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Asymptotically nonlocal field theories represent a sequence of higher-derivative theories whose limit
point is a ghost-free, infinite-derivative theory. Here, we extend previous work on pure scalar and Abelian
gauge theories to asymptotically nonlocal non-Abelian theories. In particular, we confirm that there is a
limit in which the Lee-Wick spectrum can be decoupled, but where the hierarchy problem is resolved via an
emergent nonlocal scale that regulates loop diagrams and that is hierarchically smaller than the lightest
Lee-Wick resonance.
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I. INTRODUCTION

A substantial literature exists on higher-derivative the-
ories, including those with quadratic term that are modified
by an operator involving finite or infinite numbers of
derivatives [1–8]. Consideration of such theories are well
motivated given their promise of offering better conver-
gence properties of loop amplitudes. In Refs. [1,2], we
defined a novel class of higher-derivative theories that
represent a sequence whose limit point is a ghost-free,
infinite-derivative theory. A specific theory in this sequence
with N propagator poles for a given field is suitable for
eliminating a scalar mass hierarchy problem if the Lee-
Wick partners are comparable to the scale that one wishes
to keep hierarchically below the cutoff of the theory. This is
the way things work in the Lee-Wick Standard Model [9],
where N ¼ 2, as well as generalizations to N ¼ 3 [10] that
have been discussed in the literature. What is interesting
about asymptotically nonlocal theories is that there is also a
large N limit in which the Lee-Wick particles become
heavy (and approach degeneracy) but where the hierarchy
problem is still resolved: loop diagrams are regulated in this
limit by an emergent nonlocal scale, Mnl, that is hierarchi-
cally smaller that the mass of the lightest Lee-Wick
resonance, m1:

M2
nl ∼O

�
m2

1

N

�
: ð1:1Þ

The nonlocal scale does not appear as a fundamental
parameter in the Lagrangian. The number of propagator
poles provides a parametric origin for the large separation
between the regulator scale and the heavy particle masses.
This allows for the stabilization of a hierarchy between
light scalar masses and the heavier mass scales in the
theory.
To understand why an emergent scale arises that regu-

lates loop diagrams, it is useful to recall the toy model of
real scalars discussed in Ref. [1], which was written
initially in the form

LN ¼−
1

2
ϕ1□ϕN−Vðϕ1Þ−

XN−1

j¼1

χj½□ϕj−ðϕjþ1−ϕjÞ=a2j �:

ð1:2Þ

Here the constants aj have units of length, and a possible
prefactor multiplying the terms in the sum has been set to
one by a rescaling of the χj fields. As discussed in
Refs. [1,2], constraints are obtained when one integrates
over the χj in the generating functional for the theory:

□ϕj − ðϕjþ1 − ϕjÞ=a2j ¼ 0; for j ¼ 1…N − 1: ð1:3Þ

This allows one to eliminate the ϕj, for j ¼ 2…N. It
follows that

ϕN ¼
�YN−1

j¼1

�
1þ l2

j□

N − 1

��
ϕ1; ð1:4Þ

where l2
j ≡ ðN − 1Þa2j , so that Eq. (1.2) may be reex-

pressed as
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LN ¼ −
1

2
ϕ1□

�YN−1

j¼1

�
1þ l2

j□

N − 1

��
ϕ1 − Vðϕ1Þ: ð1:5Þ

Alternatively, one may think of Eq. (1.5) as the funda-
mental Lagrangian for the theory. In the limit where N
approaches infinity and the lj simultaneously approach
a common value l, Eq. (1.5) approaches the asymptotic
form

