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We initiate the study of dark matter (DM) models based on a gapped continuum. Dark matter consists of
a mixture of states with a continuous mass distribution, which evolves as the universe expands. We present
an effective field theory describing the gapped continuum, outline the structure of the Hilbert space and
show how to deal with the thermodynamics of such a system. This formalism enables us to study the
cosmological evolution and phenomenology of gapped continuum DM in detail. As a concrete example,
we consider a weakly interacting continuum (WIC) model, a gapped continuum counterpart of the familiar
weakly interacting massive particle. The DM interacts with the Standard Model via a Z portal. The model
successfully reproduces the observed relic density, while direct detection constraints are avoided due to the
effect of continuum kinematics. The model has striking observational consequences, including continuous
decays of DM states throughout cosmological history, as well as cascade decays of DM states produced at
colliders. We also describe how the WIC theory can arise from a local, unitary scalar quantum field theory
propagating on a five-dimensional warped background with a soft wall.
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I. INTRODUCTION

The microscopic nature of dark matter (DM) remains one
of the most important outstanding questions in fundamental
physics [1]. DM cannot consist of any of the StandardModel
(SM) particles, providing firm evidence for new physics.
Many models have been proposed by theorists, covering a
mass range between 10−22 to 1067 eV, as well as various
interaction portals to the SM [2–4]. Extensive experimental
efforts are under way aiming to either detect nongravitational
signatures of ambient DM, or to produce DM particles in the
lab [5–7]. Both approaches can yield powerful hints to
illuminate the nature of DM; however, so far, neither has
been successful in detecting signals of DM. In fact so far we
do not even know for sure whether DM consists of an
elementary particle, composite bound states [8,9], extended
objects such as Q-balls [10], or even macroscopic entities
such as primordial black holes [11–13] and ultracompact
minihalos [14–18]. It is therefore timely to explore the

spectrum of theoretical possibilities for DM, as such
explorations are both important in their own right and can
provide guidance essential for future experimental searches.
In this paper, we propose a new conceptual framework in

which dark matter is described by a gapped continuum,
rather than an ordinary particle. In quantum field theories
(QFTs) with a gapped continuum, the singly excited states
are characterized by a continuous parameter μ2, in addition
to the usual 3-momentum p. The parameter μ2 plays the
role of mass in the kinematic relation p2 ¼ μ2 for each
state. The number of states is proportional to

R
ρðμ2Þdμ2,

where ρ is the spectral density of the theory, conventionally
defined in QFTs as

h0jΦðpÞΦð−pÞj0i ¼
Z

dμ2

2π

iρðμ2Þ
p2 − μ2 þ iϵ

: ð1:1Þ

The word “gapped” refers to continuum QFTs in which
the function ρ has no support below some finite gap scale,
μ20. For application to DM physics we will not be
concerned with the exact origin of the continuum. We
will simply assume that some form of dynamics created
such a continuum as its effective description, and will treat
it as a “free continuum,” as discussed in detail in Sec. III.
Later in Sec. VI we will provide one possible origin of
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such a continuum by considering a warped extra dimen-
sional soft wall background.
We will construct DM models based on continuum QFT

with the gap around the electroweak scale, μ0 ∼ 100 GeV,
and including interactions to the electroweak (EW) sector
of the SM. We will call the resulting type of model the
weakly interacting continuum (WIC) DM model. A typical
spectral density for the class of theories we consider is
shown in Fig. 1.
The key feature of WIC models is that DM cannot be

thought of as a gas of particles of the same mass, or even as
a mixture of gases of a finite number of DM species with
different masses.1 Instead, in cosmology DM states follow
a continuous mass distribution determined by the product
of spectral density and occupation number. In the expand-
ing universe, this distribution is time dependent (and can in
principle depend on spatial location as well), and its
evolution is governed by generalized Boltzmann equations
that we will discuss. In our model, the distribution of the
DM mass today is clustered in a narrow window slightly
above the gap scale, but in the early universe it was much
more broadly distributed.
Continuum DM has striking phenomenological conse-

quences. For example, while the DM state at the very
bottom of the spectrum can be stable, e.g., due to a discrete
symmetry, any other state in the continuum must be
unstable with respect to decaying into lighter DM states.
The continuum DM gas exists in a state of permanent
decay. This leads to distinctive cosmological signatures and
bounds. In particular, it is possible that DM decays can
reionize the during the “dark ages,” and cosmic microwave
background (CMB) observations place an important bound
on the model. Another striking feature is the absence of
elastic scattering of DM on an SM particle such as a
nucleon or an electron: in a continuum theory, any such

scattering induces a change in the DM state’s mass, and is
therefore inelastic. A nonrelativistic DM state with mass
near the gap scale can only scatter into a narrow band of the
continuum states due to kinematic constraints. Because of
this, direct detection rates for continuum DM are strongly
suppressed with respect to a comparable single-particle DM
model. This will allow us to build a model in which DM
communicates with the SM via a Z portal, has thermal relic
density, but is nevertheless not ruled out by direct detection
experiments [21–24]. Colliders, on the other hand, can
provide a spectacular signature of continuum DM: a typical
DM state produced in a collider would undergo multiple
decays into progressively lighter DM states within the
detector, with softer SM energy deposits at each step and a
collider-stable DM state at the end of the cascade appearing
as missing energy.
We emphasize that many predictions of the continuum

DM model, including thermal freeze-out (relic density),
late decays (reionization and CMB), annihilation in the DM
halos (indirect detection), and scattering with target nuclei
or electrons (direct detection), are governed by the shape of
the spectral density very close to the gap scale μ0.
Remarkably, for a broad class of gapped continuum
QFTs, ρðμÞ near the gap scale takes a universal shape of
the form ρðμÞ ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2=μ20 − 1

p
. We show this in Sec. VI and

Appendix B. This feature makes the continuum DM
physics highly model independent. On the other hand,
colliders can play a complementary role in uncovering the
full picture of the continuum sector.
The appearance of a continuum is very common in

