maxwell-Jiittner
statistics)

1
Tl = < Tt + ), ()

where #* = diag(—1, 1, 1, 1) is the Minkowski metric. We
then get

4 v 4 v
K=—_T14_ "Lt _ " 74 7R
Pl TR S )
1, 1+302 1 _,1+30%
K =—T4% L_—_T14 R 4
Rl TR N ) )

K is a constant which expresses the common value of 7%
on both sides of the shock, similarly K’ represents the
common value of 7%. In the more complex theories to be
considered below, temperature and velocity will no longer
be constant on either side, but as long as energy momentum
is conserved, 7% and T% will be constant, and K and K’
will still represent them, respectively. Their actual value is
defined by the asymptotic temperature and velocity, which
we call T; and v, in all the models we shall consider.
Eliminating 7'; x from Eq. (4)

302 —4Cv, +1 =0, (5)

where C = K'/K, so

SR T P e R
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There is a nontrivial shock when both roots are real and
< 1. In the allowed range we have

1
Vy Vg :g (7)

We shall call v; the root such that 1/v/3 < v, <1, and
then 1/v/3 > vg > 1/3. Then

(@)4 _u(1-03) _(Gep-)) 5

Ty WR(I_U%)_ (1_1’%) '

Observe that T > T; and so the entropy density behind
the shock is greater than in front of it, in agreement with the
second law.

B. Shocks in Landau-Lifshitz theory

A viscous fluid cannot sustain a discontinuity, but for
a solution which depends only on z, integrating EMT
conservation from 7z = —oco to z = co, we see that the
relations (1) hold for the asymptotic values. In particular,
we may assume that u*Y — 0 asymptotically. We shall
make the stronger assumption that the solution is axially
symmetric around the z direction everywhere. Thus we are
seeking a solution depending only on the z coordinate and
axially symmetric which asymptotically reduces to an
ideal fluid when z — 400, with boundary conditions being
the junction conditions (1) for an ideal fluid, namely
conditions (4).

It is interesting to see the shock structure in Landau-
Lifshitz theory, where

1
T = Tl =T, (9)

where 7, is a dimensionless constant, essentially the
viscosity to entropy ratio, and

2
oY = AHP AV° Uy o + Ugp — gApa”ﬁ
— AV H AHP Y ZA;U/ A 10
= AUl + A, = A, (10)

A¥P = p#? + wuP. Since by definition o, u" =0, we
must have

GOO — 1}20.zz (11)

and

4 v
57(1 _;2)5/2. (12)

Now the constancy of 7% and T% yields two equations:

0% =

iT“ 4p i T3§ VU, _x

2 12 2 3(1—02)/2
Io1+3%7] 1 4w
27 [1_02]‘”2’“ Tl )

with K, K’ = constant. With the boundary conditions that
v—owv, and T - T, as 7z — —oco they are the same
constants as in Eq. (4); then v - vy and T — Ty as
7 — o0. We may write

4 v, (v )0 =5,)
= T T - G )

4y

(14)

We see that v; and vz = 1/(3v,) are the only values of v
where v, may vanish. v goes monotonically from one to
the other, reaching the limiting values only asymptotically.
To find the speed of approach to the asymptotic value, we
write v = v, — 9, with 9 « e*2.%. Then to first order in &
we get [12]

1= 02)1/2 1
j’LL = 3TL% <U% - 5) . (15)

After solving the equation for v, we may find the temper-
ature from

49T*
1 — 2?2

,_./\

(16)

+
B

- v)(v i)} 4o, T}

n-Gui+ D] -0y

C. Israel-Stewart fluids

In the Israel-Stewart or extended thermodynamics
approach, the viscous part of 7* is left undetermined:

™ = T 4TI, (17)

Since IM"u, =0, we have % = oI1¥. Thus calling
[1%¢ =11, we find

K=T0%= =— 1
l—v: 2’1 2T
3 T 1 3 7 1
K=T%=S—L_|v}+_| == 45|+
n21—u§[L+3} ﬂ21—y2[” +3}+
(18)
Then
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7 (vz

2\ -ATT )(”_E)
(=)=

=70 +3)]

(19)

The system is closed by asking that IT* relaxes to its
Landau-Lifshitz form on a timescale v = 7,/T

1
]9 pH’w + " = __2’,]0]"30-#1-/' (20)
b2
Taking the zz component we get

3rt (v =) (v =5,
2=l =32 (v +3)]

Crw d3rt (=) =5)
Vi de 2 (1= )l = (v +3)]
4 T3
—_ 7 MtV (21)

3% (1- 1}2)5/2

When 7 = —co we write v = v, —d¢%s* and linearize
on &

(1} = (1 = 0})”

