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Consider a set of multivariate distributions, F1;…; FM, aiming to explain the same phenomenon. For
instance, each Fm may correspond to a different candidate background model for calibration data, or to one
of many possible signal models we aim to validate on experimental data. In this article, we show that tests
for a wide class of apparently different models Fm can be mapped into a single test for a reference
distribution Q. As a result, valid inference for each Fm can be obtained by simulating only the distribution
of the test statistic under Q. Furthermore, Q can be chosen conveniently simple to substantially reduce the
computational time.
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I. INTRODUCTION

Despite the popularity of classical goodness-of-fit tests
such as Pearson’s X2 [1], likelihood ratio and Kolmogorov-
Smirnov [2,3], their applicability often faces serious
challenges in many situations relevant to modern experi-
ments. For instance, when conducting multidimensional
searches in a binned data regime, the limited sample size
may affect the validity of the χ2 approximation for X2.
Moreover, if the expected number of events is small, the X2

statistics may be biased, that is, its power can be smaller
than the prescribed significance level [4]. Unfortunately,
this may occur even when a reasonable χ2 approximation
for it exists, leaving little hope when aiming to address the
problem by means of Monte Carlo simulations. Similarly,
the likelihood ratio may suffer from additional biases due to
the estimation of the unknown parameters [e.g., [5]]. These
problems can often be overcome in the unbinned data
regime by means of tests such as Kolmogorov-Smirnov,
Cramer-von-Mises, and Anderson-Darling. In this case, the
price to pay is the loss of distribution-freeness when the
models under study are multivariate and/or involve
unknown parameters that need to be estimated. As a result,
one needs to derive or simulate the distribution of the test
statistic on a case-by-case basis.
In this article, we discuss a simulation-based testing

strategy which allows us to overcome all these short-
comings and equips experimentalists with a novel tool to
perform goodness-of-fit while reducing substantially the
computational costs. The rationale behind the solution is
somewhat close in spirit (but different in nature) to that of
the well-known Metropolis-Hasting algorithm [6,7]. When
aiming to sample data from a complex distribution F, the
Metropolis-Hasting algorithm circumvents the difficulties

associated with sampling directly from F by considering a
much simpler distribution Q. The choice of Q is arbitrary
and thus one can often compute integrals in F, or
approximate the latter, solely relying on samples from
Q. In a similar manner, the tests presented here consist of
converting the testing problem for a given distribution F
into a test for a reference-distributionQ. We show that tests
for many different distributions F1;…; FM can all be
mapped into one single test for Q. Also in this case, Q
can be chosen conveniently simple. It follows that one can
calculate the prescribed test statistic on the data, for one or
more candidate models Fm, and compare its observed value
directly with the simulated distribution of the test statistic
under Q, avoiding M separate simulations.
From a theoretical standpoint, the key element of the

solution is the Khmaladze-2 (K-2) transform,1 also known
asKhmaladze’s rotation, a novel unitary-transformation for
empirical processes introduced in recent years by [9,10].
The test statistics proposed in this article are extensions of
the Kolmogorov, Cramer-von-Mises and Anderson-
Darling’s statistics and adequately constructed to account
for the variability associated with the estimation of the
parameters. For the specific case of Anderson-Darling, we
will see that the reference distribution Q also plays the role
of weighting function. That is, it can be used to assign the
desired weights to the tails of the distribution. Finally, we
evaluate the performance of the tests proposed through a
suite of simulation studies.
The remainder of the manuscript is organized as follows.

In Sec. II we provide an overview on the classical empirical
process, that is, the main object at the core of classical
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1The Khmaladze-2 transformation has not to be confused with
the well-known “Khmaladze transformation,” also referred to in
literature as Khmaladze-1 (K-1) transform, and originally pro-
posed by the same author in [8].
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goodness-of-fit tests. Section III is devoted to extend the
classical empirical process to the multivariate parametric
setting and introduces the projected empirical process.
While the latter is shown to provide remarkable computa-
tional advantages, its main relevance for us is that of setting
the ground to perform distribution-free goodness-of-fit.
Distribution-freeness is the focus of Sec. IV. There, we
introduce the K-2 transform and investigate its properties
through a suite of simulation studies. Some final remarks
are collected in Sec. V. Details on the mathematical
derivations are provided in the Appendix.

II. THE CLASSICAL EMPIRICAL PROCESS

Consider a sample x1;…; xn for which each measurement
xi is the realization of a random variable Xi. For the moment,
we assume that the Xis take values on the interval ½L;U�, are
independent and identically distributed (i.i.d.) with cumu-
lative distribution function (cdf), P, either continuous or
discrete. In this setup, the empirical process is

vP;nðxÞ ¼
ffiffiffi
n

p ½PnðxÞ − PðxÞ� ¼ 1ffiffiffi
n

p
Xn
i¼1

½1fxi≤xg − PðxÞ�

ð1Þ
where PnðxÞ ¼ 1

n

P
n
i¼1 1fxi≤xg is the empirical cumulative

distribution of x1;…; xn and which is known to converge to
P, when n → ∞. From the first equality in (1), it is clear that,
for every point in ½L;U�, vn consists of a “magnified”
difference between the empirical cumulative distribution
of the data and P, where the “magnifying factor” is

ffiffiffi
n

p
.

