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Taking a two interacting scalar toy model with interaction term gϕχ2, we study the production of χ
particles coming from the decay of an asymptotic and highly occupied beam of ϕ particles. We perform a
nonperturbative analysis coming from parametric resonant instabilities and investigate the possibility that
massive χ particles are produced from decays of massless ϕ particles from the beam. Although this process
is not present in a perturbative analysis, our nonperturbative approach allows it to happen under certain
conditions. For a momentum p of the beam particles and a mass mχ of the produced ones, we find that the

decay is allowed if the energy density of the beam exceeds the instability threshold p2m4
χ=ð2g2Þ. We also

provide an analytical expression for the spontaneous decay rate at the earliest time.
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I. INTRODUCTION

The decay of a particle into other species is one of the
simplest and most relevant effects in relativistic field
theories. From the theoretical point of view, the decay rate
for a process ϕi → ϕj þ ϕk can be defined in general terms
as [1]

Γ ¼ V
Z

d3pj

ð2πÞ3 V
Z

d3pk

ð2πÞ3
djSfij2
dt

; ð1Þ

where p⃗j;k are the three-momentum of ϕj;k, V the volume
where the theory is defined, t the time, and jSfij2 the
transition probability of the process. When the initial and
final states are asymptotic, i.e., free of interactions, the
matrix element Sfi ≡ hfjSjii is calculated perturbatively. It
gives

Sfi ¼
ið2πÞ4δ4ðpi − pj − pkÞffiffiffiffiffiffiffiffiffiffiffi
2ωiV

p ffiffiffiffiffiffiffiffiffiffiffi
2ωjV

p ffiffiffiffiffiffiffiffiffiffiffi
2ωkV

p Mfi; ð2Þ

where Mfi is the Feynman amplitude and ωi;j;k the energy
of the particles. In this formula, the delta function imposes
that the momentum and energy conservation between initial

and final asymptotic states must be exactly fulfilled in the
transition.
In a physical situation, the decay processes originate

from beams or clumps of the decaying particles. To
compute the produced particle flux the analysis is usually
done for the decay of a single particle of the beam or clump
and the decay rate is calculated in perturbation theory using
Eq. (2), where asymptotic states of the produced particles is
assumed. Finally it is integrated over the contributions of all
the particles of the beam. This reasoning is valid as long as
the assumption of asymptotic final states is correct or at
least when it is a good approximation. Following this
recipe, it is easy to find that massless particles of a beam
cannot decay into other massive species because the
energy-momentum conservation for asymptotic states is
never fulfilled.1 More general, this recipe based on the
asymptotic state assumption forbids any decay process for
which the total mass of the produced particles exceeds the
mass of the decaying particles.
However, if the beam or clump carries an extremely big

energy density, this assumption is no longer valid, the
produced particles are not in asymptotic states because they
continue to interact with the decaying field and then
nonperturbative effects start to be relevant. As a conse-
quence, Eq. (2) is meaningless and the energy-momentum
conservation as well as the decay rate should be accounted
in a different way. This motivates us to explore the
possibility that processes (not only decays) forbidden by
the asymptotic final state assumption are now allowed.
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1Under the aymptotic state assumption, the case of massless
particles decaying into other massless particles has been studied
in detail in [2–5].
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In this article we study these nonperturbative effects for a
simple scalar toy model. We focus on a beam of massless
particles and their decay into massive species. We find that
this is indeed possible when the beam energy density
exceeds some threshold which is explicitly calculated. As
far as we know this possibility has not been discussed in the
literature and, despite our study being limited to a theo-
retical point of view, we expect that it could be relevant in
astrophysics, collider physics, and cosmology since in
these topics, it is usual to ignore processes that, under
the asymptotic state assumption, seem to be impossible. As
very intense fields play an important role in this subjects,
we suggest that these effects should be something to
look at.

II. NONPERTURBATIVE AXION
DECAY AS AN EXAMPLE

To start, let us introduce, as an example, the interesting
case of the axion decay into two photons. This inspired us
to write this article and certainly serves as a good example
to understand what we mean with nonperturbative effects in
the previous paragraphs. Assuming asymptotic photon
states for the decay of a single axion, the scattering matrix
of the process can be computed perturbatively from Eq. (2),
then the decay rate obtained from Eq. (1) is given by

Γa→2γ ¼
g2aγγm3

a

64π
ð3Þ

in the axion rest frame. Here gaγγ is the axion to two
photons coupling and ma the axion mass. For an axion
clump composed by Na particles (all of them at rest), and
assuming, again, asymptotically free photon states after
decays, the number of photons per unit time emitted by the
clump is 2NaΓa→2γ . This straightforward result ignores the
fact that once photons are produced, they continue to
interact with the clump. Indeed, if the axion clump is highly
occupied in a particular mode, the presence of the produced
photons stimulate the decay of the remaining axions,
leading to an exponential growth of the photon occupancy
number [6–12]. This process originates from Bose statistics
and is known as Bose enhancement. The effect can also be
interpreted as a parametric resonance on the electromag-
netic field. Parametric resonance is a well known effect
with many applications in cosmology, for instance in the
physics of inflation [13–18] (see Ref. [19] for a review).
Let us discuss briefly this parametric resonance in more

detail for the axion-photon case. As it is a nonperturbative
calculation, it is better understood for time scales where the
clump has not been significantly depleted. Under this
assumption one can neglect backreactions on the axion
field and the resulting differential equations for the electro-
magnetic field can be linearized. For a dense axion clump
with energy density ρa pairs of photons emitted with

momenta k⃗ and −k⃗ have a time dependent occupancy
number (in the linear regime) given by

fγ;kðtÞ ¼
σ2a
s2k

sinhðsktÞ2: ð4Þ

Here σa ¼ gaγγ=2
ffiffiffiffiffiffiffiffiffiffi
ρa=2

p
, ϵk⃗ ¼ 2k −ma, and sk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2a − ϵ2
k⃗
=4

q
, where k ¼ jk⃗j. The most important feature

of this result is that each mode k⃗ that satisfies ϵ2
k⃗
< 4σ2a, i.e.,

ma

2
− σa < k <

ma

2
þ σa ð5Þ

experiences exponential growth in its occupancy number.
We can compute the photon number density using a saddle
point approximation, for σat ≫ 1 we find