QFTs. The spectrum of conformal field theories (CFTs)
necessarily forms a continuum since the theory does not
admit any mass scales. Georgi’s unparticles [25,26] also
describe a continuum, and have been widely used for
various particle physics applications. While continuum
with a mass gap has been less commonly used, one can
still find many examples of a gapped continuum both in
particle and condensed matter physics. In string theory such
a gapped continuum shows up when one has a large number
of D3 branes distributed on a disk (which is dual to N ¼ 4

SUSY broken to N ¼ 2 via masses for two chiral adjoints,
for a related large literature see [27–29]). In particle physics
the simplest example of a gapped continuum was proposed
by Cabrer, von Gersdorff and Quiros (CGQ) [30], based on
a warped extra dimension, which is the construction wewill
also be relying on most in this paper. Gapped continuum
has been applied to Higgs physics [31–35], and also used
for “continuum top partners” [36] (see also [37,38]). A
gapped continuum also readily shows up in condensed
matter physics, for example the edge modes in the quantum
Hall effect, or the spectral density around a quantum critical
point [39,40]. There are also well-known examples in
d < 4 dimensions such as the 2d Ising model [41,42],
2d SUðNÞ Yang-Mills theory in the large-N limit [43], and
the 2d SUð2Þ Thirring model [44].

FIG. 1. A typical shape of the spectral density ρðμÞ with gap
scale μ0.

1In [19,20], a continuum is used as the mediator to the dark
sector, while here the continuum is the dark sector itself.
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A somewhat similar framework [45,46] called dynami-
cal dark matter (DDM) has been extensively investigated
in a series of papers by Dienes, Thomas and collaborators
[47–54]. The main premise in DDM is to have a collection
(or tower) of particles that due to their exponentially long
lifetimes will form a realistic multicomponent dark matter.
Some of the phenomena characteristic of continuum DM
and the resulting WIC models investigated here do have
corresponding counterparts in DDM. There will be a
modification of the direct detection cross sections and
energy spectra [48,49], novel collider phenomenology
signals [47,51,54], decays among the constituents of the
dark sectors leading to an evolving DM distribution
[50,53], etc. However many of the essential properties
of the WIC models turn out to be quite different from
generic predictions of DDM. While it might be tempting
to view continuum DM simply the Δm → 0 limit of DDM
it is clear that in order to achieve that a very special
construction is needed. Generic extra dimensional models
usually do not produce a viable dark matter sector in the
limit when a Kaluza-Klein (KK) spectrum becomes
continuous. For example, a scalar field with a bulk mass
in flat 5D space will produce a gapped continuum
spectrum in the limit when the size of the fifth dimension
is infinite (see Appendix A), but in this limit gravity will
be five-dimensional at all scales, so the model is not
phenomenologically viable. Another familiar example,
slices of AdS space, in the limit when the KK spacing
vanishes generically produce a gapless continuum, which
cannot play the role of dark matter. Having both a gapped
spectrum and a consistent 4D gravity at long distances is a
very nontrivial requirement, satisfied by the soft-wall
setup we consider here. One nice advantage of this setup
is that it is easy to impose an exact Z2 symmetry that will
stabilize the dark matter against decaying into pure SM
final states (while still allowing decays among the dark
matter states). Without such a stabilizing symmetry, dark
matter stability on cosmological time scales is not generic.
One crucial aspect of the WIC models is the strong
kinematic suppression of the direct detection cross sec-
tion, which allows us to construct a viable Z-portal WIC
model. For this it is essential that the direct detection cross
section is completely dominated by inelastic scattering,
and that the spectral density is dominated by the region
that is kinematically inaccessible in direct detection
experiments. For ordinary particles as in DDM, elastic
scattering will always be allowed, and generically an
enhancement of the cross section is expected rather than
suppression. The evolution of the dark matter distribution
at late times is a common feature of both models. This
aspect is providing the strong CMB constraints on these
models. Continuum DM makes a simple and universal
prediction that each DM state undergoes ∼1 decays in
every Hubble time. The CMB bound can then be trans-
lated into a lower bound on the DM coupling to the SM,

with interesting consequences for collider and other
phenomenology. In DDM, the implications of the CMB
bound are model dependent. Collider physics signals are
expected to have more similarities between DDM and
WIC models, though we will only tangentially touch this
aspect of phenomenology in this paper.
The paper is organized as follows. We start with a preview

of the essential phenomenological features of continuum
dark matter in Sec. II. We then describe the theoretical
formalism that allows us to derive physical predictions from
gapped continuum QFTs, both at zero temperature and in
thermodynamics. This is the subject of Sec. III. In Sec. IV,
we specialize to DM physics and derive the Boltzmann
equation (BE) for continuum DM freeze-out. In order to
demonstrate the use of our formalism, we study the freeze-
out of scalar continuum DM in a simple toy model. Next, in
Sec. V, we present the fully realistic continuum Z-portal
model and use it to calculate the relic abundance of DM.
Figure 3 illustrates the parameter space that can reproduce
the observed relic density as well as satisfy all relevant
experimental constraints. (The detailed discussion of phe-
nomenology of the Z-portal continuum DM is contained in
the companion paper [55].) In Sec. VI, we provide a more
complete description of the continuum Z portal, based on a
theory in warped five-dimensional spacetime (soft-wall
background). Finally, we present our conclusion and outlook
in Sec. VII. Some of the important topics are presented in the
form of Appendices. In Appendix A, we study a scalar field
in a flat 5D and show that its 4D spectrum can be interpreted
as a gapped continuum. This exercise yields interesting
insights about the interpretation of spectral density, the
Hilbert space of gapped continuum theories, and their
thermodynamics. In Appendix B, we provide a general
proof for the properties of the spectral density near the gap
scale. Finally in Appendix C, we describe the 4D dual
description of our 5D warped model. We obtain the CFT
dual picture in terms of canonically normalized composite
continuum modes, which mix with external/elementary
fields. We show that once we resum these mixings, rates
computed using the standard 4D formulas reproduce the
equations introduced in Sec. III.

II. PREVIEW OF CONTINUUM EFFECTS IN DM
PHENOMENOLOGY

Before presenting a systematic discussion of the physics
of a gapped continuum, this section gives a preview of the
novel aspects of continuum physics that will distinguish it
from ordinary particle-based DM models.