ﬂ]s - 3TL . (22)
vi o = 370(vg = 3)]
A suitable model must satisfy
1 1pn
2 __ -0 23
LT3 53, (23)

Causality requires the right-hand side to be strictly less than
2/3 (see Appendixes A and E), and so this sets an upper
bound for v; which is strictly less than 1, otherwise there is
no solution smoothly approaching equilibrium. For exam-
ple, AdS-CFT yields a value 7y =1, 7o = 1 — (In2/2),
and the criterion Eq. (23) becomes v% <0.84 [12].
Both the Chapman-Enskog and Grad approaches yield
o = (4/5)7y, and so the theory breaks down when
v >3/5.

III. KINETIC THEORY

In this section we will show that, in kinetic theory under
the relaxation time approximation, there are solutions
smoothly approaching equilibrium regardless of the asymp-
totic velocity v;.

Under the relaxation time or Anderson-Witting approxi-
mation, the kinetic equation reads

T
p”f,u = % (MSQﬂp”) [f - feq]7 (24)

where f¢, is the Maxwell-Jiittner distribution with para-
meters T, ubq defined by the consistency condition

3
THUeq, = T4 U (25)

For simplicity, we shall call T.; = T and v,y = v. Given
the symmetries of the shock solution, the Boltzmann
equation (24) reduces to

fe+ A =A2)feq (26)
or else
[f - feq],Z + A[f - feq] = ¢$zfeq’ (27)
where
T[_uequpﬂ]
A7) = - et |
@ (p*10)
feq = e~ P
#(e) = ], 28)

We are seeking the solution which reaches asymptotically
equilibrium values as z — —oo. This is

70 = Faae) + [ e LN f . @9
When we use this to compute the EMT, we find
TH = Teq + . (30)
The consistency condition (25) becomes
" Ueq, = 0. (31)
This condition implies energy momentum tensor conser-

vation, so we also get that 7% and T% remain constant.
Let us analyze ¥ more closely:

"= /Z dz//DPP”P”e_f;’ A [#:feal(@). (32)

Dp =28(-p*)0(p°)d*p/(2x)? is the covariant momen-
tum space volume element. For each fixed 7’ introduce new
variables

= P’ —v(Z)p*
V1-v()?
P v(Z)p°
1—v(Z)?
g~ = p* (33)
(¢ = 4% = ¢} — > = p} — p?), then we may write
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0 Now
ol 21 =L (34)
T
. q° 1 1 -\ /p°
Observe that we regard the transformation (33) as a change = (37)
of variables within the momentum integral at a given point q° 1—0*\-v 1 I
in space, rather than as a global coordinate change.
The z derivative in Eq. (29) is taken at p held constant, so 0 0
upon the change of variables we must write 2 (q _ v/ U q (38)
0z (1-2)\ -1 0 q°
op _oa| , 06 dg" 5)
0z, Gz (9(1” az .
Actually the ¢* derivatives are nonzero for y = 0 and z
only, so op _ o9 Y 7 o¢ 1 q° o (39)
dz|, 0z, (1-1v?) q° gt |
o4 _0d L 0p0d| 00| o
Iz, 8Z 04" Gz 9q° Iz, Now the conditions (31) become
|
@z [ [‘JOT (@), v (D)) e
0= Dq(q° + v(Z) : 2 + 2 e~ /T()
|75 ] patd + trate @) - 2@)
" ’ // OT /(ZI) qzl) /(Z/) 0 ’
= D + j:dZA [ < + . ] —¢'/T(), 40
o= [ 15/ patar @) i-r@) o
where
(] = " N o_ AP
AZ, ") = T()[(1 = v(2)v(z")q" + (v(2) = v(Z")4")] (41)
(" + v(2)g") 7o/ 1 = v*(2")
We define dimensionless momenta ¢# = T'(z’)r* and go to polar coordinates to get
6 z 1 dZ"A(xi2',2") T XU '(Z/>
0=— dZ/T4 Z/ / dx(1 s f z 32,2 |: + ,Z
o [ aem@ [ ax 1) (- 2@)
6 /z o franwen [ To  xva(2)
0=— dz’T“z’/ dx(x + v(z + , 42
2| T [ o ) (-2 @) .
I
where now where
Atz 27 — TEOIL= o@)o() + (0(2) = o)) R Y ey )
(x +v(2))70v/ 1 = v*(2") AawTo
(43) 1
A / dx(l + vpx)(x + vp)
When z——-oc0 we expect a solution where 7 = XK
T, (1 + te*w?), v = v, — 9e*w, Linearizing we get B— / dxx 1+ vpx)(x+vp)
1 X +K
1
At=B 5 =0 C= /dx“”“
(1-27) 1 X +K
9 (x + o)
Ct—D——5-=0, 44 46
(1-v) 44) / x+k (46)
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The dispersion relation AD — BC =0 reduces to (see
Appendix C)

1
0= 0} —5~u.Gll. (47)
where
Gli] = x — %K JOJ[‘;[]K]_ 5 (48)
Jolk] = 1n%. (49)

Equations (45) and (47) define parametrically A,w as a
function of v;.