nγðtÞ ¼ 2

Z
d3k
ð2πÞ3 fγ;kðtÞ ≃

m2
aσa

8
ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p e2σat: ð6Þ

From Eqs. (6) and (5) we see that the photon number
density grows at the rate

γa→2γ ¼ 2σa ∼ gaγγ

ffiffiffiffiffi
ρa
2

r
ð7Þ

affecting a bandwidth of size

δk ¼ 2σa ð8Þ

centered at k ¼ ma=2.
This non perturbative axion decay features two interest-

ing properties that we cannot find in the perturbative case.
First, notice that from Eq. (7) we see that the photons are
emitted at a rate different from what we observe in Eq. (3).
The most important discrepancy is that while the pertur-
bative result scales as g2aγγ , the nonperturbative one scales
as gaγγ. References [20,21] give a very intuitive explanation
about what is happening. Looking at the Boltzmann
equation, one finds

_na ¼ −Γa→2γð1þ 2fγ;ma=2Þna: ð9Þ

We can see that the decay rate is corrected by a factor
1þ 2fγ;ma=2. When fγ;ma=2 > 1=2, it is enhanced dramati-
cally. This stimulated decay effect is known as Bose
enhancement. To probe that fγ;ma=2 > 1=2 can be reached
easily, let us analyze Eq. (9) at the beginning, when
fγ;ma=2 ∼ 0. Since _nγ ¼ −2_na, after a small period of time
δt we get nγ ¼ 2Γa→2γnaδt. From the uncertainty principle
the photon field is spread in the energy bandwidth
δk ∼ 1=δt, then
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fγ;ma=2 ∼
nγ

8πðma=2Þ2δk=ð2πÞ3
;

¼ 8π2
Γa→2γna
m2

aδk2
: ð10Þ

Now, using Eq. (3) and taking Eq. (8) for δk, we find

fγ;ma=2 ∼
π

4
>

1

2
: ð11Þ

It means that the effect coming from Bose enhancement
becomes important instantly. Moreover, using Eq. (10),
Eq. (9) can be written as

_nγ ∼ 2σanγ; ð12Þ

which is consistent with Eq. (6), at least in the order of
magnitude. The other property, maybe the most important
concerning our hypothesis, comes from Eq. (5). While in
the perturbative calculation the energy momentum con-
servation for asymptotic states implies that all the produced
photons must have a momentum k ¼ ma=2, the nonper-
turbative analysis allows the produced photon to have
momenta within the bandwidth defined in Eq. (5). As this
window for the photon momenta is proportional to

ffiffiffiffiffi
ρa

p
, we

would recover the perturbative result in the limit ρa → 0.
This limit is indeed consistent with the asymptotic state
assumption since for a small axion energy density the
interaction of the produced photons with the axion field is
negligible. This window for the momenta of the produced
particles, photons for the axion case, is what leads us to
wonder about the possibility of decays that are forbidden in
the perturbative calculation, where the asymptotic state
assumption is an unbroken rule.
For a more general decay process of the form

ϕi → ϕj þ ϕk, if the decaying field ϕi is highly occupied,
then the linearized equations of motion for the fields ϕj and
ϕk look quite similar to the ones of the axion-photon case.
While the analog of σa has in general a momentum
dependence (σa → σk⃗) and a different form (it also depends
on the form of the interaction term), it always scales as the
squared root of the energy density ρϕi

of the decaying field
ϕi. On the other hand, and also very important, ϵk has
always the same form; i.e., if the decaying field ϕi is
occupied in a state with momentum p⃗,

ϵk⃗ ¼ ωðjÞ
k⃗

þ ωðkÞ
p⃗−k⃗

− ωðiÞ
p⃗ ; ð13Þ

where ωðlÞ
k⃗

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

l

q
(l ¼ fi; j; kg) and ml the corre-

sponding mass of each field ϕl. The parametric resonance
and depletion of the field ϕi takes place when

ϵ2
k⃗
< 4σ2

k⃗
: ð14Þ

Notice that in the limit ρϕi
→ 0, suitable for the single

particle decay, the condition ϵk⃗ ¼ 0 is required. This
condition is exactly the energy-momentum conservation
for asymptotic states.
We are interested in the case where ϕi is massless2 and

ϕj, ϕk are massive (or at least one of them). In this case ϵk⃗
can never be zero and, therefore, a single massless particle
can not decay by itself. However, when ϕi is a highly
populated beam in some momentum mode, the condition
for the decay is actually Eq. (14). Particles from the
massless beam start to decay into ϕj and ϕk with momen-
tum modes satisfying Eq. (14) even if ϵk⃗ ¼ 0 has no

solutions for k⃗.
When nonperturbative effects take place, of course the

energy conservation cannot be accounted by assuming
asymptotic states. In our approach we do it by calculating
the energy expectation value of the produced field directly
from the solutions of the equations of motion. The details
will be discussed later.
At this point we have taken the parametric resonance

properties to explain roughly how a beam of massless
particles can be depleted by the decay into massive
particles. In the following we will discuss this mechanism
in detail using a simple toy model involving two scalar
fields. Our analysis includes solutions of the equations of
motion in the rotating wave approximation, study of the
parametric resonance instabilities, computation of the
energy density threshold for the decays and consistency
check of energy conservation. Some technical details and
validity check of the approximation are left in the
Appendixes.

