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The Wentzel-Kramers-Brillouin (WKB) perturbative series, a widely used technique for solving linear
waves, is typically divergent and, at best, asymptotic, thus impeding predictions beyond the first few
leading-order effects. Here, we report a closed-form formula that exactly resums the perturbative WKB
series to all orders for two turning point problems. The formula is elegantly interpreted as the action
evaluated using the product of spatially varying wave number and a coefficient related to the wave
transmissivity; unit transmissivity yields the Bohr-Sommerfeld quantization.
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I. INTRODUCTION

Linear waves are ubiquitous in the world of physics with
applications ranging from quantum mechanics [1] to
electromagnetism, fluid dynamics, and astrophysics [2].
The properties of these waves are encoded in their
dispersion relations, which reveal the nature of the medium
they traverse, as well as their generating source [2,3]
(e.g., gravitational waves). This problem of obtaining
the dispersion relation is traditionally addressed with the
Wentzel-Kramers-Brillouin (WKB) perturbative series [4],
which however is typically divergent and, at best, asymp-
totic [1,5]. It thus presents challenges to predict phenomena
beyond the leading-order effects. Obtaining an expression
for this series to all orders in perturbation theory, preferably
in a closed-form, is therefore desirable. Despite its useful-
ness in finding previously unknown physical interpreta-
tions of fully quantized wave, it has remained elusive. Here,
we accomplish both the tasks of finding a closed-form
formula and assigning a physical meaning to it.
In the quest for developing a closed-form quantization

condition (dispersion relation) for linear waves, several
insightful but hitherto unsuccessful attempts have been
undertaken through various ways like investigating struc-
tures of higher order expressions in the WKB series [6,7],
utilization of supersymmetric WKB method [8,9], complex
WKB method [10], and phase integral method [11]. We
present here a simple and insightful method to achieve this
aim successfully.
The unexpected simplicity (both in mathematical struc-

ture and geometric-optical interpretation) of the closed-
form formula reported here, arising out of the unwieldy
WKB series, is what we believe to be the most striking
about this work.

Our principal result is that the one-dimensional wave
equation1 (or Schrödinger equation)

ϵ2
d2ψðxÞ
dx2

¼ QðxÞψðxÞ; ψð�∞Þ ¼ 0; ð1Þ

with QðxÞ ¼ −k2ðxÞ ¼ 2m½VðzÞ − E�=ℏ2, where kðzÞ is
the local wave number, VðzÞ is the potential, E is the energy
eigenvalue, m and ℏ are the mass and reduced Planck’s
constant, respectively, for the case of two turning points
[locations where QðzÞ ¼ 0 with z being a complex vari-
able] has an exact closed-form quantization condition

I
Γ
kðzÞ · τðzÞdz¼

�
Kþ 1

2

�
2π; ðK ¼ 0;1;2;…Þ; ð2Þ

where TðzÞ ¼ τ2ðzÞ is the wave-traversing medium’s trans-
missivity of a layer of width 1=kðzÞ given as [12]

τðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1

2

dðk−1Þ
dz

�
2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
S01
S00

�
2

s
: ð3Þ

The contour Γ encircles the two turning points in an
anticlockwise direction. (S00 and S01 are explained immedi-
ately below, but presented here due to their elegant
appearances.) Unit transmissivity reproduces the com-
monly known leading-order WKB approximation.

II. CONVENTIONAL WKB

To begin with, consider the traditional transformation
that is applied to the Schrödinger equation (1),
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1The book-keeping parameter ϵ can be set equal to 1 at the
outset or at the end of the perturbative calculations.

PHYSICAL REVIEW D 105, 036010 (2022)

2470-0010=2022=105(3)=036010(10) 036010-1 © 2022 American Physical Society

https://orcid.org/0000-0002-4723-2170
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.036010&domain=pdf&date_stamp=2022-02-22
https://doi.org/10.1103/PhysRevD.105.036010
https://doi.org/10.1103/PhysRevD.105.036010
https://doi.org/10.1103/PhysRevD.105.036010
https://doi.org/10.1103/PhysRevD.105.036010


ψðz; ϵÞ ¼ exp

�
1

ϵ
Sðz; ϵÞ

�
; ð4aÞ

or; S0ðz; ϵÞ ¼ ϵ

ψðz; ϵÞ
dψðz; ϵÞ

dz
; ð4bÞ

to obtain the Riccati equation: ðS0Þ2 þ ϵS00 ¼ QðzÞ.
The quantization condition for energy eigenvalue E in

Eq. (1) is given in terms of the WKB eigenfunction’s
exponent in Eq. (4a) as2:

1

ϵ

I
Γ
S0ðz; ϵÞdz ¼ K · 2πi: ð5Þ

This equation, although exact, is not useful unless we
know what S0ðz; ϵÞ is [or be able to solve the above Riccati
equation or Eq. (1) exactly]. We, therefore, proceed with
the perturbative method to compute S0ðz; ϵÞ as

