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Three current models of QCD in (1þ 1) dimensions are examined and extended in light-front
coordinates. A pion of high momentum is found to have an infinite extent along its direction of motion.
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I. INTRODUCTION

There has been a recent revival of interest in theories
involving two-dimensional (one-space-one time) treat-
ments of QCD [1–4]. This stems from the need to include
the effects of nonvanishing quark masses and also to
enlarge the number of space-time variables of light-front
holographic QCD to four. In the original treatments (see the
review [5]) the chiral limit is used and the longitudinal
light-front momentum fraction, x, is frozen [6], so that
effectively the only degrees of freedom are light-front time
and transverse position. The first effort aimed at including
the effects of mass was contained in Ref. [7]. The present
paper aims to unify the earlier treatments and to exhibit the
confining aspects of the approaches in three-spatial dimen-
sions using the spatial coordinate, z̃, that is canonically
conjugate to the variable x [8].
We begin by briefly summarizing light-front holographic

QCD (LFHQCD) following [5]. Light-front (LF) quanti-
zation is a relativistic, frame-independent approach to
describing the constituent structure of hadrons. The simple
structure of the light-front vacuum allows an unambiguous
definition of the partonic content of a hadron in QCD and of
hadronic light-front wave functions. The QCD light-front
Hamiltonian is constructed from the energy-momentum
tensor of QCD. The spectrum and light-front wave func-
tions of relativistic bound states are obtained from the
resulting eigenvalue equation, an infinite set of coupled
integral equations for the LF components in a complete
basis of noninteracting n-particle states. This provides a
quantum-mechanical probabilistic interpretation of the
structure of hadronic states in terms of their constituents
at the same light-front time xþ ¼ x0 þ x3.
To a first semiclassical approximation, where quantum

loops and quark masses are not included, the relativistic

bound-state equation for light hadrons can be reduced to an
effective LF Schrdinger equation. In conjugate coordinate
space, the relevant dynamical variable is an invariant
impact kinematical variable ζ ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

, where b is
the transverse separation of the constituents. (Boldface
notation specifies vectors of the two-dimensional trans-
verse space.) The complexities of the strong interaction
dynamics are then hidden in an effective potential UðζÞ.
Remarkably, the resulting light-front Hamiltonian has a
structure that matches exactly the eigenvalue equations in
anti–de Sitter (AdS) space [5]. This offers the possibility to
explicitly connect the AdS wave function ΦðzÞ to the
internal constituent structure of hadrons. Moreover, one can
obtain the AdS wave equations by starting from the
semiclassical approximation to light-front QCD in physical
spacetime. This connection yields a relation between the
coordinate z of AdS space with the impact LF variable ζ,
thus giving the holographic variable z a precise definition
and intuitive meaning in light-front QCD [9].

II. FORMALISM

An effective light-front Schrödinger equation for the
quark (m1)-antiquark (m2), wave function ψðx;kÞ, of a
meson is given, for example, in [5]:

�
m2

1

x
þ m2

2

1 − x
þ k2

xð1 − xÞ þ Veff

�
ψ ¼ M2

hψ ; ð1Þ

where k is the transverse relative momentum, the first three
terms represent the kinetic energy in the center of momen-
tum frame,Mh is the invariant mass of the hadron, and Veff
is an effective potential that acts in three-dimensional
space. For the models used here m1;2 are current quark
masses.
Note that the kinetic energy term depends only on the

two-dimensional vector k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

, if the chiral limit
(m1;2 ¼ 0Þ is taken. Then, using coordinate space, and
taking Veff to depend on ζ; Veff ¼ U⊥ðζÞ one obtains
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�
−

d2

dζ2
þ L2

ζ2
þ U⊥ðζÞ

�
φðζÞ ¼ M2φðζÞ; ð2Þ

which is the same as the equation of motion in the soft-wall
AdS model [10] if L is taken to be angular momentum, ζ
is identified with the fifth dimension z in AdS space,
and the wave function φðζÞ is identified with the string
modes ΦðzÞ.
Assuming duality with AdS5 suggests models for