III. A TWO SCALAR TOY MODEL

We consider the following interaction Hamiltonian
density

HI ¼ gϕχ2; ð15Þ

where ϕ represents the decaying particles, χ the produced
particles, and g the coupling constant. For now we consider
the general case where both fields are massive. Working in
the Heisenberg picture, the equations of motion of the
system are

ð□þm2
ϕÞϕ ¼ −gχ2; ð16Þ

2In models of massless preheating [22] the inflaton field
suffers self-interactions due to a λϕ4 potential. It makes the zero
momentum modes of the inflaton to oscillate harmonically. It
finally drives the decay of the field into SM particles by
parametric resonance. Our interest is rather directed at a beam
of massless particles and their possibility to decay into massive
species.
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ð□þm2
χÞχ ¼ −2gϕχ; ð17Þ

where mϕ and mχ are the masses of ϕ and χ, respectively.
We are interested in the case where ϕ is a beam of particles,
highly occupied in a single momentum mode p⃗. In this
limit, ϕ can be perfectly considered as a classical field. On
the other hand, as in the axion-photon case, we consider
timescales where ϕ is not significantly depleted. It allows
us to neglect backreactions over ϕ, so we make the rhs of
Eq. (16) equal to 0 and Eq. (17) becomes linear. These
considerations lead us to write ϕ as a monochromatic
classical plane wave as

ϕðx⃗; tÞ ¼
ffiffiffiffiffiffiffiffi
2ρϕ

p
ωp

cosðp⃗ · x⃗ − ωp⃗tÞ; ð18Þ

where ρϕ is the time averaged energy density of the beam

and ωp⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ϕ

q
.

We write the quantum field χ in terms of creation and
annihilation operators as

χðx⃗; tÞ ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ωk⃗

p ðχk⃗ðtÞeik⃗·x⃗ þ χ k⃗ðtÞ†e−ik⃗·x⃗Þ; ð19Þ

where Ωk⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q
and the operators χk⃗ and χ†

k⃗
satisfy

the commutation relations ½χk⃗; χk⃗0 � ¼ 0 and ½χ k⃗; χ†k⃗0 � ¼
ð2πÞ3δ3ðk⃗ − k⃗0Þ. Inserting Eqs. (18) and (19) into
Eq. (17), we get the following set of equations for the
new operators Ak⃗ ¼ χ k⃗ þ χ†

−k⃗
:

ð∂2
t þΩ2

k⃗
ÞAk⃗

¼ −ω2
p⃗α

� ffiffiffiffiffiffiffiffiffiffi
Ωk⃗

Ωk⃗−p⃗

s
Ak⃗−p⃗e

−iωp⃗tþ
ffiffiffiffiffiffiffiffiffiffiffi
Ωk⃗

Ωk⃗þp⃗

s
Ak⃗þp⃗e

iωp⃗t

�
; ð20Þ

where we have defined

α≡ g
ffiffiffiffiffiffiffiffi
2ρϕ

p
ω3
p⃗

: ð21Þ

Let us study the resonant solutions of Eq. (20) analyti-
cally using the rotating wave approximation (RWA).3 To do
so we write χk⃗ðtÞ ¼ ak⃗ðtÞe−iΩk⃗ t. The RWA is a method that
allows us to transform a second order system of differential
equations to a first order one, in our context it can be done
when ak⃗ varies slowly respect to χ k⃗. For more details of the
method, see Appendix A.

We are interested in the case where at t ¼ 0 there is no χ
particles. Therefore, at the very beginning the only relevant
process4 to account is ϕ → 2χ. Defining

ϵk⃗ ¼ Ωk⃗ þ Ωp⃗−k⃗ − ωp⃗ ð22Þ

and neglecting nonrelevant terms, Eq. (20) becomes

_ak⃗ ¼ −iσk⃗a
†
p⃗−k⃗

eiϵk⃗t; ð23Þ

where

σk⃗ ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρϕ=2

ω2
p⃗Ωp⃗−k⃗Ωk⃗

s
: ð24Þ

The general solution of Eq. (23) is

ak⃗ðtÞ ¼ eiϵk⃗t=2
�
ak⃗ð0Þ

�
coshðsk⃗tÞ − i

ϵk⃗
2sk⃗

sinhðsk⃗tÞ
�

−i
σk⃗
sk⃗

ap⃗−k⃗ð0Þ† sinhðsk⃗tÞ
�
; ð25Þ

where we have defined

sk⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
k⃗
− ϵ2

k⃗
=4

q
: ð26Þ

For each momentum mode k⃗, its occupancy number is

fχ;k⃗ðtÞ ¼
1

V
h0jak⃗ðtÞ†ak⃗ðtÞj0i ¼

σ2
k⃗

s2
k⃗

sinhðsk⃗tÞ2; ð27Þ

and the total density of produced particles is given by

nχðtÞ ¼
Z

d3k
ð2πÞ3 fχ;k⃗ðtÞ: ð28Þ

The modes that exhibit parametric resonance are the ones
that satisfy

s2
k⃗
> 0: ð29Þ

Now let us talk about energy conservation [momentum
conservation is satisfied since we obtained Eq. (20)]. After
Nϕ decays of ϕ particles, the energy expectation value
of χ must be hEχi ¼ ωp⃗Nϕ in order to conserve energy
during the processes. We compute hEχi directly by hEχi ¼
h0jHχ j0i, where the free Hamiltonian Hχ is given by

3Figure 5 (see the Appendix B) shows a perfect agreement
between numerical solutions of Eq. (20) and solutions in the
rotating wave approximation.

4The decay ϕ → 2χ is the main process only at the beginning.
When χ is populated, processes of the form ϕþ χ → χ are
activated. See Appendices A and B for a more detailed dis-
cussion.
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Hχ ¼
1

2

Z
d3xðð∂tχÞ2 þ ð∇⃗χÞ2 þm2

χχ
2Þ: ð30Þ

By using Eqs. (19) and (25) we get (see Appendix C)

hEχi ¼ V
Z

d3k
ð2πÞ3 ðΩk⃗ − ϵk⃗=2Þfχ;k⃗; ð31Þ

where we have ignored the vacuum energy contribution.
Defining q⃗ ¼ p⃗ − k⃗ we find

hEχi ¼ ωp⃗Nϕ þ
V
2

Z
d3k
ð2πÞ3 ðΩk⃗fχ;k⃗ −Ωq⃗fχ;q⃗Þ; ð32Þ

where we have used Eq. (22), the property fχ;k⃗ ¼ fχ;q⃗ and
the fact that the average number of produced χ particles
Nχ ¼ Vnχ is twice Nϕ. Since