S0ðz; ϵÞ ¼
X∞
n¼0

ϵnS0nðzÞ: ð6Þ

Substituting this ansatz in the aforementioned Riccati
equation and equating like powers of ϵ, one finds the
S0nðzÞ to obey the recurrence relation,

S00ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffi
QðzÞ

p
¼ ikðzÞ; ð7Þ

S01ðzÞ ¼ −
1

2

d
dz

ln½S00ðzÞ�; ð8Þ

2S00S
0
n þ

Xn−1
j¼1

S0jS
0
n−j þ S00n−1 ¼ 0; ðn ≥ 2Þ: ð9Þ

Equation (5) thus, to all orders in perturbation theory, is (it
was first written in this form by Dunham [13]):

1

2iϵ

I
Γ

X∞
n¼0

ϵnS0nðzÞdz ¼ Kπ; ðK ¼ 0; 1; 2;…Þ: ð10Þ

This series on the left-hand side (LHS) is now to be
summed up. However, it is typically a divergent asymptotic
series [14,15]. One way to circumvent this challenge is to
employ the Borel summation technique and assign a
physical meaning to such a series. When employed, the
analytic continuation of the Borel transform, however,
presents another difficulty—singularities on the integration
contour (see, e.g., [16–19]). Avoiding such with contour
deformation yields ambiguous imaginary terms that plague
the energy eigenvalues E. Significant progresses have been

made to address such problems and more recently via exact
WKB and uniform WKB methods, following advances of
resurgence theory, developed by Ecalle and others in the
1980s [10,20–22]. In such works, the ambiguous imaginary
terms arising from the Borel summation are made to cancel
each other systematically to all orders by considering a
“resurgent trans-series” for the energy eigenvalues [22], as
opposed to a perturbative series for it as we have done here.
Such a path although very insightful and useful will not be
pursued here as we wish to present an alternative simpler
way to resum the diverging series of Eq. (10), for a class of
potentials, and assign a physical meaning to the resummed
series.
Note that, in Eq. (10), the term of first order in ϵ [i.e.,

S01ðzÞ] can be integrated exactly [4]:

1

2i

I
Γ
dzS01 ðzÞ ¼ −

1

8i

I
Γ
dz

d
dz

ln½QðzÞ�

¼ −
1

8i
ln QðzÞj

evaluated once
around contour Γ

¼ −
1

8i
ð2 · 2πiÞ ¼ −

π

2
; ð11Þ

where evaluating the logarithmic function around the
contour Γ, enclosing the two turning points of QðzÞ yields
4πi.
This total contribution of −π=2 on the LHS of Eq. (10)

correctly accounts for the zero-point energy of the simple
harmonic oscillator. The series in Eq. (10), truncated at the
first order, is the Bohr-Sommerfeld quantization relation
[1]. It has been considered as an exceptional case that all
other higher order terms for the simple harmonic oscillator
turn out to be zeros. However, in general, this is not the
case. Fröman and Fröman [11] have shown that all other
higher odd-order terms in the WKB series, Eq. (10), can be
written as exact derivatives, regardless of the type of
potential, which upon contour integrating yield zeros.
Setting ϵ ¼ 1, we can, therefore, rewrite Eq. (10) as

1

2i

I
Γ

X∞
n¼0

S02n ðzÞdz¼
�
Kþ1

2

�
π; ðK¼0;1;2;…Þ: ð12Þ

Several attempts have been undertaken in the past [6,23]
to infer the general expression for S02n with expectations of
summing up the series afterwards. It, however, has turned
out to be, heretofore, insurmountable. It is the objective of
this work to present such a summation in an exact manner
for an arbitrary potential with two turning points. (Note that
such a route has been possible only for a very few special
kinds of potentials, e.g., the Eckart and the Morse potentials
[6,23]). Next, we outline our method of summing up the
WKB series up to all orders and interpret its physical
meaning thereafter.

2One way to derive this is by integrating dS=dz ¼ S0ðz; ϵÞ in
Eq. (4b) along a contour Γ such that it encloses, for theKth energy
level, all K zeros of the eigenfunction on the real axis, between
the classical turning points. This leads to

H
Γ S0ðz; ϵÞdz ¼H

Γ ϵ
d lnψðzÞ

dz dz ¼ ϵ lnψðzÞjevaluated once around Γ ¼ K · 2πiϵ.
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Let us recast Eq. (12) as

1

2i

I
Γ
S00ðzÞ ·

X∞
n¼0

T2n ðzÞdz ¼
�
K þ 1

2

�
π; ð13Þ

where T2nðzÞ ¼ S02nðzÞ=S00ðzÞ and the summation over T2n
will be achieved below. Introduce an economical notation
LðzÞ≡ 1=S00ðzÞ. [LðzÞ can be regarded as having the
dimension of length, found using Eqs. (7) and (1), and
so does D−1 where D≡ d=dz.] Dividing both sides of
Eq. (9) by ðS00Þ2 to rewrite it in these new notations of T,D,
and L, we find,