A. Late decay

One of the important distinguishing features of con-
tinuum DM is the decays,

DMðμ1Þ → DMðμ2Þ þ SM; ð2:1Þ
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where DMðμÞ refers to a dark matter state of mass μ, while
“SM” denotes one or more SM particles. Since all con-
tinuum states carry the same quantum numbers (including
any stabilizing symmetry that prevents DM decays to fully
SM final states), such decays will necessarily occur con-
tinuously throughout the history of the universe. This is in
sharp contrast with particle DM models, where there is at
most a handful of long-lived states decaying at specific
epochs determined by their intrinsic decay widths.
In the early universe, DM is in thermal and chemical

equilibrium with the SM, and the mass distribution of the
DM states is determined by the product of spectral density
and the Boltzmann factor (for details, see Sec. III B). As
the temperature drops below the gap scale μ0, the DM
decouples from the SM and the total number of DM states
is frozen out, just like for the usual thermal-relic particle
DM. However, the mass distribution of the DM states
continues to evolve, thanks to decays (2.1). The decays
shift the distribution towards lower masses, closer to the
gap scale. The lifetime of a DM state Γ−1ðμÞ increases
with decreasing mass, due to both phase-space suppres-
sion and the fact that there are fewer states for it to decay
into. Schematically,

ΓðμÞ ∼ g2Δpμ1−p0 ; ð2:2Þ

where g is the strength of DM-SM coupling, p is a model-
dependent positive number, and Δ ¼ μ − μ0. If t0 ∼H−1 is
the age of the universe, only DM states for which Γ≲H
can still be present. This condition can be used to find the
typical mass of the DM states at any given time. For
example, in the model considered in detail in this paper,
the DM states are currently clustered within a few hundred
keV above the gap scale. It also indicates that on average,
each DM state undergoes roughly one decay per Hubble
time, or in other words an order-one fraction of DM states
will decay during each doubling of the scale factor.
The continuous DM decays also lead to potentially

observable effects in cosmology. If the SM particles
produced in the decay interact electromagnetically (i.e.,
all SM particles except neutrinos), the decays that occur
after CMB decoupling can reionize hydrogen, drastically
changing the optical depth for CMB photons [56–59]. This
places a stringent bound on the structure of the continuum
DMmodels. In the Z-portal model considered in this paper,
the bound can be satisfied only if the DM decays to
electron-positron pairs are kinematically forbidden,
Δ≲MeV, at and after the CMB decoupling time. This
condition implies a lower bound on the strength of the DM
coupling to SM, see Fig. 3.

B. Direct detection

A very important and generic feature of gapped con-
tinuum DM is the suppression of direct detection rates. The
scattering process relevant for direct detection is

DMðμ1Þ þ SM → DMðμ2Þ þ SM: ð2:3Þ

The cross section can be schematically written as

σ ∼
Z

dμ22
2π

ρðμ22Þσ̂ðμ1; μ2Þ; ð2:4Þ

where σ̂ is an ordinary particle 2 → 2 cross section, with the
masses for the external particles replaced by the continuum
parameters μ1 and μ2. If the incoming DM state has mass
μ1 ¼ μ0 þ Δ, the range of kinematically accessible values
of μ2 is ½μ0; μ0 þ ΔþQ�, where Q is the kinetic energy of
the collision in the center-of-mass frame. As we argued
above, continuous DM decays generically result in Δ ≪ μ0
in today’s universe, while Q ≪ μ0 as long as ambient DM
is nonrelativistic. We can then estimate

σcont ∼
�
ΔþQ
μ0

�
1þr

σparticle; ð2:5Þ

where r is a positive number that depends on the behavior
of the spectral density near the gap. (It will be shown in
Sec. VI and Appendix B that r ¼ 1=2 in a broad class of
models of gapped continuum.) For example, in the specific
model that will be considered in detail in this paper,
continuous DM decays result inΔ ∼ 100 keV at the present
time, while Q ∼ 1 keV in the case of ambient weak-scale
DM colliding with a nucleus. With μ0 at the weak scale, this
mechanism gives a spectacular suppression of the direct
detection cross section by several orders of magnitude
compared to a particle model with the same mass scale and
interaction strength. We emphasize that this effect is
entirely due to the continuous nature of the DM spectrum:
intuitively, the suppression arises because only a tiny
fraction of the DM spectrum is kinematically accessible
in the scattering process (2.3) in a direct detection
experiment.
In contrast, indirect detection relies on annihilation

processes of the form DMðμ1Þ þ DMðμ2Þ → SM1 þ SM2.
Since there is no continuum state in the final state, the rates
of these processes are unsuppressed. In fact, since μ1 ≈ μ2 ≈
μ0 in the current universe, both rates and kinematics of
annihilation in the galactic halos are virtually identical for
continuum and particle DM.

C. Colliders

Continuum DM states can be produced in colliders via

SM1 þ SM2 → DMðμ1Þ þ DMðμ2Þ: ð2:6Þ

All kinematically accessible DM modes will generically
be produced. The total production cross section is
schematically
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σ ∼
Z

dμ21
2π

ρðμ21Þ
Z

dμ22
2π

ρðμ22Þσ̂ðμ1; μ2Þ: ð2:7Þ

If the collision energy is close to the threshold, the
continuum kinematics leads to suppressed rates, similar
to the case of direct detection. This effect may weaken
collider bounds on the model. On the other hand, if
collision energy is above the gap scale by an order-one
factor, there is no kinematic suppression factor as in the
case of direct detection, and the collider cross section is of
the same order for continuum and particle DM. However,
unlike particle DM, the continuum DM states quickly
decay, see Eq. (2.1). In fact, each state undergoes a series
of decays, illustrated in Fig. 2. Each decay produces SM
particles (with progressively smaller energies at each step
of the cascade) in addition to a DM state (with mass
closer to the gap scale at each step of the cascade). Many
such decays will occur within the detector, resulting in a
high-multiplicity observable SM final state with charac-
teristic pattern of energy distributions, in addition to
missing energy due to the escaping long-lived DM states.
A detailed study of this exciting and novel collider
phenomenology will be pursued in future work.
(Similar cascade decay signatures in dynamical dark
matter models have been studied in Refs. [47,51,54].)

