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We study the emergence of color superconductivity in the theory of the strong interaction at supranuclear
densities. To this end, we follow the renormalization group (RG) flow of dense strong-interaction matter
with two massless quark flavors from the fundamental quark and gluon degrees of freedom at high energies
down to the nonperturbative low-energy regime which is found to be governed by the dynamical formation
of diquark states. With the strong coupling at the initial RG scale as the only input parameter, we compute
the (chirally symmetric) scalar diquark condensate and analyze its scaling behavior over a wide range of the
quark chemical potential. Approximations entering our computations are critically assessed. Since our
approach naturally allows us to study the scale dependence of couplings, we also monitor the strength of
couplings appearing in low-energy models of dense strong-interaction matter. The observed dependence of
these couplings on the quark chemical potential may help to amend model studies in the future. Finally, we
estimate the speed of sound of dense QCD matter. Our results indicate that the speed of sound exceeds the
value of the noninteracting quark gas at high densities and even increases as the density is decreased, across
a wide range, suggesting the existence of a maximum at supranuclear densities.
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I. INTRODUCTION

There is interest in the properties of quantum chromo-
dynamics (QCD) at supranuclear densities ever since
the first discussion of the possible existence of color-
superconducting ground states in the 1970s, see Ref. [1] for
an early review. However, the properties of such states
remained elusive for a long time. In the late 1990s, it was
then found that the formation of sizeable pairing gaps in
color-superconducting phases may considerably affect the
dynamics of QCD at low temperatures, see Refs. [2–11] for
reviews.
More recently, the interest in the properties of dense

strong-interaction matter received a significant boost
because of the first detection of the gravitational-wave
signal of a neutron-star merger [12,13], ongoing missions
aiming at first direct neutron-star radius measurements
[14–19], as well as precise mass measurements of heavy
neutron stars [20–23]. These breakthroughs provide impor-
tant constraints for the equation of state (EOS) of strong-
interaction matter, see Ref. [24] for a recent analysis.
Quantitative theoretical results for the EOS of dense

strong-interaction matter are therefore indeed urgently
needed in view of this tremendous progress made in the
observation of neutron stars. In addition, constraints on the
EOS can be obtained from heavy-ion collisions [25].
Nevertheless, a reliable description of the properties and
dynamics of strong-interaction matter over a wide range of
densities and temperatures still represents a formidable
challenge, from an observational, experimental, and theo-
retical standpoint.
Presently, studies based on chiral effective field theory

(EFT) interactions (see, e.g., Ref. [26] for a review) set
benchmarks and yield strong constraints for the EOS in the
low-density regime [27,28], see Ref. [29] for a recent
review. For low to moderate densities, functional renorm-
alization group (fRG) studies of nucleon-meson [30–32]
and quark-meson models [33–35] aiming at the EOS at low
temperatures are also available. At very high density,
constraints for the EOS come from perturbative QCD
(pQCD) studies [36–42]. However, in the broad intermedi-
ate density regime, where both the chiral and the pQCD
expansion are expected to break down, much less is known
about the dynamical degrees of freedom and their inter-
actions, resulting in large uncertainties for the EOS and
other quantities, such as the speed of sound of dense matter.
In this density regime, which is still relevant for astro-
physical applications, QCD is widely expected to be
governed by a color-superconducting ground state (see
Refs. [2–11] for reviews).
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Renormalization group (RG) approaches have played
and are still playing an outstanding role in the analysis of
the symmetry-breaking patterns and the emergence of
color-superconducting ground states in dense matter
[43–47]. Indeed, since systems of this kind represent a
multi-scale problem, RG approaches are very well suited.
Recently, an analysis of the RG flow of gluon-induced four-
quark interaction channels in a Fierz-complete setting for
two massless quark flavors has been performed to gain a
deeper insight into symmetry breaking patterns underlying
QCD over a wide range of densities at low and intermediate
temperatures [47]. There, it was found that the scalar-
pseudoscalar interaction channel dominates the dynamics
for small chemical potentials. Increasing the chemical
potential, a (small) range of chemical potentials opens
up with many interaction channels of roughly equal
strength, indicating that the structure of the ground state
may be very complicated in this regime. Increasing the
chemical potential further, it was then observed that the
diquark channel becomes most dominant, suggesting
the formation of a chirally symmetric diquark condensate
associated with pairing of the two-flavor color-supercon-
ductor (2SC) type. This observation is in accordance with
early studies [48–51], including first-principles calculations
which exploit the fact that the coupling effectively becomes
small in the high-density limit owing to asymptotic free-
dom [43,44,52–56].
The RG analysis of the symmetry-breaking patterns in

Ref. [47] laid the ground for a subsequent computation of
constraints from quark-gluon dynamics for the EOS of
isospin-symmetric two-flavor QCD over a wide range of
densities [28]. Remarkably, toward the nucleonic low-
density regime, the results from this EOS study are
impressively consistent with those from calculations based
on chiral EFT interactions. Moreover, the RG study of the
EOS in Ref. [28] predicts the emergence of a maximum in
the speed of sound at supranuclear densities which appears
to be tightly connected to the formation of a diquark gap.
Interestingly, this maximum exceeds the asymptotic high-
density value of the speed of sound. However, its exact
position in terms of the density has not yet been determined
conclusively. With respect to astrophysical applications, it
is worth noting that the analysis of constraints from
neutron-star masses also strongly suggests the existence
of a maximum of the speed of sound for neutron-rich matter
[24,57–60].
With our present work, we aim at laying the field-

theoretical foundation for new first-principles studies of the
EOS of dense QCD matter. As a first application, we shall
demonstrate that—starting from the fundamental quark and
gluon degrees of freedom at high energies—our RG
approach allows us to study the dynamical formation of
diquarks in the low-energy limit. In a next step, for
example, this can be used to narrow down the (systematic)
uncertainties of the thermodynamic quantities computed in

Ref. [28], in particular those of the EOS and the position of
the maximum of the speed of sound. Still, the analysis of
the RG flows presented in this work already allows us to
gain an insight into the dynamics of dense QCDmatter over
a wide range of chemical potentials, as we shall show by
computing the diquark gap.
The present work is organized as follows: In Sec. II, we

discuss the formalism underlying our RG analysis of dense
QCD matter. This includes a discussion of possible
extensions required for computations of the EOS and also
makes connections to our previous study of the EOS of
dense matter [28]. The RG flow of dense QCD matter is
then analyzed in detail in Sec. III. There, we also present
our results for the (chirally symmetric) scalar diquark
condensate as a function of the quark chemical potential.
In Sec. IV, we finally discuss implications of our RG study
for low-energy models of dense strong-interaction matter
and for the speed of sound as a specific example for a
phenomenologically important thermodynamic quantity.
Our conclusions and a brief outlook can be found in Sec. V.

II. FORMALISM

A. Effective action

For our analysis of the properties of QCD at intermediate
and also high densities, we employ the Wetterich equation
[61] which is an RG equation for the quantum effective
action Γ. Within this framework, the effective action
depends on a so-called RG “time” t ¼ lnðk=ΛÞ where k
is the RG scale and Λ may be chosen to be the scale at
which the initial condition Γk¼Λ for the scale-dependent
effective action Γk is fixed. In our present study, the initial
condition is given by the classical (Euclidean) QCD action
S for two massless quark flavors coming in three colors:

S ¼
Z

d4x

�
1

4
Fa
μνFa

μν þ ψ̄ði∂ þ ḡ=A − iγ0μÞψ
�
: ð1Þ

Here, ḡ is the bare gauge coupling and μ is the quark
chemical potential. For the values of μ considered in this
work, we choose Λ ≫ μ to ensure that the RG flow is
initialized in the perturbative high-energy regime. The
gluon fields Aa

μ come with Lorentz (greek letters) and
color (roman letters) indices and enter the definition of
the field-strength tensor Fa

μν ¼ ∂μAa
ν − ∂νAa

μ þ ḡfabcAb
μAc

ν

(a ¼ 1;…; 8). Moreover, they are coupled to the quark
fields ψ via the quark-gluon vertex, see Eq. (1). Note that
the quark fields ψ carry color and flavor components.
The quark-gluon vertex generates a plethora of inter-

action channels. With respect to studies of ground-state
properties, quark self-interaction channels are of particular
importance as they can be directly related to the order-
parameter potential of QCD. More specifically, the quark-
gluon vertex induces four-quark interactions already at the
one-loop level via two-gluon exchange. Schematically, this
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leads to corrections of the effective action of the following
form:

ΔΓ ¼
Z

d4x
X
i

λ̄iðψ̄OiψÞ2: ð2Þ

Here,Oi determines the color, flavor, and Dirac structure of
the four-quark vertex. Note that, in contrast to low-energy
model studies, the four-quark couplings λ̄i are not free
parameters but generated from fundamental quark-gluon
interactions, λ̄i ∼ ḡ4. Higher quark self-interactions are
parametrically suppressed at high momentum scales. For
example, eight quark-interactions scale as ∼ḡ8. However,
following the RG flow from high to low momentum scales,
such higher-order interaction channels then become
increasingly important. In fact, in regimes where the
symmetry is broken spontaneously, eight quark interactions
determine the masses of bound states of two quarks. We
shall come back to this below. In particular, we shall discuss
the relevance of eight-quark interactions at different scales
in Sec. IV, which may also provide useful information for
the construction of low-energy models at intermediate and
high densities.
Still, already an analysis of the RG flow of gluon-

induced four-quark interactions in the pointlike limit
(“zero-momentum projection”) can provide us with an
important insight into the symmetry-breaking patterns over
a wide range of temperatures and quark chemical poten-
tials, see Ref. [62] for an introduction. In fact, this has been
successfully demonstrated for QCD in the vacuum limit
[63], at finite temperature [64,65], and over a wide range of
chemical potentials [47]. In the latter study, it has been
found within a Fierz-complete two-flavor setting that the
scalar-pseudoscalar channel is most dominant at low
densities, in accordance with full QCD RG-flows in the
vacuum limit [66,67]. At large chemical potentials, which
are at the heart of the present work, the diquark channel
∼ðψ̄bτ2ϵabcγ5Cψ̄T

c ÞðψT
dCγ5τ2ϵadeψeÞ is then dynamically

rendered the most dominant channel, suggesting the for-
mation of a chirally symmetric diquark condensate asso-
ciated with pairing of the two-flavor color-superconductor
(2SC) type [47].1 This is in accordance with early studies of
dense QCD [44,48,49,51–53].
Although studies of the RG flow of four-quark inter-

actions in the pointlike approximation provide a deep
insight into symmetry-breaking patterns and their depend-
ence on external control parameters, they are restricted to
scales k ≥ kSB, where the scale kSB is associated with
spontaneous symmetry breaking, such as chiral symmetry
breaking or Uð1ÞV symmetry breaking. In such a setting,
symmetry breaking is indicated by a specific four-quark

channel approaching criticality associated with a diver-
gence of the corresponding coupling at the scale kSB.
Below this scale, the dynamics is governed by the for-
mation of condensates. However, an analysis of the ground-
state properties of QCD in this low-energy regime k < kSB
requires to go beyond the pointlike limit and to resolve the
momentum dependences of the quark correlation functions.
Indeed, information on bound-state and condensate forma-
tion is encoded in the momentum structure of the quark
correlation functions. Such momentum dependences
can be conveniently resolved by employing a Hubbard-
Stratonovich transformation of at least the most dominant
four-quark interaction channel. For example, as demon-
strated in Ref. [28], one may perform such a transformation
of gluon-induced four-quark interactions at a given scale
Λ0 > kSB, which then gives access to the low-energy regime.
However, this introduces a dependence of the effective action
on the scale Λ0 which is reflected in an uncertainty for the
results for low-energy observables, see Ref. [28] for a
discussion in the context of dense QCD. The dependence
on this artificial scale Λ0 can be removed by employing the
so-called dynamical hadronization technique [68–74], see
also Ref. [75] for recent developments regarding the study of
quark composites. Loosely speaking, this technique imple-
ments continuous Hubbard-Stratonovich transformations of
four-quark interactions in the RG flow and thereby allows us
to continuously follow the RG flow from the classical QCD
action at high-momentum scales down to the deep infrared
regime which is governed by the formation of bound states
and condensates. We shall apply this technique in the
following.
The present work should be viewed as the next step in a

series of studies [28,47,76–78]. However, we do not aim at
quantitative studies of thermodynamic quantities and low-
energy observables. We rather aim at setting the methodo-
logical stage for subsequent new quantitative computations
in this series.
Let us now be specific and construct our ansatz for the

scale-dependent effective action Γk which underlies our
present study of dense QCD matter. As in our previous
works, see, e.g., Ref. [47], we rely on the background field
approach to gauge theories [79,80] within background
covariant gauges and employ the background field approxi-
mation which has been worked out in detail for applications
in perturbative as well as nonperturbative settings over
many years by now, see, e.g., Refs. [81–90] and, for a
recent detailed fRG review on this aspect, see Ref. [91]. In
this approach, the so-called background field effective
action inherits gauge invariance from gauge transforma-
tions of an auxiliary background field. The equivalence of
this invariance with the actual physical gauge invariance
follows from the on-shell background independence of this
approach and the Slavnov-Taylor identities, where the
background independence is encoded in Nielsen identities.
With these identities, it can then be shown that the

