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We place theoretical constraints on the leading deviations to four-fermion standard model interactions.
Invoking S-matrix analyticity and partial wave unitarity, we develop new dispersion relations that yield
either spin-dependent sum rules on dimension-six fermionic operators or information about the amplitude’s
behavior at large momentum. The pattern of standard model effective theory inequalities we find for
theories obeying certain large-momentum constraints enables a diagnosis of properties of emerging new
physics. These relations form a bridge between new physics searches: discovery of flavor-violating τ
decays at Belle II would motivate the search for flavor-conserving new physics below 25 TeV, as the results
would provide definitive information about the UV.
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I. INTRODUCTION

Testing the effective field theory (EFT) of the Standard
Model (SM) is of increasing experimental and theoretical
importance. Prior to production of new on-shell states, the
first observed signals of new physics will likely be subtle
deviations from the SM emerging at the energy or precision
frontier. In the Wilsonian approach, these deviations are
packaged in the SMEFT [1–8], which systematically
enumerates the operators of higher mass dimension built
from SM fields, with coefficients dictated by the UV
completion. The quest for new physics is then reformulated
as determining the signs and magnitudes of the SMEFT
couplings or Wilson coefficients.
Given an EFT, one might expect that arbitrary values of

the Wilson coefficients are allowed, but this is false.
Fundamental principles of quantum field theory, such as
unitarity and locality of scattering amplitudes, constrain the
space of coefficients [9–12]. However, despite progress in
constraining various EFTs [13], IR consistency techniques
are only beginning to be systematically deployed for the
full SMEFT, e.g., Refs. [14–23]. A fundamental challenge
is that power counting implies the presence of an obstacle
in applying IR consistency to bound the SMEFT. Beyond

the dimension-five Weinberg operator, the most relevant
SMEFT operators—and those of most immediate phenom-
enological importance—appear at mass dimension six,
with basis enumerated in Ref. [2]. Quartic dimension-six
operators have amplitudes scaling as p2 ∼ s, t, u. But the
optical theorem, which connects amplitudes to positive
definite cross sections, applies to the forward limit: the
dimension-six amplitude either vanishes as t → 0 or flips
sign under crossing symmetry s → −s (suppressing finite-
mass corrections), obstructing a would-be bound without
invoking additional assumptions [24]. Extant positivity
bounds thus typically apply to operators with at least four
powers of momentum and hence SMEFT dimension eight
or higher, while sign-agnostic sum rules do not always
allow the extraction of detailed information about the
characteristics (e.g., spin) of states in the UV.
In this paper, we connect the UVand IR to find new ways

to constrain dimension-six fermionic operators in the form
of sum rules. We do so by making use of spin in a crucial
way, performing a generalized spinning partial wave
expansion to derive a condition that holds explicitly for
fermionic amplitudes. Combining our result with bedrock
assumptions on the UV physics—namely, that it is Lorentz
invariant, unitary, and local—we establish sum rule bounds
for the dimension-six fermionic SMEFT that provide a
powerful connection between the deep-UV momentum
scaling of the amplitude, the spin of states in the completion
of the SMEFT, and the low-energy Wilson coefficients.
Consistent with axioms of quantum field theory, we

show that one of two possibilities must hold: either the
physics generating dimension-six operators at low energies
must produce amplitudes scaling as p2 at generic scattering
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angle (i.e., no enhanced perturbative unitarity at general
kinematics) or only scalar and vector partial waves can
contribute, in such a way as to dictate the sign of the
dimension-six operator depending in which spin domi-
nates. We emphasize that our prediction that enhanced (i.e.,
super-Froissart [25]) UV scaling of the amplitude leads to a
spin-limited partial wave expansion is the result of the
dispersion relation calculation, which itself relies only on
Lorentz invariance, unitarity, and analyticity; the restriction
to scalar and vector currents and the enhanced UV behavior
are not independent assumptions. The appearance of addi-
tional requirements on the UV in order to write down sum
rules is a universal feature of dimension-six dispersion
relations [23–26]. Moreover, the discovery of Wilson
coefficients outside of the region predicted by the sum
rules would itself be of phenomenological interest, as it
would give us direct information about the UV momentum
scaling that cannot be directly observed in the IR and hence
would inform model building. Indeed, we will provide an
explicit example where this could be realized experimen-
tally. Our results extend the set of previously known
SMEFT sum rules, a comprehensive list of which was
recently determined in Ref. [26].
We begin our discussion with a derivation of the

fermionic sum rules. We explore our result in the context
of the operator

Oe ¼ −bemnpqðēmγμenÞðēpγμeqÞ; ð1Þ
explicitly indexing the Nf flavors, and demonstrate that the
coefficient matrix bemnpq cannot be chosen arbitrarily. We
then apply our constraints to the remaining four-fermion
operators in the SMEFT. Finally, we will demonstrate that
our bounds are satisfied in several UV completions and
discuss the mapping of our sum rules onto the experimental
landscape, highlighting in particular their ramifications for
searches of flavor and CP violation.