L∞ ¼ −
1

2
ϕ1□el

2
□ϕ1 − Vðϕ1Þ: ð1:6Þ

This nonlocal Lagrangian has been studied extensively in
the literature (see Refs. [11,12] for applications in quantum
field theory, gravity, and additional historical references).
What is significant here is that the scale l serves as a
regulator of loop diagrams. It was confirmed by explicit
calculations in Ref. [1] that the same is true when N is large
but finite; the same behavior was found in the Abelian
gauge theories presented in Ref. [2]. The finite-N formu-
lation is also useful in that it allows one to avoid some
of the complications related to unitarity that are inherent
to the limiting theory, where the propagator involves a
nonpolynomial entire function of the momentum [13–17].
It is worth noting that each choice of N in Eq. (1.5)

corresponds to a distinct theory with different kinetic terms,
each varying from the exponential form that they approxi-
mate. Nonetheless, at large-but-finite N, the regulator scale
set by l emerges. Moreover, it was shown in Ref. [1] that
the same result is obtained numerically when one varies the
assumed form of the mass spectrum at fixed N. These
observations suggest that the emergence of the nonlocal
scale does not depend sensitively on the exponential form
of the differential operator that appears in the limiting
theory, Eq. (1.6), but rather on the requirement that some
entire function emerges that accounts for the desired
ultraviolet momentum suppression in the propagator.
This statement could be tested further by considering
constructions that lead to an appropriate differential oper-
ator that is not exponential in form; however, one then loses
the simple auxiliary field construction in Eq. (1.2), as
well as the relatively tractable higher-derivative loop
calculations (presented later) that are facilitated by the
present assumptions. We therefore defer consideration of
other functional forms for this differential operator to
future work.
The higher-derivative modifications of ϕ4 theory in

Ref. [1] and of the Abelian gauge theory in Ref. [2]
affected only the propagators of these theories, so that all
amplitudes were finite quantities. Since these finite theories
are described in the asymptotically nonlocal limit by a
Lagrangian involving only light particle masses and one
dimensionful scale l, as in Eq. (1.6), one can make a
convincing dimensional argument that the nonlocal scale

must regulate amplitudes at any loop order in this limit
[1,2]. The situation in non-Abelian gauge theories is less
clear, due to an important qualitative difference: gauge
invariance implies that higher-derivative quadratic terms
are accompanied by derivative interaction terms as well.
These interaction terms grow with energy so that we can no
longer conclude immediately that we have a finite large-N
theory; a cutoff Λ introduces an additional dimensionful
scale, potentially spoiling the previous argument. Thus,
it is well motivated to take a closer look at the loop
corrections to scalar masses in non-Abelian gauge theories
to determine whether the asymptotically nonlocal solution
to the hierarchy problem found in the theories of Refs. [1,2]
is still obtained. We do so in this paper and report positive
results.
This paper is organized as follows. In Sec. II, we define

an asymptotically nonlocal non-Abelian gauge theory of a
complex scalar field, in higher-derivative form; we deter-
mine the relevant Feynman rules and obtain an expression
for the superficial degree of divergence of the theory. In
Sec. III, we show by explicit computation that the correc-
tions to the complex scalar mass remain finite in this theory,
despite the presence of derivative interaction terms, and that
the asymptotically nonlocal behavior found in the scalar
and Abelian gauge theories of Refs. [1,2] is also obtained
here. In Sec. IV, we summarize our results and discuss the
relationship to the preliminary discussion on non-Abelian
theories given in Ref. [2], where the scalar sector was
written in Lee-Wick form (i.e., the form in which higher-
derivative terms are absent). For completeness, we provide
an Appendix with the Feynman rules for the pure gauge
sector of the theory, which may be useful for future
phenomenological studies.

II. HIGHER-DERIVATIVE YANG-MILLS THEORY

In our previous considerations of asymptotically non-
local ϕ4 theory [1] and Abelian gauge theory [2], we
provided a higher-derivative formulation of each theory,
and also an alternative in which higher-derivative quadratic
terms are eliminated in favor of auxiliary fields, for
arbitrary values of N. Both give equivalent physical results.
As we noted in Ref. [2], it is technically difficult to
construct a simple, gauge-invariant auxiliary-field formu-
lation for asymptotically nonlocal non-Abelian gauge
theories with N arbitrary. Moreover, gauge-boson self-
interactions are encoded simply in the higher-derivative
description, avoiding potentially complicated interaction
terms between towers of Lee-Wick resonances that would
appear in the alternative approach (see, for example, the
form of those interactions in an N ¼ 3 theory in Ref. [10]).
Fortunately, the higher-derivative formulation is sufficient
to address the issues raised in Sec. I, and we choose to work
in that framework henceforth.
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A. Lagrangian