Let us analyze the limiting cases. When k — oo,
G(k) ~ 4/(15k), so v> = 1/3,

4 vy,
K~ —
2 1
ISUL—§

T, \/1-v3 1\ 15 T 1

7o UL(g—UL 7o

(50)

When k — 1, Jo(k) x —In(k—1) +In2 - o0, v, — 1,

2 1
Pl 2
G(x) 3( 1n(k—1)> (52)
k=14 e/ 0-0) (53)
T, 2
Aaw & — . 54
AW T, (54)

We can check that these analytical asymptotic forms
match very well the exact solution in Egs. (45) and (47) in
their respective regimes, see Fig. 1.

We conclude that kinetic theory may describe the
approach to equilibrium regardless of the limiting velocity,
as long as v; < 1. The difference in behavior between
kinetic theory and hydrodynamics may be traced back to
the fact that, in kinetic theory, the speed of signal
propagation is the maximum speed of the particles for
which the distribution function is not zero [19]. For the near
equilibrium distribution functions we are considering,
which cover the full range, the asymptotic velocity v
shall always be below the speed of signal propagation.

IV. CAUSAL FLUIDS

We reduce kinetic theory to hydrodynamics by making
the ansatz

20

151

10 A

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

FIG. 1. Exact decay rate derived from kinetic theory with an
Anderson-Witting collision term and its asymptotic forms: (blue,
full line) exact decay rate, defined parametrically by Eqgs. (45) and
(47); (red, dashes) asymptotic behavior for v; — 1/ V3, Eq. (51);
(green, dots and dashes) asymptotic behavior for v; — 1,
Eq. (54). The divergence in the decay rate is stronger than
predicted by holography [12].

S D' P”
(_uﬂp”)

f=exp {%(uﬂp") + + é”yppﬂpbpp} (55)

(_uﬂpﬂ)z

for the distribution function. The tensors ¢, and &, are
totally symmetric, transverse to u¥, and traceless on any
pair of indexes. The equations for the coefficients are
derived by taking moments of the kinetic equation, for
which we assume the Anderson-Witting form (24); see
Appendix D.

Under our symmetry assumptions u* is characterized by
the single velocity v in the z direction. Likewise, {,,
and &, contribute a single degree of freedom each. To see
this, observe that in the local rest frame of the fluid,
all components with a 0 index must vanish, while sym-
metry implies that components with an odd number
of x, y components also vanish, {,, = ¢, and &, = &,,.
Now tracelessness implies that {, = (—1/2)¢., and
E.o = (—=1/2)&.... Henceforth we shall call ¢ and & the
single nontrivial component of these tensors in the local rest
frame. Introducing the momenta in the local rest frame as in
Eq. (33) we may write

1
f_exp{—?qo—l—CHC—l-éHg}, (56)
where
y._ B -4)
¢ zq()
4*(5¢2 = 343)
90
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We see that if £ # 0, f is not even in ¢, and for this reason
Veq # 0 in the local rest frame either. For example, let us
consider again the definition of 7', and u. After perform-
ing the change of variables (33), which of course has unit
Jacobian, we get, in the local rest frame of the fluid

/ Dqq°(ugyq°® — uieq®)f = %T‘e‘qugq
/ Dqq*(udyq” — uyq*)f = %quuéq’ (58)
or in terms of the velocity v,
/ Dqq°(¢° — vegq)f = %Té‘q
/ Dqq*(q° = veqq*)f = %quveq' (59)

It is easy to see that v.q = 0 and T,y = T to first order in {
and &, but not to higher order. This is related to the
possibility of building vector fields outof £, and £,,,,, such

as £,,07 or &,,,&48,

A. Energy momentum tensor

Insofar as the energy momentum conservation condi-
tions are still exact equations of the theory, and the energy
momentum tensor in the rest frame of the shock depends
only on z, we still have the identities

K=T%= /Dppopzf = constant
K' =T% = /Dp(pz)zf = constant (60)

with K and K’ depending only on the asymptotic state as for
an ideal fluid, see Eq. (4). Performing the change of
variables (33) and linearizing on ¢ and & we get

1
- /Dq(qO +vg°)(q* +vq°)f
v

70z —

1
Zﬂzg_vz){f’”s*w”}' (61)

This is equivalent to the Israel-Stewart energy momentum
tensor identifying

8§ T

= ?WCT' (62)

We thus obtain two relations among 7', v and the dimen-
sionless combination {7". Eliminating T we get

r=2 5 (63)

which is equivalent to Eq. (19), and further writing v =
vy — 9e’r1% and linearizing on 9

etorrz, (64)

B. Equations of motion

The equations of motion will have the form

/DpHa(z,p) [ng—]; —Icol[z,p]} =0 (65)

p

for suitable functions H, [30-33].