2Tn þ
Xn−1
j¼1

TjTn−j þ L2
d
dz

�
S0n−1
S00

·
1

L

�
¼ 0; ð14Þ

2Tn ¼ −
Xn−1
j¼1

TjTn−j − LDTn−1 þ Tn−1DL: ð15Þ

III. PATTERN SEARCHING CAMPAIGN

Note T0 ¼ 1 and T1 ¼ DL=2. This allows to cast
Eq. (15) finally in a neat way as

Tn¼Tn−1T1−
1

2

Xn−1
j¼1

TjTn−j−
1

2
LDTn−1; ðn≥2Þ: ð16Þ

We provide below the expressions for Tn.
3 Notice the

appearance of L below,

T2 ¼
T2
1

2
− L ×

�
DT1

2

�
; ð17aÞ

T3 ¼ − L ×

�
DT2

2

�
; ð17bÞ

T4 ¼ −
T4
1

8
− L ×

�
DT3

2
−
T2
1 ·DT1

4
þ LDT1 ·DT1

8

�
;

ð17cÞ

T5 ¼ − L ×

�
DT4

2
−
T2 ·DT2

2

�
; ð17dÞ

T6 ¼
T6
1

16
− L × ½…�; ð17eÞ

where ellipsis with a square bracket, ½…�, represents a
collection of functions of lower order Tn. Note that all terms

of odd order (in n) of Tn necessarily begin with L because
these expressions when substituted in Eq. (13) yield
cancellation of such L with L in the denominator of
S00 ¼ 1=L. The remaining part of the integrand can be
shown to be (the sum of) the product of exact derivatives or
expressions that can be changed into them [25]. Such an
integrand with the product of exact derivatives is trivially
zero upon contour integrating [26] because they are
single-valued functions for the defined contour path (no
logarithmic derivatives are involved here as L in the
denominator of S00 ¼ 1=L has been canceled out). This
is tantamount to stating that all odd-order terms of Tn
contribute to the wave function’s amplitude (i.e., they do
not play role in the quantization condition [6]) and Tn’s
even-order terms modulate the phase of the wave function
—thus the quantization condition involves thereof. To
reiterate, for n ≥ 1, Todd order ¼ T2nþ1 ¼ −L × ½…� and
Teven order ¼ T2n ¼ …T2n

1 − L × ½…�. After explicitly com-
puting higher order terms (e.g., T8 ¼ 5T8

1=128 − L × ½…�),
we recognize a completely unexpected but instructive
pattern, based uponwhich we propose the following hypoth-
esis and prove it subsequently.4

IV. INDUCTIVE HYPOTHESIS

Proposition: For any n ∈ N,

PðnÞ∶ T2n ¼
�
n − 3

2

− 3
2

��
T1

i

�
2n
− L × ½…�; ð18Þ

where ðn−3
2−3
2
Þ is the binomial coefficient and i2 ¼ −1.

This statement is not challenging to prove using the
principle of mathematical induction (see Sec. A in the
Appendix for the proof).
Although not immediately obvious, the inductive

hypothesis, presented in the precise form as above, has
paramount consequence. In the proposition, in Eq. (18), the
first term of T2n on the right hand side lacks L in front of it
unlike the second term and hence, when substituted
in Eq. (13), it yields a function that does not vanish
upon doing the contour integration [as terms like

H
Γ dzS00 ·

T2n
1 ∼

H
Γ dzðDLÞ2n=L contribute to a logarithmic derivative

of L and thus the contour encloses poles of a logarithmic
function, which are the zeros of QðzÞ]. In contrast thereof,
the second term of T2n that begins with L, written as
L × ½…�, contributes exactly zero upon contour integrating
as the cancellation of this L with S00 ¼ 1=L in Eq. (13)
modifies the WKB integrand into (a sum of) the product of
exact derivatives (importantly, without any logarithmic
derivative) [25]. Resulting product of exact derivatives,

3It is worth highlighting that Tn is a dimensionless function as
it has exactly the same number of D’s and L’s; see Ref. [24].

4We are very grateful to Michael V. Berry for questions that
prompted us to propose this hypothesis.
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lacking logarithmic term, amounts to zero upon contour
integrating; the reasoning here can follow the same as was
aforementioned for the odd-order terms in the WKB series
[26,27]. Thus this campaign of searching terms which
begin with L and others which do not is unexpectedly
helpful. We shall, therefore, deal with only the power series
in T1 in Eq. (13). By straightforward summation of this
special series up to all orders in perturbation theory, we
obtain a closed-form expression for Eq. (13) as presented
below in Eq. (19).