We focus our attention on the following higher-derivative
Lagrangian1:

L¼−
1

2
TrFμνfð□ÞFμν−ϕ�ð□þm2

ϕÞfð□Þϕ−VðϕÞ; ð2:1Þ

where the field strength tensor is given by

Fμν ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν�: ð2:2Þ

We employ matrix notation Aμ ≡ Aa
μTa and Fμν ≡ Fa

μνTa,
where Ta denotes the generators of the gauge group and
summation over the repeated Lie algebra indices is assumed.
The higher-derivative operator

fð□Þ≡ YN−1

j¼1

ð1þ a2j□Þ; ð2:3Þ

is constructed from gauge-covariant derivatives and we
assume that the constants aj > 0 are nondegenerate. In
our notation □≡ ∂α∂α and □≡DαDα, where

Dμϕ≡ ð∂μ − igAμÞϕ; ð2:4Þ
for a field ϕ in the fundamental representation, and

DμX ≡ ∂μX − ig½Aμ; X�; ð2:5Þ
for an adjoint field X. While in principle there could be
different higher-derivative operators in the gauge sector

and the matter sector, we assume for simplicity that
they coincide.We also define the quadratic Casimir operator

C2δ
i
j ≡ ðTaÞikðTaÞkj ; ð2:6Þ

with sums on repeated indices implied. The numerical value
of C2 depends on the gauge group and field representation
under consideration.

B. Feynman rules

Let us now develop perturbation theory to study the
physical content of the Lagrangian (2.1). The higher-
derivative scalar propagator is given by

DðpÞ ¼ i
p2 −m2

ϕ

1

fð−p2Þ : ð2:7Þ

In order to find the gauge propagator one may follow the
usual local gauge-fixing procedure to arrive at

Dab
μνðpÞ ¼ −i

ημν −
pμpν

p2 ½1 − ξfð−p2Þ�
p2fð−p2Þ δab: ð2:8Þ

We will discuss pole prescriptions in Sec. III. The
Lagrangian (2.1) gives rise to vertices with two scalars
and up to 2N gluons. For the calculation presented in
Sec. III, we will need the scalar-gluon vertex for one and
two gluons, respectively. For finite N, they are given by

ð2:9Þ

ð2:10Þ

1Alternatively, we could have chosen the operator fð□þm2
ϕÞ in the scalar sector, so that the propagator has its canonical residue

when p2 ¼ m2
ϕ. This has no effect on our conclusions.
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where we defined the abbreviations2

fN1 ðpÞ≡
YN−1

j¼1

ð1 − a2jp
2Þ;

fN2 ðp1; p2Þ≡
XN−1

k¼1

a2k

�Yk−1
j¼1

ð1 − a2jp
2
1Þ
�� YN−1

j¼kþ1

ð1 − a2jp
2
2Þ
�
;

fN3 ðp1; p2; p3Þ≡
XN−1

n¼1

XN−1

k¼nþ1

a2na2k

�Yn−1
j¼1

ð1 − a2jp
2
1Þ
�� Yk−1

j¼nþ1

ð1 − a2jp
2
2Þ
�� YN−1

j¼kþ1

ð1 − a2jp
2
3Þ
�
: ð2:11Þ

Note that these functions are completely symmetric under exchange of momentum arguments, and also only depend on the
momenta’s magnitudes. In the limiting case of N → ∞ and a2j → l2=ðN − 1Þ one can show

lim
N→∞

fN1 ðpÞ≡ f1ðpÞ ¼ e−l
2p2

;

lim
N→∞

fN2 ðpÞ≡ f2ðp1; p2Þ ¼
e−l

2p2
1 − e−l

2p2
2

p2
2 − p2

1

;