R
d3k ¼ R

d3q, the integral in
Eq. (32) cancels, getting

hEχi ¼ ωp⃗Nϕ ð33Þ

as expected.
Notice that this result as well as the ones in the previous

paragraph do not depend on the masses of the particles. The
only requirement is a parametric instability. We will show
later that even the case of massless ϕ and massive χ is
unstable for some region in momentum parameter space if
ρϕ is large enough. In other words, we will show that, after
some threshold of ρϕ, the production of massive scalar from
decays of massless particles is possible without energy-
momentum violation.
Before continuing, we would like to discuss the validity

of our calculation. Our results were found in a RWAwhere
the amplitudes ak⃗ vary slowly respect to χk⃗, so Eq. (25) is
valid under the conditionΩk⃗ ≫ sk⃗. AssumingΩk⃗ ∼ Ωp⃗−k⃗ ∼
ωp⃗ we would be safe for

α ≪ 1: ð34Þ

Even though condition Eq. (34) will be useful in most of the
remaining discussion, we have to pay special attention
when either Ωk⃗ or Ωp⃗−k⃗ approaches to zero because sk⃗
could blow up. For instance, when mχ ¼ 0, Ωp⃗−k⃗ ¼ 0

if k⃗ ¼ p⃗.

IV. INSTABILITY CONDITION AND DECAY OF A
MASSLESS BEAM

Now we are going to study the instability conditions in
two opposite cases: (1) massive ϕ and massless χ and
(2) massless ϕ and massive χ. Case (1) has been strongly
discussed in the literature, so we are using it as a matter of
comparison with case (2), which is what concerns us. Let us
define the dimensionless quantities κ⃗ ¼ k⃗=ωp, μ ¼ mχ=ωp,

v⃗ ¼ p⃗=ωp, and βκ⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ μ2

p
. Let us also define

ηκ⃗ ¼ sκ⃗=ωp, which in terms of the defined dimensionless
parameters is given by

ηκ⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2

4βv⃗−κ⃗βκ⃗
−
1

4
ðβκ⃗ þ βv⃗−κ⃗ − 1Þ2

s
: ð35Þ

We also define θ as the angle formed by k⃗ and p⃗.
For case (1) we can always choose a reference frame

where the ϕ particles are at rest, then the beam becomes a
clump of particles with speed v ¼ 0. Notice that this is very
similar to the axion-photon case discussed before.5

Equation (35) simplifies and the instabilities (η2κ⃗ > 0) take
place for 1=2 − α < κ < 1=2þ α. For case (2) Eq. (35)
must be evaluated with v ¼ 1. In this case the analysis is
more complicated, so before finding analytical expressions
we will first identify some general properties by showing
some plots. Fig. 1 shows ηκ⃗ as a function of μ for α ¼ 10−3,
θ ¼ 0, and different values of κ. Of course we avoid the
extremes κ ¼ 1 and κ ¼ 0 where our calculation breaks
down. We can see instabilities only for μ ≪ 1. Figure 2
shows ηκ⃗ as a function of θ for α ¼ 10−3, μ ¼ ffiffiffi

α
p

=2, and
different values of κ. We observe that the instabilities occur
for θ smaller than 1. To have a better look of the instability
regions, see Fig. 3 where ηκ⃗ is plotted as a function of κ for a
fixed μ and different values of θ. We see that in terms of κ the
bandwidth is of order 1 for θ ¼ 0, much bigger than case
(1) where it is of the order of α. However, we also see that the
instability region becomes smaller as θ increases, which is
the main advantage of case (1) where the instability window
keeps its size for any angle.We also see in Fig. 3 that, close to
the extremes, κ ≈ 1 and κ ≈ 0, ηκ⃗ is enhanced. It may
contribute to the efficiency of the process, although we have

FIG. 1. ηκ⃗ as a function of μ for κ ¼ 0.1, 0.2 and 0.5. We used
θ ¼ 0 and α ¼ 10−3.

5It is also analogous to the inflaton decay where the inflaton
field is considered as an homogeneous classical field [20].
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to be always alert that sk⃗=Ωk⃗ ≪ 1 is satisfied, otherwise we
would enter in regions where our RWA breaks down.
These plots gave us some generals features of the

instability conditions, in terms of physical parameters we
found that mχ ≪ ωp⃗ and θ ≪ 1. Now we will use these
features to find analytical expressions. The frequencies can
be approximated as Ωk⃗ ≈ kþm2

χ=ð2kÞ and Ωp⃗−k⃗ ≈ p − kþ
ðpkθ2 þm2

χÞ=ð2ðp − kÞÞ. When computing ϵk⃗, the main
contributions of Ωk⃗ and Ωp⃗−k⃗ cancel with ωp⃗, getting

ϵk⃗ ≈
pðm2

χ þ k2θ2Þ
2kðp − kÞ : ð36Þ

In the above result we have assumed that we are far enough
from k ¼ 0 and k ¼ p.
To find the instability condition we solve the equation

η2κ⃗ ¼ 0 to get the instability limits for κ. As θ ¼ 0 gives the
biggest instability window for κ, we evaluate at this angle
obtaining the limits

κ� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ4=α2

p
2

: ð37Þ

The size of the window is

δκ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ4=α2

q
; ð38Þ

therefore the instability is triggered when μ <
ffiffiffi
α

p
or when

ρϕ >
p2m4

χ

2g2
; ð39Þ

in terms of the energy density.
It is not too difficult to check that the instability

condition Eq. (39) is Lorentz invariant. It is, of course,
what we would expect. Now two questions arise: why the
were the instabilities found for p ≫ mχ? What happens for
p ∼mχ or p ≪ mχ? We answer the first question as
follows. First, the instability occurs when μ <

ffiffiffi
α

p
.

Second, we are working in a RWA where the validity of
our analysis is limited by α ≪ 1. These two facts imply that
the instability must satisfy p ≫ mχ as a consequence. In
other words, in our rotating wave approximation, the
instability takes place only for reference frames where
p ≫ mχ . To answer the second question, we take Eq. (20)

in the limit p ≪ mχ . Taking into account only the modes k⃗

and k⃗ − p⃗ we get the system

ð∂2
t þm2

χÞAk⃗ ¼ −ω2
p⃗αAk⃗−p⃗e

−iωp⃗t; ð40Þ

ð∂2
t þm2

χÞAk⃗−p⃗ ¼ −ω2
p⃗αAk⃗e

iωp⃗t: ð41Þ

For solutions of the form Ak⃗ ¼ ck⃗e
γte−iωp⃗t=2 and

Ak⃗−p⃗ ¼ dk⃗e
γteiωp⃗t=2, we find that γ is given by

γ2 ¼ ω2
p⃗α −m2

χ : ð42Þ

It is clear that the instability is also activated when Eq. (39)
is fulfilled. We also expect the same result for p ∼mχ, but it
is not clear how to proceed analytically.