�
K þ 1

2

�
π ¼ 1

2i

I
Γ

dz
L

�
1þ

X∞
n¼1;2;::

�
n − 3

2

− 3
2

��
DL
2i

�
2n
�

¼ 1

2i

I
Γ

dz
LðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
DL
2

�
2

s

¼ 1

2

I
Γ
kðzÞ ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
S01
S00

�
2

s
dz

¼ 1

2

I
Γ
kðzÞ ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1

2

dðk−1Þ
dz

�
2

s
dz: ð19Þ

We emphasize that our summation in Eq. (19) involves a
power series, which is also the case in all the special
problems for which the WKB series has been summed up
exactly [23,28]. We believe this to be the reason why the
first few terms of the WKB expansion often approximate
the correct eigenvalues despite the full series being diver-
gent (this is, in part, also an answer to why the WKB
expansion is asymptotic).
We are also able to physically interpret the expressions

involved on the last line of Eq. (19) using the notion of
geometric optics; however, the equation in its entirety is
nontrivial to elucidate, possibly owing to the quantum
effects embodied in all orders (in perturbation theory).

V. GEOMETRIC-OPTICAL MEANING

We borrow here the illustration by Bremmer [12] where
the author demonstrates, mutatis mutandis, the similarity of
each order of WKB series (consider its nth order) to the
transmitted waves in an infinitesimally discretized inho-
mogeneous medium that undergo n-number of reflections.
At each reflection, the waves change their direction by
180°. Thus a wave that begins from a point far to the left
gets continually transmitted to the right while suffering
reflection at each discretized boundary (and consider for
now only the directly transmitted waves—not the waves
that are reflected doubly, quadruply, or an even number of
times that also can eventually transmit to the right).
Such resulting wave function at the rightmost end yields
the 1st order WKB approximation [12]. Each of the

above-mentioned reflected waves can undergo further
reflection(s) and keep continually transmitting to the right.
The more the number of reflections they suffer before they
arrive to the rightmost end, the higher they belong to in the
order of WKB expansion. Referring readers to the original
paper [12] for additional interesting details, we present now
heuristically how Bremmer arrives at the reflection coef-
ficient of a layer of width 1=kðzÞ. The well-known
reflection coefficient in one dimension is (Bremmer [12]
uses R notation, which we shall reserve for the reflectivity
to avoid potential confusions)

rðzÞ ¼ ks − ksþ1

ks þ ksþ1

≈
ks − ksþ1

2ks
≈ −

dk=dξ
2k

; ð20Þ

where s is the layer number in the infinitesimally dis-
cretized inhomogeneous medium (within which ks remains
constant) and ξ is proportional to the number of wave-
lengths over which the wavelength (or k) changes appreci-
ably (from ks to ksþ1). Following Bremmer [12],
dξ ¼ kðzÞdz. Therefore, the transmissivity of a layer of
width 1=kðzÞ is

TðzÞ ¼ 1 − r2ðzÞ ¼ 1 −
�
−
dk=dξ
2k

�
2

¼ 1 −
�
1

2

dðk−1Þ
dz

�
2

;

ð21Þ

which is exactly what appears on the last line of Eq. (19).
Note that the wave number, obtained via resummation of

WKB series to all orders [i.e., integrand in Eq. (19)],
vanishes even before we reach the classical turning
points. Interestingly, for all potentials, it vanishes exactly
at the locations where pclðxÞ · x ¼ ℏ=2, where pcl ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½E − VðxÞ�p

(cf. with the Heisenberg uncertainty
principle).

VI. APPLICATIONS

Our novel closed-form quantization condition yields
exact energy eigenvalues to potentials with two turning
points. We demonstrate the efficacy of our formula in an
example below and present other cases like simple har-
monic oscillator, 3-dimensional harmonic oscillator,
Coulomb potential, Eckart potential, and Morse potential
in Sec. D of the Appendix. We also find in cases of
3-dimensional spherically symmetric potentials, the
Langer-correction factor [29,30] appears naturally upon
performing the contour integration of our formula that
resums all orders perturbative effects. This corroborates the
previous claim that the Langer modification comes from the
higher order corrections in the WKB series [28].
Consider an asymmetric Rosen-Morse potential, VðxÞ,

with ℏ2 ¼ 2m: VðxÞ ¼ −U0sech2ðx=aÞ þU1 tanh ðx=aÞ.
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Let z be a complex variable such that z ¼ tanh ðx=aÞ.
Then, za and zb are the two classical turning points,
satisfying za þ zb ¼ −U1=U0; zazb ¼ −ðEþ U0Þ=U0.
Using Eq. (2),