lim
N→∞

fN3 ðpÞ≡ f3ðp1; p2; p3Þ ¼
e−l

2p2
1

ðp2
2 − p2

1Þðp2
3 − p2

1Þ
þ e−l

2p2
2

ðp2
1 − p2

2Þðp2
3 − p2

2Þ
þ e−l

2p2
3

ðp2
1 − p2

3Þðp2
2 − p2

3Þ
; ð2:12Þ

where the right-hand side is generated by the following
expression:

fnðp1;…; pnÞ≡
Xn
j¼1

e−l
2p2

j

Yn
k¼1
k≠j

1

p2
k − p2

j
: ð2:13Þ

We note that the way in which the aj approach l2=ðN − 1Þ
is not crucial; for example, the parametrization

a2j ¼
�
1 −

j
2NP

�
l2

N
ð2:14Þ

would achieve the desired limit with P > 1.3

C. Superficial degree of divergence

In this subsection, we find an expression for the super-
ficial degree of divergence of loop diagrams in the theory.
We are interested in diagrams that are potentially divergent,
where results may differ from the finite asymptotically
nonlocal theories discussed in Refs. [1,2]. Our expression
for the superficial degree of divergence will make clear why
we focused on the Feynman rules given in Eqs. (2.9)
and (2.10).

The theory has three types of vertices which each have
momentum dependence; we let p represent a generic
momentum and we work in the gauge where ξ ¼ 0. The
n-gauge-boson self-interactions scale as p2Nþ2−n (to see
this explicitly in the cases where n ¼ 3 and 4, see the
Appendix); the n0-gauge boson-complex scalar vertices,
scale as p2N−n0 ; finally, the ghost vertices scale as p1, as
these arise exactly as in the local theory. The gauge fields,
complex scalar and the ghosts have propagators that scale
as p−2N , p−2N and p−2, respectively. Taking into account
all these sources of momentum dependence, the superficial
degree of divergence is given by

d ¼ 4L − 2N I − 2Igh þ
X
n

ð2N þ 2 − nÞVn

þ Vgh − 2N Is þ
X
n0
ð2N − n0ÞVsn0 ; ð2:15Þ

where Vn is the number of pure-gauge vertices with n
gauge boson lines, Vsn0 is the number of complex scalar
vertices with n0 gauge boson lines, and Vgh are the number
of ghost vertices; the number of loops is denoted by L,
while the number of gauge, scalar and ghost internal lines
are given by I, Is and Igh, respectively. Four relations
restrict the variables in Eq. (2.15): The number of loop
momenta is given by the number of internal line momenta
that are not restricted by energy-momentum-conserving
delta functions at the vertices, aside from overall energy-
momentum conservation:

2We follow the convention that
P

n
k¼j ≡ 0 and

Q
n
k¼j ≡ 1 if

j > n.
3In Refs. [1,2], we used this parametrization with P ¼ 1,

which also achieves asymptotic nonlocality as the product in
Eq. (1.5) still approaches an exponential up to 1=N corrections.
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L ¼ I þ Igh þ Is −
X
n

Vn − Vgh −
X
n0
Vsn0 þ 1: ð2:16Þ

The number of ghost lines and complex scalar lines are
separately conserved:

2Vgh ¼ 2Igh þ Egh; ð2:17Þ

2
X
n0
Vsn0 ¼ 2Is þ Es: ð2:18Þ

Here E, Egh, and Es represent the number of external
gauge-field, ghost, and complex scalar lines, respectively.
Finally, all lines emanating from vertices must go some-
where:

X
n

n Vn þ 3Vgh þ
X
n0
Vsn0 ðn0 þ 2Þ

¼ 2I þ 2Igh þ 2Is þ Eþ Egh þ Es: ð2:19Þ

It follows algebraically that one may use Eqs. (2.16)–(2.19)
to rewrite Eq. (2.15) in the following useful form

d ¼ 2N þ 2 − 2ðN − 1ÞL − E − Es − NEgh; ð2:20Þ

which expresses the superficial degree of divergence in
terms of the number of loops, external lines and N; in the