Hence, when replacing P with any F ≢ P, the differences
between Pn and F becomes more and more obvious
as n → ∞.
The literature investigating the properties of vn is vast

(see Wellner [11] for a review), and mainly focuses on
the case where F is fixed. In practical applications,
however, F typically depends on unknown parameters to
be estimated. It is therefore important to extend (1) to this
setting.

III. THE MULTIVARIATE
PARAMETRIC REGIME

Consider a sample of i.i.d. observations over the search
region X ⊆ Rd and let PðxÞ ¼ Pðx1;…; xdÞ be their
true underlying distribution. Despite P is unknown, sup-
pose we are given a simplified candidate model QθðxÞ for
the data, with θ being a set of p unknown parameters, and
let qθðxÞ be the respective probability density function
(pdf) or probability mass function (pmf). We assume that
Qθ is easy to simulate from, to evaluate, and to estimate
its parameters. For instance, Qθ may be the cdf of a
d-dimensional normal distribution with independent com-
ponents, known variance and mean vector depending on θ.
Moreover, suppose another model, Fβ, is given and let β be

the set of parameters characterizing it. The distribution Fβ

may be arbitrarily complex and, potentially, much harder to
simulate from, to estimate, and even to evaluate thanQθ. In
this section and those to follow, we will show that we can
construct two test statistics, one to test Fβ and one to test
Qθ, whose null distribution is the same. In order to achieve
this goal we begin by constructing a test forQθ based on the
so-called projected empirical process.

A. The projected empirical process

An extension of (1) to this setup is given by the
parametric empirical process

vQ;nðx; θÞ ¼
1ffiffiffi
n

p
Xn
i¼1

ψx;θðxiÞ with ð2Þ

ψx;θðxiÞ ¼ ½1fxi≤xg −QθðxÞ� ð3Þ

and 1fxi≤xg ¼ 1fx1i≤x1;…;xpi≤xpg takes value one for all the
data points whose coordinates are smaller or equal than
x ¼ ðx1;…; xdÞ and zero otherwise.
Denote with θ̂ be the maximum likelihood estimate

(MLE) of θ, which we assume satisfies the classical
regularity conditions [e.g., [12], p. 500] (see also [13]
for a high-level review). We denote the score vector of Qθ
with uθ, i.e.,

uθðxÞ ¼ ½uθ1ðxÞ;…; uθpðxÞ�T ð4Þ

where each element uθjðxÞ corresponds to

uθjðxÞ ¼
∂
∂θj log qθðxÞ ð5Þ

with θj, j ¼ 1;…; p being the components of the param-
eter vector θ. We denote with Γθ the Fisher-information
matrix, i.e., the matrix of elements

Γθjk ¼ huθj ; uθkiQθ
: ð6Þ

The inner product in (6) is defined as

hg; hiQθ
¼

Z
X
gðtÞhðtÞqθðtÞdt if Qθ is continuous: ð7Þ

If Qθ is discrete, the integral in (7) is replaced by a
summation over all the points of the search region X .
Lastly, we consider the normalized score function

bθðxÞ ¼ Γ−1=2
θ uθðxÞ ð8Þ

and we denote with bθjðxÞ, j ¼ 1;…; p, its components.
The operation in Eq. (8) consists of normalizing the vector
uθ in (4) by multiplying it by the inverse of the square root
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matrix of the Fisher information.2 The resulting functional
vector bθ in (8) consists of the normalized score functions
bθj , which have mean zero, unit variance, and are uncorre-
lated from one another under model Qθ.
It was shown in [15] that, when replacing θ in (2) with θ̂,

the resulting process, namely vQ;nðx; θ̂Þ, can be rewritten as
a projection of vQ;nðx; θÞ parallel to the normalized score
functions bθj . Specifically, a Taylor expansion and suitable
algebraic manipulations lead to

vQ;nðx; θ̂Þ ≈ vQ;nðx; θÞ

−
1ffiffiffi
n

p
Xp
j¼1

Xn
i¼1

bθjðxiÞhbθj ;ψx;θiQθ
; ð9Þ

where the error of the approximation is opð1Þ,3 that is, it
quickly converges to zero in probability. The inner product
in (9) can be computed as in (7). Details on the derivation of
(9) are provided in the Appendix.
It follows that, given the set of functions

ψ̃x;θðtÞ ¼ ψx;θðtÞ −
Xp
j¼1

bθjðtÞhbθj ;ψx;θiQθ
; ð10Þ

we can specify the projected empirical process ṽnðx; θÞ as

ṽQ;nðx; θÞ ¼
1ffiffiffi
n

p
Xn
i¼1

ψ̃x;θðxiÞ; ð11Þ

and it is such that

vQ;nðx; θ̂Þ ¼ ṽQ;nðx; θÞ þ opð1Þ; ð12Þ

hence, vQ;nðx; θ̂Þ and ṽQ;nðx; θÞ have the same asymptotic
distribution.