III. PHYSICS OF GAPPED CONTINUUM

It is often stated that CFTs and theories with continuum
spectra do not have a particle interpretation and no S matrix
can be defined. The main reason behind this is that the
interactions leading to a nontrivial fixed point are also
essential for producing the continuum spectrum of the
theory. If one turns off the interactions, the spectrumchanges
from continuum into that of an ordinary free particle, hence

the asymptotic states defined in the usual manner would not
capture the physics of the system properly. This however
does not imply that there would be anything wrong with
these theories, nor that they could not be successfully used in
particle physics for Beyond the Standard Model (BSM)
sectors, but rather that one needs to find an alternative
approach for defining scattering processes. Instead of
relying on the definition of asymptotic states obtained by
turning off the interactions, wewill assume that the effects of
the strong interactions can be captured by the fact that there
is a nontrivial continuum (with a mass gap), and described
by a (potentially nonlocal) effective Lagrangian,

S ¼
Z

d4p
ð2πÞ4Φ

†ðpÞΣðp2ÞΦðpÞ; ð3:1Þ

which is designed to properly reproduce the two-point
function of theory,Z

d4xeipðx−yÞh0jTΦðxÞΦ†ðyÞj0i

¼ h0jΦðpÞΦ†ð−pÞj0i ¼ i
Σðp2Þ

¼
Z

dμ2

2π

iρðμ2Þ
p2 − μ2 þ iϵ

; ð3:2Þ

where ρðμ2Þ is the spectral density. We will assume that the
effective description in Eq. (3.1) is weakly coupled, henceΦ
corresponding to a “generalized free field” [60].2 Essentially
we are assuming that the resultingcontinuumis free, hencewe
will refer to this scenario as a “free continuum theory.” In
addition we perturb around generalized free continuum by
introducing additional weak couplings to Φ and assume that
the underlying structure described by the spectral density
remains unchanged, resulting in a weakly interacting con-
tinuum. This picture will be supported by the concrete extra
dimensional construction that we introduce in Sec. VI.Φwill
be the boundary value of a bulk scalar field propagating in a
nontrivial “soft-wall” -type background, which itself is
supposed to be the 5D dual of a strongly interacting 4D
CFT-like theory (see Appendix C for details). Σ will be the
brane-to-brane propagatorwhich can be calculated for a fixed
background, andwewill be adding interactions ofΦwith SM
fields assumed to be localized on the brane.
For a given Σ the spectral density ρ can be obtained as

ρðp2Þ ¼ −2Im
1

Σðp2Þ : ð3:3Þ

If Σðp2Þ ¼ ðp2 −m2 þ iϵÞ, this theory merely describes a
free scalar particle with mass m2, corresponding to

FIG. 2. Schematic representation of collider signature of the
continuum DM.

2For more recent discussions on generalized free fields, see, for
example, [61] and references therein.
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ρðμ2Þ ∝ δðμ2 −m2Þ. When ρðμ2Þ has a nonvanishing
support on continuum domain in μ2, the theory describes
a continuum. In particular, if the spectral density has a
continuous distribution starting at μ2 ≥ μ20 > 0, we have
a theory of gapped continuum, with gap scale μ0. Note that a
continuum contribution is always present even in the case of
ordinary particles when one is considering the (loop-induced)
multiparticle contributions to the spectral density. In the free
continuum theories we are considering there is no one-
particle pole and instead we have “tree-level” continuum
present in ρðμ2Þ, which represents the intrinsic continuum
states. The best way to think of the continuum states is to
view them as smeared out particles with a density of states: a
finite physical effect is obtained only as a collective effect
after integrating over a finite energy interval weighted by the
density of states. This density of states will be identified with
the spectral density ρðμ2Þ. Below wewill systematically build
up the formalism needed to most efficiently deal with such
weakly coupled continuum states originating from a gener-
alized free field, and present the formulas that are analog of
those in ordinary particle physics. We will show that in spite
of the inherent differences one can find a simple modification
of the Hilbert-space construction for the free continuum that
closely parallels that of ordinary particles, which will make
the calculation of reaction rates quite straightforward.
An interaction between the gapped continuum and SM

fields can be introduced in a standard QFTway: just use the
corresponding field ΦðxÞ to build a local (gauge invariant)
interaction term. For example, the “Higgs-portal” interac-
tion will be

Sint ¼
Z

d4xλH†HðxÞΦ†ΦðxÞ; ð3:4Þ

where H is the SM Higgs doublet, and Φ is the operator
responsible for the gapped continuum. While this simple
interaction turns out to not lead to a phenomenologically
viable DM model, we will use it as a toy model to illustrate
the formalism, before presenting the fully realistic model in
Secs. V and VI.

A. Free continuum QFT with a gap

Next we will present the basic construction of a free
continuum. A pedagogical introduction to these states can
also be found in Appendix A where we show how the KK
states in a simple flat extra dimension can be interpreted as
a continuum in 4D, which will also clarify what the right
completeness and orthonormality conditions should be. A
quick read of Appendix A is highly recommended before
moving on here.
We will start with the description of the Hilbert space.