U⊥ðζÞ, through a correspondence between the transverse
Schrödinger equation (1) and the equation of motion for a
spin-J field in AdS5 [5]. For the soft-wall model [10],
the effective potential reduces to an oscillator potential
U⊥ðζÞ ¼ κ4ζ2 þ 2κ2ðJ − 1Þ, where κ is the strength of the
holographic confinement and J is the total angular momen-
tum. For this potential, the spectrum of masses is
M2⊥ ¼ 4κ2ðnþ ðJ þ jLzjÞ=2Þ, with n the radial quantum
number, and the transverse wave functions are the two-
dimensional oscillator eigenfunctions. The spectrum of the
model provides for a linear Regge trajectory and a good fit
to light meson masses. Using this potential leads to a
massless pion (n ¼ 0, Lz ¼ 0, J ¼ 0) in the chiral limit.
In Eq. (2) the variable x is held fixed, leading to a (2þ 1)

space-time description that provides an excellent represen-
tation of the hadronic spectrum, but is manifestly incom-
plete because of the missing dynamics of the longitudinal
direction. One incorporates [1–4,7] these dynamics by
asserting that the total potential Veff of Eq. (1) is the
sum of two terms: Veff ¼ U⊥ðζÞ þ VkðxÞ, with

�
m2

1

x
þ m2

2

1 − x
þ Vk

�
XnðxÞ ¼ M2

kXnðxÞ: ð3Þ

Under these assumptions the full wave function ψ is given
by the product

ψðx;bÞ ¼ φðζÞXnðxÞ ð4Þ

andM2
h ¼ M2⊥ þM2

k.Here the normalization convention [11]

Z
1

0

jXnðxÞj2
xð1 − xÞ dx ¼ 1 ð5Þ

is used. It is helpful to define χnðxÞ ¼ XnðxÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

.
One expects that the correct QCD-potential is not a sum

of two independent terms. In that case the space of product
wave functions forms a useful, complete, relativistic basis,
such as advocated in [7] and implemented in [12].
Nevertheless, Refs. [1–4] compare the resulting values
of M2

h with measured mesonic spectra.
Next, we consider the equation of the form Hkχn ¼

M2
nχn, with Hk Hermitian. This is the form of the wave

equation used by both ’t Hooft and Callen, Coote and Gross
[11] (and many others). Note that the V jj of Refs. [2,13] are

not diagonal in x. This is because confining potentials must
have an explicit dependence on the coordinate-space
variable, z̃, that is canonically conjugate to x. We shall
see that none of the models of Vk in current use is of the
form V jjðxÞ.
With the fundamental longitudinal wave equation the

usual orthonormal equation applies

Z
dxχ�nðxÞχmðxÞ ¼ δnm; ð6Þ

as explicitly stated in Ref. [11]. This form is general once
the Hermiticity of Hjj is specified such as in [1,2,13]. Next,
consider the matrix element.

hnjHjmi ¼
Z

dxdyχ�nðxÞHðx; yÞχmðyÞ: ð7Þ

The Hamiltonian can be expressed (for an equivalent quark

and antiquark mass m1) as Hðx; yÞ ¼ m2
1

xð1−xÞ δðx − yÞþ
V jjðx; yÞ, so that

hnjHjmi ¼
Z

dx
m2

xð1 − xÞ χ
�
nðxÞχmðxÞ

þ
Z

dxdyχ�nðxÞV jjðx; yÞχmðyÞ: ð8Þ

The longitudinal potential Vk must be chosen to deter-
mine the function χnðxÞ. There are two choices in the
literature. The first two Li-Vary (LV) [2] and the ’t Hooft
model (tH) [13], are given by

VLVðxÞχnðxÞ ¼ −σ2∂xxð1 − xÞ∂xχnðxÞ

ðV tHχnÞðxÞ ¼
g2

π
P
Z

1

0

dy
χnðxÞ − χnðyÞ

ðx − yÞ2 ; ð9Þ

with the principal value is defined [14] as P fðx;yÞ
ðx−yÞ2 ≡

1
2
½ fðx;yÞ
ðx−yþiϵÞ2 þ

fðx;yÞ
ðx−y−iϵÞ2� in the limit ϵ → 0. The function

VLVðxÞ is used in [2], and has the advantage that exact
solutions are available in terms of Jacobi polynomials. The
’t Hooft model [13], obtained in the large-N limit of two-
dimensional QCD, is used in [3,4,7]. This is the natural
choice for a confining potential in one spatial dimension.
When QCD is quantized in the light-cone gauge, such
a potential appears automatically as an instantaneous
Coulomb-like interaction, V tHðz̃Þ ¼ g2jz̃je−ϵjz̃j, between
quark currents [14], with z̃ as the longitudinal position
operator [8] that is canonically conjugate to the longitudinal
momentum variable x. Taking the Fourier transform of
V tHðz̃Þ using the transformation hxjz̃i ¼ e−ixz̃=