B. Testing Q

A notable advantage of working with empirical proc-
esses is that they allow us to construct an entire family of
goodness-of-fit tests. For instance, to test the hypothesis
H0∶P ¼ Qθ, many different test statistics can be con-
structed by simply taking functionals of ṽQ;nðx; θÞ. Some
of these tests will be more powerful then others with respect
to different alternatives, and thus, it is particularly valuable

to be able to access a variety of them. Here, we focus on
three main statistics which can be seen as a generalization
of Kolmogorov-Smirnov, Cramer-von Mises, and
Anderson-Darling’s statistics, i.e.,

D̂Q ¼ sup
x
jṽQ;nðx; θÞj; ω̂2

Q ¼
Z
X
ṽ2Q;nðx; θÞqθðxÞdx;

and Â2
Q ¼

Z
X
ṽ2Q;nðx; θÞwθðxÞqθðxÞdx ð13Þ

with wθðxÞ ¼ ½QθðxÞð1 −QθðxÞÞ�−1 being the weighting
function which allows us to highlight differences between
the empirical cumulative distribution and Qθ in the tails.
It is worth emphasizing that, in principle, one can use as

test statistics the equivalent of those in (13) with ṽQ;nðx; θÞ
replaced by vQ;nðx; θ̂Þ. There are, however, two main
advantages of working with ṽQ;nðx; θÞ instead of

vQ;nðx; θ̂Þ. First of all, as we will discuss in details in
Sec. IV, ṽnðx; θÞ sets the foundations to perform distribu-
tion-free tests. Second, ṽQ;nðx; θÞ provides substantial gain,
compared to vQ;nðx; θ̂Þ, from a computational stand point.
Specifically, in both cases, since θ is unknown, one

needs to simulate the distribution of the test statistics by
means of the paramteric bootstrap, that is, we compute the
MLE of θ on the data observed, namely θ̂obs, and, at each
replicate, we sample datasets from Qθ̂obs

ðxÞ. The bootstrap
procedure has been proven to lead to consistent results
under very general conditions by Babu and Rao [16]. They
have shown that by simulating the distribution of continu-
ous functionals of the parametric empirical process one can
recover their true distribution if the parameters are esti-
mated via MLE and the classical regularity conditions
[e.g., [12], p. 500] hold.
When working with vQ;nðx; θ̂Þ, to account for the

variability introduced by the estimation process, one needs
to repeat the maximization of the likelihood on each
simulated bootstrap sample. Moreover, at each replicate,
the cdf Qθ also needs to be evaluated on each point x ∈ X
considered, and with θ replaced by its estimated value on
the simulated bootstrap sample. On the other hand, when
working with ṽQ;nðx; θÞ, to account for the uncertainty
associated with the estimation of θ, instead of maximizing
the likelihood at each iteration, we only need to evaluate the
normalized score functions in bθ̂obsðxÞ on each simulated
samples. Furthermore, despite we still need to evaluateQθ at
each x ∈ X considered, as well as the integrals/summations
in hbθj ;ψx;θiQθ

, these only need to be computed once, that is,

for θ ¼ θ̂obs, reducing substantially the computational time.
This approach is particularly advantageous since the error of
approximating vQ;nðx; θ̂Þ with ṽQ;nðx; θÞ is only opð1Þ [see
Eq. (12)], and thus, it is negligible even for sampleswhich are
only moderately large.

2In the applications to follow, the square root matrix has been
computed via the Schur method [e.g., [14], Ch. 6]. Nonetheless,
other methods to construct the square root matrix, such as dia-
gonalization, Jordan decomposition, etc, are also viable options.

3The notation opð1Þ is an abbreviation used in statistics to
indicate that a sequence of random vectors converges to zero in
probability. In general, given two random sequences Rn and Sn,
we write Rn ¼ opðSnÞ to indicate that Rn

Sn
converges in probability

to zero.
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To illustrate these aspects with a toy example, letQ be the
distribution of a bivariate normal with independent compo-
nents, truncated over the region X ¼ ½1; 20� × ½1; 25�, and
with density

qθðxÞ ∝ e−
1

2θ3
½ðx1−θ1Þ2þðx2−θ2Þ2�; ð14Þ

We draw a sample of n ¼ 100 observations from (14) with
θ ¼ ð−2; 5; 25Þ, andwhichwill be considered our “observed
data.” We estimate θ on such sample and we obtain
θ̂obs ¼ ð−0.77; 6.32; 22.02Þ. We proceed by simulating
the distribution of the Kolmogorov-Smirnov’s statistics,
supxjṽQ;nðx; θÞj and supxjvQ;nðx; θ̂Þj, via the parametric
bootstrap. To emphasize the validity of the bootstrap pro-
cedure, we also simulate the distribution of supxjvQ;nðx; θ̂Þj
via Monte Carlo; that is, the data are generated from QθðxÞ
(instead of Qθ̂obs

ðxÞ as in the parametric bootstrap) and the
estimation process is repeated at each replicate. In all the
three cases, the supremum is taken over a grid of 2000
equidistant points over X. The results obtained are shown in
Figure 1. The three simulated distributions are effectively
overlapping, providing evidence that the parametric boot-
strap does recover the distribution of supxjvQ;nðx; θ̂Þj. Not
surprisingly, this is true even when relying on ṽQ;nðx; θÞ
instead of vQ;nðx; θ̂Þ due to the small error associated with
approximating the latter with the former. Notice that, this is
true even if our sample size is limited to 100 observations.
Moreover, working with the projected empirical process,
ṽQ;nðx; θÞ, provides a remarkable computational gain

compared to vQ;nðx; θ̂Þ. As shown in Table I, simulating

the distribution of supxjvQ;nðx; θ̂Þj using 10,000 replicates
required approximately 12 hours of (user þ system) CPU
time, whereas simulating the distribution of supxjṽQ;nðx; θÞj
required 9.5 minutes.