V. SPONTANEOUS DECAY RATE

So far we have explained that the decays of massless into
massive particles are allowed due to a nonperturbative
effect caused when a huge energy density of the beam
prevents asymptotic states for the produced particles.
However, we still do not clarify how the first χ pair is
spontaneously released. To do so, we focus on the decay of
a single ϕ particle of the beam but, of course, taking into
account the effect that the beam energy density causes on it.
Working now in the interaction picture, the only nonzero
element of the S-matrix expansion is

FIG. 2. ηκ⃗ as a function of θ for κ ¼ 0.1, 0.2, and 0.5. We used
α ¼ 10−3 and μ ¼ ffiffiffi

α
p

=2.

FIG. 3. Shape of ηκ⃗ as a function of κ for θ ¼ 0, 0.05, and 0.1.
Here we have used α ¼ 10−3 and μ ¼ ffiffiffi

α
p

=2.
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Sfi ¼
Z

T

0

dt
Z

d3xhfjHIjii; ð43Þ

where jii is the initial state that contains one ϕ particle with
momentum p⃗ and jfi the final state composed by two χ

particles, one with momentum k⃗ and another with momen-
tum q⃗. In Eq. (43), T is the time during which the system
transits from the state jii to the state jfi. As the transitions
that are typically studied involve processes where the final
state is free of interactions, one could just make T → ∞.
However, in some cases this approximation breaks down
due to finite time effects [23–25] or simply if the transition
time is not big enough to be considered as infinite [26]. In
our case, this is indeed what happens. From the non-
perturbative analysis we found that if the instability
condition is fulfilled, there are no asymptotic states and
that the timescales for transitions into unstable modes are of
the order ð2sk⃗Þ−1 [see Eq. (27)].
Without saying anything about T we have

Sfi ¼ 2g
ð2πÞ3δ3ðk⃗þ q⃗− p⃗Þffiffiffiffiffiffiffiffiffiffiffiffi
2ωp⃗V

p ffiffiffiffiffiffiffiffiffiffiffiffi
2Ωk⃗V

p ffiffiffiffiffiffiffiffiffiffiffiffi
2Ωq⃗V

p eiϵk⃗T=2
sinðϵk⃗T=2Þ

ϵk⃗=2
: ð44Þ

Replacing Eq. (44) into Eq. (1) and applying an extra factor
1=2 coming from the fact that the final states are identical
particles, we get

Γϕ→2χ ¼
g2

2ωp⃗

Z
d3k
ð2πÞ3 ðΩk⃗Ωp⃗−k⃗Þ−1

sinðϵk⃗TÞ
ϵk⃗

: ð45Þ

Let us first consider the scenario where ρϕ → 0. In this
case the system transits to a free of interaction state after the
decay, so we can take T → ∞. In this limit
sinðϵk⃗TÞ=ϵk⃗ → πδðϵk⃗Þ, then the usual energy-momentum
conservation relation, ϵk⃗ ¼ Ωk⃗ þ Ωp⃗−k⃗ − ωp⃗ ¼ 0, involv-
ing asymptotic initial and final states, holds. For case
(1) we, of course, obtain the usual formula

Γϕ→2χ ¼
g2

8πmϕ
: ð46Þ

For case (2) we get Γϕ→2χ ¼ 0 because ϵk⃗ can never be zero.
It is the usual result that prohibits the decay of massless into
massive particles due to the lack of final asymptotic states
that satisfy energy-momentum conservation.
Now we consider the case where ρϕ is big enough to

trigger the instabilities discussed before, i.e., it satisfies
Eq. (39). It is clear that there is no asymptotic states for the
χ particles produced from the decay, the evolution of the χ
modes affected by parametric resonance are rather
described by Eq. (25). In parametric resonance the number
of the produced particles grows exponentially as Eq. (27),
at least at the beginning, therefore the transition time of the
process is T ¼ ð2sk⃗Þ−1. Since the main contributions for the

growth are provided by modes that fulfill sk⃗ ≫ ϵk⃗, we can
use the approximation sinðϵk⃗TÞ ¼ sinðϵk⃗=2sk⃗Þ ≈ ϵk⃗=2sk⃗
with great accuracy. Equation (45) becomes

Γϕ→2χ ¼
g2

2ωp⃗

Z
d3k
ð2πÞ3

ðΩk⃗Ωp⃗−k⃗Þ−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4σ2

k⃗
− ϵ2

k⃗

q : ð47Þ

For case (1) we can make σk⃗ ≈mϕα to preserve only
terms of order g2. We find

Γð1Þ
ϕ→2χ ¼

g2

8π2mϕ

Z
2mϕα

−2mϕα

dϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

ϕα
2 − ϵ2

q ; ð48Þ

¼ g2

8πmϕ
: ð49Þ

As we get the same as Eq. (46), the physical reason of this
result should be investigated further.
For case (2) the integration is not straightforward as in

case (1). Assuming θ ≪ 1, which is true on behalf of
previous discussions, we get

Γð2Þ
ϕ→2χ ¼

g2

8πp
Fðμ= ffiffiffi

α
p Þ; ð50Þ

where

FðxÞ ¼ 1

π

Z
κþðxÞ

κ−ðxÞ
dκ

�
π

2
− arcsin

�
x2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κð1 − κÞp ��

: ð51Þ

We recall that κ�ðμ=
ffiffiffi
α

p Þ are defined in Eq. (37). In terms
of the quantity ωp⃗, which is mϕ for case (1) and p for case
(2), the ratio between both decay rates is simply

Γð2Þ
ϕ→2χ

Γð1Þ
ϕ→2χ

¼ Fðμ= ffiffiffi
α

p Þ: ð52Þ

A plot of Fðμ= ffiffiffi
α

p Þ is shown in Fig. 4. As we already
discussed, we can see that for case (2) the decay is clearly
possible if μ <

ffiffiffi
α

p
, but it becomes impossible for μ ≥

ffiffiffi
α

p
.