1Here, τ2 is the second Pauli matrix and, in color space, it is
summed over the totally antisymmetric tensor ϵabc. Moreover, we
have introduced C ¼ iγ2γ0.
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correlation functions associated with the background field
are indeed related to elements of the S-matrix [92]. In fRG
studies, however, the regulator functions for fields carrying
a net color charge break gauge invariance explicitly and, as
a consequence, the independence of the auxiliary back-
ground field is also lost. This eventually leads to mod-
ifications of the Slavnov-Taylor and the Nielsen identities.
Note that the latter also monitor the difference of corre-
lation functions associated with the background field and
those associated with the fluctuation field. In general, the
construction of a manifestly gauge-invariant effective
action in the spirit of the background-field approach
may therefore be nontrivial within the fRG framework.
In the present work, we treat the gauge sector as developed
and discussed in detail in Refs. [63,65,81,82,86]. More
specifically, manifest gauge invariance of the solution in
these studies is maintained by identifying the full gauge
field with the background field in the RG flow. Thus, in the
following, we assume that the background-field two-point
function can be identified with the one of the fluctuation
field in the flow, which is an approximation. For a treatment

of the difference of these two quantities,we refer the reader to
Ref. [93]. This approximation entails that the RG flow is no
longer closed [94] and only some constraints imposed by the
modified Slavnov-Taylor identities are satisfied. As in
previous works [63,65,81,82,86], we shall assume that
corrections due to this approximation are subleading, which
is at least reasonable in the (semi-)perturbative regime above
the symmetry breaking scale kSB. A detailed discussion of
these issues can be found in Ref. [91]. In any case, the
advantage of our present approach is that it equips us
with a gauge-invariant approximate solution of the effective
action.
Since we would like to study the RG flow from the

perturbative high-momentum regime down to the low-
energy regime governed by the formation of bound states
of quarks, we basically employ a combination of the
classical QCD action given in Eq. (1) and an ansatz for
the low-energy sector associated with complex-valued
scalar diquark fields Δa describing quark composites of
the form ∼ðψT

bCγ5τ2ϵabcψcÞ:

Γk ¼
Z

d4x

�
ψ̄bðiγμDbc

μ − iμγ0Þψc þ ZΔðDca
μ ΔaÞðDcb

μ ΔbÞ� þ 2μZΔðΔaðDab
0 ΔbÞ� − Δ�

aðDab
0 ΔbÞÞ − 4μ2ZΔΔ�

aΔa

þ 1

2
λ̄cscðψ̄bτ2iϵabcγ5Cψ̄T

c ÞðψT
dCγ5τ2iϵadeψeÞ þ

1

2
ih̄ðψT

bCγ5τ2ΔaϵabcψcÞ −
1

2
ih̄ðψ̄bγ5τ2Δ�

aϵabcCψ̄T
c Þ

þ m̄2Δ�
aΔa þ λ̄ΔðΔ�

aΔaÞ2 þ
1

4
ZAFa

μνFa
μν

�
þ ΔΓgf þ ΔΓgh: ð3Þ

Here, Dbc
μ ¼ ∂μδ

bc − iḡAa
μTa

bc and a, b, c are color indices.
We have suppressed flavor indices for readability. Note that
we do not take into account the running of the wave
function renormalization of the quark fields in our present
exploratory study since it depends only mildly on the RG
scale, at least at small densities [66,67,69,73,74,95,96].
The diquark (Δ�

a)/antidiquark (Δa) fields appearing in
Eq. (3) transform as an antitriplet/triplet in color space.
Note thatwe include only these fields as effective low-energy
degrees of freedom. This is motivated by the fact that the
diquark channel has been found to be the most dominant
interaction channel for μ≳ 350 MeV in a Fierz-complete
study of gluon-induced four-quark interaction channels [47].
Other four-quark channels, such as the scalar-pseudoscalar
interaction channel associated with pion dynamics, have
been found to be clearly subdominant in this regime,
provided that the Uð1ÞA symmetry is broken explicitly.
The unspecified quantities ΔΓgf and ΔΓgh in Eq. (3) are
the standard background-field gauge-fixing and ghost term,
respectively. In all explicit calculations, we have restricted
ourselves to Feynman gauge for convenience.

A few comments are still in order at this point: In this
work, we are aiming at a study of dense strong-interaction
matter. To this end, we employ the diquark field as an
effective degree of freedom to analyze the properties of the
ground state. Since the diquark field is not a color-neutral
object, the dynamical generation of a finite expectation
value of this field would break the SU(3) color symmetry
and therefore gauge invariance. Of course, it is known that
local gauge invariance cannot be broken [97]. Moreover,
the diquarks are effective degrees of freedom which do not
even need to be asymptotic states in the spectrum. In any
case, in (color-)superconducting systems, the physics is
governed by the formation of a gap in the spectrum of
fermionic excitations at the Fermi surface and the existence
of such a gap is a gauge-invariant statement. The descrip-
tion of the formation of this gap in the fermionic excitation
spectrum in terms of a diquark condensate within a fixed
gauge, which effectively breaks the gauge symmetry, is
only a convenient choice to get access to the low-energy
dynamics [2]. In this work, we expand the effective action
in the quantity Δ�

aΔa (summation over a is tacitly
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assumed), which is a gauge-invariant object. The gap in the
fermionic spectrum is also constructed from this quantity.
In practice, we employ a homogeneous background for the
expansion and eventually evaluate the flow equations on a
specific background configuration. This configuration is
chosen to point into the 3-direction in color space for
convenience, which may possibly lead to a residual
dependence of our results for the gap on this choice. In
future studies, our presently employed convenient approach
to study the physics of dense QCD matter may be “out-
performed” by directly computing the full momentum
dependence of fermonic correlation functions in a vertex
expansion and searching for signatures of a gap in these
quantities, without relying on the use of diquark fields as
auxiliary degrees of freedom. However, this is beyond the
scope of the present work. We add that, in principle, similar
issues are encountered in the description of mass generation
in the electroweak sector of the Standard Model [98–102].
Of course, by construction, our ansatz for Γk does not

allow for a study of the transition from a color-super-
conducting phase at intermediate and high densities to a
phase governed by spontaneous chiral symmetry breaking
at low densities. Therefore, our present work focusses on
the intermediate and high density regime. Note that a
quantitative analysis of the regime associated with the
aforementioned transition is anyhow complicated by the
fact that many four-quark interaction channels have been
found to be of roughly the same strength in this regime
[47]. This suggests that the ground state of QCD may
exhibit a very complicated structure in this transition
regime. We add that, close to the nucleonic low-density
regime, the dynamics may even be governed by quarkyonic
matter [103].

B. RG flow equations

Let us begin our discussion of the RG flow by explaining
the structure of our ansatz for the scale-dependent effective
action Γk in more detail. The initial condition for Γk at the
scale k ¼ Λ ≫ μ is assumed to be given by the classical
QCD action (1). Therefore, the values of the four-quark
coupling λ̄csc, the quark-diquark coupling h̄, the bosonic
wave function renormalization factor ZΔ, and the four-
diquark coupling λ̄Δ should be set to zero at the initial RG
scale Λ.2 This choice for ZΔ implies that we have m2 ¼
m̄2=ZΔ → ∞ for the renormalized mass parameter of the
diquarks for k → Λ. Thus, the diquark fields are indeed not
dynamical degrees of freedom at high-momentum scales.
Their emergence in the low-energy regime of dense QCD
matter is solely triggered by the underlying quark-gluon
dynamics.

By lowering the RG scale, starting from k ¼ Λ, the
quark-gluon vertex generates four-quark self-interactions
via two-gluon exchange. With respect to this type of
interaction channels, we only take into account the diquark
channel as discussed above. This channel is associated with
the coupling λ̄csc in Eq. (3). Once generated, this four-quark
interaction channel can be removed by mapping it onto a
Yukawa-type quark-diquark interaction channel associated
with the coupling h̄ and a term bilinear in the diquark fields
associated with the term ∼m̄2. Essentially, this corresponds
to performing a Hubbard-Stratonovich transformation at a
given RG scale. In the next RG step, however, the four-
quark interaction λ̄csc is regenerated by the quark-gluon
vertex and the quark-diquark vertex. The regenerated four-
quark channel can then again be removed by mapping it
onto the quark-diquark interaction channel and the term
bilinear in the diquark fields. Moreover, the running of the
quark-diquark coupling h̄ and the parameter m̄2 receive
additional contributions from, e.g., the running of the wave
function renormalization ZΔ of the diquark fields. The latter
is generated itself by the quark-diquark coupling h̄. Note
that, once the diquark wave function renormalization is
rendered finite, the diquarks become dynamical degrees of
freedom in the RG flow. It is also important to add that
higher-order diquark self-interaction terms are generated
via the aforementioned quark-diquark interactions. In the
following, we take into account diquark self-interactions up
to the four-diquark channel which is associated with the
coupling λ̄Δ in Eq. (3).3 Taking another RG step, the four-
quark interaction channel is then generated again and the
aforementioned procedure of mapping it onto a Yukawa-
type quark-diquark interaction channel and a term bilinear
in the diquark fields can be repeated. The repeated
application of this mapping can be recast into flow
equations which eventually allow us to follow the RG
flow from the perturbative high-momentum regime gov-
erned by quark-gluon dynamics down to the low-energy
regime governed by the formation of bound states of
quarks. Within the functional RG framework, this pro-
cedure can be implemented with the aid of the so-called
dynamical hadronization technique [68–75], as already
indicated in the previous subsection.
Employing this technique, see Appendix B for details,

we find the following coupled set of flow equations for the
dimensionless renormalized curvature of the effective
potential ϵμ ¼ ðm̄2 − 4ZΔμ

2ÞZ−1
Δ k−2, the renormalized

four-diquark coupling λΔ ¼ λ̄ΔZ−2
Δ , and the renormalized

quark-diquark coupling h ¼ h̄Z
−1
2

Δ :

2We also refer to Sec. III A for a discussion of the initial
conditions and the RG flow at high momentum scales.