When we perform the transformation (33) we must take
into account that z is not transformed (this is a change of
variables, not a change of coordinates). So even if the
function H,, is a particular component of a tensor, we do not
transform it as such, but only as a given function of z and p.
The same argument may be used to transform the collision
integral, so

q° +vq° of
Rt

- Icol [Z’ q]:| =0. (66)

p

The f derivative is transformed as in Eq. (39). It is
convenient to move the derivatives out of the integral,
observing that

=0 (67)

P

0
—5(p? — _ pz
% (p)p 9.7

in either the —p or —q representation. Therefore we get
0=—A,—B,— 1, (68)

where
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qZ + ,qu

A= / Datt,(a) L

B —/D Q_L zi+ Oa H
- N |2z (1-12?%) q(‘?qo Tog ]|

z 0
xq +Uqf

V1—1?
I, = / DqH o (q)1e0lz, q]- (69)

If we choose Hy = p° and H, = p7, By, and I, vanish
and we obtain once again the constancy of the
EMT. Entropy considerations, discussed further in
Appendix D, suggest choosing the remaining functions
as H; and H; in the equations of (57). Then, linearizing on
£, & and v

|

2 L [T=,2
—34prT ApTTVL +7EV/ 1 =01
2 _1 2

L3 5hL
0 %lDTT
writing
aoT
Aprr = v_rLO 1- U%- (72)
L

The allowed values of a are the roots of

a’ 6 3 7 1
E[?U%—Ui—g]‘an[E—v%] ‘I’g_v%:() (73)

There will be a positive root as long as the coefficient of
atis positive, which ceases to be true when vz ~ 0.74; see
Appendix E.

V. RESULTS AND FINAL REMARKS

In this paper we have computed the decay rate of the
solution toward equilibrium at velocity v; as z - —oo
for several models, namely ideal fluids (where there is no
decay), Landau-Lifshitz [Eq. (15)], Israel-Stewart
[Eq. (22)], which actually holds for any theory which
reduces to the Grad ansatz in the linear regime, kinetic
theory with a relaxation time or Anderson-Witting collision
term [Eqgs. (45) and (47)], and finally for a DTT including
third moments of the distribution function [Egs. (72) and
(73)]. The results are summarized in Fig. 2.

The “exact” calculation yields a decay rate which
resembles the one derived from AdS-CFT correspondence

12 ULC 5 36 §

A= T, + TZ
57[2\/1—1]% 357[2‘/1—1;%
8 v
Bi=———— T
s (-t
12 ¢ &
A — 36 CTZ n 12 vaTZ
U -2 T T-0]
12 £T%
I:=——>=. 70
¢ 772 7 ( )

If we do not include the £ term, we revert to the equations
derived from Grad’s ansatz, identifying C* = {**.

Assuming that all variables depend on z as e’o11%, the set
of equations (64) and (68) becomes

3

1-2

0 cr | =0 (71)

3
ZApTT

ﬂDTTUL‘F%\/ 1-vf T

|
[12] but with a stronger divergence in the upper limit; it
diverges as y = (1 — v7)~"/2 while the result from holog-

raphy diverges as y'/? [12].

16

12 A

e
e e - ———— v

0.775 0.861 1

FIG. 2. The decay rates for the different theories discussed in
this work: (blue, full line) exact decay rate, defined parametrically
by Egs. (45) and (47); (green, dashes) the decay rate from
Landau-Lifshitz theory, Eq. (15); (black, dots and dashes) decay
rate for an Israel-Stewart fluid with the constitutive relation
derived from Grad’s ansatz, 1y = 47,/5, Eq. (22); (red, dots) the
decay rate derived from the DTT including the third momentum
of the distribution function, Eqs. (72) and (73). The vertical grid
lines show the characteristic speeds of the Israel-Stewart and DTT
models, see Appendix E.
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Landau-Lifshitz provides a regular solution for any v,
but the quantitative agreement to the exact result is not
satisfactory beyond weak shocks.