IV. CONNECTING TESTS FOR F
AND TESTS FOR Q

In principle, we could proceed testing any Fβ ≢ Qθ
following exactly the same steps described in Sec. III B. In
many practical situations, however, Fβ may be sufficiently
complex to make the evaluation of the score functions over
several samples impractical. To overcome this limitation,
we proceed by constructing a new set of test statistics,
namely D̃F, ω̃2

F, and Ã2
F, whose limiting distributions,

under Fβ, are the same as those of D̂Q, ω̂2
Q, and Â

2
Q in (13),

under Qθ. As a result, one can compute D̃F, ω̃2
F, and Ã2

F
only once on the data observed, and compare their values
with the simulated distribution of D̂Q, ω̂2

Q, and Â
2
Q. This can

be done by means of the K-2 transform [9,10] as
described below.
Let β ∈ Rp be the vector of unknown parameters

characterizing Fβ, let fβðxÞ be its density (either pdf or
pmf) and denote with aβj , j ¼ 1;…; p, its normalized score
functions. The latter can be constructed as in (8) by
replacing qθ and θ with fβ and β, respectively. For what
follows, we require that fβðxÞ ¼ 0 if and only if qθðxÞ ¼ 0,
that is, the two densities must share the same support.
Moreover, we assume that β and θ, have the same
dimension p.
Equations (10)–(11) imply that the process ṽQ;nðx; θÞ

“lives” in the space of functions L⊥ðQθÞ such that

L⊥ðQθÞ ¼ fψ̃∶hψ̃ ; ψ̃iQθ
< ∞ ð15Þ

hψ̃ ; 1iQθ
¼ 0; and ð16Þ

hψ̃ ; bθjiQθ
¼ 0; for all j ¼ 1;…; pg ð17Þ

That is, each function in L⊥ðQθÞ is square-integrable
with respect to Qθ, has mean zero, and is orthogonal
to the normalized score functions bθj , j ¼ 1;…; p,
under Qθ. Moreover, one can show that, under Qθ, the

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

P(sup vQn(x, θ̂) ≤ c)  Monte Carlo

P(sup vQn(x, θ̂) ≤ c)  Bootstrap
P(sup v~Qn(x, θ) ≤ c)  Bootstrap

FIG. 1. Comparing the bootstrapped distributions of the
Kolmogorov-Smirnov’s statistics supxjṽQ;nðx; θÞj and
supxjvQ;nðx; θ̂Þj and the distribution of supxjvQ;nðx; θ̂Þj simulated
via Monte Carlo. In all three cases the simulation consist of
10,000 replicates and the sample size is n ¼ 100.

TABLE I. Overall (systemþ user) CPU time needed to sim-
ulate the distributions of the test statistics supxjṽQ;nðx; θÞj and
supxjvQ;nðx; θ̂Þj via the parametric bootstrap over 10,000 repli-
cates and n ¼ 100 observations.

supxjṽQ;nðx; θÞj supxjvQ;nðx; θ̂Þj
CPU time 9.429 mins 12.198 hrs
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process ṽnðx; θÞ is asymptotically Gaussian with mean
hψ̃x;θ; 1iQθ

¼ 0 and covariance hψ̃x;θ; ψ̃ s;θiQθ
< ∞.

The rationale behind the K-2 transformation is that of
constructing a suitable map which allows us to transform
functions ψ̃x;θ ∈ L⊥ðQθÞ into functions in L⊥ðFβÞ, i.e.,

L⊥ðFβÞ ¼ fϕ̃∶hϕ̃; ϕ̃iFβ
< ∞; ð18Þ

hϕ̃; 1iFβ
¼ 0; and ð19Þ

hϕ̃; ajiFβ
¼ 0; for all j ¼ 1;…; pg; ð20Þ

where h·; ·iFβ
can be defined similarly to h·; ·iQθ

in (7).

Notice that L⊥ðFβÞ ⊂ LðFβÞ ⊂ L2ðFβÞ, with

L2ðFβÞ ¼ fϕ̃∶hϕ̃; ϕ̃iFβ
< ∞g; and

LðFβÞ ¼ fϕ̃∶hϕ̃; 1iFβ
¼ 0; hϕ̃; ϕ̃iFβ

< ∞g:

It follows that, for suitable choices of ϕ̃, namely ϕ̃x;λ
(soon to be defined), the process ṽQ;nðx; θÞ in (11) and the
empirical process

