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We test the degree to which interacting Bosonic systems can be approximated by a classical field as total
occupation number is increased. This is done with our publicly available code repository, QIBS, a new
massively parallel solver for these systems. We use a number of toy models well studied in the literature and
track when the classical field description admits quantum corrections, called the quantum breaktime. This
allows us to test claims in the literature regarding the rate of convergence of these systems to the classical
evolution. We test a number of initial conditions, including coherent states, number eigenstates, and field
number states. We find that of these initial conditions, only number eigenstates do not converge to the
classical evolution as occupation number is increased. We find that systems most similar to scalar field dark
matter exhibit a logarithmic enhancement in the quantum breaktime with total occupation number. Systems
with contact interactions or with field number state initial conditions, and linear dispersions, exhibit a
power law enhancement. Finally, we find that the breaktime scaling depends on both model interactions
and initial conditions.
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I. INTRODUCTION

Many interesting physical systems involve a large
number of interacting bosons. These include Bose
Einstein condensates (BEC) [1–4], electromagnetic radia-
tion [5], and scalar field dark matter (SFDM) [6–9]. When
occupation numbers are very large compared to unity, it is
often argued that a classical, mean field theory approxi-
mation (MFT) will accurately describe field expectation
values and number densities [1,2,5–8,10–12]. When this is
the case, such a description is numerically advantageous as
the computational resources required to simulate a classical
field are much smaller than those required to simulate its
exact quantum counterpart [13]. However, it is also known
that nonlinear interactions cause the wave function describ-
ing quantum systems to spread around the mean value,
creating deviations from MFT on some timescale. The
results of quantum effects on observable quantities in the
evolution of SFDM are a question of current interest
[9,10,13–19]. For interacting theories, genuine quantum
effects such as squeezing can arise even on time scales
before the MFT breaks down [14,20–22].
The classical approximation can be achieved by replac-

ing the field operators with their expectation values, hence

“mean” field theory [23]. If the root variance of the field
operators is small compared to their mean values then the
quantum correction to MFTwill be small, and can generally
by safely ignored [24]. In this work, we simulate a toy
quantum system, using a highly parallelizable algorithm,
and compare them to their MFT approximations. We
introduce a new solver which implements this algorithm
allowing to simulate much larger systems than have been
modeled thus far in the literature. The code used to simulate
these systems is publicly available at https://github.com/
andillio/QIBS.
There is no unique way to measure the deviation of the

quantum solution from the classical solution. Therefore,
we will parametrize the divergence from a classical
description in a number of ways. We will measure the Q ¼P

ihδâ†i δâii=ntot parameter which is a proxy for the leading
order corrective term to the classical field equations [24].
We will also measure the principle eigenvalue of the
Mij ¼ hâ†i âji matrix; this allows us to evaluate how well
the Penrose-Onsanger (PO) criterion is satisfied [25].
Likewise, we will track the degree to which the quantum
state has been squeezed following [14]. We track these
quantities as we increase the total number of particles,
defining some threshold values in order to define a
“quantum breaktime” at which point the quantum correc-
tions to the MFT are no longer small.
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We will investigate the behavior of different initial
quantum states as a function of occupation number. This
allows us to make novel numerical demonstrations of the
rate of convergence to the classical solution for multiple
classically criteria. This allows us to make arguments about
the quantum breaktime based on the result of a numerical
studied as opposed to estimations based simply on the
initial conditions or assumptions and approximations of the
underlying quantum wave function as is currently done in
the literature [10,13,15,19]. These initial states we simulate
here will include: number eigenstates, which are known to
deviate from a single classical field even at large occupation
[9,10,13]; coherent states, which are the “most classical
states”, being initially exactly described by MFT; and field
number states, which initially satisfy the PO criterion but
have zero initial field operator expectation. Number eigen-
state initial conditions are of interest given the existing
body of work which has studied them in the context of
scalar field dark matter [9,10,13]. Likewise, coherent state
initial conditions are of particular interest as it is expected
that scalar field dark matter created via the misalignment
mechanism will be described by a coherent state at early
times [26,27]. Field number states are often studied in the
context of Bose-Einstein condensates [28] but have not yet
been studied numerically for the case of cosmic dark matter
as we do here.
A number of calculations of this convergence and its

implications for the quantum breaktime of scalar field dark
matter exist in the literature [10,13,15,19]. Previous inves-
tigations of the behavior of number eigenstates initial
conditions with nonlinear Hamiltonians have concluded
that MFT theory admits quantum corrections on a timescale
that is set by the classical dynamical time of the interacting
system and that increasing occupation number does not
result in a convergence to the classical solution [13]. We
also find that this is true for number eigenstates. However,
coherent state and field number state initial conditions
converge to the classical solution as the total occupation
number is increased. We find that this convergence is
approximately consistent with the logarithmic enhance-
ment in occupation number, corroborating the results of
[10,19,29], in systems most similar to scalar field dark
matter, i.e., those with quadratic dispersion relations and
long range nonlinear interactions. For systems with linear
dispersions and no long range interactions, more similar to
the ones studied in [10,13,30], we find that the convergence
to the MFT is faster than a logarithmic enhancement. These
results may initially appear in contradiction to those in [13],
where it was claimed that even coherent state initial
conditions do not match the MFT evolution after one
dynamical time scale. However, while this is true for the
relatively small initial occupations numbers chosen, the
convergence of the solution to the MFT as occupations are
increased cannot be ruled out by looking at the evolution of
a single set of initial conditions.

The paper is organized as follows. In Sec. II, we discuss
the relevant physics background. Section III contains a
description of our numerical method. We then show our
results in Sec. IV. Finally, Sec. V contains discussion of
these results.