3Such diquark self-interaction channels can be related to
higher-order quark self-interaction channels with a nontrivial
momentum structure. For example, the four-diquark channel can
be related to an eight-quark interaction channel.
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∂tϵμ ¼ ðηΔ − 2Þϵμ − 8h2bð2;0Þðμ̃; 0Þ

þ 2

h2
ϵμð1þ ϵμÞg4bðAÞð0;4Þðμ̃; 0; ηAÞ; ð4Þ

∂tλΔ ¼ 2ηΔλΔ þ 4h4bð4;0Þðμ̃; 0Þ

þ 4
λΔ
h2

ð1þ ϵμÞg4bðAÞð0;4Þðμ̃; 0; ηAÞ; ð5Þ

∂th2 ¼ ηΔh2 þ
16

3
g2h2bðAÞð1;2Þðμ̃; 0; ηAÞ

þ 2ð1þ 2ϵμÞg4bðAÞð0;4Þðμ̃; 0; ηAÞ; ð6Þ

where μ̃ ¼ μ=k is the dimensionless chemical potential and
g2 ¼ ḡ2Z−1

A is the renormalized strong coupling. Finally,
the scale-dependence of the anomalous dimension of the
diquark fields is governed by

ηΔ ¼ −∂t lnZΔ ¼ 8h2dð2;0Þðμ̃; 0Þ: ð7Þ

Recall that the set of couplings associated with these
equations span our ansatz (3) for the scale-dependent
effective action Γk. The functions bði;jÞ and dði;jÞ are so-
called threshold functions which correspond to one-particle
irreducible (1PI) Feynman diagrams with i external bosonic
and j external fermionic lines, respectively. In some cases,
an additional superscript (A) appears which indicates that
the associated diagram contains at least one gluon line.
Since we restrict ourselves to the zero-temperature limit in
this work, these functions only depend on the dimension-
less chemical potential μ̃ in the absence of a diquark gap. In
any case, the regularization scheme dependence is also
encoded in these functions. In this respect, we note that we
employ a schemewhich allows us to integrate out fermionic
fluctuations around the Fermi surface [78], see Appendix A
for its definition and brief discussion of all threshold
functions entering our present study. It should be empha-
sized that also the anomalous dimensions ηΔ and ηA ¼
−∂t lnZA depend on the dimensionless chemical potential
μ̃. The running of the strong coupling g and its relation to
the wave function renormalization ZA of the gauge fields is
discussed below.
By comparing the set of flow equations (4)–(7) with our

ansatz (3) for the effective action, it becomes apparent that
there is no flow equation for the four-quark coupling λ̄csc.
With the aid of the aforementioned dynamical hadroniza-
tion technique [68–74], the contributions to this coupling
are continuously transformed into contributions to the flow
of the quark-diquark coupling h and the curvature ϵμ, such
that ∂tλ̄csc ¼ 0 for any value of k. The contributions to the
flow of the four-quark coupling λ̄csc therefore appear in the
flow equations for the quark-diquark coupling h and
the curvature ϵμ. In particular, these contributions are
associated with the terms ∼g4 in the flow equations (4)
and (6) which originally stem from two-gluon exchange

box diagrams appearing in the RG flow of four-quark
couplings.4

The set of flow equations (4)–(7) describes the dynamics
at high-momentum scales where the curvature ϵμ of the
effective potential is positive. In fact, as discussed above,
we shall choose initial conditions such that ϵμ ≫ 1,
λΔ → 0, and h2 → 0 for k → Λ. Quark self-interactions,
which are mapped onto diquark self-interactions and quark-
diquark interactions in our present setting, are initially only
generated by two-gluon exchange ∼g4. Following the RG
flow to smaller scales k, we find that the curvature ϵμ
decreases and eventually becomes zero at a finite scale kSB,
see also our discussion in Sec. III below. At the scale kSB,
spontaneous Uð1ÞV symmetry breaking sets in.
Below the symmetry breaking scale kSB, the curvature ϵμ

of the effective potential becomes negative and a color-
superconducting ground state is formed associated with the
formation of a gap in the fermionic excitation spectrum.
Note that the antisymmetric flavor structure of this color-
superconducting ground state corresponds to a singlet
representation of the global chiral group. This implies that
the formation of such a ground state does not violate the
chiral symmetry. In any case, for k ≤ kSB, it is convenient to
switch from the set of flow equations (4)–(6) to a set in
which the flow equation for the curvature ϵμ is replaced
with a flow equation for the minimum jΔ0j2 ¼

P
a jΔ0;aj2.

Recall that we expand the effective action in the quantity
Δ�

aΔa (summation over a is assumed). For convenience,
we shall choose Δ0;a ¼ Δ0δa;3 (Δ0 ∈ RÞ and use κ ¼
ZΔjΔ0j2k−2 to parametrize the flow of the position of
the minimum of the effective action. The resulting set of
flow equations for scales k < kSB then reads

∂tκ ¼ −ðηΔ þ 2Þκ þ 4h2

λΔ
bð2;0Þðμ̃; h2κÞ; ð8Þ

∂tλΔ ¼ 2ηΔλΔ þ 4h4bð4;0Þðμ̃; h2κÞ

þ 4
λΔ
h2

g4bðAÞð0;4Þðμ̃; h2κ; ηAÞ; ð9Þ

∂th2 ¼ ηΔh2 þ
16

3
g2h2bðAÞð1;2Þðμ̃; h2κ; ηAÞ

þ 2g4bðAÞð0;4Þðμ̃; h2κ; ηAÞ; ð10Þ

4It is indeed possible to recover the flow equation for the four-
quark coupling λ̄csc at scales above the symmetry breaking scale
kSB. To be more specific, we have λcsc ¼ h2=ð2ϵμÞ for the
dimensionless four-quark coupling which relates the dimension-
less four-quark coupling to the quark-diquark coupling h and the
curvature ϵμ. From this flow equation, we deduce that the RG
flow at sufficiently large scales k is governed by the two fixed
points of λcsc, provided the strong coupling g2 is sufficiently
small, see Sec. III C. These fixed points can be translated into
fixed points for the quark-diquark coupling h and the curvature
ϵμ, see Ref. [62] for a general discussion of this aspect.
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and

ηΔ ¼ 8h2dð2;0Þðμ̃; h2κÞ: ð11Þ

In addition to the dimensionless chemical potential μ̃, the
anomalous dimensions ηΔ and ηA now also depend on the
so-called (diquark) gap jΔgapj which appears in the propa-
gator of the quarks. In our conventions, we have jΔgapj ¼
h

ffiffiffi
κ

p
k. Thus, the gap jΔgapj in the quark propagator is

directly related to the minimum jΔ0j2.
The gauge sector enters our flow equations (4)–(11) only

via the running of the strong coupling g which is governed
by the following equation:

∂tg2 ¼ ηAg2: ð12Þ

Here, ηA can be decomposed into a pure gluonic contri-
bution ηglue and a term ηq which contains the quark
contributions [63–65]:

ηA ¼ −∂t lnZA ¼ ηglue þ ηq: ð13Þ

For the purely gluonic contribution ηglue, we employ the
results from previous functional RG studies [64,65,86].
There, ηglue has been computed nonperturbatively within
the background field formalism which also underlies our
present work. The quark contribution ηq depends on the
dimensionless chemical potential μ̃ and the diquark gap:

ηq ¼
1

4
g2dðAÞð2;0Þðμ̃; h2κÞ: ð14Þ

In the limit μ̃ → 0 and h2κ → 0, we have dðAÞð2;0Þð0; 0Þ ¼
2=ð3π2Þ and therefore ηq ¼ g2=ð6π2Þ. This is nothing but
the standard one-loop contribution of the quark fields to the
running of the strong coupling g. We add that, in general,
the running of the gauge coupling also receives corrections
from quark self-interactions, such as four-quark inter-
actions, see, e.g., Refs. [104,105]. However, within the
fRG framework, it follows from an analysis of (modified)
Ward-Takahashi identities that such back-reactions of the
matter sector on the gauge sector are negligible, provided
that the flow of the four-quark couplings is governed by the
presence of fixed points [63–65]. At least above the
symmetry breaking scale kSB, this is indeed the case in
our present study (see also Sec. III A) which justifies that
we do not take such contributions to the running of the
gauge sector into account, see also Ref. [47]. For k < kSB,
we shall neglect such contributions. Note that, in this
regime, the situation is particularly involved anyhow
because of the presence of a finite quark gap, as we shall
discuss next and also in Sec. III below.
In our flow equations (4)–(14) we drop fluctuations of

the diquark fields. Such fluctuation effects are associated

with 1PI diagrams coming with at least one internal diquark
line. Compared to the contributions that we take into
account in our analysis, such contributions are subleading
in an Nc-counting. Moreover, in the symmetric high-energy
regime (i.e., for k > kSB), the fluctuation effects of the
diquark fields are parametrically suppressed because of the
large diquark mass parameter. In Sec. III, we shall see that
this parameter is indeed large and only becomes small close
to the symmetry breaking scale kSB. Such a suppression of
fluctuation effects has already been observed and discussed
in early fRG studies of chiral models in the zero-density
limit [106–108].
In the regime k < kSB, which is governed by sponta-

neous symmetry breaking, it can no longer be argued that
fluctuation effects are subleading. Whereas fluctuation
effects are associated with, e.g., pion dynamics at low
densities, a rigorous inclusion of fluctuations of the diquark
fields at high densities requires to deal with an Anderson-
Higgs-type mechanism [98–102] associated with the sym-
metry-breaking pattern SUð3Þ → SUð2Þ in color space (as
the diquark fields carry a net color charge). As a conse-
quence, only three of the eight gluons are massless. The
remaining five gluons are effectively rendered massive by,
loosely speaking, “eating up” Goldstone modes which
appear in the diquark spectrum in the symmetry-broken
regime, see, e.g., Ref. [6] for a review. In our present study,
which mainly aims at setting the methodological stage for
future more quantitative studies of dense QCD matter, we
do not include this Anderson-Higgs-type mechanism but
rather drop diquark fluctuations as mentioned above. A
more quantitative study taking this Anderson-Higgs-type
mechanism into account is deferred to future work. The
general methodological groundwork for studies of this type
of mechanism within the fRG framework has already been
laid in studies of Abelian Higgs models [109,110] and
(non-Abelian) gauged chiral Higgs-Yukawa models [111].
In any case, we shall at least estimate the effect of the
appearance of the associated gap for the gluons on our
present results in Sec. III below.

III. RG FLOW OF DENSE QCD MATTER

A. Scale fixing

Let us now discuss our results for the RG flow of dense
QCD matter, in particular those for the chirally symmetric
(scalar) diquark condensate. To this end, we first need to
specify the initial conditions of our RG flow equations at the
UV scale k ¼ Λ ¼ 10 GeV. This value of the initial scale
ensures that we have Λ ≫ μ for all values of the quark
chemical potential considered in the present work. For the
dimensionless renormalized curvature ϵμ of the effective
potential, we choose ϵμ ¼ 106. Thus, the diquark fields do
not represent dynamical degrees of freedom at the UV scale
Λ.We add that the limit ϵμ → ∞ corresponds to the limit of a
vanishing diquark wave function renormalization, ZΔ → 0.
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For the quark-diquark coupling h, we choose h ¼ 0.1 at
k ¼ Λ. The initial value of the four-diquark coupling λΔ is
set to zero. This choice for the couplings at the scale Λ
ensures that we indeed initialize the flow “in the vicinity of”
the QCD action in the UV limit.5 Note that we have
checked that our results in the IR limit (in particular those
for the diquark gap) depend only very weakly on the
specific choice for the initial values of the couplings,
provided that we ensure Λ ≫ kSB. This independence
can be traced back to the appearance of pseudo fixed
points in the RG flow of the gluon-induced interaction
channels,6 see Refs. [69,71–74] for a detailed discussion of
this aspect in the vacuum limit of QCD. The appearance of
a pseudo fixed-point behavior at finite chemical potential
together with a loss of memory of the details of the initial
conditions may already be anticipated from an analysis of
the fixed-point structure of gluon-induced four-quark
interaction channels, see Ref. [47] for details. Indeed,
the quark-diquark coupling and the curvature of the
effective potential can be directly related to the four-quark
coupling λcsc ¼ h2=ð2ϵμÞ. Therefore, fixed points of the
four-quark coupling λcsc leave their imprint in the RG flows
of the quark-diquark coupling h and the curvature ϵμ. For
example, our choice ϵμ ≫ h2 at the UV scale implies that

we initialize the RG flow (very) close to the Gaußian fixed
point of the four-quark coupling λcsc.
From this discussion it follows that the initial value of the

strong coupling is the only input parameter in our calcu-
lations. It sets the scale for all dimensionful quantities.
In our present study with two massless quark flavors,
we choose α ¼ g2=ð4πÞ ¼ 0.179� 0.004 at the UV scale
Λ ¼ 10 GeV which corresponds to the experimental value
α ¼ 0.330� 0.014 at the τ-mass scale [112].7 For ΛQCD—
defined as the inflection point of the strong coupling—we
then obtain ΛQCD ≈ 209 MeV in the vacuum limit. From
here on, we shall measure all dimensionful quantities in
units of ΛQCD. For example, we have Λ=ΛQCD ≈ 47.8.