ṽF;nðx; λÞ ¼
1ffiffiffi
n

p
Xn
i¼1

ϕ̃x;λðxiÞ; with λ ¼ ðθ; βÞ; ð21Þ

have the same asymptotic distribution (under Qθ and Fβ,
respectively). Specifically, in virtue of Gaussianity, we can
fully characterize the distribution of ṽF;nðx; θÞ and
ṽQ;nðx; λÞ considering only their mean and covariance.
Therefore, to achieve our purpose, it is sufficient to identify
a set of functions ϕ̃x;λ ∈ L⊥ðFβÞ such that the mean and
covariance functions of ṽF;nðx; θÞ and ṽQ;nðx; λÞ are the
same, i.e.,

hψ̃x;θ; 1iQθ
¼ hϕ̃x;λ; 1iFβ

¼ 0 and

hψ̃x;θ; ψ̃ s;θiQθ
¼ hϕ̃x;λ; ϕ̃s;λiFβ

The functions ϕ̃x;λ can be constructed as outlined below.
Step 1—Map the functions ψx;θ in Eq. (3) and the

normalized score functions bθj into L
2ðFβÞ via the isometry

lðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
qθðxÞ
fβðxÞ

s
:

Obtain

lðtÞψx;θðtÞ ∈ L2ðFβÞ and ð22Þ

lðtÞbθjðtÞ ∈ L2ðFβÞ: ð23Þ

For instance, to see (22), consider the inner product

hlψx;θ; lψx;θiFβ
¼

Z
X
l2ðtÞψ2

x;θðtÞfβðtÞdt

¼
Z
X

qθðtÞ
fβðtÞ

ψ2
x;θðtÞfβðtÞdt

¼
Z
X
ψ2
x;θðtÞqθðtÞdt ¼ hψx;θ;ψx;θiQ < ∞:

Equivalent calculations can be used to show (23).
Step 2—Map the functions in (22) and (23) into LðFβÞ

by means of the unitary operator,4 K, and defined as

KhðtÞ ¼ hðtÞ − 1 − lðtÞ
1 − hl; 1iFβ

h1 − l; hiFβ
; ð24Þ

where the notation KhðtÞ is used to indicate that the
operator K acts on everything on its right. Obtain

KlðtÞψx;θðtÞ ∈ LðFβÞ ð25Þ

and cλjðtÞ ¼ KlðtÞbθjðtÞ ∈ LðFβÞ: ð26Þ

To see (25), write 9.5

KlðtÞψx;θðtÞ ¼ lðtÞψx;θðtÞ

−
1 − lðxÞ

1 −
R
X lðtÞfβðtÞdt

Z
X
lðtÞψx;θðtÞfβðtÞdt:

It follows that 9.5

hKlψx;θ;1iF ¼
Z
X
lðxÞψx;θðtÞfβðtÞdt

−
1−

R
X lðtÞfβðtÞdt

1−
R
X lðtÞfβðtÞdt

Z
X
lðtÞψx;θðtÞfβðtÞdt¼ 0:

One can proceed similarly for (26).
Step 3—Map each function cλj in (26) with j > 1 into

functions c̃λj orthogonal to each aβk with k < j. This can be
done by means of the unitary operator

Uaβj cλj
hðtÞ ¼ hðtÞ −

haβj − cλj ; ·iFβ

1 − haβj ; cλjiFβ

ðaβjðtÞ − cλjðtÞÞ: ð27Þ

One can easily verify that the operator Uaβj cλj
maps the

functions aβj into functions cλj , and vice-versa, whereas, it
leaves functions orthogonal to both aβj and cλj unchanged.
We construct c̃2;…; c̃p, by combining operators of the

form in (27), i.e.,

4A unitary operator is an operator that preserves the inner
product. That is, if an operator K is unitary in the Hilbert spaceH
equipped with the inner product h; iH, then hKh1; Kh2iH ¼
hh1; h2iH, for every h1; h2 ∈ H.
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c̃λ2ðtÞ ¼ Uaβ1cλ1
cλ2ðtÞ

c̃λ3ðtÞ ¼ Uaβ2 c̃λ2
Uaβ1cλ1

cλ3ðtÞ
…

c̃λpðtÞ ¼ Uaβðp−1Þ c̃λðp−1Þ
…Uaβ1cλ1

cλpðtÞ; ð28Þ

where each operator Uaβj cλj
acts on everything on its right.

As highlighted in what follows, these functions are needed
to rotate cλjs into aβjs.
Step 4—Consider the unitary operator

UhðtÞ ¼ Uaβp c̃λp
…Uaβ2 c̃λ2

Uaβ1cλ1
hðtÞ ð29Þ

and set

ϕx;λðtÞ ¼ UKlðtÞψx;θðtÞ ð30Þ

Map each cλj into aβj via U and apply the latter to Klψ̃x;θ.
Obtain ϕ̃x;λ ∈ L⊥ðFβÞ such that

ϕ̃x;λðtÞ ¼ UKlðtÞψ̃x;θðtÞ ð31Þ

¼UK

�
lðtÞψx;θðtÞ−

Xp
j¼1

lðtÞbθjðtÞhlbθj ;lψx;θiFβ

�

ð32Þ

¼ U

�
KlðtÞψx;θðtÞ −

Xp
j¼1

cλjhcλj ; Klψx;θiFβ

�
ð33Þ

¼ ϕx;λðtÞ −
X
j¼1

aβjðtÞhaβj ;ϕx;λiFβ
: ð34Þ

Where (32) follows from the definition of the functions ψ̃x;θ

in (10). Equation (33) follow from (26), from the fact thatK
is unitary (and thus it preserve the inner product), and
because the isometry l is such that hlh; lhiFβ

¼ hh; hiQθ
.