case were N ¼ 2, this expression agrees with the one
presented in Ref. [9]. Focusing on the scalar mass self-
energy (E ¼ Egh ¼ 0, Es ¼ 2), it is easy to confirm that as
N becomes large (the limit of interest), all loop diagrams
with L ≥ 2 become finite, while only the case where
L ¼ 1 gives d ¼ 2 for any N. We therefore focus our
attention on the one-loop scalar self-energy diagrams. It
was noted in the case of N ¼ 2 that this amplitude is more
convergent than would be indicated by Eq. (2.20) [9]. We
will show in the next section that the amplitude is in fact
finite in the asymptotically nonlocal limit, and is regulated
by the emergent nonlocal energy scale.

III. MASS RENORMALIZATION

The scalar self-energy evaluated at p2 ¼ m2
ϕ determines

the shift in the pole mass of the scalar that would have mass
m2

ϕ in the absence of radiative corrections. Based on the
conclusion of Sec. II C, we consider the one-loop contri-
butions to the self-energy in this section, with the goal of
demonstrating two things: (i) The sum of diagrams is finite,
given our assumption that N ≥ 3. (ii) The amplitude in the
large N limit can be evaluated analytically, allowing one to
confirm that the scale of the result is in fact set by the
emergent nonlocal scale 1=l. Using the Feynman rules
presented earlier, the two contributions to the self-energy,
−iM2ðp2Þ ¼ −i½M2ðp2Þ1 þM2ðp2Þ2�, are given by

ð3:1Þ

ð3:2Þ
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Notice that in our gauge choice, ξ ¼ 0, the gauge field
propagators are proportional to ημν − kμkν=k2, which van-
ishes when contracted with kμ. As a consequence, we can
see by inspection that the most divergent terms in Eqs. (3.1)
and (3.2) taken separately are reduced from d ¼ 2 to
d ¼ 0.4 One may then show that the logarithmically
divergent pieces cancel between M2ðp2Þ1 and M2ðp2Þ2.
For example, the vertices of the diagrams in Eqs. (3.1)
and (3.2) simplify in the limit of large loop momenta k;
with p1 ¼ p and p2 ¼ −ðp − kÞ in Eq. (2.9) [or with
p1 ¼ p − k and p2 ¼ −p], and with p1 ¼ p, p2 ¼ −p and
q2 ¼ −k in Eq. (2.10), the vertices become

V1g → igTað2p − kÞμðk2ÞN−1
YN−1

j¼1

ð−a2jÞ; ð3:3Þ

V2g→ ig2TaTbð2p−kÞμð2p−kÞνðk2ÞN−2
YN−1

j¼1

ð−a2jÞ; ð3:4Þ

in the limit that k → ∞. One can then isolate the leading
logarithmically divergent parts of Eqs. (3.1) and (3.2) for
N ≥ 3; one finds

−iM2ðp2Þ1 ¼ þiM2ðp2Þ2
→ −4g2C2

Z
d4k
ð2πÞ4

p2 − ðp · kÞ2=k2
k4

; ð3:5Þ

revealing that the logarithmic divergences cancel. Hence,
the sum of Eqs. (3.1) and (3.2) is finite5; we again have the
situation obtained in the scalar and Abelian gauge theories
of Refs. [1,2], where a dimensional argument is available
suggesting that the result is set by the emergent nonlocal
scale as the limiting theory is approached.
We now verify this explicitly. Since the limit of interest is

one in which N is large [and the Lee-Wick spectrum is
becoming increasingly degenerate, as in Eq. (2.14)], we
evaluate the self-energy at leading order in a 1=N expansion.
The fNj will approach functions of exponentials in this limit;
Wick rotation is done in the finite-N theory, so there are no
problems associated with the directions in the complex
energy plane where the exponentials blow up; when expo-
nentials are displayed inMinkowski-space expressions, they

are a mnemonic for the finite-N expressions that approach
them, and serve to accurately approximate the result. In the
finite-N theory, we use the Lee-Wick pole prescription,
which is identical to the Feynman prescription when the
decay width of the Lee-Wick resonances is neglected, as in
our lowest-order calculation. If we were to work at higher
order, the Lee-Wick poles become complex conjugate pairs
as their widths are turned on6 and shift away from the real k0

axis; the Lee-Wick prescription requires deforming the
contours around the poles so that they remain in the same
relative position as in the Feynman prescription [18]; one
may then Wick rotate. There is only an ambiguity when
poles overlap and pinch a contour, a situationwhich requires
an additional prescription to define the loop integral [19].7