II. BACKGROUND

A. Interacting scalar systems

The dynamics of the system are described by its
Hamiltonian. We will use the following:

Ĥ ¼
XM
j

ωjâ
†
j âj þ

XM
ijkl

Λij
kl

2
â†kâ

†
l âiâj: ð1Þ

This describes interactions of a nonrelativistic scalar
field onM modes. âj is the annihilation operator of mode j;
it is also the mode space field operator. ωj is the kinetic
energy associated with mode j. A wide variety of systems
can be represented by appropriately choosing the weights in
the interaction constant Λij

kl.
We can construct a spatial field operator as follows:

ψ̂ðxÞ ¼
X
j

âjujðxÞ; ð2Þ

where ujðxÞ is the jth mode function represented in the
position basis. Throughout this work we will use plane
wave mode functions, meaning that ψ̂ðxÞ and âj will be
related by Fourier transform. This means that âj can be
thought of as the momentum space field operator.
We will define the interaction terms in terms of a long

range interaction constant C and contact interaction con-
stant Λ0 giving

Λij
pl ¼

�
C

2ðpp − piÞ2
þ C
2ðpp − pjÞ2

þ Λ0

�
δijpl; ð3Þ

where negative constants define attractive potentials and
positive constant repulsive ones. pj is the momentum of

the jth mode. δijpl is the Kroneker delta, meaning our
Hamiltonian explicitly conserves particle number and
momentum.
The evolution of an arbitrary quantum state jϕðtÞi is

given by the Schrödinger equation:

∂tjϕðtÞi ¼ −iĤjϕðtÞi: ð4Þ

We have set ℏ≡ 1.
The evolution of our field operator â can be found using

the Heisenberg equation of motion [23], giving the follow-
ing equations of motion:
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∂tâp ¼ i½Ĥ; âp� ¼ −i
�
ωpâp þ

X
ijl

Λij
plâ

†
l âiâj

�
: ð5Þ

The mean field approximation then simply replaces the
operators in this equation with their mean values, i.e.,
âp → hâpi≡ ap, giving the classical equations of motion

∂tap ¼ −i
�
ωpap þ

X
ijl

Λij
pla

†
l aiaj

�
: ð6Þ

Note that we could have also performed this procedure
in the position basis. In general, the classical theory will
assume the following is true at all times:

hâ†i âii ¼ jaij2; ð7Þ

meaning that the occupation densities can be reconstructed
using the classical field. Therefore, we will in general
choose our initial conditions such that the classical MFT
approximation of a system has jaij ¼ ffiffiffiffi

ni
p

, where ni ¼
hâ†i âii is the initial expectation value of the ith mode
occupation.

B. Quantum states

In this work we find it easiest to represent quantum states
in the number eigenstate basis. Physically, these states
represent a fixed mode occupation number. In general, a
number eigenstate is described by its set of mode occupa-
tions fng and is defined as

jfngi ¼ jn1; n2;…; nMi; ð8Þ

â†j âjjfngi ¼ njjfngi: ð9Þ

Initial conditions consisting of a single number eigen-
state will be among the initial conditions we simulate in this
paper. It should be pointed out that it has been demon-
strated that a number eigenstate does not converge to a
single field classical description even in the high occupa-
tion number limit [10,13].
We will also be interested in coherent states. Physically,

these states represent a system where the vacuum state is
displaced; the ith mode occupation number is Poisson
distributed with expectation value jzij2. The coherent state
is described by a vector of complex numbers z⃗ ∈ CM. In the
number eigenstate basis, the coherent state is written

jz⃗iC ¼ ⊗
M

i¼1
exp

�
−
jzij2
2

�X∞
ni¼0

zniiffiffiffiffiffiffi
ni!

p jnii: ð10Þ

The coherent state is an eigenvector of the âi operator
with eigenvalue zi, i.e., âijz⃗i ¼ zijz⃗i. This state is generally

considered the “most classical state”. Note that it satisfies
the classical assumption in Eq. (7).
Finally, we will be interested in the field number states.

Physically, these represent systems with fixed total occu-
pation number but where the mode occupations are multi-
nomial distributed across the modes with the probability of
the ith mode given jzij2=ntot, where ntot ¼

P
i ni is a sum

over the mode expectations. Like the coherent state, the
field number state is described by a vector of complex
numbers z⃗ ∈ CM. In the number eigenstate basis the field
number state is written

jz⃗if ¼
X
fng

ffiffiffiffiffiffiffiffi
ntot!

p
⊗
M

i¼1

zniiffiffiffiffiffiffi
ni!

p jnii: ð11Þ

Note that the field number state also satisfied the
classical assumption in Eq. (7). It is natural to consider
such states since their properties are in some sense in
between the number eigenstates (8) and the coherent states
(10); they have a well defined particle number like the
number eigenstates, and they can be viewed as natural
basis for coherent states (10). To see this define âp≡
n−1=2tot

P
k z

�
kâk. Then the field number state (11) is

jz⃗; mif ≡ 1ffiffiffiffi
m!

p ðâp†Þmj0i with m ¼ ntot. And the coherent

state (10) is jz⃗iC ¼ e−ntot=2
P∞

m¼0
nm=2
totffiffiffiffi
m!

p jz⃗; mif.