Equation (34) follows from (30) and the properties of the
operator U (that is, it is unitary and it maps each cλj into
aβj). To see the latter, consider for instance Ucλ1ðtÞ, i.e.,

Ucλ1ðtÞ ¼ Uaβp c̃λp
…Uaβ2 c̃λ2

Uaβ1cλ1
cλ1ðtÞ ð35Þ

¼ Uaβp c̃λp
…Uaβ2 c̃λ2

aβ1ðtÞ ð36Þ

¼ aβ1ðtÞ ð37Þ

where (36) follows since Uaβ1cλ1
maps cλ1 into aβ1 .

Whereas, (37) follows from the fact that each aβj and
c̃λj , with j ≥ 2, are orthogonal to aβ1 and each Uaβj c̃λj

leaves functions orthogonal to aβj and c̃λj unchanged.

Moreover, to see that ϕ̃x;λ ¼ UKlψ̃x;θ ∈ L⊥ðFβÞ, consider

hUKlψ̃x;θ; aβjiFβ
¼ hUKlψ̃x;θ;UcλjiFβ

ð38Þ

¼ hKlψ̃x;θ; cλjiFβ
ð39Þ

¼ hlψ̃x;θ; lbθjiFβ
ð40Þ

¼ hψ̃x;θ; bθjiQθ
¼ 0; ð41Þ

where the equalities in (39)–(40) follow from the properties
U, K, and l.
Clearly, for Qθ and Fβ discrete, all the integrals involved

in Steps 1–4 need to be replaced by summations over all the
points of the search regionX . Moreover, it should be noted
that, in virtue of the properties of the U, K, and l we have

hbθj ; ψ̃x;θiQθ
¼ hcλj ; Klψx;θiFβ

¼ haβj ;ϕx;λiFβ
: ð42Þ

Hence, when evaluating the functions ϕ̃x;λðtÞ in (31), one
can avoid computing haβj ;ϕx;λiFβ

by replacing it with

hbθj ; ψ̃x;θiQθ
.

From (31), it is easy to see that K-2 effectively consists of
a combination of the unitary operators U, K and the
isometry l. Intuitively, in Step 1, the isometry l allows us
to convert our functions ψx;θ, square-integrable in Qθ, into
square integrable functions in Fβ. The resulting functions
lψx;θ and lλbθj, however, do not have zero-mean with
respect to Fβ (they are not orthogonal to one). Therefore, in
Step 2, we apply the unitary operator K. This brings us to
the space LðFβÞ. If θ and β were known, that is, if the two
models were fully specified, the isometry l and the operator
K would only need to be applied to the functions ψx;θ (as
there would be no score functions) and no further mapping
would be needed. Whereas, for θ and β unknown, two extra
steps are necessary. That is because, in this setting,LðFβÞ is
not quite yet be in the space we want to be [i.e., L⊥ðFβÞ] as
we have not yet achieved orthogonality with respect to the
score functions aβj s. Hence, in Step 3, we exploit the
unitary operator U to map our cλj ¼ Klbθj into c̃λj
functions which are orthogonal to the aβj . Finally, in
Step 4, we rotate the cλjs into aβjs via U. The same
operator is applied also to the functions Klψx;θ to ensure
that the functions ϕ̃xλ ¼ Klψ̃x;θ in (31) are in L⊥ðFβÞ.
To test the hypothesis H0∶P ¼ Fβ, we consider the K-2

rotated equivalent of the test statistics in (13), i.e.,

D̃F ¼ supxjṽF;nðx;λÞj; ω̃2
F ¼

Z
X
ṽ2F;nðx;λÞqθðxÞdx;

and Ã2
F ¼

Z
X
ṽ2F;nðx;λÞwθðxÞqθðxÞdx ð43Þ

with ṽF;nðx; λÞ as in (21). Under Fβ and Qθ, respectively,
ṽF;nðx; λÞ and ṽQ;nðx; θÞ have the same asymptotic
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distribution, and the same is true for the statistics in (13)
and (43).
Notice that, in practice, β and θ are unknown. Hence, in

order to compute steps 1–4, one can proceed by simply
plugging-in their MLEs β̂obs and θ̂obs obtained on the
observed data. In the case where P≡ Fβ, β̂obs converges, in

probability, to the true value of β, whereas, θ̂obs converges
to the values of θ which minimizes the Kullback-Leibler
divergence between Fβ and Qθ [e.g., [17], p. 147]. The
integrals can be computed as Darboux sums over a grid of
possible x values on the search regionX . Finally, it is worth
pointing out that all the operators considered are linear, and
thus, when p is large, their implementation may be tedious
but yet relatively simple; especially since they only need to
be computed once in order to evaluate (43) on the data
observed.