ffiffiffiffiffiffi
2π

p
and

including effects of the quark self-energy via the term χðxÞ
term of the principle-value integral leads to the expression
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appearing in Eq. (9). Note that in the ’t Hooft model,
the masses m1;2 are explicitly current quark masses.
The ’t Hooft model was extensively studied during the
1970s; see the review [15].
The third approach [1] is to assert that χðxÞ is a Gaussian

in the invariant mass-squared: χðxÞ ¼ N exp ½−1=ð2κ2Þ×
ð−m2

1=xþm2
2=ð1 − xÞÞ�, where N is a normalization con-

stant [5]. This model is termed the invariant mass wave
function (IMWF).
To obtain an expression for the Hamiltonian using the X

normalization: define XnðxÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

χnðxÞ so that

hnjHjmi ¼
Z

dx
xð1 − xÞ X̃nðxÞ

m2

xð1 − xÞXmðxÞ þ hnjVkjmi;

ð10Þ

with

hnjV jjjmi ¼
Z

dxdy
xð1 − xÞ X̃nðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞp Vðx; yÞXmðyÞ:

ð11Þ

The effective potential,
ffiffiffiffiffiffiffiffiffiffi
xð1−xÞ

pffiffiffiffiffiffiffiffiffiffi
yð1−yÞ

p Vðx; yÞ appearing between

the two wave functions is not Hermitian because it is not
symmetric in the variables x and y. The function X̃n are

obtained using the effective potential
ffiffiffiffiffiffiffiffiffiffi
yð1−yÞ

pffiffiffiffiffiffiffiffiffiffi
xð1−xÞ

p Vðx; yÞ.
The consequence of this lack of Hermiticity is that, for

example, the resulting wave equation for the t’Hooft model
would be of the form:

M2
nXnðxÞ ¼

m2

xð1 − xÞXnðxÞ

−
g2

π
P
Z

dy
ðXnðxÞ −

ffiffiffiffiffiffiffiffiffiffi
xð1−xÞ

pffiffiffiffiffiffiffiffiffiffi
yð1−yÞ

p XnðyÞÞ
ðx − yÞ2 : ð12Þ

This equation was solved in Ref. [7]. The non-Hermitian
nature of the effective potential arises from the X normali-
zation. Instead, the normalization given in Eq. (6) is used
for the rest of the paper.
We now begin to discuss the differences between the two

potentials of Eq. (9). In the chiral limit, the ground state
wave function of both [2,11] can be seen from the differ-
ential equation forM2

k to be simply (dropping the subscript)
χðxÞ ¼ 1, with an eigenvalue M2

k ¼ 0. Reference [1] also

have χðxÞ ¼ 1 in the chiral limit.
The LFHQCD formalism [5] achieved excellent repro-

duction of the hadronic spectrum. Using χðxÞ ¼ 1 along
with M2

k ¼ 0 preserves that ground-state spectrum.

The useful identity [11]:

M2
k

Z
1

0

dxχðxÞ ¼
Z

1

0

dxχðxÞ
�
m2

1

x
þ m2

2

1 − x

�
ð13Þ

holds in both the Li-Vary and ’t Hooft models. The need to
have finite results for both sides of this equation signifies
that χðxÞ vanishes at the endpoints, x ¼ 0, 1.
Given the similarities between the Li-Vary and ’t Hooft

models, it is natural to initially expect that any differences
between the models might be thought to be small. This is
far from the case. Using coordinate space helps in under-
standing that there indeed are significant differences
between the potentials. This is done by evaluating
VLVðxÞ in coordinate space.