II. ANALYTICITY AND PARTIAL
WAVE UNITARITY

We wish to use unitarity and the analytic properties of
scattering amplitudes to constrain the Wilson coefficients
of operators of the form given in Eq. (1). By power
counting, four-fermion scattering mediated by such oper-
ators will result in amplitudes ∝ p2. Crossing-symmetric
combinations will thus scale as t and vanish in the forward
limit. Extracting the ∝ s part of a forward amplitude via a
contour integral, one finds that, by analyticity,

lim
s→0

∂sAαβðs; 0Þ ¼
1

2πi

I
γ

ds
s2

Aαβðs; 0Þ

¼ 1

π

Z
∞

s0

ds
s2

½ImAαβðs; 0Þ − ImAᾱβðs; 0Þ�

− CðsÞ
∞;αβ: ð2Þ

Here γ is a contour around the origin, parametrically small
in jsj, so that the amplitude can be evaluated in the EFT.
The result on the second line follows after deforming the
contour out to large jsj, where s0 is the characteristic mass
scale of the UV completion. In the full amplitude, there are
also massless branch cuts from SM fields extending all the
way to s ¼ 0. However, these can be ignored since we can
always IR-regulate these cuts by turning on a small mass
[9,14] or invoke a weak-coupling assumption to drop these

massless loops as in Ref. [27]. The term CðsÞ
∞;αβ is the

contribution from the residue at infinity,

CðsÞ
∞;αβ ¼Res

�
Aαβðs;0Þ

s2
;s¼∞

�
¼− lim

jsj→∞

Aαβðs;0Þ
s

: ð3Þ

Note the Froissart bound [28,29] constrains the asymptotic
scaling of the amplitude by limjsj→∞ jAαβðs; 0Þj <
Oðs log2 sÞ. The labels α, β represent scattered particles’
quantum numbers, including their helicity, and ᾱ, β̄ their
conjugates. (While helicity in general transforms non-
trivially under crossing symmetry, in the forward limit it
transforms just like an internal quantum number, e.g.,
flavor [30].) We will consider elastic scattering amplitudes
in this work, and therefore it is sufficient to state the
quantum numbers of our initial state, which we take to be
jα; βi. Since we expect the new physics to be at least above
the weak scale, throughout we take the fermions to be
effectively massless. The optical theorem then implies
ImAðs; 0Þ ¼ sσðsÞ > 0, so the integrand in Eq. (2) is of
indefinite sign, precluding a positivity bound from the
forward amplitude alone; one can nonetheless use Eq. (2) to
derive sum rules on dimension-six operators, relating the
Wilson coefficients to a difference of UV cross sections
[19,23,26,31–34].
Before proceeding, we briefly note a technical detail

generally associated with dispersion relations similar to
Eq. (2). The goal of such dispersion relations is to isolate
the physics associated with quartic dimension-six opera-
tors, which scale as s or t. Yet in the SM, the exchange of
massless particles, such as the photon, can lead to ampli-
tudes scaling as s=t. Introducing an IR mass regulator, these
singularities will produce finite and matching contributions
on both sides of our dispersion relations, on the left arising
from the contour around the origin, while on the right
originating from the contour at infinity. Accordingly, we
can formally remove the poles from both sides to isolate the
contributions of interest, thereby considering a pole-sub-
tracted dispersion relation [35] (for additional discussion of
this point, see, e.g., Refs. [26,36]). The necessity of this
subtraction is a general feature of dispersive dimension-six
arguments, e.g., conventional sum rules [23,26,31–33], and
not unique to the results derived in this paper. Moreover,
since we will be working at leading order in the dimension-
six SMEFT Wilson coefficients, no higher-dimension
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operators containing intermediate SMEFT bosons contrib-
ute to our four-fermion amplitudes [37].
In order to extract more information from dispersion

relations and thereby constrain the UV by what we observe
in the IR, we can make use of more properties of an
amplitude than its forward limit alone. For scalar ampli-
tudes, a partial wave expansion reveals that all t-derivatives
of ImA are positive in the forward limit, as a consequence
of properties of derivatives of Legendre polynomials [27].
It is therefore well motivated to extract the t-derivative of
the amplitude; performing an unsubtracted dispersion
relation and again taking the forward limit so that helicity
transforms simply under crossing, we have [38]:

lim
t→0

∂tAαβð0; tÞ

¼ −CðtÞ
∞;αβ þ

1

π

Z
∞

s0

dslim
t→0

∂t

�
ImA0

αβðs; tÞ
s

þ ImA0
ᾱβðs; tÞ

sþ t

�
;