C. Correction terms and Q parameter

Equation (6) was achieved by taking the expectation
value of Eq. (5) and then making the approximation that
∂thâpi ¼ hfðâpÞi ≈ fðhâpiÞ. This approximation can be
restored to an equality by adding higher moment correction
terms as in [24]

∂thâpi ¼ hfðâpÞi

¼ fðhâpiÞ þ
X
ij

hδâ†i δâji
∂2

∂hâ†i i∂hâji
fðhâpiÞ þ…;

ð12Þ

where δâi ¼ âi − hâii. The leading order correction term is
proportional to the second moments of the field operators
and the second derivative of the time evolution function
with respect to the field expectation. Therefore, we can
approximate the average size of the correction compared to
the leading order term by defining the Q parameter

Q≡X
j

hδâ†jδâji
ntot

: ð13Þ

This measures how well the quantum distribution is
localized around the classical field value. Over time,
nonlinear evolution will spread the wave function causing

SINGLE CLASSICAL FIELD DESCRIPTION OF INTERACTING … PHYS. REV. D 105, 036012 (2022)

036012-3



quantum correction terms to become relevant to the, an
example system is shown in Fig. 1. When this parameter is
no longer small we do not expect the classical field
equations to accurately describe the quantum evolution.
The convergence properties of this parameter, when

compared to other classicality criteria, are interesting for
a number of reasons. This parameter works well when the
classical field theory can be reasonably phrased in terms of
the expansion in Eq. (12), where each subsequent term is
small compared to the preceding ones, as is the case for
coherent state initial conditions with large occupation
numbers. Likewise, the computational complexity of cal-
culating Q scales only linearly with mode number M.
Finally, this parameter can be calculated in computationally
inexpensive extensions of the MFT such as [24].
Cosmic scalar field dark matter represents a system of

interacting bosons expected to start in coherent state initial
conditions, and have a large number of relevant modes. The
Q parameter is useful in these circumstances and therefore
understanding its properties using the toy models here is of
particular interest.

D. Penrose-Onsanger criterion

The Penrose-Onsanger (PO) criterion is satisfied when
we can write the following [25]:

hâ†i âji ¼ z⃗†i z⃗j: ð14Þ

That is that the second moment matrixMij ≡ hâ†i âji can
be written as an outer product of a single field z⃗.
We will test how well this condition is satisfied by

looking at the eigenvalues of Mij. When the PO criterion
is satisfied there will be a single nonzero “principal”

eigenvalue, λp equal to the squared norm of z⃗, where
z⃗�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i jzij2

p
is the corresponding principal eigenvector,

ξ⃗p. When the system is well described by the classical
theory we expect that the principal eigenvalue is very close
to ntot [2]. If the principal eigenvalue deviates too far from
ntot a single classical field description is insufficient.
It should be noted that satisfying the PO criterion does

not imply that the conjugate of the principal eigenvector
obeys the classical field equations of motion though this
is often, at least approximately, the case; see for example
Fig. 6.
Often when simulating a physical system the mode

occupation or spatial densities are of specific interest.
The PO criterion is a useful measure of classicality
because when it is satisfies this implies that there exists
a single field which captures these occupation numbers.
Computationally, this requires solving matrix eigenvalues
and therefore has cubic scaling with the mode number, M.

E. Squeezing

Squeezing of a quantum state is present if the uncertainty
of an operator becomes smaller than that for a reference
vacuum state. Squeezing is often considered a signature of
nonclassicality, or “quantumness”, especially in the context
of quantum optics [20,31]. Let us consider some operator Ô
with ½Ô; Ô†� ¼ 1. Then a Hermitian operator, a so-called
quadrature, can be defined via

X̂θ ¼ Ôe−iθ þ Ô†eiθ; ð15Þ

where θ is a parameter. This has variance

FIG. 1. Here we plot the Husimi distribution of a single mode evolving in a quartic nonlinearity. The mean field value predicted by the
classical field theory is shown as a red dot, the true mean field value is shown as a cyan triangle. The time of each snapshot is shown in
the top right of each subplot. Overtime the wave function spreads due to the nonlinearity resulting in a discrepancy between the classical
and actual value of the mean field. This wave function spreading is parametrized by Q which is shown in the top left of each subplot.
The middle plot shows the time defined as the quantum breaktime; at this point the wave function has already undergone significant
phase diffusion.
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VarðX̂θÞ ¼ 1þ 2hδÔ†δÔi þ e−2iθVarðÔÞ þ e2iθVarðÔ†Þ;
ð16Þ

where VarðÔÞ≡hÔ2i−hÔi2. At the angle e2iθ− ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
VarðÔÞ
VarðÔ†Þ

r

the variance VÔ
− ≡ VarðX̂θ−Þ is minimized and given by

VÔ
−ðtÞ ¼ 1þ 2hδÔ†δÔi − 2jVarðÔÞj: ð17Þ

If the quantum state is the vacuum, or a coherent state, then
VÔ
− ¼ 1. If VÔ

− < 1 the state is said to be squeezed [31]. In
general a quantum state can be squeezed with respect to
multiple operators. Here we focus on the mode operator
that destroys particles in the state corresponding to the
principal component of M̂,

âp ≡X
k

ξpk âk: ð18Þ

The significance of âp is the following. If the PO criterion
is valid, then a single field description should be possible,
in which case squeezing of the âp operator is expected from
analytical considerations [14]. We thus focus on Ô ¼ âp in
the following. In the case where λp ¼ ntot, and for an initial
coherent state, the squeezing of SFDM can be studied
analytically. Dropping the superscript, we can now write