Both the Israel-Stewart and DTT decay rates blow up at a
finite value of »; set up by the highest speed of signal
propagation (as we show in Appendix E). This exercise
therefore provides a concrete example of the scenario
discussed in [20,29].

It is remarkable that if we extended the kinetic theory
analysis to complex values of the asymptotic velocity vy,
then the decay rate 4 would be an analytic function of v;
with a cut in the complex plane, signaled by the appearance
of a logarithm in Eq. (49). These nonanalyticities are a
generic feature of kinetic theories that very much define the
limit of validity of hydrodynamics [39].

If the limiting factor for hydrodynamics is that it cannot
handle fast asymptotic velocities, then there should be no
problem in the right-hand side of the shock, where
velocities are subsonic throughout. The decay rate can
be computed with a straightforward adaptation of the
arguments above (see Appendix F); we show the result
in Fig. 3. As expected, there is no divergence in any of the
models we are considering, but again the DTT outperforms
the Landau-Lifshitz and Israel-Stewart schemes as a quan-
titative match to kinetic theory.

The fact that the speed of signal propagation sets the upper
asymptotic velocity for which a regular solution exists may
be easier to understand if we regard the time-independent
configurations we have analyzed in this paper as the long
time limit of the actual process by which the shock is formed.

A

0.71 A

UR
0.333 0.387 0.43

FIG. 3. The decay rates for the different theories discussed in
this work on the right-hand side of the shock: (blue, full line)
exact decay rate, defined parametrically by Eq. (F9); (green,
dashes) the decay rate from Landau-Lifshitz theory, Eq. (F1);
(black, dots and dashes) decay rate for an Israel-Stewart fluid
with the constitutive relation derived from Grad’s ansatz,
no = 419/5, Eq. (F2); (red, dots) the decay rate derived from
the DTT including the third momentum of the distribution
function, Eqgs. (F12) and (F16). The vertical grid lines show
the asymptotic right side velocities corresponding to the charac-
teristic speeds of the Israel-Stewart and DTT models, see
Appendix E, which mark their applicability limit.

Remember that we are describing the fluid in the frame
where the shock is at rest and the fluid advances from the left
at velocity v;. We may as well use the frame where the fluid
is at rest and the shock advances to the left at velocity —v;.
Now picture the shock as a piston which materializes at
t = 0 at the position z = 0, and then starts moving against
fluid at rest. If v; < ¢ the speed of signal propagation (see
Appendix E), then the influence of the piston will outrun the
piston itself. At time ¢, the fluid will remain at rest for all
z < —ct, and there will be a buffer zone between z = —ct
and the piston at z = —wv, ¢. Atlong times and finite distances
from the piston, in the frame where the piston is at rest, the
fluid in the buffer zone will settle to a steady flow; this is the
configuration we have described in this paper. However, if
vy > c this is not possible; the piston keeps pushing against
fluid at rest, and the hydrodynamic solution, if it exists at all,
must be discontinuous [20].

In spite of its limitations, Figs. 2 and 3 show that
including third moments in the DTT allows for a much
more accurate description of the convergence to equilib-
rium. This should be considered along with the results of
[40] in choosing the correct hydrodynamic framework for a
concrete application.
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APPENDIX A: CHAPMAN-ENSKOG AND GRAD

The Chapman-Enskog and Grad approaches attempt to
anchor hydrodynamics on kinetic theory.

Under the Chapman-Enskog approach, we seek a solu-
tion of the kinetic equation (24) of the form

f=ew?"/T[1 4 5f). (A1)
Then, see Appendix B,
of = —#ljpwpﬂpy%w (A2)
where 6, is defined in Eq. (10), leading to
m = —izroT%”” (A3)
Sx

which is the Landau-Lifshiz ansatz under the identification

4

Ny = gfo- (A4)
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If we use this value of 7, in the equations from the Israel-
Stewart approach, we find the theory becomes singular
when v?7 = 3/5.

In the Grad approach, we write a decomposition (A1) but
with a less constrained perturbation

p'p*

of = L2
/ lu,p”|

(AS)

Hv

where w/C,, = C}, = 0. This satisfies the constraints (B1)

and leads to

I = i T35 CHw

57° (46)

[compare to Eq. (A3)]. To determine C** we ask that some
second moment of the Boltzmann equation is satisfied, or,
using the linearity of the kinetic equation, simply substitute
Eq. (AS) into Eq. (24) [67], getting
T 1
rCty +—C" + —o" = 0.
ucC, + 70 + T o

(A7)

We may use Eq. (A6) to transform this to an equation for
I1", which turns out to be Eq. (20) with the same 7, and 7,
given by Eq. (A4). As we already know, this leads to a
theory breakdown when v? > 3/5, see Eq. (23).