hz̃jVLVðxÞjz̃0i ¼ σ2z̃z̃0
Z

1

0

dx
2π

eixðz̃0−z̃Þxð1 − xÞ

¼ σ2

2π
z̃z̃0ei

ðz̃0−z̃Þ
2

j1ðz̃0−z̃2 Þ
z̃0 − z̃

; ð14Þ

where j1 is a spherical Bessel function. The diagonal
elements of this operator are given by σ2z̃2=6 which is in
stark contrast to the linear behavior of the potential in the ’t
Hooft model. Moreover, there is a significant coordinate-
space nonlocality in VLVðxÞ that does not occur for V tH.
Another difference is that the potential VLVðxÞ is complex
although Hermitian.
The most salient difference between the two potentials is

in the high-energy spectrum:M2
kðtHÞ ≈ g2k, [11] where k is

an integer. The high energy spectrum of the ’t Hooft model
is much more compact than that of the Li-Vary model. For
large values of k, χtHðxÞ ¼

ffiffiffi
2

p
sinðπkxþ δðk; xÞÞ. The

phase shift δðk; xÞ is given in Ref. [14].
The spectrum corresponding to the Brodsky-de

Teramond IMWF model [1] has not been provided before.
The lore is that this model does not come from a wave
equation. Here we develop a wave equation of the Sturm-
Liouville form that does yield the IMWF and discuss the
properties of the solutions. The first step is asserting that
the IMWF is the solution of some wave equation. The
presentation is simplified by using m1;2 ¼ m and also by
employing the variable y > 0, with y2 ¼ 1=ðxð1 − xÞÞ.
Then using ϕðyÞ ¼ e

−m2y2

2κ2 , consider the differential equa-
tion:

−
d
dy

fðyÞ dϕðyÞ
dy

þm2y2ϕðyÞ ¼ M2ϕðyÞ; ð15Þ

with fðyÞ to be determined. The term m2y2 is the familiar
kinetic energy term. Using the expression for ϕðyÞ and
equating the left- and right-sides of the equation leads to the
results f ¼ κ4=m2 and M2 ¼ κ2. A peculiar feature is that
the ground-state mass is independent of m. The wave
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function that leads to the ground state IMWF is then
given by

−
κ4

m2
ϕ00 þm2y2ϕ ¼ M2ϕ; ð16Þ

which is of a familiar harmonic oscillator form. This can be
converted to an equation in the variable x by using dx

dy ¼
1

x−1=2 x
3=2ð1 − xÞ3=2 ≡ gðxÞ; so that Eq. (16) becomes

−gðxÞ κ
4

m2

d
dx

gðxÞ dϕðxÞ
dx

þ m2ϕðxÞ
xð1 − xÞ ¼ M2ϕðxÞ; ð17Þ

which is of the Sturm-Liouville form for 0 < x < 1=2 and
1=2 < x < 1. The ground state energy is κ2. Each excita-
tion in energy increases M2 by 2κ2. The feature that the
spectrum does not depend on quark masses does not seem
reasonable and we therefore discard Eq. (16).
The next step is to compare two remaining approaches

[2,13] in the limit that the quark masses are nonzero, but
small compared to the strength parameter of the model.
For simplicity we remain with the case that m1;2 ¼ m. The
Li-Vary result is that

M2
kðLVÞ ¼ 2σmþ 4m2: ð18Þ

Their model uses the parameters m ¼ 15 MeV, and
σ ¼ 620 MeV. ’t Hooft found that the ground-state wave
function χðxÞ is well approximated by the form
χ0ðxÞ ¼ xβð1 − xÞβ. Analysis of the behavior for the
solution of the wave equation for x → 0 or 1 shows that
β should satisfy the transcendental equation
m2π
g2 − 1þ πβ cot πβ ¼ 0. For small values of m, the quan-

tity βπ must also be small so that β ¼
ffiffi
3
π

q
m
g . Using χ0 on

both sides of Eq. (13) yields that M2
k ¼ m2ð2β þ 4Þ, or

equivalently

M2
kðtHÞ ¼ 2

ffiffiffi
π

3

r
gmþ 4m2: ð19Þ

Using the average value of the u and d quark masses,
m ¼ 3.5 MeV [16] with M2

L ¼ 140 MeV, tells us that
g ¼ 2700 MeV, and β ¼ 0.00126. Thus, these two models
contain a (1þ 1)-dimensional version of the Gell-Mann-
Oakes-Renner [17] relation in which the squared mass of
the ground state is proportional to the current quark mass.
It is worthwhile to note that the use of current-quark

masses in the ’t Hooft model causes the two different
models to obtain very different masses of the first excited
state. Reference [2] obtains excitation energies of approx-
imately 1 GeV and associates these values with excited
states of the pion. In the present work, using modern values
of the current quark masses [16] gives the lowest excited
state a mass on the order of g, or about 3 GeV. This is high
enough into the continuum of states with large widths to be

unobservable. Thus, the version of the ’t Hooft model used
here preserves the spectra produced by LFHQCD.