V−ðtÞ ¼ 1þ 2hδâ†δâi − 2jhδâδâij: ð19Þ

Formulas for V−ðtÞ and θ−ðtÞ, the time of onset of
squeezing, as well as the time and magnitude of
maximal squeezing were obtained in [14]. We can
define the onset of squeezing tsqz to be when V−ðtsqzÞ ¼
0.8 which is reached at tsqz ≃ 0.05ðntotjχjÞ−1, where

ntot χ ¼ n−1tot
P

ijkl
1
2
Λij
klz

�
kz

�
l zizj is the mean interaction

energy per occupation. We thus have

tsqz ¼ 0.05
ntot

jPijkl
1
2
Λij
klz

�
kz

�
l zizjj

: ð20Þ

Maximal squeezing V−ðtmaxÞ ¼ Vmin ≃ n−1=3tot is obtained
at tmax ≃ 0.5tsqzn

1=6
tot . The time evolution of V−ðtÞ can for

ntot > 20 be accurately approximated by

V−ðtÞ ≃ 1 − 4τsþ 8τ2 þ 8τ3ð5þ 12τ2Þ
ntots

−
16τ4

ntot

s≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4τ2

p
; τ≡ ntotjχjt: ð21Þ

At early times, we can see from Eqs. (36) and (37) in [24]
that only the hδâδâi has a contribution to Eq. (19) that is
linear in time; i.e., the second term in the first line of
Eq. (37) in [24]. We can therefore ignore the hδâ†δâi term

in Eq. (19) at early times and only consider the contribution
of the second term in the first line of Eq. (37) in [24]. Thus
we can say

V−ðtÞ ¼ 1 − 4τ þOðt2Þ: ð22Þ

III. NUMERICAL IMPLEMENTATION

A. Classical field

The classical field equations of motion are obtained
by replacing the operators in Eq. (1) with their expectation
values. The classical field, aclp , then evolves as

∂taclp ¼ −i
�
ωpaclp þ

X
ijl

Λij
pla

cl†
l acli a

cl
j

�
: ð23Þ

We integrate this equation using the MFT solver in the
CHiMES package available at https://github.com/andillio/
CHiMES.
The initial conditions used to approximate each quantum

state are given as
(1) Number eigenstate: aclp jt¼0 ¼ ffiffiffiffiffinp

p .
(2) Coherent state: aclp jt¼0 ¼ zp.
(3) Field number state: aclp jt¼0 ¼ zp.
The numerical scaling of this solver is ∼OðM logMÞ,

where M is the number of modes.

B. Quantum field

The full code repository for the simulation and data
analyses of the quantum simulations performed here is
publicly available at https://github.com/andillio/QIBS.
The evolution of the quantum system is solved by

integrating Schrödinger’s equation:

∂tjϕi ¼ −iĤjϕi; ð24Þ

where the Hamiltonian is given in Eq. (1).
For most problems withM > 1 the dimensionality of the

total Hilbert space of the system, HT , which contains all
the number eigenstates relevant to the evolution of our
state, is quite large. Let DT ¼ Dim½HT �. Directly integrat-
ing Eq. (24) would be OðD2

TÞ. However, since our
Hamiltonian conserves particle number and momentum,
we can efficiently simulate the system by partitioning the
total Hilbert space into subspaces that can be solved
in parallel.
We can write any state as a sum over number

eigenstates as

jϕi ¼
X
j

cjjfngji: ð25Þ

We truncate this sum such that hϕjϕi ≥ 0.999.
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We can then rewrite Eq. (24) as

∂tjϕi ¼
X
j

cj∂tjfngji ¼ −i
X
j

cjĤjfngji: ð26Þ

Because of the number and momentum conserving
properties of our Hamiltonian, the time evolution of any
given number eigenstate, jfngi, can only ever evolve into a
superposition of number eigenstates with the same total
number of particles and total momentum. This means the
dimensionality of the Hilbert space relevant to the evolution
of any given term in Eq. (26) is much smaller than the
dimensionality of the total Hilbert space.
For any number eigenstate jfngi then, with occupations

fng, we can define such a “special Hilbert space”, Hfng ⊆
HT , which contains all the terms jfn0gi ∈ HT such that

X
n0k∈fn0g

n0k ¼
X

nk∈fng
nk; and ð27Þ

X
n0k∈fn0g

kn0k ¼
X

nk∈fng
knk: ð28Þ

That is, when our mode functions correspond to the
momentum eigenstates, a given special Hilbert space
contains all the number eigenstates with the same total
number of particles and net momentum. We can therefore
uniquely identify a subspace by its net momentum and
total particle number. Every number eigenstate has a
definite net momentum and total particle number, and
therefore every state is in exactly one special Hilbert
space. Thus, the special Hilbert spaces partition the total
Hilbert space. Letting Dj ¼ Dim½Hj�, we can say that
DT ¼ P

Hj∈HT
Dj.

For each term, jfngji, in the sum on the right side of
Eq. (26) we can associate a special Hilbert space Hj.
We can then represent the Hamiltonian, Ĥj, and number
eigenstate term in this smaller special Hilbert space,

Ĥj
lm ¼ hfngljĤjfngmi; ð29Þ

for all jfngli; jfngmi ∈ Hj. This corresponds to the
Hamiltonian projected into the jth special Hilbert space.
We can also write a projection operator for each special
Hilbert space as

P̂j ¼
X

jfngi∈Hj

jfngihfngj: ð30Þ

Note Ĥj ¼ P̂jĤP̂j. We can rewrite our state in terms of
projections into special Hilbert spaces and time dependant
complex weights fwg as

jϕðtÞi ¼
X
j

P̂jjϕðtÞi; ð31Þ

¼
X
j

jϕjðtÞi; ð32Þ

¼
X
j

X
jfngki∈Hj

wj
kðtÞjfngki: ð33Þ

The initial values of wj
k are given

wj
kðt ¼ 0Þ ¼ hfngkjϕjðt ¼ 0Þi: ð34Þ

We can then rewrite Eq. (26) as

∂tjϕi ¼ −i
X
j

ĤjP̂jjϕi; ð35Þ

where the evolution of each term in the sum is completely
independent of the evolution of the other terms. We can
therefore solve for each term in parallel.
We integrate the weights w⃗j

i using a second order
integrator of the Schrödinger equation, i.e., we take weights
at a time t to a time tþ Δt via

wj
kðtþ ΔtÞ ¼ wj

kðtÞ − iΔt
X
m

Ĥj
kmw

j
mðtÞ

− Δt2
X
l

Ĥj
kl

X
m

Ĥj
lmw

j
mðtÞ: ð36Þ

Using the fact that the special Hilbert spaces partition the
total Hilbert space we can say the computational complex-
ity of integrating Eq. (36) is OðPjðDjÞ2Þ ≤ OðD2