However, for the situation we consider, where p2 ¼ m2
ϕ and

all Lee-Wick poles are much heavier, such pinching of
contours does not occur. (See, for example, the discussion in
Sec. IV. B of Ref. [22].)
The choice p2 ¼ m2

ϕ leads to a significant simplification
in the form of the self-energy. We find

−iM2ðm2
ϕÞ¼g2C2e

−l2m2
ϕ

Z
d4k
ð2πÞ4e

l2k2
�
3

k2
−

4m2
ϕ

k2ðk2−2p ·kÞ

þ 4ðp ·kÞ2
k4ðk2−2p ·kÞ

�
: ð3:6Þ

The momentum integration can be evaluated by first
combining denominators, Wick rotating and then writing
the result as a Euclidean Gaussian integral by means of a
Schwinger parameter. We find

−iM2ðm2
ϕÞ ¼ −i

3g2

16π2
1

l2
C2e

−l2m2
ϕ

× ½1þ I1ðm2
ϕl

2Þ − I2ðm2
ϕl

2Þ�; ð3:7Þ

where

I1ðzÞ ¼
4

3
z
Z

1

0

dx
Z

∞

0

dy
y

ð1þ yÞ2 e
−x2yz; ð3:8Þ

and4Physical quantities like the shift in the pole mass are in fact
gauge invariant, which was shown explicitly in the Abelian
example of Ref. [2] by keeping ξ arbitrary and demonstrating the
cancellation of the ξ-dependent terms between the two diagrams
that contribute to the amplitude. In the interest of brevity, we do
not repeat that exercise here.

5Note that there are terms in M2ðp2Þ2 that are subleading at
large N, proportional to

R
d4kðp2ÞN−2=ðk2ÞN ; these become log

divergent when N ¼ 2, consistent with the one-loop results in the
Lee-Wick Standard Model [9].

6Heavy Lee-Wick gauge particles can decay, for example, to
two light scalars. We assume the potential in Eq. (2.1) provides
scalar self-interactions that allow the heavy Lee-Wick scalars to
decay as well.

7It is worth noting that there are alternatives to the approach of
Refs. [18,19] that aim to address the classical instabilities of such
higher-derivative theories. See Refs. [20,21] for discussion and an
application to a non-Abelian model.
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I2ðzÞ ¼
2

3
z
Z

1

0

dxð1− xÞ
Z

∞

0

dy
y2½1− 2x2ð1þ yÞz�

ð1þ yÞ3 e−x
2yz:

ð3:9Þ

Note that the three terms in Eq. (3.7) correspond to the three
terms in square brackets in Eq. (3.6), which involve one,
two, and three denominator factors, respectively. The
functions I1 and I2 are positive and never exceed ∼1.7
for m2

ϕl
2 between 0 and 1, consistent with the assumption

that the scalar mass is below the emergent nonlocal scale.
The integrals can be performed analytically and we find

−iM2ðm2
ϕÞ ¼ −i

3g2

16π2
1

l2
C2e

−l2m2
ϕ ½1þ Fðm2

ϕl
2Þ�; ð3:10Þ

where

FðzÞ ¼ 1

6
½ðz2 − 2zÞezEi1ðzÞ − z� þ

ffiffiffi
z

p
6

�
G22

23

�
z

����−
1
2
; 1;

3
2
; 1
2
; 0

�

þ 4G22
23

�
z

����−
1
2
; 1;