ð4Þ

where the boundary in this case is given by another residue
at infinity,

CðtÞ
∞;αβ ¼ Res

�
limt→0∂tA0

αβðs; tÞ
s

; s ¼ ∞
�
: ð5Þ

In Eq. (4), the prime appearing on all amplitudes on the
right-hand side is used to signify thepresenceof an additional
sign that must be accounted for. The sign results from
fermion interchange, and explicitly arises as we have taken
s → 0 for t ≠ 0 on the left-hand side. In order to explain this
explicitly, let us outline the conventions we will adopt
throughout this work. We use mostly plus metric signature,
take external momenta to be labeled cyclicly, and treat the
initial and final states as incoming andoutgoing, respectively.
The independent Mandelstam invariants are then given by
s ¼ −ðp1 þ p2Þ2 and t ¼ −ðp1 − p4Þ2. As we consider
elastic scattering, our initial and final states are given by jii ¼
jα; βi and hfj ¼ hβ̄; ᾱj. Accordingly, we can see that the
kinematic limit taken inEq. (2) is straightforward: t → 0with
s ≠ 0 amounts to the limit of forward scatteringp4 → p1 and
p3 → p2. In contrast, taking s → 0 with t ≠ 0, as we do on
the left of Eq. (4), forces p2 → −p1 and p3 → −p4. The
signs physically imply that particle 2, previously incoming, is
now outgoing, and vice versa for particle 3. Particles 2 and 3
have therefore been crossed, which consequently introduces
an overall sign as they are fermions.We can see this explicitly

by considering an example of the form that the four-fermion
amplitude can take. Written in terms of spinor-helicity
variables, if we scatter states with opposite helicity, the
little-group scaling implies that the amplitude must be
proportional to ½13�h24i. Taking the limit of forward scatter-
ing (t → 0 with s ≠ 0), we have ½13�h24i → ½12�h21i ¼ s.
However, if we take s → 0 with t ≠ 0, then ½13�h24i →
½1 − 4�h−14i ¼ −½14�h14i ¼ −t. The additional sign that
arises here originates from the canonical analytic continu-
ation for spinors, j − pi ¼ −jpi and j − p� ¼ jp� (see, e.g.,
Ref. [41]). The prime in Eq. (4) is introduced to track that this
crossing has occurred, and explicitly we have A0

αβ ¼ −Aαβ

and A0
ᾱβ ¼ −Aᾱβ.

Let us now perform a partial wave expansion of the two
dispersion relations. In the case where we are scattering
particles of opposite helicity, so that α (β) corresponds to
helicity �1=2 (∓ 1=2), the initial state has total spin 1. For
such a state, the Jacob-Wick expansion allows us to write
the amplitude in terms of partial waves of definite total
angular momentum, via a spinning generalization of the
Legendre polynomials [42–45],

Aαβðs; tÞ ¼ 16π
X∞
j¼1

ð2jþ 1ÞaðjÞαβ ðsÞdðjÞ11 ðcos θÞ; ð6Þ

where the sum in j starts at 1 because an s-wave coupling to
our spin-one initial state is forbidden by angular momen-
tum conservation; similar selection rules for four-fermion
SMEFT operators and their implications for collider phys-
ics are discussed in Ref. [46]. Here, djmm0 is the Wigner
small d-matrix [43,47], which for m ¼ m0 ¼ 1 can be

written compactly as dðjÞ11 ðxÞ ¼ ð1þ xÞPð0;2Þ
j−1 ðxÞ=2, where

Pðm;nÞ
j are the Jacobi polynomials [48]. Meanwhile, the

amplitude Aᾱβ has zero net helicity and can thus be
expanded in terms of the Legendre polynomials

Pj ¼ Pð0;0Þ
j ,

Aᾱβðs; tÞ ¼ 16π
X∞
j¼0

ð2jþ 1ÞaðjÞᾱβ ðsÞPjðcos θÞ; ð7Þ

where the sum here starts at zero angular momentum.
Exchanging differentiation in t for cos θ ¼ 1þ 2t=s and
keeping track of signs from little group phases, Eqs. (2) and
(4) become

lim
s→0

∂sAαβðs; 0Þ þ CðsÞ
∞;αβ ¼ −lim

s→0
∂sAᾱβðs; 0Þ − CðsÞ

∞;ᾱβ

¼ 16

Z
∞

s0

ds
s2

�
−Imað0Þᾱβ ðsÞ þ

X∞
j¼1

ð2jþ 1Þ½ImaðjÞαβ ðsÞ − ImaðjÞᾱβ ðsÞ�
�

ð8Þ
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and

lim
t→0

∂tAαβð0; tÞ þ CðtÞ
∞;αβ ¼ lim

t→0
∂tAᾱβð0; tÞ þ lim

s→0
∂sAᾱβðs; 0Þ þ CðsÞ

∞;ᾱβ þ CðtÞ
∞;ᾱβ

¼ 16

Z
∞

s0

ds
s2

�
þImað0Þᾱβ ðsÞ −

X∞
j¼1

ð2jþ 1Þ½jðjþ 1Þ − 1�½ImaðjÞᾱβ ðsÞ þ ImaðjÞαβ ðsÞ�
�
:

Adding these two dispersion relations, we have

lim
t→0

∂tAαβð0; tÞ þ lim
s→0

∂sAαβðs; 0Þ þ CðsÞ
∞;αβ þ CðtÞ

∞;αβ ¼ lim
t→0

∂tAᾱβð0; tÞ þ CðtÞ
∞;ᾱβ

¼ −16
Z

∞

s0

ds
s2

X∞
j¼1

fð2jþ 1Þjðjþ 1ÞImaðjÞᾱβ ðsÞ

þð2jþ 1Þ½jðjþ 1Þ − 2�ImaðjÞαβ ðsÞg: ð9Þ

By partial wave unitarity, the imaginary parts of the
partial waves appearing on the right-hand sides of the
dispersion relations in Eqs. (8) and (9) are all nonnegative.
Since the right-hand side of Eq. (9) is less than or equal to
zero, if CðsÞ

∞;αβ þ CðtÞ
∞;αβ or C

ðtÞ
∞;ᾱβ vanish, one could a priori

anticipate a bounded sign on theWilson coefficients. We do
not assert that these boundary conditions vanish in general
however, and if the sign predicted in this case were
experimentally found to be violated, the dispersion relation
in turn could be used to gain information about the UV
scaling of the amplitude (i.e., the size/sign of the boundary
terms) by virtue of IR measurements. Moreover, since the
EFT amplitude for opposite-helicity scattering is con-
strained to be proportional to ½13�h24i, we will always
have limt→0 ∂tAαβð0; tÞ þ lims→0 ∂sAαβðs; 0Þ ¼ 0 (and
similarly, Aᾱβð0; tÞ ¼ 0). By the dispersion relation in
Eq. (9), if the boundary terms vanish, then we must have

vanishing imaginary parts of the partial waves aðjÞαβ and aðjÞᾱβ

for all j ≥ 2 (and Imað1Þᾱβ ðsÞ ¼ 0 as well). That is, only
scalar and vector channels are allowed to contribute to the
cross section. Note that we have not assumed this restric-
tion on angular momentum as input; rather, it is an output of
bedrock QFT axioms, plus a condition on the UV ampli-
tude. If higher-j channels are nonzero, for either amplitude,
analyticity implies that the boundary term(s) cannot
vanish (or that the partial wave expansion does not
converge, which occurs if Ima ≳ 1=j3 asymptotically).
The boundary terms vanish if the amplitude obeys
super-Froissart conditions [25], limjsj→∞ jAαβðs; 0Þj <
OðsÞ and limjsj→∞ limt→0 ∂tjAαβðs; tÞj < Oðs0Þ. While
boundary terms do not vanish for all theories, one can
view this as a predictive feature of our dispersion relations:
in either case, our results effectively function as phenom-
enological diagnostics of the characteristics of new physics
based on future observation of the sign and/or relative
magnitude of higher-dimension operators. The residue at

infinity and the details of the derivative partial wave
expansion will be explored further in Ref. [49] in a broader
context for the full dimension-six SMEFT that falls outside
the scope of the present work.
If we are in the case in which the boundary terms vanish

(and the partial wave expansion converges), then for
opposite-helicity fermion scattering, analyticity and uni-
tarity imply that the partial wave expansion contains only
j ¼ 0, 1 terms, and we have:

lim
s→0

∂sAᾱβðs; 0Þ ¼ −lim
s→0

∂sAαβðs; 0Þ

¼ 16
R
∞
s0

ds
s2 ½Imað0Þᾱβ ðsÞ − 3Imað1Þαβ ðsÞ�:

ð10Þ

As both Imað0Þᾱβ ðsÞ and Imað1Þαβ ðsÞ are positive, the sign of
this expression indicates which states are dominating in the
UV; if the completion is dominated by scalars, then the
integral is positive, whereas if it is dominated by vectors,
the result will be negative. We will next determine the
implications of this result for the SMEFT.