III. COORDINATE SPACE TREATMENT

The confining aspects of the ’t Hooft model have been
well-studied long ago [11,13], using a momentum-space
(x) dependence approach based on studying the cancella-
tion of infrared singularities. Another, possibly more
intuitive approach, may be obtaining by examining coor-
dinate-space wave functions that depend on the canonically
conjugate spatial variable, z̃. An intuitive way to think
about this variable is that it is the separation between the
quark and antiquark in the direction of motion of a pion
moving with high momentum.
Coordinate-space wave functions are obtained using the

transformation
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FIG. 1. Plots of the resulting density, ρðz̃Þ, and z̃2ρðz̃Þ are given
for all three models. The discrepancy between the models in ρðz̃Þ
is small but finite, and the 1=z̃2 asymptotic behavior is confirmed.
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χðz̃Þ≡
Z

1

0

dxffiffiffiffiffiffi
2π

p eixz̃χðxÞ: ð20Þ

It is useful to examine the density ρðz̃Þ≡ jχðz̃Þj2, a real-
valued quantity, for the three models are shown in Fig. 1(a).
These results seem very similar because of the relatively
small quark masses of the three models. The densities seem
to go to 0 for large absolute values of z̃. They do, but there
in an interesting feature seen by plotting z̃2ρðz̃Þ in Fig. 1(b):
the densities fall as 1=z̃2.
This behavior may be understood by making a asymp-

totic expansion, obtained by using eiz̃x ¼ 1=ðiz̃Þ∂xeiz̃x and
the feature that χðxÞ vanishes at the end points. Then

lim
jz̃j→∞

χðz̃Þ ¼ i
z̃

Z
1

0

dxffiffiffiffiffiffi
2π

p eixz̃∂xχðxÞ: ð21Þ

Squaring this quantity leads to the stated 1=z̃2 dependence.
The similarity of the behaviors for small masses suggests

that the chiral limit should be examined. In this case,
χðxÞ ¼ 1 for all three models. Then a simple closed-form
expression for χðz̃Þ can be obtained. The resulting density,
ρχðz̃Þ is given by

ρχðz̃Þ ¼
2

π

sin2z̃=2
z̃2

; ð22Þ

an expression that accounts explicitly for the oscillatory
behavior as well as the 1=z̃2 asymptotic behavior. One may
also examine the spatial extent of the pion wave function by
considering the mean-square value of z̃2, that is given by
the ground-state expectation value:

hχjz̃2jχi ¼ 2

π

Z
∞

−∞
dz̃ sin2ðz̃=2Þ ¼ ∞: ð23Þ

In the chiral limit the pion has an infinite spatial extent, true
for all three models.

It is necessary to see how or if this infinite size conflicts
with current understanding. First note that the elastic pion
form factor of LFHQCD has already been computed using
χðxÞ ¼ 1; see e.g., Ref. [18]. The infinite extent is buried
within the integrals needed to compute the elastic form
factor, a consequence the ability to probe with only trans-
verse momentum transfers; see e.g., the review [19].
The relevance of the infinite longitudinal extent can be

understood in analogy with the familiar Ioffe-time argu-
ment [20–23] for deep inelastic scattering at small values of
Bjorken x. The idea is that an incident virtual photon
fluctuates into a qq̄ pair. The energy difference, ΔE,
between the two states is very small, so that the fluctuation
lives for a long time Δt > 1=ΔE. For virtual photons of
high energy, the extent of the fluctuation is cΔt is very
large. Now consider a high-momentum pion incident on a
target. The value of ΔE goes to 0 if both the pion and its
constituents are massless. Thus the infinite extent of a
massless pion is part of standard lore.

IV. SUMMARY

We summarize. The similarities and differences between
the three models of Refs. [1,2,13] are exhibited. Very
significant differences in the excitation spectra, at both low
and high energies, are obtained, even though all of the
ground-state wave functions are the same in the chiral limit.
If the ’t Hooft model is used along with current values of
light-quark masses, the original spectrum calculations
reviewed in Ref. [5] are preserved. Finally, the pion is
shown to have an infinite extent in the longitudinal
direction.
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