B. From quark-gluon dynamics to color
superconductivity

In Fig. 1, we show the RG flow of the renormalized
dimensionless curvature ϵμ for k ≥ kSB (left panel), the
diquark gap Δgap for k ≤ kSB (left panel), the (squared)
quark-diquark coupling h2 (right panel), the four-diquark
coupling λΔ (right panel), and the strong coupling α ¼
g2=ð4πÞ (right panel) over a wide range of scales for
μ=ΛQCD ¼ 2. In this case, we have kSB=ΛQCD ≈ 1.09. The
gray (vertical) dashed lines in the two panels represent the
point in the RG flow where k ¼ μ. The black (vertical)
dashed lines are associated with the scale k ¼ km. The latter
is an estimate for the scale at which the screening masses of

FIG. 1. RG flow of the renormalized dimensionless curvature ϵμ for k ≥ kSB (left panel), the diquark gap Δgap for k ≤ kSB (left panel),
the (squared) renormalized quark-diquark coupling h2 (right panel), the renormalized four-diquark coupling λΔ (right panel), and the
renormalized strong coupling α ¼ g2=ð4πÞ (right panel) for μ=ΛQCD ¼ 2, where kSB=ΛQCD ≈ 1.09. In both panels, the gray (vertical)
dashed line is associated with the scale k ¼ μ. The black (vertical) dashed line in these panels is associated with the scale k ¼ km. Here,
km is an estimate for the scale at which the gluon screening masses exceed the scale k. For k < kSB, the results for the diquark gap Δgap

(left panel) and the couplings in the right panel are given as solid and dashed lines. The dashed lines represent the running of these
quantities for the case in which the gluons remain ungapped and do not acquire a mass according to the Anderson-Higgs mechanism
below the symmetry breaking scale kSB. The solid lines show the results for the case in which the gluons have been fully decoupled from
the matter sector for k ≤ kSB.

5We add that a finite value of the quark-diquark coupling h
explicitly breaks the Uð1ÞA symmetry. As discussed in, e.g.,
Ref. [47], this is required to render the four-quark coupling
λcsc associated with the diquark channel ∼ðψ̄bτ2ϵabcγ5Cψ̄T

c Þ
ðψT

dCγ5τ2ϵadeψeÞ to be most dominant at high densities [47].
6In the present study, we only encounter pseudo fixed points

since a dimensionful scale enters the RG flow via the quark
chemical potential.

7Note that the running of the strong coupling entering our
calculation is compatible with the standard MS running over a
wide range of scales [64,65,86].
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the gluons exceed the scale k.8 Here, we estimate this scale
from the relation mg ¼ gðkmÞμ=π ¼ km, where mg repre-
sents an estimate for the gluon screening masses in the
symmetric high-energy regime (k > kSB), see, e.g.,
Refs. [113,114]. Note that these masses are scheme-
dependent quantities. A detailed analysis of this aspect
will be given elsewhere [115]. In any case, for small
chemical potentials (e.g., μ=ΛQCD ¼ 2 as shown in Fig. 1),
we observe a hierarchy of scales: kSB < μ < km.
For k > km, gluon screening effects are parametrically

suppressed since mg=k < 1. Note that effects associated
with the quark chemical potential appearing in the quark
propagator are even more suppressed, μ=k < mg=k < 1. In
this high-energy regime, we therefore do not expect that our
results suffer significantly from the fact that we have
neglected the gluon screening masses in our calculations.
For these scales, the RG flow of the couplings is mainly
driven by gluon exchange diagrams. Following the RG
flow toward smaller scales, the strong coupling increases
(see right panel of Fig. 1) and gauge fluctuations tend to
drive the system toward a ground state associated with a
(spontaneously) broken Uð1ÞV symmetry. However, it
should be noted that strong gauge fluctuations are in
principle not required to trigger the formation of a
(color-)superconducting ground state because of the
presence of a Cooper instability in the system,9 see
Refs. [46,76] for a general fixed-point analysis of this
aspect and Ref. [48] for an early mean-field study in QCD.
The gauge fluctuations rather act as a “catalyzer” for the
formation of a (color-)superconducting ground state.
Loosely speaking, strong gauge fluctuations tend to
increase the symmetry breaking scale kSB and therefore
also the diquark gap Δgap ∼ kSB. In other words, without
strong gauge fluctuations, the diquark gap would be
(significantly) smaller.
From this line of arguments it is already clear that gluon

screening effects become relevant at some point in the RG
flow toward the infrared regime. To be more specific, we
expect that the presence of gluon screening masses affects
the dynamics for kSB < k < km. In this regime, contribu-
tions to the RG flow with at least one internal gluon line
start to become parametrically suppressed since we have
mg=k > 1. This reduces the aforementioned “catalyzing
effect” of the gluons and presumably leads to a shift of the
symmetry breaking scale kSB and the gap Δgap to smaller
values compared to the ones obtained in our present study. A
detailed analysis of this aspectwill begiven elsewhere. In any
case, we expect that their inclusionwill not significantly alter
the value of the symmetry breaking scale kSB or the dynamics

for kSB < k < km, at least for sufficiently small values of the
chemical potential. For example, for μ=ΛQCD ¼ 2, we have
kSB=ΛQCD ≈ 1.1 and km=ΛQCD ≈ 2.2. Consequently, gluon
screening effects are expected to be relevant only in a
comparatively small regime above the symmetry break-
ing scale.
For increasing chemical potential, we find that the

symmetry breaking scale kSB increases but only mildly,
see also Fig. 2 and our discussion in Sec. III C below. In any
case, a change in the hierarchy of scales sets in for
increasing μ, where we eventually have kSB < km < μ.
The quark dynamics is now strongly affected by the
presence of the chemical potential over a wide range of
scales. For μ=ΛQCD ¼ 10, for example, we have
kSB=ΛQCD ≈ 1.6. The gluon screening masses are smaller
than the quark chemical potential over a wide range of
scales within the regime kSB < km < μ. Nevertheless, these
screening masses increase roughly linearly when μ is
increased. For a given scale k, this suggests a stronger
(parametric) suppression of gluonic contributions to the RG
flow at large chemical potential than at small chemical
potential. In other words, gluon screening effects may have
a stronger impact on the RG flow over a wider range
of scales when the chemical potential is increased. Cor-
respondingly, the aforementioned “catalyzing effect” of the
gauge degrees of freedom is expected to be reduced.
Therefore, it is reasonable to expect that our estimates for
the symmetry breaking scale kSB and the diquark gap become
less reliable for large chemical potentials. In fact, after the
conventional BCS-type increase of kSB for small chemical
potentials, this suggests that gluon screening effects may
potentially even lead to a decrease of kSB over some range of
quark chemical potentials. For chemical potentials beyond
those considered in this work, however, it is known that the
diquark gap increases again as a function of the chemical
potential [43], see also Refs. [44,45,52,54,56,116] for a
discussion of the relevance of gluon screening effects.
Let us now turn to the regime k < kSB associated with

spontaneous Uð1ÞV breaking. In this regime, the situation is
even more involved as it requires to deal with an Anderson-
Higgs-type mechanism [98–102] associated with the break-
ing of the SU(3) symmetry in color space down to a SU(2)
symmetry. This eventually leads to the generation of “gaps”
(screening masses) for five of the eight gluons. A rigorous
treatment of this mechanism is beyond the scope of the
present work. We only consider two approximations in the
low-energy regime k < kSB to already gain some under-
standing of the effect of gluon screening in the long-
range limit.
In the first approximation, we simply leave the gluons

ungapped for k < kSB. The corresponding results for the
RG flow of the diquark gap Δgap and the various couplings
are depicted by the dashed lines in Fig. 1 (and also in
Fig. 2). In the second approximation associated with the
solid lines for k < kSB in Fig. 1 (and also in Fig. 2), we

8For simplicity, we do not distinguish between the electric
and magnetic masses.

9This is different for chiral symmetry breaking which requires
the gauge coupling to become sufficiently large, see, e.g.,
Refs. [47,62–65] for a detailed discussion.
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decouple the gluon contributions from the RG flow of the
matter sector, which may be viewed as adding an “infinite
gap” to all gluons. In practice, we have implemented this
decoupling by setting the gauge coupling to zero for
k < kSB. Comparing the corresponding results with the
ones for the ungapped gluons, we observe that the diquark
gap is reduced by roughly a factor of two. As already
discussed above, ungapped/unscreened gluons indeed act
as a “catalyzer” for the formation of a (color-) super-
conducting ground state. This remains also true when the
chemical potential is increased, see Fig. 2. For the renor-
malized quark-diquark coupling h and the renormalized
four-diquark coupling λΔ, we observe a similar behavior.
The couplings receive a significant boost in the approxi-
mation with ungapped gluons, see the right panels of
Figs. 1 and 2.

C. Diquark gap

Our results for the diquark gap Δgap, the symmetry
breaking scale kSB, the quark-diquark coupling h, and the
four-diquark coupling λΔ in the limit k → 0 as a function of
the quark chemical potential are summarized in Fig. 2. The
(shaded) bands in Fig. 2 result from a variation of the strong
coupling at the initial RG scale, see Sec. III A. Note that the
variation of our results arising from a variation of the
regularization scheme (associated with regulator functions)
is negligible compared to the one obtained from the
aforementioned variation of the initial value of the strong
coupling. We refer the reader to Appendix A for the

definition of the regulator functions employed in the
present work and a corresponding discussion of the scheme
dependence.
The observed dependence of the symmetry breaking

scale kSB on the chemical potential appears consistent with
the standard BCS-type scaling behavior. This is true for the
case with ungapped gluons in the low-energy regime and
for the case with decoupled gluon contributions as asso-
ciated with (infinitely) “gapped” gluons. However, the
diquark gap in the case with ungapped gluons is found
to be significantly greater than the one obtained in our
calculations with “gapped” gluons.
Let us now analyze the scaling behavior of the symmetry

breaking scale and the diquark gap in more detail. To this
end, it is convenient to reconstruct the RG flow of the four-
quark coupling λcsc ¼ h2=ð2ϵμÞ from the RG flows of the
quark-diquark coupling h and the curvature ϵμ of the
effective potential. Employing Eqs. (4) and (6), we then
find

∂tλcsc ¼ 2λcsc þ 16λ2cscbð2;0Þ þ
16

3
λcscg2b

ðAÞ
ð1;2Þ þ g4bðAÞð0;4Þ:

ð15Þ

Setting λcsc ¼ 0 (corresponding to ϵμ ≫ h2) at the initial
RG scale k ¼ Λ ≫ μ, the RG flow of λcsc is then dominated
by the contributions ∼g4 associated with two-gluon
exchange diagrams. All the other contributions to the flow

FIG. 2. Left panel: diquark gap Δgap and the symmetry-breaking scale kSB as a function of the quark chemical potential μ. The shaded
bands (apart from the orange band) represent the uncertainty resulting from a variation of the strong coupling at the initial RG scale. The
blue dashed line together with the light blue band (ungapped gluons) represent the gap for the case where the gluons remain ungapped
below the symmetry breaking scale kSB. The solid blue line together with the dark blue band (“gapped” gluons) show the gap for the case
where the gluons have been decoupled from the matter sector for k ≤ kSB, see main text for details. The orange band depicts results for
the diquark gap from a previous fRG study [28]. Note that, in Ref. [28], the shown range of chemical potentials is associated with
densities n=n0 ≈ 6…12 (where n0 is the nuclear saturation density). The results from Ref. [28] are in remarkable agreement with those
from early studies of the diquark gap for n=n0 ≲ 5 [48]. For n=n0 ≈ 5, for example, Δgap ≈ 70…160 MeV was reported in Ref. [48] and
Δgap ≈ 140…230 MeVwas found in Ref. [28]. Right panel: the (squared) renormalized quark-diquark coupling h2 and the renormalized
four-diquark coupling λΔ as a function of the quark chemical potential μ. Dashed and solid lines are again associated with ungapped and
“gapped” gluons in the low-energy regime, respectively. The shaded bands represent the uncertainty resulting from a variation of the
strong coupling at the initial RG scale.
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of this coupling are initially subleading. Thus, we are left
with