For μ ≪
ffiffiffi
α

p
the decay rate approaches its maximum which

is a half of the decay rate for case (1).
In our toymodelwe can also connect the g2 dependence of

the earliest spontaneous decay rate and the rate proportional
to g at which χ particles are produced by parametric
resonance. As for the axion-photon discussion in Sec. II,
we take the Boltzmann equation _nϕ ¼ −Γϕ→2χð1þ 2fχÞnϕ,
where fχ ∼ ð2πÞ3nχ=d3k and Γϕ→2χ ∼ g2=ð8πωp⃗Þ for both
case (1) and case (2). It is not difficult to find that also for both
cases d3k ∼ πg

ffiffiffiffiffiffiffiffi
2ρϕ

p
. Combining all of this and the fact that

_nχ ¼ −2_nϕ, we find from the Boltzmann equation that
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_nχ ∼
g

ffiffiffiffiffiffi
2ρϕ

p
ω2
p⃗

nχ , which is consistent with Eq. (27) for

case (1) as well as for case (2).

VI. DEPLETION OF THE MASSLESS BEAM

To finishwewill briefly discuss the conditions that allow a
significant depletion of the ϕ field. We already said that
condition Eq. (39) triggers the instability, however it is a
necessary but not sufficient condition for a substantial decay
of the beam. Themissing condition is that the time tres during
which the instability takes place is enough to reach the
exponential regime. It requires αωp⃗tres > 1. We need the
produced particles to stay inside the beam extension for the
parametric resonance to develop, therefore tres is the time that
χ particles take to leave the beam region. As the χ particles
have momenta pointing mainly to the same direction as the
beam propagates, tres is given roughly by d=ð1 − vχÞ, where
vχ is the velocity of the produced particles and d the beam
length. This velocity is approximately 1 − μ2=2, which leads
to the following depletion condition

d >
μ2

2αp
: ð53Þ

Notice that, given the resonance conditionμ2 < α, Eq. (53) is
satisfied necessarily by taking d > 1=ð2pÞ.

VII. CONCLUSION

In this article we have taken a simple scalar toy model,
with interaction term gϕχ2, to study the process ϕ → 2χ in
the particular case of massless ϕ and massive χ. Although
the one particle analysis prohibits the decay by the require-
ment of energy-momentum conservation of asymptotic
states, we found that when ϕ is highly occupied, non-
perturbative effects (parametric resonance) allow the decay
as long as the energy density of the decaying particle beam
exceeds the threshold defined in Eq. (39). We demonstrated

that energy-momentum is indeed conserved during the
particle production and, finally, we got an analytical
expression for the spontaneous decay rate at the earliest
time. This result suggests a deeper inspection of non-
perturbative effects in particle processes, especially the
ones that are relevant in cosmology, astrophysics, and
collider physics.
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APPENDIX A: TECHNICAL DETAILS FOR
SOLUTIONS IN THE ROTATING WAVE

APPROXIMATION

Let us study the resonant solutions of Eq. (20) analytically
using the RWA. To do so we first write χk⃗ðtÞ ¼ ak⃗ðtÞe−iΩk⃗t

where ak⃗ varies slowly with respect to χk⃗. Neglecting second
derivatives of ak⃗, Eq. (20) can be written as

∂tak⃗ ¼ ∂ta
†
−k⃗
e2iΩk⃗t − iσk⃗ðak⃗−p⃗e

iϵð1Þ
k⃗
t þ a†

p⃗−k⃗
eiϵ

ð2Þ
k⃗
tÞ

− iσk⃗þp⃗ðak⃗þp⃗e
iϵð3Þ

k⃗
t þ a†

−p⃗−k⃗
eiϵ

ð4Þ
k⃗
tÞ; ðA1Þ

where

σk⃗ ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρϕ=2

ω2
p⃗Ωp⃗−k⃗Ωk⃗

s
ðA2Þ

and

ϵð1Þ
k⃗

¼ Ωk⃗ − Ωk⃗−p⃗ − ωp⃗; ðA3Þ

ϵð2Þ
k⃗

¼ Ωk⃗ þΩp⃗−k⃗ − ωp⃗; ðA4Þ

ϵð3Þ
k⃗

¼ Ωk⃗ −Ωk⃗þp⃗ þ ωp⃗; ðA5Þ

ϵð4Þ
k⃗

¼ Ωk⃗ þ Ω−k⃗−p⃗ þ ωp⃗: ðA6Þ

The RWA allows us to only keep terms that oscillate slowly
respect toΩk⃗. Therefore,we can immediately neglect the first

term of the rhs of Eq. (A1) as well as the term containing ϵð4Þ
k⃗
.

The recognition of the other terms that can be neglected will

depend on k⃗. The ϵðiÞ
k⃗

defined in Eqs. (A3)–(A5) account for

FIG. 4. Plot of F as a function of μ=
ffiffiffi
α

p
. See the text for details.
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the efficiency of some particular processes. This association
is listed as follows

ϵð1Þ
k⃗
∶ ϕp⃗ þ χk⃗−p⃗ ↔ χ k⃗; ðA7Þ

ϵð2Þ
k⃗
∶ ϕp⃗ ↔ χk⃗ þ χp⃗−k⃗; ðA8Þ

ϵð3Þ
k⃗
∶ ϕp⃗ þ χk⃗ ↔ χk⃗þp⃗: ðA9Þ

When one of them becomes smaller than some threshold, the
associated process is excited. As in our initial condition there
are no χ particles, at the very beginning only the process
ϕp⃗ → χ k⃗ þ χp⃗−k⃗ can be possible, so for early times Eq. (A1)
reduces to