A. Empirical studies

To assess the performance of the testing procedure
described above, we consider a dataset of n ¼ 100
observations generated from a bivariate Cauchy distribu-
tion, P, truncated over the range X ¼ ½1; 20� × ½1; 25�, and
density

pðxÞ ∝ ð2πÞ−1jΣj−1=2½1þ ðx − μÞTΣ−1ðx − μÞ�−3=2 ð44Þ

where μ ¼ ð0; 3ÞT , Σ is a matrix of diagonal elements
σ11 ¼ σ22 ¼ 20 and off-diagonal elements σ12 ¼ σ21 ¼ 10.
Our goal is to test the validity of three different models for
our data. Specifically,

f1ðx; βÞ ∝ xðβ1−1Þ1 xðβ2−1Þ2 expf−β3ðx1 þ x2Þg;

f2ðx; βÞ ∝
β3
2π

½ðx1 − β1Þ2 þ ðx2 − β2Þ2 þ β3�−3=2;

f3ðx; βÞ ∝ e−
1
200

½ðx1β1−1Þ
2þðx2β2−1Þ

2−β3ðx1β1−1Þð
x2
β2
−1Þ�; ð45Þ

that is, f1 is the pdf of a bivariate Gamma with independent
components, f2 is the pdf of a bivariate Cauchy with
dependent component [but with dependence structure
different from (44)], and f3 is the pdf of a multivariate
normal with dependent components. We denote with F1,
F2 and F3 the respective cdfs. Finally, we consider as
reference distribution, Q, the bivariate normal with inde-
pendent components introduced in Sec. III B and with pdf
as in Eq. (14). Notice that all the models in (45) are quite
different from each other as well as from (14). Moreover,
each of these models is characterized by p ¼ 3 unknown
parameters.
We proceed by simulating the null distributions of the

three test statistics in (13) under Q and their counterparts
for each of the Fm, m ¼ 1, 2, 3, models considered; we
denote the latter with D̂Fm

; ω̂2
ōFm

and Â2
Fm
. The results are
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ÂQ

2

A
~

F1
2

A
~

F2
2

A
~

F3
2

FIG. 2. Upper panels: Comparing the simulated null distributions of the test statistics in (13) for q in (14) and for each candidate model
fm, m ¼ 1;…; 3, in (45). Bottom panels: Comparing the simulated null distributions of the test statistics in (13) for q with the K-2
rotated statistics in (43) for each fm, m ¼ 1;…; 3. Each simulation involves 100,000 replicates and 100 observations.
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shown in the upper panels of Fig. 2. Despite the null
distribution of the three statistics under Q and F1 appear
fairly close, as expected, they are substantially different
from those of F2 and F3. Therefore, in order to achieve
distribution-freeness, we consider the test statistics in (43)
obtained by implementing Steps 1–4 in Sec. IV. We
simulate their null distributions and we compare them
with those of D̂Q; ω̂2

Q, and A2
Q, under model Q. The results

are shown in bottom panels Fig. 2.
The distributions of the K-2 rotated statistics D̃Fm

; ω̃2
Fm

and Ã2
Fm
,m ¼ 1, 2, 3, cannot be distinguished from those of

D̂Q; ω̂2
Q and Â2

Q. Therefore, one can test Q;F1; F2, and F3

by relying solely on the simulated distribution of D̂Q; ω̂2
Q

and Â2
Q, reducing the computational time by a factor of at

least three (as we need to perform just one simulation
instead of four).
Table II collects the results of a power study. There, we

compare the power of the K-2 rotated test statistics in (43)
with that of their classical counterparts in (13), and for
different significance levels. Interestingly, for model F2,
that is, the closest to the true distribution P among
those considered, the power of the K-2 rotated
Kolmogorov-Smirnov and Cramer-von Mises statistics
is higher compared to that of their nonrotated version.
When testing F1 and F3, the power decreases for
Kolmogorov-Smirnov. The power is comparably high in
all the other cases. Notice that the power of the K-2 rotated
statistics is not universally higher than their nonrotated
counterparts. That is because, the K-2 rotated test statistics
are simply new test statistics which may perform better
than the classical Kolmogorov-Smirnov, Cramer-von
Mises and Anderson Darling in some scenarios, but not
in others.

V. FINAL REMARKS

The K-2 transformation is a very powerful tool to
achieve distribution-freeness in a simulation-based settings.
Researchers can rely on simulations under a simplified
model, Q, whose likelihood is easily accessible, and then
construct suitable test statistics for one or more complex

models F which can be compared with the same simulated
distribution.
It is worth emphasizing that the approximation of the

null distribution of the statistics in (43) with those of (13)
does depend on the sample size. That is because the K-2
transform maps the limiting distribution of the process
ṽF;nðx; λÞ into that of ṽQ;nðx; θÞ. In light of this, in order to
achieve a good approximation for moderately large samples
(e.g., 100 observations), it is recommended to choose Q
“sufficiently close to F” so that the entire search region is
sampled reasonably often under both Q and F.
To compute the K-2 rotation, one needs to evaluate the

score functions of F. In situations where the likelihood is
not tractable in closed-form, a possible solution is that of
constructing templates for the score, starting from the
likelihood templates and applying the definition of deriva-
tive. Their evaluation does not need to be repeated on
multiple runs, and it is only needed to evaluate the K-2
rotated test statistics on the data observed.
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APPENDIX: DERIVING EQ. (12)