∂tλcsc ¼ 2λcsc þ g4bðAÞð0;4Þ; ð16Þ

where bðAÞð0;4Þ < 0 for μ=k → 0, see Appendix A.
Let us now define a scale k̄ such that the dependence of

the two-gluon exchange diagrams on the chemical potential
is negligible for k > k̄. In this regime, the flow equation (16)
can be solved analytically. Integrating Eq. (16) from k ¼ Λ
down to k ¼ k̄, we find

λcscðk̄Þ ¼ −
1

2
bðAÞð0;4Þg

4ðk̄Þ þOðg6Þ: ð17Þ

Here, we dropped terms which are subleading for Λ ≫ k̄.
We shall now also assume that k̄ can be chosen such that, at

this scale, the gluon-induced four-quark self-interactions
∼λcsc have become strong enough to “dominate” their own
RG flow. For sufficiently small values of the chemical
potential μ, it may indeed be possible to choose k̄ such that
the approximations underlying the derivations of Eqs. (16)
and (17) are still at least reasonable. For k < k̄, the flow
equation (15) of the four-quark coupling λcsc then reduces to

∂tλcsc ¼ 2λcsc þ 16λ2cscbð2;0Þ; ð18Þ

where bð2;0Þ < 0 for μ=k → 0, see Appendix A.
The initial condition for the flow equation (18) at k ¼ k̄

is given by Eq. (17). Note that bð2;0Þ is associated with a
purely fermionic one-loop diagram with only two internal
fermion lines and four external fermion lines.
From the flow equation (18) we can now obtain an

estimate for the symmetry breaking scale kSB. Indeed, this
scale is defined as the scale at which the curvature ϵμ of
the effective potential becomes zero, i.e., the four-quark
coupling λcsc ¼ h2=ð2ϵμÞ diverges at this scale. Thus, we
have 1=λcscðkSBÞ ¼ 0. Next, we note that, for k < k̄, the
flow eventually enters a regime where μ=k > 1. In this
regime, the loop diagram ∼λ2csc scales as bð2;0Þ ∼
−cψ ðμ2=k2Þ with cψ > 0 being a dimensionless scheme-
dependent constant.10 With this at hand, we can solve
Eq. (18) for the symmetry breaking scale and find
kSB ∼ k̄ expð−c=μ2Þ, with c ¼ k̄2=ð16cψλcscðk̄ÞÞ > 0 being
a dimensionless constant. Plugging now Eq. (17) into this
expression for kSB, we finally arrive at the following result
for the symmetry breaking scale:

kSB ∼ exp

�
−

c̄
g4μ2

�
; ð19Þ

where c̄ ¼ −k̄2=ð8cψbðAÞð0;4ÞÞ is a positive constant and the

strong coupling is assumed to be evaluated at the scale k̄.11

Since the symmetry breaking scale kSB sets the scale for
low-energy observables, such as the diquark gap, we
conclude that Δgap ∼ kSB. This assumption is indeed con-
firmed by our numerical results, see Fig. 2.
We emphasize that our result for the dependence of the

symmetry breaking scale kSB on the strong coupling differs
from the one reported in, e.g., Refs. [50,117,118], see also
Ref. [43]. In these seminal studies, it was found that
Δgap ∼ kSB ∼ expð−c̄0=ðg2μ2ÞÞ, where c̄0 is a positive con-
stant. This g2-dependence is a consequence of the
assumption λcsc ∼ g2. Basically, the latter can be traced
back to a tree-level consideration of four-quark interactions
as triggered by a one-gluon exchange. In our present work,
we have taken into account loop contributions to λcsc which
then alter the dependence of kSB on the strong coupling as
given in Eq. (19). Starting from small chemical potentials,
this change in the dependence of kSB on the strong coupling
potentially induces a more rapid increase of the diquark gap
Δgap when the chemical potential is increased. In any case,
the scaling behavior (19) is only valid for sufficiently small
values of the quark chemical potential, as discussed above.
For very large chemical potentials, the diquark gap is
eventually expected to increase mildly according to Δgap ∼
μ expð−c̄00=gÞ (where c̄00 > 0 is a constant) [43], such that
Δgap=μ still decreases, see Ref. [6] for a detailed discussion
of the diquark gap at very high densities.
We now turn to a more quantitative comparison of our

present results with already existing results for the diquark
gap. Of course, a direct comparison is difficult as it in
principle requires to consider the diquark gap as a function
of the density. Bearing this in mind, a comparison of results
for the diquark gap as a function of the quark chemical
potential can nevertheless be valuable to gain at least a
qualitative understanding of the underlying dynamics.
To be specific, let us compare our present results for the

diquark gap obtained from the computation with “gapped”
gluons with those from one of the early seminal model
studies in this field [48] and our recent results [28], see
orange band in Fig. 2.12 The width of this band represents
an estimate for the theoretical uncertainty in this study. The
calculations reported in Ref. [28] are also based on an

10Note that the general dependence of this four-quark inter-
action on μ is scheme-independent, at least for μ=k ≫ 1, see also
Ref. [76] for a discussion.

11In practice, the scale k̄ should come with an implicit
dependence on the chemical potential which, however, is ex-
pected to be weak for sufficiently small values of the chemical
potential.

12Here, we restrict ourselves to the case with “gapped” gluons
since gluonic contributions are expected to be (partially) sup-
pressed in the low-energy regime as a consequence of the
Anderson-Higgs mechanism anyhow.
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analysis of RG flows of dense QCDmatter starting from the
underlying quark-gluon dynamics. Compared with our
present work, however, a Fierz-complete ansatz for the
four-quark interaction channels has been employed in
Ref. [28]. Whereas this aspect appears to be less relevant
when the quark chemical potential becomes large (since the
diquark channel considered in the present work has been
found to be most dominant in this regime [28,47]), Fierz-
incompleteness becomes more and more of an issue when
the chemical potential is decreased, see Ref. [47] for a
detailed discussion. In fact, not only the scalar-pseudosca-
lar interaction channel but also vector channels become
relevant when we approach the nucleonic low-density
regime [47], see also Refs. [119–121]. Since we have
not included such channels in our present work, our results
are expected to become less reliable when the chemical
potential becomes small. Comparing our results for the size
of the diquark gap with those from Ref. [28] (see left panel
of Fig. 2), we observe that our present results exceed those
from Ref. [28] for μ=ΛQCD ≲ 2.1. Therefore, we cautiously
conclude that four-quark interaction channels other than the
diquark channel become relevant in this regime. Note that,
toward smaller chemical potentials (associated with den-
sities n=n0 ≲ 5, where n0 is the nuclear saturation density),
the results from the Fierz-complete study in Ref. [28] are
remarkably consistent with those from low-energy models
(e.g., Ref. [48]), see caption of Fig. 2 and also Ref. [28] for
a discussion. Although the range of chemical potentials
studied in our present work is beyond the range of values
that can be reliably studied with low-energy models, we
may cautiously deduce from this discussion that the
inclusion of gluonic contributions leads to an increase of
the diquark gap.
In the regime associated with diquark-channel domi-

nance, the results for the diquark gap from the aforemen-
tioned Fierz-complete calculation (see Ref. [28]) and our
present study are remarkably consistent. Note that, in
Ref. [28], the “transition” between the high-energy degrees
of freedom and the effective low-energy degrees of freedom
has been performed at a fixed scale Λ0. In principle, this
scale should even carry a μ-dependence which is however
at least difficult to determine a priori. In any case, the
presence of this scale introduces a systematic uncertainty in
the results, as indicated by the width of the orange band. We
emphasize that we have removed the dependence on the
scale Λ0 in our present work by implementing the dynami-
cal hadronization technique. In the regime associated with a
diquark-channel dominance, where a direct comparison of
the two studies is most meaningful, we observe that the use
of this technique already pays off. Indeed, the presence of
the scale Λ0 in Ref. [28] also limits the range of accessible
quark chemical potentials, μ≲ Λ0. Since the transforma-
tion of high-energy degrees of freedom into low-energy
degrees of freedom is performed continuously in our

present work, the range of chemical potentials is only
constrained by the requirement that the chemical potential
should be sufficiently smaller than the initial RG scale Λ.

IV. TOWARD CONSTRAINTS FOR LOW-ENERGY
MODELS OF DENSE QCD MATTER

A. Low-energy model couplings at high density

Let us now turn to a discussion of the IR values of the
quark-diquark coupling h and the four-diquark coupling λΔ
which often play an important role in the construction of
low-energy models of dense QCD matter.
From the right panel of Fig. 2, we deduce that the quark-

diquark coupling and the four-diquark coupling are smaller
in the approximation with “gapped” gluons in the low-
energy regime than in the approximation with ungapped
gluons. However, their qualitative behavior as a function of
the chemical potential is the same in the two approxima-
tions. Indeed, we observe that these two couplings decrease
with increasing chemical potential in both cases. This
simultaneous decrease is in accordance with our observa-
tion that the size of the gap appears to “saturate” for
increasing chemical potential, as also suggested by our
analytic study of the scaling behavior of the gapΔgap ∼ kSB,
see Eq. (19). In fact, a decrease of the four-diquark coupling
λΔ with increasing chemical potential tends to “pull” the
position of the minimum of the effective action to larger
values. This change of the position of the minimum needs to
be compensated by a corresponding decrease of the quark-
diquark coupling h such that the gap Δgap “saturates” for
increasing chemical potential. From a phenomenological
standpoint, the behavior of the quark-diquark coupling and
the four-diquark coupling suggests that interactions between
quarks and diquarks as well as among diquarks themselves
becomeweaker when the density is increased, indicating that
QCD is effectively described by a state of weakly coupled
color-superconducting matter at (very) high densities.
Of course, the actual values of the quark-diquark

coupling and the four-diquark coupling depend on the
regularization scheme as specified by the regulator function
in our RG flow study. However, the widths of the
uncertainty bands shown in Fig. 2 are essentially deter-
mined by the variation of the strong coupling at the initial
RG scale. The uncertainty arising from a variation of the
regulator function is found to be much smaller, see our
discussion in Appendix A for details.