TÞ.
However, it should be noted that the number of nonzero

values in a given row or column of the Hamiltonian
projected into any special Hilbert space, Ĥj

kl, can be no
greater than the number of interaction terms in Eq. (1),
i.e.,M4. This means that for large enough systems, i.e., when
M4 ≲Dj the matrix is sparse and the scaling becomes
OðPj M

4DjÞ. Contrasted with the scaling of the classical
field solver, ∼OðM logMÞ, it is clear that the full quantum
simulation requires much more computational resources.
Finally, the total state jϕðtÞi can be recovered by

summing over the special Hilbert spaces and associated
weights as follows:

jϕðtÞi ¼
X
j

X
k

wj
kðtÞjfngki: ð37Þ

Using the solver described above we can simulated a
truncated Hilbert space of the full quantum solution.
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IV. RESULTS

A. Test Problems

In order to test how increasing occupation numbers
effect the duration of an accurate classical field approxi-
mation for a variety of systems, we run the following
simulation parameters and initial conditions. We will
then vary the occupation numbers of the initial conditions.
The parameter describing this scaling is r, which is
equal to the average mode occupation. We choose this
scaling parameter so our results can be more easily
compared with those in [13]. Additionally, we create an
initially random phase for the field; ϑi represents the
initial phase of the i’th mode. We choose the initial phases
once by drawing from a uniform distribution, i.e.,
ϑi ∼U½0; 2πÞ, and then use the same values of ϑi for all
simulations. The initial conditions used are written in
terms of r and ϑi below:
(1) Number eigenstates. We simulate the number eigen-

state j0; 2r; 2r; 1r; 0i.
(2) Coherent state. We simulate the coherent state

z⃗ ¼ ð0; ffiffiffiffiffi
2r

p
eiϑ1 ;

ffiffiffiffiffi
2r

p
eiϑ2 ;

ffiffiffiffiffi
1r

p
eiϑ3 ; 0Þ.

(3) Field number state. We simulate the field number
state z⃗ ¼ ð0; ffiffiffiffiffi

2r
p

eiϑ1 ;
ffiffiffiffiffi
2r

p
eiϑ2 ;

ffiffiffiffiffi
1r

p
eiϑ3 ; 0Þ.

And simulation parameters
(1) Attractive long range interactions. Here we set

ωj ¼ j2=2, Λ0 ¼ 0, and C ¼ −0.1=r.
(2) Repulsive/Attractive contact interactions. Here we

set ωj ¼ j=r, Λ0 ¼ �0.1=r, and C ¼ 0.
The initial mode distribution is chosen because it is

representative of generic initial conditions; i.e., the initial
conditions are not some highly specific state which may
have nongeneric properties. Similarly generic initial con-
ditions corroborate the results we find in this work.
We note here that the number of terms in the sums in

Eqs. (10) and (11) is much greater than those we need to
simulate in order to capture the dynamics of the system. For
example Eq. (10) contains an infinite number of terms. We
therefore truncate each sum such that the largest terms are
included. In terms of the squared norm of the state, which
corresponds to the total probability included in the system,
we truncate each sum such that hz⃗jz⃗i ≥ :999.
The simulation parameters are also scaled with r so that

the strength of the interacting term in Eq. (5) is held
constant. This is done so that the corresponding classical
solution remains constant as we scale the occupation
numbers of the particles.
In general, we expect that the mode occupation

number values of number eigenstates to deviate from
the classical evolution on dynamical timescales, as this is
simply the timescale on which the system will differ from
its own initial conditions. We expect coherent and field
number states to adhere to the classical solution for at
early times. This can be seen for long range interactions
in Fig. 2.

The classical field simulations are solved using the
method described in III A and the quantum simulations
are solved using the method described in III B.

B. Qualitative convergence

We can get a intuitive sense for how increasing the
occupation number effects convergence to the classical
solution by looking at how the evolution of the mode
occupations approach the classical evolution as we change
the scaling parameter r; compare with Fig. 2 in [13].
We make this comparison for a given mode for our

test problems in Fig. 3. We compare the evolution of the
quantum solution occupation numbers and the classical
occupation numbers as we change the total particle number
occupations, while holding NðΛ0 þ CÞ fixed. This is the
appropriate constant to hold fixed in order to achieve the
same classical evolution as N is varied. Notice also that,
in the context of scalar field dark matter, the evolution of
cosmic densities is well constrained and therefore the
product of densities and gravitational constant is also well
constrained and it makes sense to hold the corresponding
product NðΛ0 þ CÞ fixed.
We can see that the coherent states and field number

states tend to converge towards the classical solution as

FIG. 2. Here we show the quantum evolution of the occupation
number of a particular mode for different initial conditions,
shown in solid, compared to the classical evolution, show in
dotted red. We show the expectation value of the second mode
occupation number written E½N̂2�. Notice that the evolution of
number eigenstate initial conditions differs from the classical
evolution on dynamical timescales, admitting large corrections
almost immediately. In contrast, coherent and field number state
initial conditions closely track the classical evolution at early
times. Here we set r ¼ 11.

SINGLE CLASSICAL FIELD DESCRIPTION OF INTERACTING … PHYS. REV. D 105, 036012 (2022)

036012-7



the occupation numbers are increased. We can see also that
the rate of convergence diminishes as occupation number is
increased. Notice that increasing the occupation numbers
of the number eigenstate do not cause it to approach the
classical solution as noted in [10,13]. A single field
description is inadequate for describing number eigen-
states; however it was demonstrated in [10] that an
ensemble of fields was an accurate approximation of the
quantum evolution.