1

2i

I
Γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16½VðzÞ − E�3 þ ½V 0ðzÞ�2

p
4½VðzÞ − E� dz ¼

�
K þ 1

2

�
π; ð22Þ

where K ¼ 0; 1; 2;… represents different energy levels.
The poles of the integrand are at z ¼ za; zb; 1;−1, and ∞.
So, calculating residue at each pole with a proper principal
value yields

−
1

4
þ1

4
−
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðza−1Þðzb−1ÞU0

p
2

−
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðzaþ1Þðzbþ1ÞU0

p
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4a2U0

p
2

¼Kþ1

2
; ð23Þ

∴
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−E − U1

U0

s
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Eþ U1

U0

s

¼ −
1

a
ffiffiffiffiffiffi
U0

p
�
K þ 1

2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a2U0

p
2a

ffiffiffiffiffiffi
U0

p ; ð24Þ

which agrees with Ma and Xu [31] and the individual terms
directly manifest from the residues at poles whose locations
are precisely predicted by Eq. (22).
At last, we remark that, for reasons not fully understood,

the proposed quantization relation works only for two
turning point problems. Nevertheless, understanding the
nature of the exactly quantized action in two turning
point problems, considered here, is likely to benefit the
extension of our geometric optically interpretable equation
to problems with multiple turning points. Such interesting
extensions will be investigated in a future study. Our
proposed quantization condition might also engender
rethinking of quantization in higher dimensions in terms of
geometry [32].

VII. CONCLUSION

This article presents an exact closed-form quantization
relation by summing up the WKB series to all orders in
perturbation theory for arbitrary one-dimensional potentials
having two turning points. The new resummation pro-
cedure utilized herein reveals an unexpectedly simple
pattern in the general term of the WKB series, leading
to an inductive hypothesis, which we are able to prove by
the principle of mathematical induction. The presented
formula is then physically interpreted as the action of a
wave with wave number corrected by a factor related to
the wave transmissivity. Unit transmissivity recovers the
Bohr-Sommerfeld quantization relation. This closed-form
expression for the quantization might also be useful in

problems with more than two turning points where non-
perturbative effects that give rise to tunneling phenomena
come into play, i.e., spectral curves with nonzero genus
[33]. For such problems, some of the neglected terms in the
series resummation appear to be necessary. In the light of
resurgent perturbative/nonperturbative relations [33–35],
collecting such terms seem interesting and further inves-
tigation is merited. This will, however, be left for the future
as it is beyond the objective of the present article. Arguably
the most important advancement through this work is the
discovery of an elegant and physically interpretable equa-
tion emerging from a myriad of complicated terms in the
WKB series that become increasingly unmanageable at
each higher order of the series. It is gratifying to find that
the spectral problem with genus-0 spectral curve (i.e., with
two turning points and no tunneling phenomenon) can be
reduced to an exact equation as simple and economical as
Eq. (2). Analyzing this equation might lead to a deeper
understanding of quantum geometry [33].
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APPENDIX A: PROOF BY THE PRINCIPLE OF
MATHEMATICAL INDUCTION

Below, we present the proof for the proposition put forth
for T2n in Eq. (18). The statement, P(n), is trivially satisfied
for n ¼ 1 [cf. Eq. (18) with Eq. (17a)]. Now, we assume it
to be valid for an arbitrary n and prove that it implies the
proposition, in Eq. (18), is true for nþ 1 as well [i.e.,
P(nþ 1) is true]. We begin with the WKB recurrence
relation, Eq. (16),

T2ðnþ1Þ ¼ −
1

2

X2ðnþ1Þ−2

j¼2

TjT2ðnþ1Þ−j −
LDT2ðnþ1Þ−1

2
ðA1aÞ

¼ −
X2n
j¼2;4;…
even

TjT2nþ2−j

2
−

X2n−1
j¼3;5;…

odd

TjT2nþ2−j

2
−
LDT2nþ1

2
ðA1bÞ
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¼
�
−

Xn
j=2¼1;2;…

� j
2
− 3

2

−3
2

��
nþ1− j

2

−3
2

��
T1

i

�
2nþ2

−L× ½…�
�

−
X2n−1
j¼3;5;…

odd

TjT2nþ2−j

2
−
LDT2nþ1

2
ðA1cÞ

¼−
Xn

j=2¼1;2;…

� j
2
− 3

2

−3
2

��
nþ1− j

2

−3
2

��
T1

i

�
2nþ2

−L× ½…�−L× ½…�−LDT2nþ1

2
½∵Todd begins with L�

ðA1dÞ

¼
�
nþ 1 − 3

2

− 3
2

��
T1

i

�
2ðnþ1Þ

− L × ½…� ▪: ðA1eÞ

This proves the proposition.