Consider the empirical process

vQ;nðx; θ̂Þ ¼
1ffiffiffi
n

p
Xn
i¼1

ψx;θ̂ðxiÞ: ðA1Þ

and the vectors of derivatives _ψx;θðtÞ and _qθðtÞ with
components

_ψx;θjðtÞ ¼
d
dθj

ψxðtÞ and ðA2Þ

_qθjðtÞ ¼
d
dθj

qθðtÞ: ðA3Þ

TABLE II. Comparing the power of the test statistics in (13) for each Fm,m ¼ 1;…; 3, in (45) with that of the K-2 rotated statistics in
(43). The true model from which the data are generated is that in (44). Each simulation involves 100,000 replicates and 100 observations.
The significance levels considered are α ¼ 0.001 (3.29σ), α ¼ 0.05 (1.96σ), and α ¼ 0.1 (1.64σ).

Null
distribution

α ¼ 0.001 α ¼ 0.05 α ¼ 0.1

D̃ ω̃2 Ã2 D̃ ω̃2 Ã2 D̃ ω̃2 Ã2

D̂ ω̂2 Â2 (K-2 rotated) D̂ ω̂2 Â2 (K-2 rotated) D̂ ω̂2 Â2 (K-2 rotated)

Q .4773 .7785 .4633 � � � � � � � � � .9331 .9817 .9382 � � � � � � � � � .9679 .9914 .9722 � � � � � � � � �
F1 .3872 .6762 .4815 .1578 1 1 .8623 .9529 .9092 .6971 1 1 .9221 .9748 .9505 .8086 1 1
F2 .0036 .0025 .0053 .0058 .0226 .0156 .1078 .1019 .1237 .1336 .2422 .2541 .1876 .185 .2127 .2233 .3618 .3770
F3 .6452 .7947 .0295 .5062 .7975 .6036 .9528 .9820 .6356 .9153 .9746 .9470 .9757 .9915 .7974 .9543 .9874 .9730
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Where,

_ψx;θjðtÞ ¼
d

dθ̂j
ψxθðtÞjθ̂¼θ ¼ −

d
dθj

QθðxÞ ðA4Þ

¼ −
d
dθj

Z
x

−∞
qθðtÞdt ¼ −

Z
x

−∞
_qθjðtÞdt ðA5Þ

¼ −
Z

x

−∞

_qθjðtÞ
qθðtÞ

qθðtÞdt: ðA6Þ

where the integrals in (A4)–(A6) are all multidimensional.
A Taylor expansion of (A1) leads to

vQ;nðx; θ̂Þ ≈
1ffiffiffi
n

p
Xn
i¼1

ψx;θðxiÞ

þ ðθ̂ − θÞT 1ffiffiffi
n

p
Xn
i¼1

_ψx;θðxiÞ ðA7Þ

The asymptotic expansion of ðθ̂ − θÞ [e.g., [18], p. 53] is

ffiffiffi
n

p ðθ̂ − θÞ ¼ 1ffiffiffi
n

p Γ−1
θ

Xn
i¼1

_qθðxiÞ
qθðxiÞ

þ opð1Þ ðA8Þ

¼ 1ffiffiffi
n

p Γ−1=2
θ

Xn
i¼1

Γ−1=2
θ uθðxiÞ þ opð1Þ ðA9Þ

¼ 1ffiffiffi
n

p Γ−1=2
θ

Xn
i¼1

bθðxiÞ þ opð1Þ ðA10Þ

where, as in (8), Γθ is the Fisher information matrix, and
bθðxÞ is vector of normalized score functions bθjðxÞ.
Combining (A6), (A7), (A8), and (A10) we have

vQ;nðx; θ̂Þ ≈
1ffiffiffi
n

p
Xn
i¼1

ψx;θðxiÞ ðA11Þ

−
1ffiffiffi
n

p
Xn
i¼1

bTθ ðxiÞ
Z

x

−∞
bθðtÞqθðtÞdt ðA12Þ

where the error of the approximation has be shown by
Khmaladze [15] to be opð1Þ. Moreover, simple algebra can
be applied to show that hbθj ;ψx;θiQ ¼ R

x
−∞ bθjðtÞqθðtÞdt.

Specifically,

hbθj ;ψx;θiQ ¼
Z

∞

−∞
bθjðtÞψx;θðtÞqθðtÞdt ðA13Þ

¼
Z

∞

−∞
bθjðtÞ½1ft≤xg −QθðxÞ�qθðtÞdt ðA14Þ

¼
Z

x

−∞
bθjðtÞqθðtÞdt−QθðxÞ

Z
∞

−∞
bθjðtÞqθðtÞdt

ðA15Þ

¼
Z

x

−∞
bθjðtÞqθðtÞdt ðA16Þ

where (A16) follows from (A15), and the fact that the
normalized score vector bθ has mean zero under Qθ.
Finally, combining (A11) and (A13)–(A16), we obtain

vQ;nðx; θ̂Þ ¼
1ffiffiffi
n

p
Xn
i¼1

ψ̃x;θðxiÞ þ opð1Þ ðA17Þ

where ψ̃x;θðxiÞ ¼ ψx;θðxiÞ −
Pp

j¼1 bθjðxiÞhbθj ;ψx;θiQθ
.
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