C. Q Parameter

The Q parameter gives us a sense of the size of the
leading order correction to the MFT relative to the classical
terms. This is a measure of how well the quantum
distribution of the field value is centered on the classical
field value in phase space. By defining a breaktime to occur
when these correction terms are no longer subleading order
we can get a sense of how the quantum evolution converges
to the classical.

FIG. 3. Here we plot the evolution of the occupation numbers of a given mode for our test problems. Each row represents different
quantum state initial conditions, and each column different simulation parameters. We compare the quantum evolution at varying
average mode occupation number, r, to the classical solution shown in dotted red. We can see that for the coherent states and field
number eigenstates that increasing the occupation numbers leads to a quantum evolution which converges to the classical evolution. The
number eigenstate does not approach the classical solution regardless of occupation number and differ on the same timescale as it takes
for the evolution of the mode occupation number to differ from the initial conditions, the dynamical time.
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Here we simulate coherent state initial conditions which
are known to be initially well described by a classical field.
The correction terms, and correspondingly the Q param-
eter, are initially 0. Over time, the interaction term in Eq. (1)
causes the wave function to spread from the mean field

value leading to an increase in the Q parameter; see Fig. 4.
We follow the Q parameter until it is no longer Q≪1. We
define this occur at QðtQbrÞ≡ 0.15; this choice is somewhat
arbitrary, however, our results do not depend sensitively on
reasonable adjustments to this definition.
For all simulation parameters similar to scalar field dark

matter (i.e., a quadratic dispersion, long range interactions,
and coherent state initial conditions) we observe an
approximate logarithmic enhancement in the quantum
breaktime as a function of the total particle number, as
can be seen by the blue lines in the rightmost plot in Fig. 5.
A logarithmic enhancement is consistent with expectations
for chaotic interacting systems [10,19,29]. This logarithmic
scaling corroborates what we observe in Fig. 3, namely that
the rate of converges diminishes as the occupation number
is increased.
For all other simulation parameters (i.e., those with

contact interactions or linear dispersions) we observe that
Q grows approximately quadratically. This results in a
power law scaling of the breaktime; see Fig. 5.
Note that this parameter is not effective for evaluating the

deviation of state where the expectation value of the field
operator is always 0 such as the number eigenstate and field
number state.

D. PO criterion

The PO criterion evaluates how well the information in
Mij the second order moment matrix is described by a
single field. When completely described by a single field,
Mij will have a single nonzero eigenvalue. As the quantum
evolution deviates from a classical description additional
eigenvalues will become nonzero; see for example Fig. 6.
Because the trace of Mij is conserved, we can define a
breaktime by following when the size of the principle
eigenvalue falls below a certain fraction of ntot.
Here we simulate coherent and field number state initial

conditions. Both are known to initially satisfy the PO
criterion, i.e., 1 − λp=ntot ¼ 0. We follow the evolution of
the principle eigenvalue until it is no longer approximately
equal to the total number of particles, λp ≉ ntot. We can use
this quantity to define another breaktime and check that it
has the same qualitative behavior as our previous defined
time. We define this breaktime as

1 − λpðtPObr Þ=ntot ≡ 0.1: ð38Þ

The scaling of the breaktime using this definition is
consistent with our definition using the Q parameter;
see green lines in Fig. 5. The fact that there is agreement
between these two methods is a good indication that our
results are robust to the specific definition of a breaktime
and can all be used to define a time at which there exists
non-negligible quantum corrections. A noticeable excep-
tion to this is for long range interactions with a quadratic

FIG. 4. Here we plot the evolution and effect of theQ parameter
for a single mode two systems with long range interactions,
quadratic dispersion, and coherent state initial conditions but
different average mode occupation number, r. The top subplot
shows the evolution of one of the occupation numbers of a
specific mode. We show the classical evolution in dotted red with
the quantum evolutions shown as solid lines. The bottom subplot
shows the value of the Q parameter for each system, the dashed
black line indicates the breakpoint threshold value as we have
defined it. We can see that past the breakpoint for each system the
classical occupation number of the plotted mode begins to deviate
from the actual quantum results. Consistent with other results we
see that larger occupation number systems follow the classical
solution longer.
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dispersion. In this case, the scaling of the PO criterion is
consistent with a power law while the Q parameter appears
to scale as logðxÞ.
Note that the PO criterion is not effective for evaluating

the deviation of number eigenstates which start with
1 − λp=ntot ∼ 1.

E. Squeezing

We track the squeezing of the operator defined in
Eq. (18), V−ðtÞ, for systems similar to scalar field dark
matter (those with long range interactions, quadratic dis-
persions, and coherent state initial conditions). The pre-
dictions made in II E rely on the validity of the Hartree
ansatz which is assuming that a single operator of the form
of Eq. (18) is sufficient to construct the quantum state,
not only initially, but throughout its evolution. For coherent
state and field number state initial conditions this
assumption is valid at early times. At early times the linear
contribution to squeezing from Eq. (37) in [24] dominates;
see Fig. 7. This means that squeezing is initially propor-
tional to the classical average particle potential energy,
which we hold constant because the dark matter density is
well constrained. Therefore, we expect the initial onset of
squeezing not to depend on the total occupation number
ntot; see also the discussion in [14]. We can see in Fig. 8 that
this is the case. Therefore, there is some squeezing that
does not go away even as the occupation number is taken to
be much larger than unity. Note that for these systems
ntotjχj ¼ 0.242 is constant.