APPENDIX B: Tn BEGINNING WITH L
CONVERTIBLE TO A PRODUCT OF EXACT

DERIVATIVES

Here, we detail the recipe of casting any expression in Tn
that begins with L into a product of exact derivatives
(without a logarithmic derivative) [25]. Consider the term
in Tn that begins with L:

I
Γ
dzS00Tn ¼

I
Γ
dzS00L × ½…� ¼

I
Γ
dz ×

1

L
× L × ½…�

¼
I
Γ
dz ×

1

L
× L × ½ðDp1Lq1Dp2Lq2…Þ ×… × ðDpj−1Lqj−1DpjLqj…Þ�

¼
I
Γ
dz½ðDp1Lq1Dp2Lq2…Þ ×… × ðDpj−1Lqj−1DpjLqj…Þ�; ðB1Þ

where Dp1Lq1Dp2Lq2… represents Dp1ðLq1Dp2ðLq2…ÞÞ; p1; q1; p2; q2;…; pj; qj;… are all integers in between (and
including) 0 and n, satisfying the constraints: p1 þ p2 þ � � � þ pj þ � � � ¼ n (for n number of D’s) and q1 þ q2 þ � � � þ
qj þ � � � ¼ n − 1 (for n − 1 number of L’s); and one extra L lies in the very beginning of Tn, which has gotten canceled with
S00 ¼ 1=L. This makes Tn to have n number of D’s and L’s, as argued in Ref. [24]. If all p1; p2;…; pj;… are equal to or
greater than 1, this integrand is already a product of exact derivatives (without a logarithmic derivative as S00 ¼ 1=L has
already been canceled with L of Tn). If any of p1; p2;…; pj; :: is zero, the integrand in Eq. (B1), using chain rule, becomes
(say p1 ¼ 0):

integrand ¼ ðD0Lq1Dp2Lq2…Þ ×… × ðDpj−1Lqj−1DpjLqj…Þ ¼ ðLq1Dp2Lq2…Þ ×… × ðDpj−1Lqj−1DpjLqj…Þ
¼ D½ðLq1Dp2Lq2…Þ ×… × ðDpj−1Lqj−1DpjLqj…Þ�−D½ðLq1Dp2Lq2…Þ ×…� × ðDpj−1−1Lqj−1DpjLqj…Þ; ðB2Þ

thus turning the integrand into (a product of) exact derivatives. This process can be repeated if pj−1 − 1 also happens to be 0
(and if several L multiplies each other, its exponent can be raised to abridge this procedure). It should be emphasized that it
is guaranteed to find such a transformation as there are exactly the same number of D’s and L’s in any Tn [24]. In this
regard, searching a general expression for T2n as stated in the proposition in Eq. (18) is surprisingly helpful.

APPENDIX C: PRODUCT OF EXACT DERIVATIVES YIELDS ZERO

We demonstrate here that the product of exact derivatives (without a logarithmic function) amounts to zero on contour
integrating, expounding on Ref. [26]. Let us consider two functions f and g (without a logarithm). Then,

H
Γ dzdf=dz ¼ 0.

Now, using the Cauchy integral formula to represent the exact derivatives and thereafter employing the partial fraction
decomposition,

I
Γ
dz

df
dz

dg
dz

¼
I
Γ
dz

df
dz

dg
dz

ðC1aÞ

¼
I
Γ
dz

�
1

2πi

I
γ1

fðuÞ
ðu − zÞ1þ1

du

��
1

2πi

I
γ2

gðvÞ
ðv − zÞ1þ1

dv

�
½γ1 and γ2 enclose the pole at z� ðC1bÞ

¼ −
1

4π2

I
γ1

I
γ2

dudvfðuÞgðvÞ
I
Γ
dz

�
1

ðu − zÞðv − zÞ
�
2

ðC1cÞ
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¼−
1

4π2

I
γ1

I
γ2

dudvfðuÞgðvÞ
I
Γ
dz

�
1

v−u

�
1

u−z
−

1

v−z

��
2

ðC1dÞ

¼−
1

4π2

I
γ1

I
γ2

dudv
fðuÞgðvÞ
ðv−uÞ2

I
Γ
dz

�
1

u−z
−

1

v−z

�
2

ðC1eÞ

¼ −
1

4π2

I
γ1

I
γ2

dudv
fðuÞgðvÞ
ðv − uÞ2

�I
Γ
dz

1

ðu − zÞ2

− 2

I
Γ
dz

1

ðu − zÞðv − zÞ þ
I
Γ
dz

1

ðv − zÞ2
�

ðC1fÞ

¼ −
1

4π2

I
γ1

I
γ2

dudv
fðuÞgðvÞ
ðv − uÞ2

×

�
0 − 2

I
Γ
dz

1

ðu − zÞðv − zÞ þ 0

�
ðC1gÞ

¼ 1

2π2

I
γ1

I
γ2

dudv
fðuÞgðvÞ
ðv − uÞ2

I
Γ
dz

1

v − u

�
1

u − z
−

1

v − z

�

ðC1hÞ

¼ 1

2π2

I
γ1

I
γ2

dudv
fðuÞgðvÞ
ðv − uÞ3

�I
Γ
dz

1

u − z
−
I
Γ
dz

1

v − z

�

ðC1iÞ

¼ 1

2π2

I
γ1

I
γ2

dudv
fðuÞgðvÞ
ðv − uÞ3 ½−2πiþ 2πi� ðC1jÞ

¼ 0: ðC1kÞ

It is straightforward to prove, in the similar manner, that
the product of three (or more) exact derivatives (without a
logarithmic function) under contour integration is also zero.
We are thus left with a power series in ðT1Þ2n, which we
sum up in Eq. (19).