1
2
; 1
2
; 0

��
: ð3:11Þ

Here Gmn
pq denotes the Meijer G-function [23] and Ei1ðzÞ≡R

∞
1 dte−tz=t is an exponential integral. For m2

ϕl
2 ≪ 1 the

expressions simplify, and we find

−iM2ðm2
ϕÞ≈−i

3g2

16π2
1

l2
C2e

−l2m2
ϕ

×

�
1þ

�
3

2
−γ− logm2

ϕl
2

�
m2

ϕl
2

�
þOðm4

ϕl
4Þ:

ð3:12Þ

We note that this leading-order expression in m2
ϕl

2 ≪ 1

closely resembles the expression found in the Abelian case
in Ref. [2]; for a plot of the exact result, Eq. (3.10), and the
small-mϕ result, Eq. (3.12), see Fig. 1. Hence, the scalar
pole mass does not receive a loop correction that exceeds
the nonlocal scale 1=l in the limit that the heavy Lee-Wick
particles are decoupled via a parametrization like the one in
Eq. (2.14), with mj ¼ 1=aj. This is the same behavior
found the scalar and Abelian gauge theories considered in
our previous work [1,2].
Finally, we note that we could have defined the theory

such that in the N → ∞ limit, the exponential in the

Lagrangian is e−l
2ðp2−m2

ϕÞ, rather than e−l
2p2

; this assures
a canonically normalized tree-level propagator when
p2 ¼ m2

ϕ. Proceeding in this way, the only change in

Eq. (3.7) is that the factor of e−l
2m2

ϕ would not appear,
and our qualitative conclusions would remain unchanged.

IV. DISCUSSION

In this paper, we have tied up a loose end from Ref. [2],
where asymptotically nonlocal non-Abelian gauge theories
were defined in higher-derivative form, but a complete
argument was not presented showing that corrections to the
mass of a light scalar particle are set by the emergent
nonlocal scale—a scale that is hierarchically lower than the
mass of the lightest Lee-Wick resonance. Since non-
Abelian theories in their higher-derivative form have
derivative interaction terms yielding vertices that grow
with momentum, these theories are qualitatively different
from the ϕ4 and Abelian gauge theories considered in detail
in Refs. [1,2], respectively. In the present work, we first
determined the relevant Feynman rules for an asymptoti-
cally nonlocal non-Abelian theory in higher-derivative
form, and computed the superficial degree of divergence
for an arbitrary loop diagram. We showed that the only
potentially divergent diagrams occur at one-loop as one
approaches the nonlocal limiting theory. Then, we evalu-
ated these diagrams and found a nontrivial cancellation of
divergent parts, so that the resulting self-energy is a finite
quantity. As a consequence, the dimensional arguments
given in our earlier work apply and suggest that the scale of
the radiative corrections at any loop order must be set by the
emergent nonlocal scale 1=l2 in the desired limit, for lack
of any alternative scale, aside from light particle squared
masses. We supported this conclusion by explicitly evalu-
ating the scalar self-energy at lowest nontrivial order in
perturbation theory in the asymptotically nonlocal limit; the
result was found to be proportional to 1=l2, up to gauge
couplings and expected numerical loop factors.
It is worth noting that in Ref. [2] it was argued that the

complex scalar sector of the theory studied here could be
written without higher derivatives via the use of auxiliary
fields and appropriate field redefinitions, while no such
trick was available for the non-Abelian gauge sector for a

FIG. 1. Scalar self-energy at one loop, normalized to

M2
0 ≡ 3g2C2e

−l2m2
ϕ=½16π2l2�, plotted as a function of m2

ϕl
2

(solid line), and the approximation mϕl ≪ 1 (dashed line).
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general asymptotically nonlocal theory, one with an arbi-
trary number of propagator poles. This led to the obser-
vation that each scalar mass eigenstate in the Lee-Wick
basis appeared to couple to the higher-derivative gauge
sector like a local scalar field, and hence would have finite
self-energies at one-loop. This statement, as applied to the
lightest mass eigenstate,8 is consistent with results found in
the present work, and serves as a nontrivial check of the
calculation presented in Sec. III.
The present work adds to the evidence that the asymp-

totically nonlocal standard model Lagrangian presented in
Ref. [2] will be regulated by the emergent nonlocal scale,
when Lee-Wick resonances remain far outside the reach of
collider experiments. Nevertheless, scattering amplitudes
will be affected as energies approach the emergent nonlocal
scale, which must not be far above the electroweak scale if
the hierarchy problem is to be addressed. This implies
phenomenological consequences at colliders, a topic we
plan to address in future work.
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APPENDIX: GLUON SELF-INTERACTIONS