APPENDIX B: DERIVATION OF EQ. (A2)

To make the decomposition (A1) unique, we assume the
constraints

/ Dpp*(—u,p*)e?/T5f = 0. (B1)

This means the e“”"/T = feq- Then, assuming that the
derivatives of p#/T are “small,” we solve Eq. (24) to first
order to get

70

5f = —

P'piB.. B2
T, ] 77 P (B2)

The constraints (B1) become the ideal hydrodynamic
equations

T 1
?"i-guﬁ =0
. T,
i+ A =0, (B3)

For fields T and u* satisfying Eq. (B3) we may simplify

2

A
31/!”” I/t

ﬁﬂu +ﬂl/ﬂ

Uy + Uy y + uu’;tv + ”yitﬂ
(B4)

and subtracting a term proportional to 7,,, which does not
contribute to f because p?> = 0, we may substitute

1
ﬂﬂ.u +ﬁl/.ﬂ - 0,

T Ho (BS)

where 6, is the shear tensor (10), in Eq. (B2).

APPENDIX C: DERIVATION OF EQ. (47)
Call

Then the functions A, B, C and D from Eq. (46)

A=+ (Jo+Ty) + 01y
B=Jy+uv,(Jy +J3) + v,
CZ]2+20L11 +U%J0

D:J3+21]L12+U%J1 (C2)

and the dispersion relation is

0=viJ3+v}J1(Jo+312) + vi(J1(J; +J3) + 202(Jo + o)) + v, (J3(Jo + Ja) + 201 J5) + T4 J5

- [Ui.’o]z + U%(Z]]]z —|—J0(]1 —|—J3)> + ’U%(J% +J0J2 +2J] (J] ‘|‘J';)) + ULJ2(3]1 +J3) ‘|‘J%]

or else

0=(1-vi)(v;(JoJa = J7)

+ v, (Jod3 = 1 J2) + (J1J5 = J3)). (C4)

J is defined in Eq. (49). The remaining J functions obey
the recursion relations

(C3)

J1:2—K’J0
JZI—KJI :K2J0—2K
2

2 2 3
J3:——KJ2:—+2K — K ‘]0

3 3 (C5)

so we get

036013-10



STEADY ASYMPTOTIC EQUILIBRIA IN CONFORMAL ...

PHYS. REV. D 105, 036013 (2022)

1 1
0=12(xJy—2)+ v, <§JO -]y + 2K> +3 (2 =«Jy)
(Co)
which yields Eq. (47) immediately.

APPENDIX D: ENTROPY AND THE EQUATIONS
OF MOTION

Recall the entropy flux from kinetic theory [1,19]

s Z/Dpp”f[l —In f]

=QF — ﬂule - é’y/)A/“//’, (Dl)
where the Massieu function current
P = / Dpp"f (D2)

is the potential for the hydrodynamic tensors, for example

oP#
op,

We have made use of the symmetry of the shock wave
problem to reduce the number of unknowns to just scalar
variables. Moreover, we have seen that we may write
f = exp (—¢). To set up the hydrodynamic formulation, we
assume ¢ is a homogeneous function of the rest frame
momenta g* of degree 1, namely

™ = (D3)

0

b =Tl (D4)

where x =cos@ = ¢°/q". The function ¢ may be
expanded in Legendre polynomials of the variable x [33]:

¢ =1-> Z,[z]Ps(x

21

(Ds)

We move from kinetic theory to hydrodynamics when we
truncate this series [30-33]: ideal hydrodynamics keeps
only Z = 0 and 1, but assumes that Z; = 0 in the local rest
frame; Israel-Stewart keeps £ = 0, 1 and 2, but linearizes
on Z,, once again forcing Z; = 0. The DTT presented
above keeps Zy =1, Z, =T and Z; = £T (up to nor-
malization of the Legendre polynomials), with Z; = 0 to
linear order in Z, and Z;. We introduce a dimensionless
momentum r# = g* /T. The relevant components of 7+ are

(1=3",Z:P;)

4

T
2/Dr(ro +or))(rr4vr®)e”

1-v
/Dr(rZ + vro)ze_ro(l_zfzfpf).

K=T%=

4

K'=T%=
1—0?