_ak⃗ ¼ −iσk⃗a
†
p⃗−k⃗

eiϵ
ð2Þ
k⃗
t: ðA10Þ

APPENDIX B: FURTHER PROCESSES AFTER
FIRST DECAYS

This article is mainly based on the solution of Eq. (A10),
which gives a complete picture of the system at early times,
where χ is not significantly populated. In this timescale,
only the process ϕp⃗ → χ k⃗ þ χp⃗−k⃗ can be excited. Now we

are going to discuss what happens after the modes k⃗ and
p⃗ − k⃗ are appreciably occupied. Even at this times, we are
still assuming that ϕ is not depleted substantially, so the
linearizaion of the equations of motion still holds.
For case (1) (massive ϕ and massless χ) none of the other

ϵðiÞ
k⃗

defined in Eqs. (A3) and (A5) become small enough to

excite the corresponding process, then ϕ continue decaying
into momentum modes k⃗ and p⃗ − k⃗ of χ particles and
Eqs. (25) and (27) are still valid. Their validity holds until
backreactions are activated, i.e., when the inverse process
2χ → ϕ starts to be important. Of course, it happens when
ϕ is significantly depleted.
For case (2) ϵð1Þ

k⃗
is big, of the order of Ωk⃗, but ϵ

ð3Þ
k⃗

is as

small as ϵð2Þ
k⃗
. It means that if the process ϕp⃗ → χk⃗ þ χp⃗−k⃗ is

efficient, once χ k⃗ and χp⃗−k⃗ are abundant, the processes χ k⃗ þ
ϕp⃗ → χ k⃗þp⃗ and χp⃗−k⃗ þ ϕp⃗ → χ

2p⃗−k⃗ will become efficient
too. Following the same reasoning, a cascade is produced
and every process of the form χk⃗þnp⃗ þ ϕp⃗ → χ k⃗þðnþ1Þp⃗ and

χnp⃗−k⃗ þ ϕp⃗ → χðnþ1Þp⃗−k⃗ (n ¼ 0; 1; 2;…) will be eventually

important after some period of time. To prove this last
claim, we compute the classical version of Eq. (20)
numerically assuming that only the modes k⃗ and p⃗ − k⃗
are initially occupied. Figure 5 shows jAk⃗j2 as a function of
time for the modes k⃗, k⃗þ p⃗, k⃗þ 2p⃗, and k⃗þ 3p⃗. We do
not plot the modes p⃗ − k⃗, 2p⃗ − k⃗, 3p⃗ − k⃗, and 4p⃗ − k⃗

because, according to the initial conditions, the time
evolution of their square amplitudes are identical as the
ones for k⃗, k⃗þ p⃗, k⃗þ 2p⃗, and k⃗þ 3p⃗, respectively. We
evaluate at k⃗ ¼ ωp⃗=2 and we assume that at the beginning

the modes k⃗ and p⃗ − k⃗ have initial conditions
jAk⃗ð0Þj2 ¼ jAp⃗−k⃗ð0Þj2 ¼ 1. All the other modes have a
null initial amplitude. We see that the squared amplitudes of
modes different from k⃗ and p⃗ − k⃗ begin to grow gradually.
In Fig. 5 we also compute numerically in the rotating wave
approximation (see dotted lines). We basically take
Eq. (A1) and solve the system neglecting fast oscillating
terms. It is clear that this approximation perfectly agrees
with the full solutions of the second order differential
equations.

APPENDIX C: ENERGY EXPECTATION VALUE
FOR THE PRODUCED FIELD

Inserting Eq. (19), with χk⃗ ¼ ak⃗e
−iΩk⃗t, into the

Hamiltonian defined in Eq. (30), we obtain

Hχ ¼
1

2

Z
d3k
ð2πÞ3 ðΩk⃗ðak⃗a†k⃗ þ a†

k⃗
ak⃗Þ

þ i
2
ð _ak⃗a†k⃗ þ a†

k⃗
_ak⃗ − ak⃗ _a

†
k⃗
− _a†

k⃗
ak⃗ÞÞ: ðC1Þ

To get Eq. (C1) wewere consistent with the RWA, therefore
we have neglected fast oscillating terms as well as terms of
order _a2, ð _a†Þ2, _a _a† and _a† _a. Now we calculate the
expectations values of each term in the integrand using
the solution Eq. (25). Ignoring the contribution of the
vacuum energy, we have

h0jak⃗a†k⃗ þ a†
k⃗
ak⃗j0i ¼ 2Vfχ;k⃗: ðC2Þ

For the other terms we get

FIG. 5. Plots of the amplitude squared jAk⃗j2 as a function of
time for the modes k⃗, k⃗þ p⃗, k⃗þ 2p⃗, and k⃗þ 3p⃗. Dotted lines
correspond to numerical solutions using the rotating wave
approximation. See the text for more details.
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h0j _ak⃗a†k⃗j0i ¼ V
σ2
k⃗

sk⃗
Sk⃗

�
Ck⃗ þ i

ϵk⃗
2sk⃗

Sk⃗

�
; ðC3Þ

h0jak⃗ _a†k⃗j0i ¼ V
σ2
k⃗

sk⃗
Sk⃗

�
Ck⃗ − i

ϵk⃗
2sk⃗

Sk⃗

�
; ðC4Þ

h0ja†
k⃗
_ak⃗j0i ¼ h0j _ak⃗a†k⃗j0i; ðC5Þ

h0j _a†
k⃗
ak⃗j0i ¼ h0jak⃗ _a†k⃗j0i; ðC6Þ

where Ck⃗ ¼ coshðsk⃗tÞ and Sk⃗ ¼ sinhðsk⃗tÞ. With these
results, we find

hEχi ¼ h0jHχ j0i ¼ V
Z

d3k
ð2πÞ3 ðΩk⃗ − ϵk⃗=2Þfχ;k⃗: ðC7Þ

[1] M. D. Schwartz, Quantum Field Theory and the Standard
Model (Cambridge University Press, Cambridge, England,
2014).

[2] M. Parkinson and D. Vasholz, On the possibility of massless
particle instability, Phys. Lett. 45B, 376 (1973).

[3] D. Vasholz, A markovian approach to massless particle
decay and recombination, Nucl. Phys. B67, 157 (1973).

[4] M. Parkinson, A calculation of photon decay, Nucl. Phys.
B74, 269 (1974).