The single-mode sector will contain (in addition to ordinary
one-particle states corresponding to the SM) additional
states labeled by jp; μ2i, which are eigenstates of
Hamiltonian Ĥ and 3-momentum P̂ such that

P̂jp; μ2i ¼ pjp; μ2i;

Ĥjp; μ2i ¼ Eμjp; μ2i; Eμ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ μ2

q
: ð3:5Þ

These states form the free continuum, parametrized by the
continuous parameter μ2. The spectral density ρðμ2Þ can
then be interpreted as the density of states with respect to
this parameter. One can also introduce creation operators
a†p;μ for the free continuum such that

jp; μ2i ¼
ffiffiffiffiffiffiffiffiffi
2Eμ

ρðμÞ

s
a†p;μj0i;

½ap;μ; a†p0;μ0 � ¼ ð2πÞ4δ3ðp − p0Þδðμ2 − μ02Þ ð3:6Þ

which can also be used for the usual decomposition for the
field Φ of the QFT3

ΦðxÞ ¼
Z

dμ2

2π

ffiffiffiffiffiffiffiffiffi
ρðμÞ

p Z
d3p

ð2πÞ3 ffiffiffiffiffiffiffiffi
2Eμ

p
× ða†p;μeip·x þ ap;μe−ip·xÞp0¼Eμ

ð3:9Þ

resulting in Eq. (3.2). One important subtlety regarding
the free continuum theory is that the canonical momen-
tum Πðx⃗; tÞ can differ significantly from _Φ, since the
Lagrangian in Eq. (3.1) corresponds to a higher derivative
theory. Hence canonical quantization in terms of the field
operator Φ becomes quite involved. We will instead use a
holographic interpretation of ρðμ2Þ in Sec. VI B to fix the
overall normalization of ρ.
The free continuum satisfies a completeness relation:

Z
dμ2

2π
ρðμ2Þ

Z
d3p
ð2πÞ3

1

2Eμ
jp; μ2ihp; μ2j ¼ 1: ð3:10Þ

This is basically the standard one-particle completeness
relation integrated over μ2 weighted by ρðμ2Þ, solidifying
the picture of the entire continuum effectively acting as a
single ordinary particle. The completeness relation can also
be rewritten in a nice Lorentz-invariant form,

3For complex scalar Φ, we instead have

ΦðxÞ¼
Z

dμ2

2π

ffiffiffiffiffiffiffiffiffi
ρðμÞ

p Z
d3p

ð2πÞ3 ffiffiffiffiffiffiffiffi
2Eμ

p ða†p;μeip·xþbp;μe−ip·xÞp0¼Eμ

ð3:7Þ

with

½ap;μ;a†p0;μ0 � ¼ ð2πÞ4δ3ðp−p0Þδðμ2 −μ02Þ ¼ ½bp;μ;b†p0;μ0 � ð3:8Þ

being the only nontrivial commutation relations.
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Z
d4p
ð2πÞ4 ρðp

2Þjp; μ2ihp; μ2j ¼ 1; ð3:11Þ

where p0 ¼ Eμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ μ2

p
, and p2 ¼ p2

0 − p2. The
normalization of single-mode states consistent with a com-
pleteness relation is given by

hp0; μ02jp; μ2i ¼ 2Eμ

ρðμ2Þ ð2πÞ
4δ3ðp − p0Þδðμ2 − μ02Þ: ð3:12Þ

In Appendix A, we show that a gapped continuum can be
obtained from a flat 5D space. In that simple example, a
completeness relation and associated state normalization are
inherited from the standard 5D field theory, which indeed
agree with Eqs. (3.10)–(3.12).
Multimode states are built as direct products of these

single-mode states, as usual. An interaction may be intro-
duced to couple these states to the SM, and matrix elements
are computed by the usual rules of perturbative QFT. For
example, for a theory with Eqs. (3.1) and (3.4), a scattering
process SMþ SM → Φðμ1Þ þΦðμ2Þ is described by a
matrix element

hðp1; μ21Þ; ðp2; μ22ÞjT exp

�
−i

Z
dtHIðtÞ

�
jkA;kBiSM

≡ ð2πÞ4δ4ðk1 þ k2 − p1 − p2ÞiM: ð3:13Þ

A measurable cross section for this process will involve the
production of the continuum over a finite region of the
parameter μ, defined as

σ¼ 1

2EA

1

2EB

1

jvA−vBj
Z

dμ21
2π

ρðμ21Þ
Z

dμ22
2π

ρðμ22Þ

×
Z

dΠμ1dΠμ2ð2πÞ4δ4ðk1þk2−p1−p2ÞjMj2; ð3:14Þ

where the Lorentz-invariant phase space (LIPS) volume
element is given as usual by

dΠμ ¼
d3p
ð2πÞ3

1

2Eμ
: ð3:15Þ

In Appendix C, we present a derivation of Eq. (3.14) using
a warped 5D model for a continuum and AdS=CFT
correspondence.
The discussion above shows that in many respects the free

continuum states are just like ordinary particles with mass
μ2. The main difference is that the contribution of any single
continuum state jp; μ2i to any physical process will be
negligible, and only the collective effect of the continuum
will give finite contributions. Hence as stated above it is best
to think of the continuum as a single smeared out particle. If
all continuum states are accessible in a given scattering
process, their contribution is similar to that of a single

ordinary particle. However, if only a fraction of continuum
states are kinematically accessible, the continuum will act as
a “partial” particle, leading to suppressed scattering: DM
direct detection offers a phenomenologically relevant exam-
ple of this phenomenon.

B. Equilibrium thermodynamics

Next we consider a dilute, weakly coupled, spatially
uniform gas made out of the free continuum states
described above. We define the dimensionless phase-space
density fðp; μ2Þ such that the number of excitations with
mass squared between μ2 and μ2 þ dμ2 is given by

dN ¼ Vg
dμ2

2π
ρðμ2Þ

Z
d3p
ð2πÞ3 fðp; μ

2Þ; ð3:16Þ

where g is the number of internal degrees of freedom and V
is the volume occupied by the gas. (We will set g ¼ 1 in the
rest of this section to simplify the expressions.) The energy
of the gas is given by

E ¼ V
Z

dμ2

2π
ρðμ2Þ

Z
d3p
ð2πÞ3 fðp; μ

2ÞEμ: ð3:17Þ

If interactions among continuum modes in the gas (either
directly with each other, or through their interactions with
some other, e.g., SM, gas) are strong enough tomaintain them
in thermal and chemical equilibrium with each other, the state
of the gas can be completely characterized by two parameters,
temperatureT ¼ 1=β and chemical potentialwhichwedenote
by η (to avoid confusion with the μ parametrizing the
continuum). In this case, the phase-space density takes the
standard Fermi-Dirac or Bose-Einstein form4:

fðp; μ2Þ ¼ 1

eβðEμ−ηÞ � 1
≈ e−βðEμ−ηÞ; ð3:20Þ

where the two signs correspond to fermionic (þ) and bosonic
(−) free continuum states, and the second (Boltzmann) form
applies in the limit of small occupation numbers. We will