APPENDIX D: MORE EXAMPLES

Let us now test the validity of our novel formula. We find
that this formula gives the exact energy eigenvalues E for
all the following potentials and many more which are not
listed here (but all having exactly two turning points). We
choose, without the loss of generality, ℏ2 ¼ 2m in all of the
following calculations.

1. Simple harmonic oscillator

Even though we already know that the leading-order
WKB is exact for simple harmonic oscillator, it is desirable
to test if the extra factor in the integrand of Eq. (22) would
cause any deviation from the correct eigenvalues. Consider,

VðzÞ ¼ z2; ðD1aÞ

V − E ¼ z2 − E; ðD1bÞ

V 0ðzÞ ¼ 2z: ðD1cÞ

From Eq. (22),

1

2i

I ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ðV − EÞ3 þ ðV 0Þ2

p
4ðV − EÞ dz ¼

�
K þ 1

2

�
π; ðD2Þ

which leads to

1

2i

I ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ðz2 − EÞ3 þ ð2zÞ2

p
4ðz2 − EÞ dz ¼

�
K þ 1

2

�
π: ðD3Þ

The poles of the integrand are at z ¼ ffiffiffiffi
E

p
;−

ffiffiffiffi
E

p
, and∞. So,

calculating residues at each of the poles, respectively,

1

4
−
1

4
þ E

2
¼ K þ 1

2
; ðD4Þ

∴E ¼ 2

�
K þ 1

2

�
: ðD5Þ

2. 3-D harmonic oscillator

Consider the potential,

VðrÞ ¼ r2 þ b
r2

þ lðlþ 1Þ
r2

; ðD6aÞ

V − E ¼ r2 þ b
r2

þ lðlþ 1Þ
r2

− E: ðD6bÞ

Let u ¼ r2; u0 ¼ 2r ¼ 2
ffiffiffi
u

p
.

∴V − E ¼ 1

u
½u2 − Euþ fbþ lðlþ 1Þg� ðD7aÞ

¼ 1

u
ðu − uaÞðu − ubÞ; ðD7bÞ

with

ua;b ¼
E
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E
2

�
2

− fbþ lðlþ 1Þg
s

; ðD8aÞ

ua þ ub ¼ E; ðD8bÞ

uaub ¼ bþ lðlþ 1Þ: ðD8cÞ

Now,
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V 0 ¼ dV
du

u0 ðD9aÞ

¼
�
2u − ua − ub

u
−
ðu − uaÞðu − ubÞ

u2

�
2

ffiffiffi
u

p
: ðD9bÞ

Using Eq. (22),

1

2i

I ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ðV − EÞ3 þ ðV 0Þ2

p
4ðV − EÞ dz ¼

�
K þ 1

2

�
π: ðD10Þ

The poles of the integrand are at u ¼ ua; ub; 0, and ∞. So,
calculating residues at each of the poles, respectively,

1

4
−
1

4
−
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4uaub

p
þ ua þ ub

4
¼ K þ 1

2
; ðD11Þ

∴E ¼ 2

�
2K þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
l þ 1

2

�
2

þ b

s �
: ðD12Þ

This solution agrees with Rosenzweig and Krieger [36].
Note that the correct Langer correction factor, shown in

the bold typeset, emerges naturally from our all orders
resummed WKB series, which Langer proposed to replace
lðlþ 1Þ by ðlþ 1=2Þ2 to obtain the correct eigenvalues.

3. Coulomb potential

Now, assume the Coulomb potential,

VðrÞ ¼ −
V0

r
þ b
r2

þ lðlþ 1Þ
r2

; ðD13aÞ

V − E ¼ 1

r2
½−V0rþ bþ lðlþ 1Þ − Er2� ðD13bÞ

¼ −E
r2

�
r2 þ V0

E
r −

bþ lðlþ 1Þ
E

�
ðD13cÞ

¼ −E
r2

ðr − raÞðr − rbÞ; ðD13dÞ

with

ra;b ¼ −
V0

2E
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
V0

2E

�
2

þ bþ lðlþ 1Þ
E

s
; ðD14aÞ

ra þ rb ¼
−V0

E
; ðD14bÞ

rarb ¼ −
bþ lðlþ 1Þ

E
: ðD14cÞ

Now,

V 0 ¼ 2Eðr − raÞðr − rbÞ
r3

−
E
r2
ð2r − ra − rbÞ: ðD15Þ

We use Eq. (22) below,

1

2i

I ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ðV − EÞ3 þ ðV 0Þ2

p
4ðV − EÞ dz ¼

�
K þ 1

2

�
π: ðD16Þ

The poles of the integrand are at r ¼ ra; rb; 0, and ∞. So,
calculating residues at each of the poles with proper
principal value,