B. QCD-constrained low-energy model

From the standpoint of model building, it may be
beneficial to employ the results from our RG study to
constrain existing low-energy models of dense QCD
matter. In the following, we shall demonstrate this aspect
by considering the following quark-diquark model:
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SLEM ¼
Z

d4x

�
ψ̄aði∂ − iμγ0Þψa þ

1

2
λ̄−1cscΔ̄�

aΔ̄a

þ λ̄Δ
h̄4

ðΔ̄�
aΔ̄aÞ2 þ

1

2
iðψT

bCγ5τ2Δ̄aϵabcψcÞ

−
1

2
iðψ̄bγ5τ2Δ̄�

aϵabcCψ̄T
c Þ
�
; ð20Þ

where a, b, c are color indices and we have suppressed
flavor indices for readability. The action SLEM basically
represents a frequently employed low-energy model of
dense QCDmatter (for reviews, see Refs. [2–6]), except for
the fact that we also allow for a four-diquark coupling. The
inclusion of the latter is inspired by our RG study which
suggests that four-diquark interactions are generated
dynamically already at high scales. Therefore, such inter-
actions should be expected to be present at scales of the
order of the “hadronic” scale ΛLEM ∼Oð1 GeVÞ at which
low-energy models are usually defined.
In the action SLEM defining our model, we have

introduced the fields Δ̄a which are directly related to the
diquark fields Δa in the ansatz (3) for the effective action
underlying our fRG study. We have Δ̄a ¼ h̄Δa. Since we
shall assume that the quark-diquark coupling h̄ in our
model (20) does not depend on the RG scale k, it is indeed
convenient to rescale the original diquark fields in this way.
In fact, Yukawa-type couplings such as the quark-diquark
coupling are often treated as scale-independent quantities in
low-energy model studies. In any case, the introduction of
the fields Δ̄a allows us to identify the coefficient of the
curvature term ∼Δ̄�

aΔ̄a in Eq. (20) with the inverse of the
four-quark coupling λ̄csc (up to a numerical factor), see our
discussion of the relation of the curvature and the four-
quark coupling in Sec. III C. Note that, by comparing the
ansatz (3) for the effective action underlying our fRG study
with the action SLEM of our low-energy model, we observe
that the effective action (3) encompasses the action SLEM.
From a computation of the effective action ΓLEM asso-

ciated with the action SLEM, we can in principle extract
thermodynamic quantities which are relevant for phenom-
enological applications. However, this requires to fix the
parameters of the model in the first place. In the following,
we shall illustrate how this can be done in a mean-field
study of ΓLEM. The derivation of the corresponding
effective action can be found in Appendix C.
Let us start our discussion of the determination of the

model parameters by considering the four-quark coupling
λ̄csc in Eq. (20). Our analytic study of the four-quark
coupling in Sec. III C [in particular, see the discussion of
Eqs. (15)–(19)] suggests that this coupling depends only
weakly on the chemical potential, provided that we con-
sider RG scales which are sufficiently large compared to
the chemical potential. This is in accordance with our
numerical results where we observe that λ̄csc evaluated at
scales sufficiently greater than the chemical potential shows

only a very mild dependence on the chemical potential.
Since we fix the model parameters at a scale ΛLEM > μ, we
shall therefore assume that the parameter λ̄csc does not
depend on the chemical potential. However, the value of the
effective four-diquark coupling λ̄eff ¼ λ̄Δ=h̄4 is assumed to
depend on the chemical potential. The latter assumption is
also in accordance with our RG results, see Fig. 3. The
actual values of the model parameters λ̄csc and λ̄eff for a
given value of the chemical potential are finally determined
by tuning them such that we recover the value of the gap
Δgap as obtained in our RG study. We emphasize again that
we only consider λ̄eff to be μ-dependent. The value of the
four-quark coupling λ̄csc remains constant for all values of
the chemical potential considered below.
In the following we choose ΛLEM ¼ 1 GeVð≈4.8ΛQCDÞ

which enables us to cover a reasonably large range of
chemical potentials. For the four-quark coupling λ̄csc, we
choose λ̄−1csc ≈ 0.197 GeV2 (for all chemical potentials
considered here). For a given value of the chemical
potential, the model parameter λ̄eff is then determined by
tuning it such that the value of the gap in our model study
agrees with the one found in our RG study. Here, we focus
on the results for the gap as obtained in the approximation
with “gapped” gluons in the low-energy regime. However,
we shall also comment on the case of ungapped gluons
below.
In Fig. 3, we show the model parameter λ̄eff as a function

of the chemical potential. There, we also present our fRG
results for this quantity as obtained from an evaluation of
the RG flow at the characteristic model scale k ¼ ΛLEM.
From this we deduce that the dependence of the model

FIG. 3. Model parameter λ̄eff ¼ λ̄Δ=h̄4 as a function of the
chemical potential compared with the RG results for λ̄Δ=h̄4 as
obtained from an evaluation of the flow at k ¼ ΛLEM ¼ 1 GeV.
The shaded (blue) band associated with the RG results for λ̄Δ=h̄4

reflects the uncertainty arising from a variation of the strong
coupling at the initial RG scale. In case of the model parameter,
the shaded (red) band results from the uncertainty band asso-
ciated with our RG estimate for the gap. Note that, in our model
study, we adjust the parameter λ̄eff ¼ λ̄Δ=h̄4 such that we recover
the RG results for the gap Δgap as obtained in the approximation
with “gapped” gluons in the low-energy regime.
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parameter on the chemical potential is compatible with our
fRG results. Indeed, in both cases, we observe an increase
with increasing chemical potential. Note that this is also the
case when we evaluate the RG flow at lower scales. Finally,
we add that a larger value of the four-quark coupling λ̄csc
requires to choose larger values of λ̄eff to ensure that the gap
Δgap as a function of the chemical potential remains
unchanged.

C. Thermodynamics

We now use our QCD-constrained model to estimate the
speed of sound of dense QCD matter. To this end, we first
consider the pressure P as obtained from the effective
action ΓLEM evaluated at the ground state (gs):

P ¼ −
1

V4

ΓLEMjgs;μ þ P0: ð21Þ

Here, V4 is the spacetime volume. The determination of the
(vacuum) constant P0 ¼ ð1=V4ÞΓLEMjgs;μ¼0 requires to
compute the ground state in the vacuum. In QCD, the
ground state is governed by spontaneous chiral symmetry
breaking in the low-density regime. Since we only take into
account diquarklike interaction channels (which have been
found to be most dominant at high densities [28,47]), the
low-density regime is not reliably accessible in our present
study. However, at higher densities, derivatives of the
pressure with respect to the chemical potential are acces-
sible. A phenomenologically relevant quantity of this kind
is the speed of sound cs:

cs ¼
1ffiffiffi
μ

p
�∂P
∂μ

�1
2

� ∂2P
∂μ∂μ

�−1
2

: ð22Þ

By solving the baryon density n,

n ¼ 1

3

∂P
∂μ ; ð23Þ

for the chemical potential μ, we can then compute the speed
of sound as a function of the density.
In Fig. 4, we compare the speed of sound squared as a

function of the density as obtained from our QCD-con-
strained model with results from a previous fRG study and
calculations based on chiral EFT interactions at low
densities. The green-shaded band associated with our
model study originates from the uncertainty in the gap,
see Fig. 2. Starting at high densities, we find that the speed
of sound increases with decreasing density. In particular,
the speed of sound is found to be greater than the one of the
noninteracting quark gas in the considered density regime.
Note that our present estimate for the speed of sound is in
reasonable agreement with the one from Ref. [28] for
n=n0 ≳ 7. This is essentially the density regime where the
diquark interaction channel has been found to be most

dominant in a Fierz-complete study [28,47]. For lower
densities, the dynamics is governed by chiral interaction
channels and therefore this regime is not accessible in our
present analysis. Still, the behavior of the speed of sound at
high densities observed in our present study and the one
found at low(er) densities in Ref. [28] (chiral EFTand fRG)
suggests the existence of a maximum in the speed of sound
for n=n0 ≲ 10. Of course, a more accurate determination of
the speed of sound from the full fRG flow presented in this
work—rather than from our “QCD-constrained model”—is
in order and will be presented elsewhere. Based on our
previous studies [28,47], such a calculation then also
requires the inclusion of the chiral dynamics.
We rush to add that we have also analyzed the depend-

ence of our results on our choice for the model parameters.
Indeed, we have some freedom in the model parameters
since we adjust two parameters, λ̄csc and λ̄eff , to reproduce
one quantity, namely the gap. Importantly, we find that the
dependence on the actual choice for the parameters λ̄csc and
λ̄eff is only mild and does not alter the qualitative behavior
of the speed of sound as a function of the density, provided
that the parameters are tuned such that the gap remains
unchanged as a function of the chemical potential.
A change of the size of the gap as a function of the

chemical potential affects the speed of sound. For example,
the model parameters can also be adjusted such that
we recover the gap obtained in the fRG calculations
with ungapped gluons in the low-energy regime, which
is significantly greater than the one found in the

FIG. 4. Speed of sound squared (in units of the speed of light
squared) as a function of the baryon density n (in units of the
nuclear saturation density n0) as obtained from calculations based
on chiral EFT (blue-shaded bands) [28], an fRG study taking into
account the formation of a diquark gap (red-shaded band) [28], an
fRG study based on an approximation without taking into
account a diquark gap [28], and from our QCD-constrained
model (green-shaded band), including the result in the weak-
coupling limit (black-shaded band). The gray dashed line is
associated with the result for the speed of sound squared of the
noninteracting quark gas.
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approximation with gapped gluons (see Fig. 2). This results
in an increase of the speed of sound squared of up to 70%
toward the lower end of the considered density range.
However, the qualitative dependence of the speed of sound
(squared) as a function of the density is not altered, i.e., it
still increases when the density is decreased.
The robustness of our results for the speed of sound with

respect to a variation of the model parameters becomes at
least plausible by considering the weak-coupling limit of
the effective action which is analytically accessible. In this
limit of weak four-quark and four-diquark coupling, the
pressure reads [2,77,122,123]:

P ¼ PSB

�
1þ 2jΔgapj2

μ2
þ…

�
: ð24Þ

Here, PSB ¼ μ4=ð2π2Þ is the pressure of the noninteracting
quark gas,13 i.e., the pressure in the so-called Stefan-
Boltzmann (SB) limit. Interestingly, the expression (24)
does not exhibit an explicit dependence on the model
parameters. It only depends on the chemical potential and
the gap, which is a physical observable.14 This expression
may therefore be associated with regimes where jΔgapj=μ is
sufficiently small. Of course, the gap depends implicitly on
the model parameters, such as the four-quark coupling, as
also suggested by our analytic study of the scaling behavior
of the symmetry breaking scale kSB and the gapΔgap ∼ kSB,
see Eq. (19). Moreover, we observe that the leading-order
correction to the Stefan-Boltzmann limit is quadratic in
jΔgapj=μ. Thus, it increases by, e.g., a factor of four when
the gap is increased by a factor of two for a given chemical
potential.
Plugging now our fRG results for, e.g., the gap obtained

in the approximation with gapped gluons into the expres-
sion (24) for the pressure, we can estimate the speed of
sound with the aid of Eq. (22). Recall that the gap in our RG
study is generated from the fundamental quark-gluon
dynamics and it therefore depends on the strong coupling
g. This is made explicit in Eq. (19). In any case, reassur-
ingly, we find again that the speed of sound exceeds the
value of the noninteracting quark gas and increases when
the density is decreased, see Fig. 4. The width of the
associated black-shaded band in Fig. 4 results from the

width of the band of the gap shown in Fig. 2. Note that we
have 0.3≲ jΔgapj=μ ≲ 0.6 in the considered density range.
It is also worth adding that the observed behavior of the

speed of sound as a function of the density has not been
observed in fRG calculations which do not take into
account the formation of a gap at high densities, see
Ref. [28] and Fig. 4 for an illustration.
In accordance with Ref. [28], we therefore cautiously

conclude from our analysis that the appearance of a
maximum in the speed of sound—which exceeds the value
of the noninteracting quark gas—appears to be tightly
connected to the formation of a diquark gap. Our present
analysis suggests that the maximum appears in the regime
n=n0 ≲ 10 for isospin-balanced QCD matter, although the
determination of its exact position requires additional more
advanced studies, as already indicated above. With respect
to astrophysical applications, it is still worth mentioning
that the analysis of constraints from neutron-star masses
also strongly suggests the existence of a maximum in the
speed of sound for neutron-rich matter [24,57–60]. In any
case, our present findings may already provide useful
information for future studies of thermodynamic quantities
at supranuclear densities and also for the further develop-
ment of existing models of dense QCD matter.

V. CONCLUSIONS

Starting from the fundamental quark and gluon degrees
of freedom in the high-energy regime, we have studied the
dynamical formation of diquarks in the low-energy regime
at high densities, with the strong coupling at the initial RG
scale as the only input parameter. With the present work,
we have therefore laid the methodological foundation
which will enable us to provide updates of our recent
computation of the EOS of dense QCD matter [28]. In
particular, we have successfully demonstrated that the
dynamical hadronization technique allows us to remove
the dependence of an auxiliary scale Λ0 used in Ref. [28] to
parametrize the “transition” between the (effective) degrees
of freedom at high and low energies. Moreover, this
technique allows us to extend our studies to (very) high
densities, even beyond the densities discussed in Ref. [28].
As a first application, we computed the diquark gap over a
wide range of chemical potentials. We also combined these
methodological advances with the implementation of a
recently developed class of regulators, which is well suited
for studies of relativistic theories in the presence of a
Cooper instability [78].
The comparison of our present work with our previous

studies [28,47] turned out to be very beneficial, also for
future computations of the EOS of dense matter. For
example, approaching the nucleonic low-density regime
from high densities (associated with large quark chemical
potentials), this comparison indicates that the use of a
Fierz-complete basis of (gluon-induced) four-quark inter-
actions becomes more and more relevant. At high densities,

13Gluons do not contribute to PSB in the zero-temperature
limit.