(Do)

The second law reads

S =620 (D7)

so we only need the z component of the entropy flux

T3
§S=8=——nu | Dr(r + vrY)
v1-— 1}2/
X |:] + r0<1 - ZZKPK>:| 6_ I—ZfoP/)‘ (DS)
7z
Write
0 _ (r° + vr?) — o(r* + vr°) (D)
1 -2
to get
S—dp—— [T% — vT%] — lZzbﬂAf, (D10)
V 1 bl 7.)2T T 7z
where

o = /Dr =+ 0r%e™” (1= ZePe)
T_U ( Je

A /Dr 4 vr0) P, [x]e”” (=32 ZePo),
(DI1)

Then

T 1 1
S'=— 30 - ——— [T = 0T¥] + =) Z,A

T{ Jiserl HT; ff}

o [0® N vT% — T%

a0 (1= 2)3/2T

(D12)

1
z -=Z,A|.
" Z [ [azf ] T 4
It is clear that the coefficient of Z, vanishes. Now compute

1500)) 73

&Pr _0(1—
v (1—-2) / (27)*r° (07 + 10)e ™ (1= 2ol
(D13)
On the other hand
1 3
?[UTOZ—T“]Z‘T3/ 2y e =2 eh)
) r
(D14)
but
< 0
:0 e = e (D15)
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so integrating by parts

where we are regarding ¥ as \/r? 4 r + 2 rather than

1 P as the independent 0 component of the r* vector; the
0z 2z — 3 r 0 ¥4 ¥4 0 1 1 i
T [(WT% —T%| = -T /W <r + ort + (r* 4 or’) relationship among the two approaches is
7
0 0 0 0 0
Z,0 = [OP,] ) e (1m0 %) s R D17
Xg: o 8rz[r f]>€ ’ ’ "o T or ro+r8r - (b17)
(D16) Next consider
|
1
V- UzT[TOZ —oT = \/1 e / 27)% 70 (r% 4 vr0) e 1-20 2el0)
73 &dr 0 0
(r* 4+ vr)e’ Zfzfp”’(—?- V)e™
V=7 (2”)3 0
=30+ (4 0r0)e 172 2P0N "7, (7. V)0, (DIS)
V 1- 1} / 27[ 3 0 2
If H is a homogeneous function of degree n, then I, — / Dac®P.I D23
(7-V)H = nH. In our case n = 1, and we get g 99470 ol (D23)
1 1 since then the nonpositivity is enforced by the H theorem.
ﬁ [TOZ - UTZZ] = 3q) + TZZfAf (Dlg) p y y
‘ APPENDIX E: DTT CHARACTERISTICS
Therefore We shall investigate the characteristics of a DTT. We
1 need to reinstate the time dependence, but we shall only
§=- T sz [A} — By, (D20) consider linearized deviations from rest. The equations are
¢
where T+ 7072 =0
720 727
ST P ( ) . T4+ 7% =0
B, =— ré 4+ vr 40 oV : Ve
1= 029372 | 22)3/9 A1 At B - =1
( aO)P (27) ¢ {2 4(1—1)2) 4(1—1)2) ¢
09" e\ —°(1=)",7Pp) . D v
X | rM———-e ¢ D21 0 0 Z
( or? ) (b21) Ag +A;, — B; (1_1}2)_32(1_1}2)*15' (E1)

which agrees with our result above. To enforce the second
law we need equations of motion of the form

A%, Bg, A¢ and B have already been computed in the main
text (where we omitted the z superscript), the same as I,

A, -B,=1, (D22) and /. We introduce dimensionless variables Z = {T and
X = £T, and further write T = Tye', where ¢ is the linear
such that »_,Z,I, < 0. The natural choice is deviation from equilibrium. Then
T3 T3 T3 8
T = =23(1 + 41); 70 = D4u; TZZ——3{1+4I+§Z}
7 7 b4
Tg12 7336 738 75112
A0 =20 %7 AL — 2077 BY = 0; B =-0". ], =--90_"~
a5 ¢ 2235 ¢ ¢ 225 T 255
T 12 T¢36 T3 112
A=22"2X,  Ai=2_7, BY=Bi=0; [=-0—— E2
=27 e ¢ =B; L (E2)
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If we call X* = (1,v,Z,X), we get equations of the form
X+ T9X" + A¢X? = 0. We are interested in the penetra-
tion of a front into fluid at rest. The variables X¢ = 0 at the
front and are continuous across the front, but the first
derivatives X’ are not. Since the X“ remain constant as we
move along with the front with speed c, at the front
X 4+ ¢X" = 0. From the equations of motion this means
that [T —c89]X"” =0. We thereby get the dispersion
relation as

=0. (E3)
0 0 —% c

Not including either Z or X is equivalent to considering
only the upper left 2 x 2 block; we thus get the usual result
c®>=1/3. For any v, > c¢ the ideal fluid solution is
discontinuous.

Including Z but not X means considering only the upper
left 3 x 3 block. We then get ¢? = 3/5, which we recognize
as the upper value of v; for an Israel-Stewart fluid under the
constitutive relation 7y = 47,/5 as demanded by the Grad
approximation.