−
1

4
þ 1

4
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Erarb

p
þ

ffiffiffiffiffiffiffi
−E

p

2
ðra þ rbÞ ¼ K þ 1

2
;

ðD17Þ

∴E ¼ −V2
0

4½K þ 1=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ ðl þ 1

2Þ2
q

�2
: ðD18Þ

This solution agrees with Rosenzweig and Krieger [36].
Notice again that the correct Langer correction factor,

shown in the bold typeset, emerges naturally from our all
orders resummed WKB series.

4. Eckart potential

Let us consider the Eckart potential,

VðxÞ ¼ −λe−αx

1 − e−αx
þ be−αx

ð1 − e−αxÞ2 : ðD19Þ

Using a transformation, u ¼ eαx − 1; u0 ¼ αðuþ 1Þ; we
write,

V − E ¼ −λ
u

þ bðuþ 1Þ
u2

− E ðD20aÞ

¼ −E
u2

�
u2 þ λ − b

E
u −

b
E

�
ðD20bÞ

¼ −E
u2

ðu − uaÞðu − ubÞ; ðD20cÞ

with

ua;b ¼
b − λ

2E
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
b − λ

2E

�
2

þ b
E

s
; ðD21aÞ

ua þ ub ¼
b − λ

E
; ðD21bÞ

uaub ¼ −
b
E
: ðD21cÞ

Now,
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V 0 ¼ dV
du

u0 ðD22aÞ

¼
�
2E
u3

ðu − uaÞðu − ubÞ −
E
u2

ð2u − ua − ubÞ
�
αðuþ 1Þ:

ðD22bÞ

Using Eq. (22),

1

2i

I ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ðV − EÞ3 þ ðV 0Þ2

p
4ðV − EÞ dz ¼

�
K þ 1

2

�
π: ðD23Þ

The poles of the integrand are at u ¼ ua; ub; 0;−1, and ∞.
So, calculating residues at each of the poles with proper
principal value,

−
1

4
þ 1

4
−

1

2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 4Euaub

q

þ 1

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Eð1þ uaÞð1þ ubÞ

p
−

ffiffiffiffiffiffiffi
−E

p

α
¼ K þ 1

2
; ðD24Þ

∴ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4b

α2

r
þ

ffiffiffiffiffiffiffiffiffiffiffi
λ − E

p

α
−

ffiffiffiffiffiffiffi
−E

p

α
¼ K þ 1

2
: ðD25Þ

This solution agrees with Romanovski and Robnik [23].

5. Morse potential

Finally, consider the potential of the form,

VðxÞ ¼ Ae−2αx − Be−αx; ðD26aÞ

V − E ¼ Ae−2αx − Be−αx − E: ðD26bÞ

Let u ¼ eαx, u0 ¼ αu, which leads us to,

∴V − E ¼ 1

u2
½A − Bu − Eu2� ðD27aÞ

¼ −E
u2

�
u2 þ B

E
u −

A
E

�
ðD27bÞ

¼ −E
u2

ðu − uaÞðu − ubÞ; ðD27cÞ

with

ua;b ¼ −
B
2E

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
B
2E

�
2

þ A
E

s
; ðD28aÞ

ua þ ub ¼
−B
E

; ðD28bÞ

uaub ¼
−A
E

: ðD28cÞ

Now,

V 0 ¼ dV
du

u0 ðD29aÞ

¼
�
2E
u3

ðu − uaÞðu − ubÞ −
E
u2

ð2u − ua − ubÞ
�
αu: ðD29bÞ

Employing Eq. (22),

1

2i

I ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ðV − EÞ3 þ ðV 0Þ2

p
4ðV − EÞ dz ¼

�
K þ 1

2

�
π: ðD30Þ

The poles of the integrand are at u ¼ ua; ub; 0, and ∞. So,
calculating residues at each of the poles with proper
principal value,

−1
4

þ 1

4
þ 1

2α

ffiffiffiffiffiffiffiffiffiffi
−E
uaub

s
ðua þ ubÞ −

ffiffiffiffiffiffiffi
−E

p

α
¼ K þ 1

2
; ðD31Þ

∴
B

2α
ffiffiffiffi
A

p −
ffiffiffiffiffiffiffi
−E

p

α
¼ K þ 1

2
: ðD32Þ

This solution agrees with Romanovski and Robnik [23].
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