[5] G. Fiore and G. Modanese, General properties of the decay
amplitudes for massless particles, Nucl. Phys. B477, 623
(1996).

[6] D. Yoshida and J. Soda, Electromagnetic waves propagating
in the string axiverse, Prog. Theor. Exp. Phys. (2018),
041E01.

[7] M. P. Hertzberg and E. D. Schiappacasse, Dark matter axion
clump resonance of photons, J. Cosmol. Astropart. Phys. 11
(2018) 004.

[8] A. Arza, Photon enhancement in a homogeneous axion dark
matter background, Eur. Phys. J. C 79, 250 (2019).

[9] P. Carenza, A. Mirizzi, and G. Sigl, Dynamical evolution of
axion condensates under stimulated decays into photons,
Phys. Rev. D 101, 103016 (2020).

[10] Z. Wang, L. Shao, and L.-X. Li, Resonant instability of
axionic dark matter clumps, J. Cosmol. Astropart. Phys. 07
(2020) 038.

[11] A. Arza, T. Schwetz, and E. Todarello, How to suppress
exponential growth—on the parametric resonance of pho-
tons in an axion background, J. Cosmol. Astropart. Phys. 10
(2020) 013.

[12] D. Levkov, A. Panin, and I. Tkachev, Radio-emission of
axion stars, Phys. Rev. D 102, 023501 (2020).

[13] J. H. Traschen and R. H. Brandenberger, Particle production
during out-of-equilibrium phase transitions, Phys. Rev. D
42, 2491 (1990).

[14] L. Kofman, A. D. Linde, and A. A. Starobinsky, Reheating
After Inflation, Phys. Rev. Lett. 73, 3195 (1994).

[15] Y. Shtanov, J. H. Traschen, and R. H. Brandenberger, Uni-
verse reheating after inflation, Phys. Rev. D 51, 5438 (1995).

[16] S. Khlebnikov and I. Tkachev, Classical Decay of Inflaton,
Phys. Rev. Lett. 77, 219 (1996).

[17] S. Khlebnikov and I. Tkachev, The Universe after inflation:
The Wide resonance case, Phys. Lett. B 390, 80 (1997).

[18] L. Kofman, A. D. Linde, and A. A. Starobinsky, Towards the
theoryof reheatingafter inflation,Phys.Rev.D56, 3258(1997).

[19] M. A. Amin, M. P. Hertzberg, D. I. Kaiser, and J. Karouby,
Nonperturbative dynamics of reheating after inflation: A
review, Int. J. Mod. Phys. D 24, 1530003 (2015).

[20] D. Baumann, The Physics of Inflation: A Course for
Graduate Students in Particle Physics and Cosmology
(Cambridge University Press, Cambridge, England, 2011).

[21] G. Alonso-Álvarez, R. S. Gupta, J. Jaeckel, and M.
Spannowsky, On the wondrous stability of ALP dark matter,
J. Cosmol. Astropart. Phys. 03 (2020) 052.

[22] H. Bazrafshan Moghaddam, R. H. Brandenberger, Y.-F. Cai,
and E. G. Ferreira, Parametric resonance of entropy pertur-
bations in massless preheating, Int. J. Mod. Phys. D 24,
1550082 (2015).

[23] I. Joichi, S. Matsumoto, and M. Yoshimura, Time evolution
of unstable particle decay seen with finite resolution, Phys.
Rev. D 58, 045004 (1998).

[24] E. Fischbach, A. Overhauser, and B. Woodahl, Corrections
to Fermi’s golden rule in ϕ → K anti-K decays, Phys. Lett.
B 526, 355 (2002).

[25] F. Giacosa and G. Pagliara, Deviation from the exponential
decay law in relativistic quantum field theory: The example
of strongly decaying particles, Mod. Phys. Lett. A 26, 2247
(2011).

[26] O. Erken, P. Sikivie, H. Tam, and Q. Yang, Cosmic axion
thermalization, Phys. Rev. D 85, 063520 (2012).

ARIEL ARZA PHYS. REV. D 105, 036004 (2022)

036004-10

https://doi.org/10.1016/0370-2693(73)90059-2
https://doi.org/10.1016/0550-3213(73)90323-4
https://doi.org/10.1016/0550-3213(74)90526-4
https://doi.org/10.1016/0550-3213(74)90526-4
https://doi.org/10.1016/0550-3213(96)00346-X
https://doi.org/10.1016/0550-3213(96)00346-X
https://doi.org/10.1093/ptep/pty029
https://doi.org/10.1093/ptep/pty029
https://doi.org/10.1088/1475-7516/2018/11/004
https://doi.org/10.1088/1475-7516/2018/11/004
https://doi.org/10.1140/epjc/s10052-019-6759-7
https://doi.org/10.1103/PhysRevD.101.103016
https://doi.org/10.1088/1475-7516/2020/07/038
https://doi.org/10.1088/1475-7516/2020/07/038
https://doi.org/10.1088/1475-7516/2020/10/013
https://doi.org/10.1088/1475-7516/2020/10/013
https://doi.org/10.1103/PhysRevD.102.023501
https://doi.org/10.1103/PhysRevD.42.2491
https://doi.org/10.1103/PhysRevD.42.2491
https://doi.org/10.1103/PhysRevLett.73.3195
https://doi.org/10.1103/PhysRevD.51.5438
https://doi.org/10.1103/PhysRevLett.77.219
https://doi.org/10.1016/S0370-2693(96)01419-0
https://doi.org/10.1103/PhysRevD.56.3258
https://doi.org/10.1142/S0218271815300037
https://doi.org/10.1088/1475-7516/2020/03/052
https://doi.org/10.1142/S0218271815500820
https://doi.org/10.1142/S0218271815500820
https://doi.org/10.1103/PhysRevD.58.045004
https://doi.org/10.1103/PhysRevD.58.045004
https://doi.org/10.1016/S0370-2693(01)01520-9
https://doi.org/10.1016/S0370-2693(01)01520-9
https://doi.org/10.1142/S021773231103670X
https://doi.org/10.1142/S021773231103670X
https://doi.org/10.1103/PhysRevD.85.063520