4This can be proven by the standard method: we extremize the
entropy with the constraints of energy and number density
equations (3.16) and (3.17). These constraints can be enforced
by means of the Lagrange multiplier, and we need to extremize

S̃ ¼ Sþ β

�Z
dμ2

2π
ρ

Z
d3p
ð2πÞ3 fE − u

�

þ γ

�Z
dμ2

2π
ρ

Z
d3p
ð2πÞ3 f − n

�
: ð3:18Þ

The solution to δS̃
δf ¼ 0 is

feq ¼ e−ðγþ1Þe−βE; ð3:19Þ

where the prefactor e−ðγþ1Þ is fixed by the normalization.
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assume this limit below, and consider the case of zero chemical
potential η ¼ 0 as an example.
The free energy is given by

F ¼ 1

β
V
Z

dμ2

2π
ρðμ2Þ

Z
d3p
ð2πÞ3 lnð1� e−βEμÞ: ð3:21Þ

Energy density u and pressure P can be found through the
standard thermodynamic relations,

u ¼ 1

V

�
β
∂F
∂β

����
V
þ F

�
; P ¼ −

∂F
∂V

����
β

; ð3:22Þ

and their explicit expressions are given by

u¼
Z

dμ2

2π
ρðμ2ÞUðμ2Þ; Uðμ2Þ¼

Z
d3p
ð2πÞ3

Eμ

eβEμ �1
;

P¼
Z

dμ2

2π
ρðμ2ÞPðμ2Þ; Pðμ2Þ¼

Z
d3p
ð2πÞ3

1

eβEμ �1

p2

3Eμ
;

ð3:23Þ

where U and P are the equilibrium energy density and
pressure of a gas of “normal” particles with mass squared
μ2. Roughly speaking, at temperatures above the gap scale,
T > μ0, energy and pressure are dominated by modes with
μ0 < μ < T, which behave as a relativistic gas. At

temperatures below the gap scale, T < μ0, energy and
pressure are dominated by modes with μ ≈ μ0 (with details
depending on the behavior of the spectral density in that
region), which behave as a gas of nonrelativistic particles.
In this regime, the continuum gas can play the role of cold
dark matter.
In principle, the spectral density itself can also be

temperature dependent: ρðμ2; TÞ. However, we expect that
the thermal corrections will be of the orderOðT=ΛÞ, where
Λ ≫ μ0 is the cutoff scale of our description above which
gapped continuum phase is replaced by a UV phase such as
CFT. For this reason, in the following we will ignore this
dependence, and revisit the validity of this assumption in
Sec. VI when we discuss the concrete warped 5D model of
gapped continuum.

C. Nonequilibrium thermodynamics

We continue to consider a dilute, weakly coupled gas of
continuum states, but now do not assume that it is in
thermal and/or chemical equilibrium. In this case the phase-
space density is still sufficient to describe the gas, but it can
now be a function of time: fðp; μ2; tÞ. The time evolution of
this quantity is described by the Boltzmann equation. For
example, consider a model in which the continuum states
can interact with SM states A, B through 2 ↔ 2 scattering.
In this case, the Boltzmann equation (in flat-space back-
ground) reads

Eμ
∂fðp; μ2; tÞ

∂t ¼ −
1

2

Z
dμ02

2π
ρðμ02Þ

Z
dΠμ0dΠAdΠBð2πÞ4δ4ðkA þ kB − p − p0Þ

× jMj2ðff0ð1� fAÞð1� fBÞ − fAfBð1� fÞð1� f0ÞÞ; ð3:24Þ

where the usual sums over spin are included in jMj2. In the
collision term on the right-hand side, kA and kB are the
4-momenta of the SM particles, p and p0 are the 4-momenta
of the continuum states (note that p2 ¼ μ2 and p02 ¼ μ02),
dΠ are the LIPS volume elements defined in Eq. (3.15), and
M is the scattering amplitude defined in Eq. (3.13). In the
limit of low occupation numbers which we will consider
from now on, terms with � in front can be ignored.
Generalization to gas in the Friedmann-Robertson-Walker
background is straightforward. The only change is on the
left-hand side, where the derivative ∂=∂t needs to be
replaced with the covariant version, giving

Eμ
∂fðE;μ2; tÞ

∂t −Hjpj2 ∂fðE;μ
2; tÞ

∂E
¼−

1

2

Z
dμ02

2π
ρðμ02Þ

Z
dΠμ0dΠAdΠB

× ð2πÞ4δ4ðkAþ kB−p−p0ÞjMj2ðff0 −fAfBÞ: ð3:25Þ

HereH ¼ _a=a is the Hubble parameter, jpj2 ¼ E2 − μ2, and
we replaced p with E as the argument of f since 3D
rotational invariance guarantees that f only depends on the
magnitude of p. Note that if the continuum originates from a
5D model, then using this form of the Boltzmann equation
implies the assumption that the geometry of the bulk is fixed
and only the 4D scale factor is still evolving.

IV. FREEZE-OUT OF CONTINUUM DARK
MATTER

As an application of the above formalism, we study the
process of freeze-out of continuum DM which can interact
via 2 ↔ 2 scattering with an SM particle with massmSM ≪
μ0 (we set mSM ¼ 0 below). Before we give a more
technical discussion, however, it seems instructive to note
the following. Similarly to the particle DM, annihilation of
continuum DM freezes out at T ∼ μ0

10
. At such low temper-

ature, the continuum mass distribution is localized close to
the gap scale, and it behaves more or less like a particle with

CSÁKI, HONG, KURUP, LEE, PERELSTEIN, and XUE PHYS. REV. D 105, 035025 (2022)

035025-8



mass ∼μ0. Therefore, as far as thermal freeze-out is
concerned, the continuum DM is expected to be similar
to particle DM. Below we confirm this by explicit compu-
tations and estimate the size of “continuum effects.”