The pure gauge part of the Lagrangian is given by

Lgauge ¼ −
1

2
TrFμνfð□ÞFμν; fð□Þ ¼

YN−1

j¼1

ð1þ a2j□Þ:

ðA1Þ

Recall that TrðTaTbÞ ¼ 1
2
δab and the expansion of the field

strength tensor

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAb
ν : ðA2Þ

The covariant □-operator acting on an adjoint field Xa is
given by

□Xa ¼ ηρσðδac∂ρ þ gfabcAb
ρÞðδce∂σ þ gfcdeAd

σÞXe

¼ f□δae þ gfabe½ð∂ρAb
ρÞ þ 2Ab

ρ∂ρ�
þ g2ηρσfabcfcdeAb

ρAd
σgXe: ðA3Þ

Gluon self-interactions can come from within the field
strength tensors as well as the □-operators, and hence
theories of the above form allow for gluon self-interactions
of up to 2ðN þ 1Þ gluons. In what follows, we limit our
considerations to the three- and four-gluon vertices. To
simplify our discussion, we shall refer to a vertex con-
tribution as a ðk; l; m; nÞ-term when it has k gluons from the
leftmost field strength tensor, l and m gluons from two
separate □ operators, and n gluons from the rightmost
field strength tensor. Here, k, l, m, and n can be either 0, 1,
or 2.
Following these considerations, the three-gluon vertex

takes the form

ðA4Þ

Yμνρ
abcðp1; p2; p3Þ ¼ −gfabc

�
fN1 ðp1Þpν

1η
μρ þ 1

2
fN2 ðp1; p3Þðp1 − p3Þνðp1 · p3η

μρ − pρ
1p

μ
3Þ
�
: ðA5Þ

The first term is a sum of (2,0,0,1) and (1,0,0,2), that is, it is generated purely by gluons from within field strength tensors,
and the second term is a (1,1,0,1)-type where one gluon is taken from the sandwiched □-operator. In the limiting case of
ordinary Yang-Mills theory one has fN1 ≡ 1 and fN2 ≡ 0 and one recovers the usual three-gluon vertex. Taking into account
permutations, Eq. (A4) has 3! terms.
The four-gluon vertex takes the form

8It also implies that analogous statements hold for the heavier scalar mass eigenstates, if one were interested in the decoupled sector.
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ðA6Þ

Xμνρσ
abcdðp1; p2; p3; p4Þ ¼ −ig2fabefcde

�
1

4
fN1 ðp3 þ p4Þημρηνσ − fN2 ðp1 þ p2; p4Þðp3 þ 2p4Þρpμ

4η
νσ

−
1

2
fN2 ðp1; p4Þηνρðp1 · p4η

μσ − pσ
1p

μ
4Þ −

1

2
fN3 ðp1; p1 þ p2; p4Þð2p1 þ p2Þνðp3 þ 2p4Þρ

× ðp1 · p4η
μσ − pσ

1p
μ
4Þ
�
: ðA7Þ

Here, the first term is of type (2,0,0,2), the second term is a sum of (2,1,0,1) and (1,1,0,2), the third term is of type (1,2,0,1),
and the last term is generated by (1,1,1,1). Again, in the limiting case of ordinary Yang-Mills theory one has fN1 ≡ 1 and
fN2 ≡ f3N ≡ 0 and one recovers the usual four-gluon vertex. Taking into account permutations, Eq. (A6) has 4! terms.
As our gauge-fixing procedure is identical to that of a local Yang-Mills theory, the ghost Feynman rules are unaffected, so

we do not display them here; they can be found in standard references, for example Ref. [24].
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