III. DIMENSION-SIX BOUNDS

Let us first apply the sum rule in Eq. (10) to the operator
in Eq. (1). In detail, through the operator we scatter a
superposition of right-handed electron flavors weighted by
αm, βm, γm, δm for particles 1, 2, 3, 4, respectively. In
spinor-helicity notation, we find [50]:

Aðē−eþ → eþē−Þ ¼ −8αmβnγ�pδ�qbemnpq½13�h24i: ð11Þ

The helicities have been chosen in a forward configuration;
similarly, we must take forward flavor vectors, δm ¼ αm
and γm ¼ βm. When t ¼ 0, we have p4 ¼ p1 and p3 ¼ p2,
so the amplitude becomes
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Aðē−eþ → eþē−Þjt¼0 ¼ −8αmβnβ�pα�qbemnpqs: ð12Þ

Thus, for vanishing boundary terms, our sum rule in
Eq. (10) implies that the combination

bemnpqαmβnβ
�
pα

�
q ¼ 2

Z
∞

s0

ds
s2
½Imað0Þᾱβ ðsÞ−3Imað1Þαβ ðsÞ� ð13Þ

is positive (respectively, negative) if the UV is dominated
by scalars (vectors) [51].
Similar bounds can be established for the remaining

four-fermi SMEFT operators. We consider all operators
containing an even number of each type of SM fermion,
allowing for two-to-two scattering for states of fixed SM
charges. There are two classes: the self-quartics,

Ou ¼ −bumnpqðūmγμunÞðūpγμuqÞ
Od ¼ −bdmnpqðd̄mγμdnÞðd̄pγμdqÞ
OL ¼ −bLmnpqðL̄mγμLnÞðL̄pγ

μLqÞ
OQ1 ¼ −bQ1

mnpqðQ̄mγμQnÞðQ̄pγ
μQqÞ

OQ2 ¼ −bQ2
mnpqðQ̄mγμτ

IQnÞðQ̄pγ
μτIQqÞ; ð14Þ

together with Eq. (1), and the cross-quartics,

Oeu ¼ −ceumnpqðēmγμenÞðūpγμuqÞ
Oed ¼ −cedmnpqðēmγμenÞðd̄pγμdqÞ
Oud1 ¼ −cud1mnpqðūmγμunÞðd̄pγμdqÞ
Oud2 ¼ −cud2mnpqðūmγμTaunÞðd̄pγμTadqÞ
OLQ1 ¼ −cLQ1

mnpqðL̄mγμLnÞðQ̄pγ
μQqÞ

OLQ2 ¼ −cLQ2
mnpqðL̄mγμτ

ILnÞðQ̄pγ
μτIQqÞ

OLe ¼ þcLemnpqðL̄mγμLnÞðēpγμeqÞ
OLu ¼ þcLumnpqðL̄mγμLnÞðūpγμuqÞ
OLd ¼ þcLdmnpqðL̄mγμLnÞðd̄pγμdqÞ
OQe ¼ þcQe

mnpqðQ̄mγμQnÞðēpγμeqÞ
OQu1 ¼ þcQu1

mnpqðQ̄mγμQnÞðūpγμuqÞ
OQu2 ¼ þcQu2

mnpqðQ̄mγμTaQnÞðūpγμTauqÞ
OQd1 ¼ þcQd1

mnpqðQ̄mγμQnÞðd̄pγμdqÞ
OQd2 ¼ þcQd2

mnpqðQ̄mγμTaQnÞðd̄pγμTadqÞ: ð15Þ

The SUðNÞ generators are τI ¼ σI=2 and Ta ¼ λa=2,
writing σI and λa for the Pauli and Gell-Mann matrices,
respectively. For consistency, we have defined the operators
in Eq. (15) with a relative minus sign when the cross-
quartic contains fermion species of opposite handedness,
since we can introduce charge-conjugated fields to rewrite
all such operators in terms of a single chirality, for example,

ðL̄mγμLnÞðēpγμeqÞ ¼ −ðL̄c
nγμLc

mÞðēpγμeqÞ [53]. Each of
the b tensors satisfies bmnpq ¼ bpqmn by symmetry and
bmnpq ¼ b�qpnm by Hermiticity, and for e4 we additionally
have bemnpq ¼ bepnmq by a Fierz identity. The c tensors
satisfy only the Hermiticity property. In total, the operators
in Eqs. (1), (14), and (15) have N2

fð67N2
f þ 2Nf þ 11Þ=4

independent real coefficients, i.e., 1395 in the case Nf ¼ 3

(786CP-even and 609CP-odd parameters) [3]. This list
does not exhaust the four-Fermi operators at dimension six,
as there are also baryon- and lepton-number violating
operators in the SMEFT [2]. In this work, however, we
will restrict consideration to scattering of fixed SM charges,
so these operators will not contribute; we leave consid-
eration of superpositions of charge eigenstates—where
these additional operators would be required and poten-
tially bounded—to future work.
To exemplify how the argument proceeds for additional

operators, for L4, where we have both flavors and
SU(2) charges, the amplitude AðL̄þL− → L−L̄þÞ is
given by −4bLmnpqðαmiβniγpjδqj þ αmiβqjγpjδniÞh13i½24�.
Marginalizing over the SU(2) charges results in two
independent sum rules of the form in Eq. (13) but with
bemnpqαmβnβ

�
pα

�
q replaced by the two combinations:

1

2
bLmnpqðαmβnβ�pα�q þ αmα

�
nβ

�
pβqÞ

1

2
bLmnpqαmα

�
nβ

�
pβq: ð16Þ

For all of the self-quartics, we define b�mnpq ¼ ðbmnpq �
bmqpnÞ=2 and b�mnpqαmα

�
nβ

�
pβq ¼ b�αβ. The full set of

operators appearing on the left-hand sides of our sum
rules can thus be expressed compactly as

beþαβ ;
1

2
bLþαβ þ 1

2
bL−αβ ;

bLþαβ ;
1

2
buþαβ þ 1

2
bu−αβ ;

buþαβ ;
1

2
bdþαβ þ 1

2
bd−αβ ;

bdþαβ ; bQ1þ
αβ þ 1

4
bQ2þ
αβ ;

1

2
bQ1þ
αβ þ 1

2
bQ1−
αβ þ 1

8
bQ2þ
αβ −

3

8
bQ2−
αβ ; ð17Þ

where the right-hand side of the sum rule is as in Eq. (13)
for the analogous scattering process.
We can bound the cross-quartic operators in Eq. (15) in

the same way. For example, Aðē−uþ → uþē−Þ ¼
−2ceumnpqαmβqiγ

�
piδ

�
n½13�h24i, implying the sum rule of

the form in Eq. (13) with ceumnpqαmα
�
nβ

�
pβq=4 appearing

on the left-hand side. For each of the c tensors, we now
define cmnpqαmα

�
nβ

�
pβq ¼ cαβ, in terms of which the full set

SIGNS, SPIN, SMEFT: SUM RULES … PHYS. REV. D 105, 036006 (2022)

036006-5



of operators appearing in the sum rules can be summa-
rized as

1
4
ceuαβ

1
4
cLeαβ

1
4
cedαβ

1
4
cLuαβ

1
4
cud1αβ þ 1�3

48
cud2αβ

1
4
cLdαβ

1
4
cLQ1
αβ � 1

16
cLQ2
αβ

1
4
cQe
αβ

1
4
cQu1
αβ þ 1�3

48
cQu2
αβ

1
4
cQd1
αβ þ 1�3

48
cQd2
αβ

: ð18Þ

Recall that we use mostly-plus metric in our sum rules’
relations between the operators in Eqs. (17) and (18) and
the spin of states in the completion. For the opposite
signature convention, flip the sign of the right-hand sides of
all dispersion relations. As we will see, if either sign
dominates in the sum rule (i.e., if the overall completion is
dominated by scalars or vectors), then similarly with
Ref. [15] we obtain a sum rule in which flavor- and
CP-violating terms are upper-bounded in magnitude by
their symmetry-conserving analogues.

IV. DISCUSSION

We can test our sum rules and examine the detailed
operation of our dispersion relations by considering several
realistic example UV completions. Due to the complicated
dependence on kinematics typical of loop diagrams, we
generically expect loop-level completions to generate an
infinite tower in the partial wave expansion and so, by
virtue of our dispersion relations, necessarily generate
nonzero boundary term(s); we leave the investigation of
this possibility to future work. For illustrative purposes, let
us therefore construct example tree-level completions.
(Note that, while any interacting theory will possess loop
diagrams, and hence generically a full tower of nonzero
partial waves, for a weakly coupled theory whose leading
diagrams are at tree level we can consistently truncate to the
amplitude in both the UVand the IR and consistently apply
the dispersion relation at that order in the coupling [9,27].)
For a thorough discussion of tree-level completions of
SMEFToperators at dimension six, see Ref. [54]. Consider
a complex scalar singlet ϕ of mass mϕ coupled via
ymnϕðēmecnÞ þ H:c: Electron-positron scattering thus pro-
ceeds through the u-channel:

and we have Aαβ ¼ 4αmβnβ
�
pα

�
qympy�nq½13�h24i=

ðu −m2
ϕ þ iϵÞ. This theory generates low-energy Wilson

coefficients beþαβ ¼ jymnαmβ
�
nj2=2m2

ϕ > 0. For this comple-
tion, explicit computation shows that the boundary terms
vanish, and positive beþαβ arising from a scalar current in the
UV is consistent with our sum rule in Eq. (13). Since for

this u-channel process ImaðjÞαβ ∝ δðsþm2
ϕÞ, the only con-

tribution to the right-hand side of Eq. (9) comes from the

crossed amplitude, ImaðjÞᾱβ ðsÞ¼1
4
jymnαmβ

�
nj2sδj0δðs−m2

ϕÞ.
Inputting this into the integrand, we find that all of our
dispersion relations are satisfied.
Alternatively, by taking a complex vector Aμ, a

hypercharged, SU(2) doublet of mass mA coupling as
ymnAμðēmγμLc

nÞ þ H:c:, we can generate OLe from
Eq. (15) at tree level via the s-channel process:

We find that integrating out the massive state gives an
effective operator that can be rearranged into OLe, with
Wilson coefficients cLeαβ ¼ −jymnαnβ

�
mj2=m2

A < 0, in agree-
ment with sum rule prediction in Eqs. (18) and (13) for a
vector current in the completion. We note that, despite
the presence of additional powers of momenta in the
propagator numerator for the massive vector, the amplitude
in this example theory is indeed perturbatively unitary,
since the extra momenta are annihilated when contracted
with γμ times a spinor, e.g., ½1jðp1 þ p2Þμγμj2i ¼ 0.
Explicitly, Aαβ ¼ −2jymnαnβ

�
mj2½13�h24i=ðs −m2

A þ iϵÞ,
for which the boundary terms in the dispersion

relations vanish. Expanding in partial waves, ImaðjÞαβ ¼
1
24
jymnαnβ

�
mj2sδj1δðs −m2

AÞ will contribute to the right-

hand side of Eq. (9), whereas ImaðjÞᾱβ ∝ δðsþm2
AÞ will not,

and we find that the sum rules are explicitly satisfied.
Having examined example s- and u-channel completions

at tree level, let us finally consider a UV t-channel process.
For a real vector Aμ of mass mA interacting with electrons
and up-type quarks via yemnAμðēmγμenÞ þ yumnAμðūmγμunÞ,
where ye and yu are both real, symmetric matrices of
couplings, the amplitude for ēþu− scattering:

is Aαβ ¼ −2ðyemnαmα
�
nÞðyupqβpβ�qÞ½13�h24i=ðt −m2

A þ iϵÞ,
corresponding at low energies to Wilson coefficients ceuαβ ¼
−ðyemnαmα

�
nÞðyupqβpβ�qÞ=m2

A of indefinite sign. Both A and
its crossed version have imaginary parts ∝ δðt −m2

AÞ,

GRANT N. REMMEN and NICHOLAS L. RODD PHYS. REV. D 105, 036006 (2022)

036006-6



which vanish for real momenta. While the integrals in the
dispersion relations will therefore not contribute, the
expressions remain valid as this is an example that contains

nonzero boundary terms, CðsÞ
∞;αβ ¼ −CðtÞ

∞;αβ ¼ 2cαβ, which
leave the left-hand side of Eq. (9) precisely zero, matching
the vanishing imaginary parts of the partial wave sum.
Thus, t-channel completions behave distinctly differently
in the dispersion relation, in a way that shows up both in the
allowed signs of Wilson coefficients and in the UV
momentum scaling.
The behavior at dimension six, where the sign of the

Wilson coefficient can encode information about the spin of
the UV completion, stands in contrast to equivalent results
at dimension eight where instead strict positivity bounds
can be established. For example, in Ref. [15], it was shown
that the operator

Oð8Þ
e ¼ −bð8Þ;emnpq∂μðēmγνenÞ∂μðēpγνeqÞ; ð19Þ

satisfies the positivity bound bð8Þ;emnpqαmβnβ
�
pα

�
q > 0. The

scalar completion discussed above generates the dimen-
sion-six operator Oe at lowest order in p2=m2

ϕ, and as
shown, induces a positive contribution to our sum rule in
Eq. (13). However, at subleading order, the theory gen-

erates Oð8Þ
e . Explicit computation reveals that bð8Þ;emnpq ¼

ympy�nq=m4
ϕ, which satisfies the positivity bound. If we

consider a different UV completion, the behavior at
dimension six can change, whereas that at dimension eight
will not. For instance, we could also UV-completeOe using
a massive vector with interaction ymnAμðēmγμenÞ, where
ymn ¼ y�nm. At energy scales below mA, at leading order we
have a contribution to the dimension-six operator from both
the s- and t-channel in the UV. By analogous arguments to
those above, the s-channel will generate a negative con-
tribution to our sum rule, whereas the t-channel will
generate boundary terms and, therefore, a Wilson coeffi-
cient of indefinite sign. Nonetheless, at next-to-leading

order, we induce Oð8Þ
e with bð8Þ;emnpq ¼ ymnypq=2m4

A, which
again satisfies the dimension-eight positivity bound.
Given that our sum rules do not specify any particular

sign for individual Wilson coefficients, a single measure-
ment is insufficient to identify whether the relations are
satisfied or not. Instead, it is from the correlations between
Wilson coefficients that the generic UV properties can be
inferred. As in Ref. [15], of particular interest is the
predicted connection between operators that generate
experimentally distinct signatures. In particular, the sum
rule in Eq. (13)—and analogously for the combinations in
Eqs. (17) and (18)—implies that various flavor- and CP-
violating operators have coefficients with magnitudes
upper-bounded by their symmetry-preserving cousins,
albeit in a more complicated fashion than at dimension
eight. (As in the sum rules themselves, any such symmetry

bounds will be subject to the caveats about boundary terms
that we have discussed.) Unlike at dimension eight, it is
possible for a flavor-violating operator, say ceu1123, to be
arbitrarily larger than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijceu1122ceu1133j
p