The single mode model also makes a prediction of the
maximum squeezing and the time at which this occurs.
However, for the multimode simulations run here we see that
these do not conform to the predictions assuming the validity
of the Hartree ansatz. This is somewhat surprising as the
maximum squeezing occurs at a time when the single mode
description of the field clearly seems to still be approx-
imately correct. The scaling of the maximum squeezing and
maximum squeezing time compared to the Hartree predic-
tions are shown in Fig. 9. It can be observed from Fig. 9 that
the strength of squeezing, as quantified by Vmin, scales
approximately as n−0.194tot , implying that highly occupied
states would get strongly squeezed at time τmin. This time
when squeezing becomes minimal is expected to increase
with ntot as n

1=6
tot assuming a Hartree ansatz. Here we observe

a milder logarithmic scaling 0.0833 logðntotÞ, which means
that extremal values of squeezing for large occupation
numbers will be reached in just a couple of dynamical time
scales. For these fits we use data points which are expected
to be well approximated by the Hartree ansatz, i.e., with
ntot ≥ 20. In [14] the squeezing time scale was the defined
by V− crossing below e−2. Extrapolating from the V− graph
in Fig. 9, solving 0.919n−0.194tot ¼ e−2, we then expect that for
ntot > 1.94 × 104 we could define the squeezing time scale
τsqz;e−2 again by V− crossing below e−2. We then expect that
τsqz;e−2≃τminðntot¼1.94×104Þ¼0.0120þ0.0833logð1.94×
104Þ¼0.834, which is close to the value 0.6 found using the
Hartree ansatz [14]. Thus, while the precise scaling of Vmin
and τmin with ntot, the absolute values of τsqz;e−2 , Vmin and

FIG. 5. Here we show how the quantum breaktime scales with total particle number. Both coherent and field number states converge to
the classical solution for all criteria, as shown by the increasing breaktime as a function of ntot. Solid lines and plus markers indicate
coherent state initial conditions, dash dotted lines with cross markers indicate field number state initial conditions. Blue lines indicate
where QðtQbrÞ≡ 0.15, green lines where 1 − λpðtPObr Þ=ntot ¼ 0.1. Note that the rightmost plot has a linear vertical axis. The dashed lines
are best fits assuming either a logarithmic enhancement or power law scaling of the breaktime with ntot, we include only points for which
ntot > 20 when performing the fit. The scaling of the breaktime defined usingQ, which measures the time it takes for the wave function
to spread around the mean field value, scales ∼ ffiffiffiffiffiffiffi

ntot
p

for the contact interaction systems, and ∼ log n4=3tot for the long range interaction.
In all cases the breaktime defined using the Penrose-Onsanger criterion has power law scaling.
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τmin for fixed ntot, were not fully captured by the Hartree
ansatz assumed in [14]; the qualitative picture and a priori
existence of squeezing of an initially coherent state remains
essentially the same. Whether squeezing of a dark matter

FIG. 6. Here we plot the evolution of the PO criterion for a
system with long range interactions, quadratic dispersion, and
r ¼ 3 average mode occupation number. In the top subplot we
compare the classical and quantum occupation number of the
second mode to the square amplitude of the principle eigenvector
multiplied by the principle eigenvalue. The bottom plot shows
how the principle eigenvalue, shown in blue, compares to the total
number of particles. The dashed black line indicating the
breakpoint threshold as we have defined it. We can see that
while all three evolutions agree at early times, past the breaktime
the classical occupation number deviates both from its true
quantum value and from the principle eigenvector. Notice also
that even when the PO criterion is approximately satisfied it is not
necessarily the case that the principle eigenvector follows the
classical field equations of motion.

FIG. 7. Here we plot the squeezing of the operator defined in
Eq. (18), which is the annihilation operator for particles in the
field defined by the principle eigenvector of M̂. The solid
blue line shows the linear prediction 1 − 4ntotjχjt, the dashed
dotted green line shows the simulated value of the squeezing
1þ 2Covðâ†; âÞ − 2jVarðâÞj, and the black x’s show the simu-
lated value of the squeezing considering only the variance
1 − 2jVarðâÞj. At very early times, when τ ≪ 1, the linear
contribution dominates and all three lines agree. The linear
prediction eventually fails around τ ≈ 0.15. Note that the line
corresponding to the contribution of the variance only to
squeezing remains close to the linear prediction for longer than
the total squeezing. This is because the covariance provides no
linear contribution. Here we set r ¼ 11.

FIG. 8. Here we plot the squeezing time, where V−ðτsqÞ ¼ 0.8,
as a function of the total particle number. The time is constant;
this is a result of the fact that the initial squeezing is proportional
to the classical nonlinearity which is constant as we increase ntot.
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scalar field is observable in principle depends on whether the
decoherence time scale is longer than the squeezing time
scale, and on whether the pointer states of the dark matter
scalar field are coherent states (for squeezing to be obser-
vationally relevant coherent states would have to be approx-
imately pointer states). Thus the answer to what extent the
squeezing is observationally relevant requires study of the
impact of a monitoring and decohering environment, such as
baryons, which will be part of future work.