A. Boltzmann equation for continuum freeze-out

For thermal freeze-out, there are two relevant reactions,
annihilation

DMðμÞ þ DMðμ0Þ ↔ SMþ SM ð4:1Þ

and quasielastic scattering (QES)

DMðμÞ þ SM ↔ DMðμ0Þ þ SM: ð4:2Þ

If annihilation is in equilibrium, the continuum DM modes
are at the same temperature T as the SM and at zero
chemical potential. This will be the case, for sufficiently
strong coupling between the SM and DM, at temperatures
above the gap scale.5 Once T ≲ μ0, however, the annihi-
lation rate drops exponentially, and annihilations decouple
(“freeze-out”). Note that the rate of quasielastic scattering
of a DM state does not experience an exponential drop at
these temperatures, and therefore the QES process con-
tinues to maintain thermal equilibrium between the SM and
DM. It also maintains DM states of different masses in
chemical equilibrium with each other, since the DM mass
changes during QES. Therefore, during the freeze-out
process, the DM modes are at the same temperature as
the SM, T, and have a common (μ-independent) chemical
potential η, which however is time dependent and no longer
vanishes. This means that in the freeze-out calculations we
can assume

fDM ¼ e−βðEμ−ηðtÞÞ; fSM ¼ e−βjpj: ð4:3Þ

The effective DM number density is given by

n ¼
Z

dμ2

2π
ρðμ2Þ

Z
d3p
ð2πÞ3 fDM: ð4:4Þ

If neq denotes the value of n with η ¼ 0 (i.e., in chemical
equilibrium with the SM), then n ¼ neqeβη, leading to a
useful expression of the DM phase space density in terms
of the number densities

fDM ¼ n
neq

e−βEμ : ð4:5Þ

Integrating both sides of the Boltzmann equation (3.25)

with respect to
R dμ2

2π ρðμ2Þ
R d3p

ð2πÞ3, and using Eq. (4.5) on the
right-hand side and the usual integration-by-parts trick in
the second term on the left-hand side, the equation for time
evolution of DM number density becomes

∂n
∂t þ 3Hn ¼ −hσviðn2 − n2eqÞ; ð4:6Þ

where we defined

hσvi ¼ 1

n2eq

Z
dμ2

2π
ρðμ2Þ

Z
dμ02

2π
ρðμ02Þ

Z
dΠμdΠμ0dΠAdΠB

× ð2πÞ4δ4ðkA þ kB − p − p0ÞjMj2
× exp ð−βðEA þ EBÞÞ: ð4:7Þ

It is interesting to note that Eq. (4.6) is identical to that of
the usual particle cold relic, and hence the relic density is
given by the usual expression found in e.g., Kolb and
Turner [62]. All effects of the continuum physics are
encoded in the calculation of hσvi.

B. Freeze-out in a toy model

As an illustration, consider a toy model described by
Eqs. (3.1) and (3.4) where the DM and SM are both scalars,
coupled through a four-point coupling independent of the
DM-mode masses. For simplicity, we set mh ¼ 0 in this
illustrative example. The tree-level matrix element in
Eq. (4.7) is then simply M ¼ λ. An explicit calculation
yields6

hσvi ¼ λ2

32π

�
I1ðβÞ
I2ðβÞ

�
2

: ð4:10Þ

Here we defined

5For any T > μ0, some of the DM states will be nonrelativistic,
since one can always go sufficiently far out on the tail of the
continuum DM spectral density to ensure μ > T. The equilibrium
density of these states is exponentially suppressed, however they
still remain in equilibrium and do not freeze out, since they can
find annihilation partners among lighter DM states with μ < T,
whose equilibrium density is unsuppressed. Decay and inverse
decay, DMðμÞ ↔ DMðμ0Þ þ SM, also maintain equilibrium
among the modes with different μ.

6We used an integral representation

KnðzÞ ¼
π1=2ðz

2
Þn

Γðnþ 1
2
Þ
Z

∞

1

dt e−ztðt2 − 1Þn−1=2: ð4:8Þ

Using this, it is straightforward to show that

Z
dΠμe−βEμ ¼ 1

4π2
μβ−1K1ðμβÞ;Z

d3p
ð2πÞ3 e

−βEμ ¼ 1

2π2
μ2β−1K2ðμβÞ:

ð4:9Þ

The second identity is easily obtained by taking a partial
derivative with respect to β of the first identity and using
∂ðz−nKnðzÞÞ∂z ¼ −z−nKnþ1ðzÞ.
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InðβÞ≡
Z

dμ2

2π
ρðμ2ÞμnKnðβμÞ; ð4:11Þ

where Kn is the modified Bessel function of the second
kind. In Eq. (4.10) the I21 in the numerator is the result of
performing the phase space integrals for the continuum
DM, while the I22 in the denominator originates from the
integrals corresponding to the 1=n2eq factor in Eq. (4.7). As
explained above, freeze-out occurs when the temperature
drops below the gap scale, so we can approximate the
Bessel functions at large argument. This yields

InðβÞ ≈
ffiffiffiffiffi
π

2β

r Z
∞

μ0

dμ
π
ρðμ2Þμnþ1=2e−βμ: ð4:12Þ

To make it even more explicit, let us assume a specific form
for spectral density. Motivated by 5D model building (see
Sec. VI), we use

ρðμ2Þ ¼ ρ0
μ20

�
μ2

μ20
− 1

�
1=2

; ð4:13Þ

where ρ0 is a dimensionless constant. In Sec. VI we show
that this is indeed the form of the spectral density near the
gap scale, and in Appendix B we present a more general
argument for this. With this assumption, the integrals in
(4.12) can be evaluated using the saddle-point approxi-
mation, giving7

hσvi ¼ λ2

32πμ20
þO

�
T
μ0

�
: ð4:14Þ

Here, the termOðT=μ0Þ encodes the corrections due to the
continuum nature of our DM and is typically expected to
be of the order of ∼10%. Note that the result is indepen-
dent of ρ0, and depends only weakly upon the assumed
functional form of spectral density (although may need to
be modified if it changes very rapidly or is very sup-
pressed near the gap).
We can also explicitly verify that assumptions made in

the derivation of Eq. (4.6) indeed hold in this toy model. Let
Γan and ΓQES denote the rates at which a DM state of energy
E undergoes annihilation and QES respectively. Estimating
the rates in this model gives Γan ∼ ΓQES ≫ H for T > μ0
[assuming λ ∼Oð1Þ], so both reactions are active and
maintain thermal and chemical equilibrium between SM
and DM. However when T < μ0, the ratio Γan=ΓQES, which
is roughly the ratio of number density of nonrelativistic
state to that of relativistic state nNR=nR, becomes

Γan

ΓQES
∼
�
μ0
T

�
3=2

e−μ0=T; ð4:15Þ

so that annihilations decouple well before QES, as
assumed. At T < μ0, the QES reaction with incoming
DM mode of mass μ can have final-state DM state in the
mass range ½μ0; μþ T�, so that chemical equilibrium among
the DM modes of all possible masses is maintained. This
justifies our assumption that the DM chemical potential η is
μ independent during the freeze-out.