14In principle, this expression is also encompassed in our
present fRG study anchored in QCD since it follows from a
consideration of the weak-coupling limit of the one-loop approxi-
mation of the effective action, see Ref. [77]. Recall that we have
λcsc ∼ g4 for the four-quark coupling, see Eq. (17). A detailed
discussion of this aspect will be presented elsewhere. In any case,
in QCD with two massless quark flavors at high density, the gap
sets the scale. It is therefore reasonable to expect that the pressure
in units of the pressure of the noninteracting quark gas can be
expanded in powers of the dimensionless quantity jΔgapj=μ.
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where the diquark interaction channel is most dominant, a
Fierz-incomplete ansatz including only the diquark channel
in the matter sector appears to be a reasonable approxi-
mation in terms of the number of included quark interaction
channels.
Our study of the RG flow of dense QCD matter allowed

us to analyze the dependence of the size of the diquark gap
on the strong coupling and the quark chemical potential.
Moreover, we have discussed that the inclusion of gluon
screening effects in our calculations may become particu-
larly relevant at (very) high densities. We argued that such
effects may even lead to a decrease of the symmetry
breaking scale and the diquark gap for some intermediate
range of the chemical potential, before they eventually
increase again [6,43]. In any case, it appears reasonable to
expect that the inclusion of gluon screening effects in our
calculations will render the symmetry breaking scale and the
diquark gap smaller. However, these effects should become
subleading when the chemical potential is decreased.
In addition to gluon screening effects, the inclusion of

fluctuations of the diquark fields is important. Above the
symmetry breaking scale, this is straightforward but is
expected to be subleading anyhow. In fact, the correspond-
ing contributions are parametrically suppressed by large
screening masses of the diquarks in this regime. Below the
symmetry breaking scale, however, the situation is more
involved. Here, the inclusion of diquark fluctuations
requires to deal with an Anderson-Higgs-type mechanism
in future studies, which eventually leads to a suppression of
gluonic contributions to the RG flow.
Finally, we add that we have demonstrated how our

present fRG study may already be used to further develop
existing models of dense QCD matter. Based on this, we
have presented an analysis of a quantity which is of great
interest for phenomenological applications, namely the
speed of sound. Starting at high densities, our results
indicate an increase of this quantity when the density is
decreased, suggesting the existence of a maximum in the
speed of sound of isospin-balanced QCD matter at supra-
nuclear densities. This maximum would exceed the asymp-
totic value of the speed of sound associated with the limit of
a noninteracting quark gas. Moreover, our study indicates
that the actual height of this maximum may be sensitive to
the actual size of the gap in the fermionic excitation
spectrum. These observations may also be interesting with
respect to astrophysical applications where the equation of
state of QCD matter enters as an input. Note that the
existence of a maximum in the speed of sound of neutron-
rich matter is strongly supported by the analysis of
constraints from neutron-star masses [24,57–60].
It is clear that our present study can and should be

improved in various directions. Still, we believe that it
already provides an important insight into the dynamics of
dense QCD matter. Very importantly, our present work sets

the methodological stage that allows us to connect the
perturbative high-energy regime associated with quarks and
gluons with the nonperturbative low-energy regime gov-
erned by the emergence of (color-)superconducting ground
states at high densities. By successively implementing the
aforementioned extensions in our present study, we expect
that it will be possible to systematically improve our recent
prediction for the EOS of nuclear matter over a wide range
of densities [28].
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APPENDIX A: THRESHOLD FUNCTIONS
AND REGULATOR

In this Appendix, we list the so-called threshold func-
tions which appear in our RG flow equations and corre-
spond to 1PI Feynman diagrams. These functions also
encode the regularization scheme dependence. The regu-
larization scheme is determined by so-called regulator
functions for the fermionic and bosonic fields, respectively.
These functions are constructed such that they suitably
modify the dispersion relation of the associated particles for
any finite k and disappear in the limit k → 0.
In our present work, we employ so-called spatial

regulators and integrate out fermionic fluctuations around
the Fermi surface which is suitable in the presence of a
Cooper instability, see Ref. [78] for a detailed discussion.
To this end, it is convenient to introduce quasiparticle
dispersion relations for the fermions:

ϵ� ¼ ðμ� jp⃗jÞð1þ r�Þ: ðA1Þ

These relations depend on the regularization schemewhich,
in our case, is specified by the following so-called
fermionic regulator-shape functions:

r� ≔ rψ ðx�Þ; ðA2Þ

where x� ¼ ðμ� jp⃗jÞ2=k2. For convenience, we have used
shape functions of the following form:
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rψðx�Þ ¼ −1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðPN

n¼0
1
n! x

n
�Þ−1

q : ðA3Þ

These functions cut off the spatial momenta exponentially
in the limit N → ∞. To be specific, we have used N ¼
4, 6, 8 in our numerical calculations to analyze the
regularization-scheme dependence of our results.

For the gauge fields, we have employed the correspond-
ing bosonic version of this class of regulators:

rAðxÞ ¼
1P

N
n¼1

1
n! x

n ; ðA4Þ

where x ¼ p⃗2=k2. In this work, we have used N ¼ 4, 6, 8
as for the fermionic regulator.

With these definitions at hand, let us now define the threshold functions entering our RG flow equations:

bð1Þð0;4Þðμ̃; χ̃Þ ¼
Z

∞

−∞

dy0
2π

Z
d3y
ð2πÞ3 ∂̃t

�
G̃2

AG̃þG̃−

�
1 −

29

40
χ̃

�
1

y20 þ ϵ̃2− þ χ̃
þ 1

y20 þ ϵ̃2þ þ χ̃

�

þ 3

4
χ̃2

1

ðy20 þ ϵ̃2þ þ χ̃Þ
1

ðy20 þ ϵ̃2− þ χ̃Þ
��

; ðA5Þ

where y0 ¼ p0=k, y⃗ ¼ p⃗=k, ϵ̃� ¼ ϵ�=k, and χ̃ is a parameter associated with the diquark gap in our case. Note that y⃗2 ¼ x.
Moreover, we have introduced the operator ∂̃t:

∂̃t ¼ ð∂trA − ηArAÞ∂rA þ ð∂trþÞ∂rþ þ ð∂tr−Þ∂r− : ðA6Þ

The functions G̃A and G̃� are defined as

G̃A ¼ 1

y20 þ y⃗2ð1þ rAÞ
and G̃� ¼ −

1

y0 þ iϵ̃�
; ðA7Þ

respectively. In addition to the threshold function defined in Eq. (A5), the following threshold functions appear in our
RG flow equations for the curvature ϵμ, the diquark condensate κ, the quark-diquark coupling h, and the four-diquark
coupling λΔ:

bð2Þð0;4Þðμ̃; χ̃Þ ¼
1

2

Z
∞

−∞

dy0
2π

Z
d3y
ð2πÞ3 ∂̃t

�
G̃2

A

�
1

y20 þ ϵ̃2þ þ χ̃
þ 1

y20 þ ϵ̃2− þ χ̃

��
; ðA8Þ

bð3Þð0;4Þðμ̃; χ̃Þ ¼
Z

∞

−∞

dy0
2π

Z
d3y
ð2πÞ3 ∂̃t

�
G̃2

A

�
1

ðy20 þ ϵ̃2− þ χ̃Þ2 þ 6
1

ðy20 þ ϵ̃2− þ χ̃Þ
1

ðy20 þ ϵ̃2þ þ χ̃Þ þ
1

ðy20 þ ϵ̃2þ þ χ̃Þ2
�
χ̃

�
; ðA9Þ

bðAÞð0;4Þðμ̃; χ̃Þ ¼
5

36
bð1Þð0;4Þðμ̃; χ̃Þ þ

4

9
bð2Þð0;4Þðμ̃; χ̃Þ þ

5

48
bð3Þð0;4Þðμ̃; χ̃Þ; ðA10Þ

bðAÞð1;2Þðμ̃; χ̃Þ ¼
1

2

Z
∞

−∞

dy0
2π

Z
d3y
ð2πÞ3 ∂̃t

�
G̃A

�
1

y20 þ ϵ̃2þ þ χ̃
þ 1

y20 þ ϵ̃2− þ χ̃

��
; ðA11Þ

bð4;0Þðμ̃; χ̃Þ ¼
1

2

Z
∞

−∞

dy0
2π

Z
d3y
ð2πÞ3 ∂̃t

�
1

ðy20 þ ϵ̃2− þ χ̃Þ2 þ
1

ðy20 þ ϵ̃2þ þ χ̃Þ2
�
; ðA12Þ

bð2;0Þðμ̃; χ̃Þ ¼
1

2

Z
∞

−∞

dy0
2π

Z
d3y
ð2πÞ3 ∂̃t

�
1

y20 þ ϵ̃2− þ χ̃
þ 1

y20 þ ϵ̃2þ þ χ̃

�
: ðA13Þ

The threshold function appearing in the anomalous dimension of the diquark field is defined as follows:
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dð2;0Þðμ̃; χ̃Þ ¼
1

2

Z
∞

−∞

dy0
2π

Z
d3y
ð2πÞ3 ∂̃t

�
2y20

ðy20 þ ϵ̃2� þ χ̃Þ3 þ
1

2ðy0 − iϵ̃�Þ2ðy20 þ ϵ̃2� þ χ̃Þ−
3y0 þ iϵ̃�

2ðy0 þ iϵ̃�Þðy20 þ ϵ̃2� þ χ̃Þ2
�
: ðA14Þ

Note that we have defined the anomalous dimension of the
diquark field via the second derivative of the corresponding
loop diagram with respect to the zeroth component of the
external four-momentum. Alternatively, we could have
defined it via the second derivative with respect to the
external spatial momentum. In the presence of a finite
chemical potential, it is in principle necessary to take into
account the wave function renormalization factors resulting
from both definitions since the chemical potential distin-
guishes the zeroth component of the four-momentum from
the spatial components. Nevertheless, for k ≫ μ, the run-
ning obtained from the two definitions should eventually be
the same. However, a residual difference in the running of
the two wave function renormalizations remains even for
k ≫ μ when a three-dimensional regulator is employed, as
it is the case in this work. This difference can be traced back

to the fact that three-dimensional regulators break Lorentz
invariance, see Ref. [125]. In the present study, we do not
aim at resolving these issues. In fact, as mentioned above,
we only consider the wave function renormalization factor
obtained from taking derivatives with respect to the zeroth
component of the external four-momentum since it is the
one associated with the direction in momentum space
distinguished by the chemical potential. In addition, from
a practical point of view, it should be noted that the
computation of this wave function renormalization is sim-
plified by the fact that three-dimensional regulators do not
depend on the zeroth component of the four-momentum.
Finally, we define the threshold function associated with

the quark contribution ηq to the anomalous dimension ZA
of the gauge fields, see Eq. (14). To this end, we first
consider the RG flow equation for ZA:

∂tZA ¼ 1

3

∂
∂Q2

0

Pαβ
T ðQÞ δcd

N2
c − 1

1

ð2πÞ4δð4Þð0Þ
δ

δAc
αðQÞ

δ

δAd
βð−QÞ ∂tΓkjQ0¼0;Q⃗¼0;Δa¼Δ0δa;3

: ðA15Þ

Here, Δ0 is the diquark condensate, Q0 and Q⃗ are external
momenta, and Pαβ

T ðQÞ is the standard transversal projector.
Note that the condensate Δ0 distinguishes a direction in
color space and therefore the wave function renormaliza-
tion ZA is in principle no longer uniform in color space. In
our calculations, we have not resolved the different
directions in the low-energy regime (i.e., in the presence
of a condensate) since a careful analysis of this aspect
requires to deal with the Anderson-Higgs mechanism. This
is beyond the scope of this work. Below the symmetry
breaking scale, our present definition of ZA as given by
Eq. (A15) rather “averages” over all directions in color
space. In any case, the threshold function associated with
Eq. (14) is defined as

dðAÞð2;0Þðμ̃; χ̃Þ ¼ −
4

ḡ2
∂tZAjquark loop; ðA16Þ

where χ̃ ¼ h̄2Δ2
0=k

2. It is worthwhile to add that this
threshold function can be written in a compact form in
the symmetric regime (χ̃ ¼ 0):

dðAÞð2;0Þðμ̃; 0Þ ¼
32

3

Z
∞

−∞

dy0
2π

Z
d3y
ð2πÞ3 ∂̃tfG̃þðG̃−Þ3g: ðA17Þ

For μ̃ ¼ 0, we find dðAÞð2;0Þð0; 0Þ ¼ 2=ð3π2Þ. By plugging this
into Eq. (14), we recover the one-loop result for the quark

contribution to the running of the strong coupling in case of
two massless quark flavors, as it should be.
We close this Appendix on the threshold functions and

the regulator by noting that the uncertainty bands given in
Fig. 2 include the variation of our results arising from a
variation of the regulator as parametrized by the value of N,
see Eqs. (A3) and (A4). However, we observe that the
dependence on the regulator (scheme) is much smaller than
the one introduced by the variation of the initial value of the
strong coupling. In the case of gapped gluons in the low-
energy regime, the weak regulator dependence is illustrated

FIG. 5. Regulator dependence of the IR values of the quark-
diquark coupling h, the four-diquark coupling λΔ, and the gap
Δgap, as specified by the parameter N for two values of the
chemical potential, see Eqs. (A3) and (A4).
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in Fig. 5 for the IR values of the Yukawa coupling, the
four-diquark coupling, and the gap for μ=ΛQCD ¼ 2.0 and
μ=ΛQCD ¼ 4.0.

APPENDIX B: DYNAMICAL HADRONIZATION

In this work, we employ the so-called dynamical
hadronization technique to study the RG flow from the
perturbative high-energy limit down to the low-energy
regime which may be conveniently described by effective
degrees of freedom, such as pions at low density and
diquarks at high density.

Loosely speaking, we use this technique to implement
continuous Hubbard-Stratonovich transformations in the
RG flow which map quark selfinteraction channels onto
diquark interaction channels as well as quark-diquark
channels. For example, this allows us to conveniently
resolve momentum dependences of, e.g., four-quark inter-
actions and to compute the order-parameter potential. In
general, this technique is even more powerful as it relies on
the idea of introducing scale-dependent fields [68–74].
In the present work, we introduce k-dependent diquark

fields, Δa → Δa;k. The original Wetterich equation [61] is
then modified as follows:

∂tΓk ¼ ∂tΓkjΔa;k;Δ�
a;k
þ
Z
p0

�
δΓk

δΔa;kðp0Þ ∂tΔa;kðp0Þ þ δΓk

δΔ�
a;kðp0Þ ∂tΔ�

a;kðp0Þ
�
: ðB1Þ

The first term on the right-hand side of this equation is nothing but the original Wetterich equation evaluated on the scale-
dependent diquark fields. For the parametrization of the scale dependence of these fields, we make the following ansatz:

∂tΔa;kðp0Þ ¼ −
Z

d4p
ð2πÞ4

Z
d4q
ð2πÞ4

i
2
ðψ̄bðpÞγ5τ2ϵabcCψ̄T

c ðqÞÞð2πÞ4δð4Þðp0 − p − qÞ∂tρkðp0Þ þ Δa;kðp0Þ∂tβkðp0Þ; ðB2Þ

∂tΔ�
a;kðp0Þ ¼

Z
d4p
ð2πÞ4

Z
d4q
ð2πÞ4

i
2
ðψT

bðpÞCγ5τ2ϵabcψcðqÞÞð2πÞ4δð4Þðp0 − p − qÞ∂tρkðp0Þ þ Δ�
a;kðp0Þ∂tβkðp0Þ; ðB3Þ

where p ¼ fp0; p⃗g and correspondingly for p0 and q. The
functions βk and ρk are at our disposal. In the following,
we shall determine them such that quark self-interactions
associated with the diquark channel are mapped onto
diquark interaction channels and quark-diquark interaction
channels, as it is usually done by a Hubbard-Stratonovich
transformation of the quark bilinears appearing on the
right-hand sides of Eqs. (B2) and (B3). However, as we
allow for a scale dependence in our parametrization, we
perform such a transformation continuously as a function of
the RG scale k. This is important as four-quark interactions
usually removed by such a Hubbard-Stratonovich trans-
formation at a given scale may be regenerated in the RG
flow because of processes associated with, e.g., two-gluon
exchange diagrams.
For the chiral regime at low densities, the determination

of the functions βk and ρk has been discussed in
Refs. [68,69,71,73]. Similar to these studies, we determine
these functions by requiring that

(i) the RG flow equation of the four-quark coupling
vanishes identically on all scales k,

(ii) the quark-diquark coupling h̄ is momentum-
independent,

(iii) ∂tZΔðp0 ¼ 0; jp!j ¼ kÞ ¼ −ηΔZΔ.
Our initial condition for the four-quark coupling, λ̄csc → 0
for k → Λ (see Sec. III A), together with the requirement
(i) ensures that a four-quark interaction channel (as

associated with the diquark channel) is not generated in
the RG flow. The contributions to this four-quark inter-
action generated in the RG flow are mapped onto the scalar
sector, in the spirit of a Hubbard-Stratonovich transforma-
tion. The requirement (ii) ensures that the diquark gap
generated in the low-energy regime is also momentum-
independent. Finally, our third requirement renders our
approximation of a momentum-independent ZΔ-factor self-
consistent.
By plugging our ansatz (3) for the effective action

together with our ansätze (B2) and (B3) for the diquark
fields into the flow equation (B1) and then applying the
aforementioned three requirements, we obtain the follow-
ing equations for βk and ρk in the symmetric regime:

∂tβkðpÞ¼−
ZΔp2þ4iZΔμp0þΔm̄2

h̄2
∂tλ̄cscðpÞ

þ 1

ZΔk2h̄2
½ðZΔk2þΔm̄2Þ2∂tλ̄cscð0; jp!j¼ kÞ

− ðΔm̄2Þ2ð∂tλ̄cscð0; jp!j¼ kÞ−∂tΔλ̄cscÞ�; ðB4Þ

where Δm̄2 ¼ m̄2 − 4ZΔμ
2, and

∂tρkðpÞ ¼
1

h̄
∂tλ̄cscðpÞjΔk;Δ�

k
: ðB5Þ
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The quantity Δλ̄csc is the difference of λ̄cscð0; jp!j ¼ kÞ and
λ̄cscð0; jp!j ¼ 0Þ. In our study, we set this quantity to zero.
This approximation has been discussed in Refs. [68,69].
There, it has been found that quantities such as the
symmetry breaking scale and the condensate are only
weakly affected by this simplification. Essentially, it only
affects the position of (pseudo-)fixed points of the cou-
plings in the symmetric regime but not their existence.
In the low-energy regime, associated with a nontrivial

ground state, the equation for ρk remains unchanged.
However, the equation for βk changes and reads

∂tβkðpÞ ¼ −
ZΔp2 þ 4iZΔμp0

h̄2
∂tλ̄cscðpÞ þ

ZΔk2

h̄2
∂tλ̄cscðkÞ:

ðB6Þ

With these equations for βk and ρk at hand, the flow
equations for the couplings presented in Sec. II B can be
computed.

APPENDIX C: HIGH-DENSITY
LOW-ENERGY MODEL

In this Appendix, we derive the effective action ΓLEM for
the model defined in Eq. (20) in Sec. IV. More specifically,
we shall compute the effective action ΓLEM in a one-loop
approximation where we only take into account the purely
fermionic loop and set the wave function renormalizations
associated with the diquark fields to zero. The wave
function renormalizations of the quarks are assumed to
be constant. Note that our derivation follows closely the
one of a related model in Ref. [77].
The starting point is the classical action SLEM of our

model:

SLEM ¼
Z

d4x

�
ψ̄aði∂ − iμγ0Þψa þ

1

2
λ̄−1cscΔ̄�

aΔ̄a

þ λ̄Δ
h̄4

ðΔ̄�
aΔ̄aÞ2 þ

1

2
iðψT

bCγ5τ2Δ̄aϵabcψcÞ

−
1

2
iðψ̄bγ5τ2Δ̄�

aϵabcCψ̄T
c Þ
�
: ðC1Þ

Here, a, b, c are color indices. The flavor indices are
suppressed for readability.
Using, e.g., the Wetterich equation [61] and expanding

the diquark fields about a homogeneous background, we
obtain the following result for ΓLEM:

1

V4

ΓLEM ¼ 1

V4

ΓLEM;Λ −
μ4

6π2
− 8l0ðΛ; jΔ̄j2Þ; ðC2Þ

where V4 is the spacetime volume and jΔ̄j2 ¼ Δ̄�
aΔ̄a

(summation over a is assumed). The contribution ∼μ4 in
this expression for ΓLEM originates from quarks which do
not couple to the diquark fields and therefore only appear as
a “noninteracting contribution.” The quark loop integral is
parametrized by the function lk:

lkðΛ; jΔ̄j2Þ¼
1

2

Z
d3p
ð2πÞ3 θðΛ

2− p⃗2Þθðp⃗2−k2Þ

×
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjp⃗jþμÞ2þjΔ̄j2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjp⃗j−μÞ2þjΔ̄j2

q o
:

ðC3Þ

Here, we have employed a sharp cutoff/regulator as often
used in model studies. The expression for this loop diagram
for general three-dimensional regulators can be found in
Ref. [77]. Within the present approximation, a different
choice for the regulator would only change the values of the
model parameters used in a concrete calculation (i.e., λ̄csc
and λ̄eff ¼ λ̄Δ=h̄4) and the numerical prefactors associated
with the counter terms in ΓLEM;Λ, as these are scheme-
dependent quantities.
The quantity ΓLEM;Λ in Eq. (C2) includes two classes of

terms. First, it contains terms which determine the form of
the effective action ΓLEM;ΛLEM

≃ SLEM at a given scale
ΛLEM < Λ. Second, ΓLEM;Λ includes counterterms which
ensure that ΓLEM in Eq. (C2) is an RG-consistent effective
action, i.e., Λ∂ΛΓLEM ¼ 0 for Λ → ∞. To be specific, we
have [77]:

1

V4

ΓLEM;Λ ¼ 1

2
λ̄−1cscjΔ̄j2 þ

λ̄Δ
h̄4

jΔ̄j4 þ 8lΛLEM
ðΛ; jΔ̄j2Þjμ¼0

þ 4μ2ð∂2
μlΛLEM

ðΛ; jΔ̄j2Þjμ¼0Þ: ðC4Þ

For Λ ¼ ΛLEM, we find lΛLEM
ðΛ; jΔ̄j2Þ ¼ 0 and we are left

with ΓLEM;ΛLEM
¼ V4ðð1=2Þλ̄−1cscjΔ̄j2 þ ðλ̄Δ=h̄4ÞjΔ̄j4Þ. In any

case, inserting ΓLEM;Λ into Eq. (C2), we find

Λ∂ΛΓLEM ¼ −2V4jΔ̄j2μ2
�

μ

πΛ

�
2

þOð1=Λ4Þ: ðC5Þ

Thus, our low-energy model described by the effective
action ΓLEM is RG-consistent in a strict sense in the limit
Λ → ∞. In our numerical computations of thermodynamic
observables discussed in Sec. IV, we have always ensured
RG consistency by choosing sufficiently large values for Λ.
For a detailed discussion of this aspect, we refer the reader
to Ref. [77].
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