V. CONCLUSIONS

We can see immediately that both total occupation
numbers and initial conditions determine the length of
time the quantum evolution of a system will track the
classical; see Fig. 5. Using our highly parallel solver, we
test large systems and provide a novel qualification of the
convergence of the quantum description to its classical
approximation. While number eigenstate, coherent state,

and field number state initial conditions can all produce the
same mode number occupation expectation values, only the
latter two approach the results of the MFT as occupation
numbers are increased; see Fig. 3. This corroborates results
found in [9,10,13].
All ofmetrics used tomeasure the quantum breaktime give

approximately similar results, over the range of occupation
numbers tested, indicating a robustness to the specific
definition of breaktime; see Fig. 5. The exception is long
range system with quadratic dispersion. We can see that, for
the system we tested with long range interactions, the
breaktime defined using the Q parameter, Eq. (13), scaled
logarithmicallywith the total occupation number for coherent
state initial conditions. This corroborates the argumentsmade
for chaotic systems in [10,19,29]. However, the breaktime
measured using the PO criterion, Eq. (38), has power law
scaling. Because theQ parameter measures spreading around
the mean field value and the PO criterion simply measures
whether the M̂ij matrix can be described by a single field, this
corroborates the idea that the density may admit a single field
description but that this field may not be the solution to the
classical field equations of motion, Eq. (6).
The other systems we tested evolve with Hamiltonians

similar to those studied in [10,13], Eq. (1), with linear
dispersion relations and contact interactions. The break-
times of these systems approximately scale as power laws,
roughly ∝ ffiffiffiffiffiffiffi

ntot
p

.
We can see in Fig. 5, the scaling of the breaktime

depends on both the initial conditions and interactions. It
should be noted that power law and logarithmic scaling
make very different predictions for the breaktimes of large
systems. It is therefore not clear that studying toy models
with only contact interactions can be extrapolated to those
with long range interactions. Likewise, it is equally
important that initial conditions be appropriately modeled
as for systems like our long range toy model; all three initial
conditions we tested provided different breaktime scaling.
We find that the onset of quantum squeezing is inde-

pendent of occupation number, see Fig. 8, and well
predicted by the linear approximation, Eq. (22), at early
times, see Fig. 7, corroborating the results of [14]. This is a
result of the fact that the system is initially well described
by the Hartree ansatz. The predictions that the single mode
model makes for the maximum squeezing value and time
however are not accurate for multimode systems; see Fig. 9.
By the time the state is maximally squeezed it is no longer
well approximated by a single mode. This is somewhat
puzzling since tPObr ≫ tmin for sufficiently large ntot which
can be inferred by comparing Fig. 9 with Fig. 5 (right
panel). This means that the single mode approximation fails
to correctly describe the squeezing during times at which
the single mode has been found to dominate the dynamics
of the quantum state.
Coherent state initial conditions and a Hamiltonian

which includes long range interactions and a quadratic

FIG. 9. Here we show the scaling of the minimum value of V−
and the time when it occurs and the best power law fit to the data
points. Neither has the same scaling predicted by the one mode
model. By the maximum squeezing time the one mode model
approximation is no longer accurate. When performing the fit we
only include points for which the one mode model was predicted
to be accurate, i.e., with ntot > 20.
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dispersion represents the system most similar to scalar field
dark matter. It should be noted that for the large occupation
numbers associated with ultralight cosmic dark matter, any
power law scaling will provide an extremely large enhance-
ment in the breaktime, which may not be the case for
logarithmic scaling. Because our results indicate a loga-
rithmic enhancement of the breaktime with particle number
for the breaktime defined using the spread in the wave
function, i.e., Q, but a power law enhancement for the
breaktime defined using the PO criterion, it is not immedi-
ately clear that quantum corrections would remain small
over the age of the universe for cosmologically interesting
systems even for ultralight dark matter candidates.
However, the fact that the PO criterion has power law
scaling may imply that, while quantum corrections may be
needed to model the dynamics of densities, a single field
may ultimately accurately describe them at late times. It is
not clear whether this single field would be a solution of the
classical field equations. The results of the convergence
tests in this work provide novel motivation to further study
potential quantum corrections to the classical field equa-
tions of motion. Therefore, work investigating the break-
time for more realistic systems is needed to conclude
whether or not quantum corrections are relevant to the
evolution of scalar field dark matter. An analysis of this
question, using the solver introduced in [24], will be
included in subsequent work.
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APPENDIX A: SPECIAL HILBERT SPACE SIZE

In this Appendix we discuss how the size of the special
Hilbert spaces scales with the simulation parameters. Let us
consider a system of M interacting modes. Recall that a
given special Hilbert space is uniquely identified by a net
momentum and total particle number as

ntot ¼
X

nk∈fng
nk; and ðA1Þ

pnet ¼
X

nk∈fng
knk; ðA2Þ

and that the space contains all the number eigenstates
which have the same ntot and pnet. The dimensionality of
the special Hilbert space then is simple in the number of

ways it is possible to place ntot inM modes such that the net
momentum is pnet. The simulations we run here typically
approximately satisfy the conditions that ntot ≫ M > 1.
In this limit the possible arrangements go as ð ntot

M−2Þ ∼ nM−2
tot ,

the −2 coming from the two constraints, fixed net momen-
tum and total particle number.
To demonstrate this scaling we plot the size of special

Hilbert spaces containing a number eigenstate with a
random number of particles placed in each mode. This
is shown in Fig. 10. We can see that the scaling approx-
imately follows ∼nM−2

tot .
It should also be noted that each individual Hilbert space

requires far fewer numbers to represent than predicted by
Eq. (5) in [13].

APPENDIX B: RELAXATION TIME

For number eigenstate initial conditions it was demon-
strated in [13] that there was a fixed relaxation time that
depended only on constants present in the classical theory
as the total occupation number of states became large; see
Fig. 12. Likewise, it was shown that the classical evolution
never relaxed. We would therefore expect that if coherent
states approached the classical solution with increasing
occupation number that the relaxation time of our quantum
simulations would also increase with occupation number.
This is exactly what we see for coherent state initial
conditions in Fig. 11; higher occupation number states
oscillate more dramatically and have a longer relaxation
time, consistent with them approaching the classical field
description in the high occupation number limit.

FIG. 10. Here we show the size of special Hilbert spaces with
randomntot andpnet as a function ofntot for a number of differentM.
The solid lines are∝ nM−2

tot shown for reference.We can see that the
special Hilbert spaces have this approximate scaling.
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