, since the presence of
scalars and vectors can conspire to make one of the flavor-
conserving terms vanish, due to the indefinite sign in
Eq. (13). However, we can lift our definite-superposition
scattering of Eq. (13) to a generalized optical theorem
dispersion relation (as introduced at dimension eight in
Ref. [20]). In the case of elastic scattering, we found that
when boundary terms vanish, the partial wave expansion
contains only the j ¼ 0 and 1 terms for same- and opposite-
helicity scattering, respectively. It is therefore of interest to
consider the scenario in which the UV completion for the
general scattering process contains only scalars and vectors
in these channels, in which case we find the dispersion
relation:

ceumnpq ¼ 8

Z
∞

s0

ds
s2

X
M

ðMð0Þ
nqM

ð0Þ�
mp − 3Mð1Þ

mqM
ð1Þ�
np Þ; ð20Þ

whereMð0Þ
mn and Mð1Þ

mn are amplitudes for scattering eþmuþn to
some massive scalar and ē−muþn to a massive vector,
respectively, and the sum

P
M is over all such channels

in the UV. We can treat
R∞
s0

ds
s2
P

M as an inner product, with
a given scattering process viewed as a vector indexed by s
and the UV stateM. Let us write the j ¼ 0, 1 contributions

to the flavor-conserving terms as 8jM⃗ð0Þ
12 j2 ¼ ceuð0Þ1122 ,

24jM⃗ð1Þ
12 j2 ¼ ceuð1Þ1122 , etc. Then the flavor conserving coef-

ficients are simply differences of their scalar and vector

contributions, ceu1122¼cð0Þ1122−cð1Þ1122 and ceu1133¼cð0Þ1133−cð1Þ1133,
while the flavor violating term is given by a difference of

vector products, ceu1123 ¼ 8M⃗ð0Þ
13 · M⃗ð0Þ�

12 − 24M⃗ð1Þ
13 · M⃗ð1Þ�

12 .
By the Cauchy-Schwarz inequality, we then have

jceu1123j ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð0Þ1122c

ð0Þ
1133

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ1122c

ð1Þ
1133

q
; ð21Þ

and similarly for all the other combinations of operators

appearing in our bounds. The individual components cð0Þ1122

and cð1Þ1122 go like 1=Λ2, where Λ is the scale of new physics
(e.g., the mass of the UV states). If an individual Wilson
coefficient were tuned to be arbitrarily small by balancing
competing terms in Eq. (13), naive EFT power-counting
would lead to an artificially-high estimate≫ Λ for the scale
of new physics. However, using Eq. (21), if we write the
flavor-violating coupling in terms of its cutoff Λ̃, we have
Λ̃ > Λ as a consequence of analyticity and unitarity when
boundary terms are negligible. Our sum rules thus offer a
connection between qualitatively different types of exper-
imental signals that would result from the leading devia-
tions to the SM, for example, connecting collider bounds
with precision decay measurements. Violation of our sum
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rule would immediately reveal a property of the UV. The
fundamental field theoretic axioms used to derive our
dispersion relations would imply that either boundary
terms must be present (which itself tells us about the
UV momentum scaling of the amplitude) or that the UV
theory contains a vector and scalar tuned to cancel each
other’s flavor-conserving effects.
This scenario could be realized experimentally as

follows. Mu3e is targeting the range 10−16–10−12 for
Brðμ → 3eÞ ∼ ðmW=Λ̃Þ4, which would correspond to Λ̃
between 80 and 800 TeV [55], scales where the flavor-
conserving analogues would be challenging to confirm.
Bounds on flavor-violating τ decays are much weaker, e.g.,
Brðτ → 3μÞ≲ 2 × 10−8 [56], corresponding to Λ̃≳ 7 TeV.
The Belle II experiment at SuperKEKB aims to tighten the
bound on this branching ratio to ∼10−10, i.e., Λ̃ ∼ 25 TeV
[57,58]. Analogous flavor- and CP-conserving four-lepton
terms have been bounded by LHC measurements [59–63]
to Λ≳ 1 to 2 TeV. Thus, a near-term detection of flavor
violation in τ decays would imply—by virtue of our Λ̃ > Λ
bound—either the near-term detection of new physics at

colliders in the 10 TeV range or else that the UV contains
one of the loopholes to our arguments discussed above, in
addition to being unambiguous evidence of new physics
[64]. Meanwhile, near-term detection of μ → 3e could give
a compelling reason to look for new lepton physics at a
precision electroweak machine like the ILC and/or more
broadly investigate the 100 TeV range at a future circular
collider [65].
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