Finally, the characteristic velocity for the full theory is

6 3
P4 -=0 E4
¢t =g +35 (E4)

3 8
2_2 /21 ~o.
c —7{14— 15] 0.74 (E5)

and ¢”? =3/(35¢) ~0.11. We recognize that the coeffi-
cient of the leading term in Eq. (73) may be written as

with roots

6 3
Sl o= (@ d)h - ) (E6)

and since v; > 1/v/3 > ¢/, positivity of this coefficient,
and therefore existence of a solution, requires v; < c.

A similar calculation yields the characteristic speed of an
Israel-Stewart model. Linearizing the equations of motion
around a static equilibrium (v = I1 = 0) we get

T
3— =0
T—l—v
T/ ]7,'2
b4 ——I'=0
T
2
Mo / 2 :
— — 11 =0. E7
Tov+4T4 ( )

On the front we have ¥ = —V v’ and likewise for T and I1,
so we get the characteristic velocities as V = 0 or

1
v%:—b+@- (E8)

3 7o

which shows that the Israel-Stewart model must break
down at a finite velocity, see Eq. (23).

APPENDIX F: THE RIGHT-HAND
SIDE OF THE SHOCK

If the drawback of hydrodynamics is not being able to
handle fast asymptotic velocities, then the approach to
equilibrium on the right side, where speeds are subsonic
throughout, should pose no problems.

Let us start with Landau-Lifshitz fluids. Equation (14) is
still valid, observe that we can write indistinctly »; or
vg = 1/3v,. Now we write v = vg + de~*1% and linear-
ize, getting the equivalent to Eq. (15):

(1= )"

R =T
=T o

(1-303). (F1)

We now move to Israel-Stewart fluids. Up to Eq. (21)
nothing changes, then we write v = vy + de™5% and
linearize, getting, instead of Eq. (22),

(1=30g)(1 —vg)'"?
vglno + 7o(1 = 30%)]’

ﬂfs — IR (FZ)

where we further set 7, = 4/57 as derived from the Grad
approximation.

In kinetic theory, the solution that goes to equilibrium as
z = oo i [cf. Eq. (29)]

mwﬁww/%wﬂmwmmmy<m

4
Once again we find 7% = T%; — #* with #*u,,, = 0. For
large z, T = Tx(1 — te™) and v = vy + 9¢~*. The analy-

sis carries on as in the text, and we get the dispersion
relations

9
ARI_BRWZO

CRt_DR - O, (F4)

L
(1 - vk)

where [cf. Egs. (45)] and (46)]

T
1= 0% — g (F5)

AawTo

Kp =
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1 1
Ap = / dx (1 + vgx)(x + vg)
—1 X —Kp

1
BR:/ dxx
-1

1 2
cR=/ gy K R)

1 X — KR

(1 4+ vgx)(x + vg)
X —Kp

1 2
Dy = / dxxw (F6)
—1 X —Kp
to the effect that instead of Eq. (47) we now get
, 1
0=vk— 3 + vrGrKg], (F7)
where
1 J
Grlkg] = kg ol (F8)

_gKRJO[KR] -2

Jo as in Eq. (49). The final parametric relationship between
vg and Ay is

1 4
VR =3 { Grlxg] +§— GR[KR]]
T
ARy =— "R 142, F9
AW TO(UR+KR) R ( )

Let us analyze the limiting cases. When k — oo,
Gr(k)~4/(15¢), so v3 —1/3 and 1%y, — 0. When
k—1,Jy— 00, vg —> 1/3,

(F10)

Finally, let us consider the DTT. The analysis in the main
text goes unchanged until Eq. (63), which, after lineariza-

tion v = vg + de %%, becomes [cf. Eq. (64)]

1 —_ 2 R
{Tg = > (1= 3vp) Qe oz,

6 ve(1 - 13) (FL1)

Also the calculation of the A, B and [ scalars in Eq. (70)
goes unchanged, except that now we linearize around an
equilibrium with temperature 7T, and velocity vg.
Considering that now (T and ¢T o exp {—AR 1z}, and
writing [cf. Eq. (72)]

Afrr = 1 - v (F12)

%aR vg(af —1) %aR 1_19“%
—(1=323%) Sup 0 T | =0
0 2ak vg(a® = 1) ET
(F13)
The allowed values of a are the roots of
aa®? = 2bv3af + cvk =0, (F14)
where
4 9
a :511% + (1 —31}%)(@% —§>
7
b = g - 3111%
c=1-3v% (F15)
namely
v% ac
a=-= [b b2——2] (F16)
a vy
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