V. WIC MODEL USING THE VECTOR
BOSON PORTAL

We are now ready to present a fully realistic WIC model
based on the Z=W portal. In this section we will be
discussing it based on a 4D description assuming that a
gapped continuum mode is readily available and can be
coupled to the SM. The resulting theory is presented in
Sec. VA, while the evaluation of the dark matter relic
density in this theory is in Sec. V B below. A UV
completion of this theory can be obtained using a warped
extra dimensional construction with a nontrivial scalar field
profile, which will be discussed in Sec. VI.

A. 4D effective Z-portal model

We denote the field corresponding to the continuum DM
by Φ, which is assumed to be a complex scalar with no SM
gauge quantum numbers. An exactly conserved Z2 discrete
symmetry is assumed, under which Φ is odd while all SM
fields are even. This symmetry ensures DM stability. In this
section, we describe Φ as a 4D field with an unusual
“kinetic term” corresponding to the gapped continuum,
while in the next section wewill lift it to the boundary value
of a 5D field. In order to obtain nonvanishing interactions
of the continuum DM with the SM W, Z bosons we will
mix it with another complex scalar field χ (with a canonical
kinetic term) which is a doublet under SUð2ÞL, carries
Uð1ÞY charge −1=2, and is odd under the Z2.

8 This mixing
is possible in the presence of the Higgs vacuum expectation
value (VEV). We assume that the χ field itself does not
break the electroweak symmetry, hence its mass is a free
parameter and can be taken to be relatively high mχ ≫ v.
The Lagrangian of the theory is

L ¼ LSM þ LΦ þ Lχ þ Lint ð5:1Þ

LΦ ¼ Φ†ðpÞΣðp2ÞΦðpÞ ð5:2Þ

7This result is valid as long as the saddle point is near the gap
scale, μsaddle ≈ μ0 þOðTÞ, and independent of n of InðβÞ.

8One may wonder why we do not just couple Φ directly to Z
andW by giving it SM gauge charges. In fact, this is possible. The
mixing with mediator χ in this 4D construction is just to avoid
continuum partners of Z and W, which are required in the direct
coupling case according to 5D consistency, and yield a more
complicated theory.
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Lχ ¼ ðDμχÞ†ðDμχÞ −m2
χχ

†χ ð5:3Þ

Lint ¼ −λΦχH þ c:c: ð5:4Þ

The quadratic action of Φ describes the continuum spec-
trum through the spectral density ρðp2Þ defined by

ρðp2Þ ¼ −2ImΣ−1ðp2Þ: ð5:5Þ

The covariant derivative appearing in Lχ includes cou-
plings to the SM W and Uð1ÞY gauge bosons. We will
assume that the temperature of the Universe is low enough
that a Higgs VEV has already formed, T < v, and also
T < mχ . When the Higgs gets a VEV, the Lint term induces
“mass mixing” between continuum states created by Φ and
the neutral components of χ.9 In the standard case where Φ
describes a single massive particle (as opposed to gapped
continuum), the mass eigenstates would be given by the
usual expressions

Φ̃ ¼ cos αΦþ sin αχ0; χ̃0 ¼ − sin αΦþ cos αχ0:

The mixing angle would be

tan 2α ¼
ffiffiffi
2

p
λv

m2
χ −m2

Φ
;

where v ¼ 246 GeV. In the continuum case, we can get a
similar result by simply integrating out χ0 using its
equations of motion (EoM) (assuming χ is sufficiently
heavy, in particular mχ ≫ μ0 and the temperature is low
enough that only states close to μ0 will be relevant). In this
case the EoM for χ0 implies

χ0 ¼ −
λvffiffiffi
2

p Φ
□þm2

χ
; ð5:6Þ

where □≡ ∂μ∂μ. Substituting this back into the action
results in an effective action for Φ with mixing angles
dependent on the mode mass μ:

tan 2αμ ¼
ffiffiffi
2

p
λv

m2
χ − μ2

: ð5:7Þ

Since we are assuming that μ ≪ mχ for all relevant μ we
may safely drop the μ dependence in the mixing angle. The
couplings of continuum modes with p2 ¼ μ2 to the SM Z
and W gauge bosons are inherited from its mixing with χ0.
The effective Lagrangian describing these couplings is
given by (dropping the μ dependence in the mixing angle)

LΦ−Z;W ¼ sin2α

�
−
i
2
gZð∂μΦ†Φ −Φ†∂μΦÞZμ

þ 1

4
g2ZΦ†ΦZμZμ þ 1

2
g2Φ†ΦWþ

μ W−μ
�
; ð5:8Þ

where g, g0 are the standard SUð2ÞL ×Uð1ÞY couplings,
and gZ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
. At first glance, this equation simply

describes a complex scalar coupled to Z and W with an
extra factor of mixing angle sin2 α. We emphasize, how-
ever, that Φ excites a whole set of free continuum states
with the probability governed by the spectral density ρðμ2Þ.
Hence, Eq. (5.8) contains couplings of the continuum
modes for all values of p2 ¼ μ2 to W and Z.
In addition to the interaction term included in the

Lagrangian (5.4), a coupling λΦjHj2Φ2 is also allowed
by symmetries. In fact, even if not present in the original
Lagrangian, this term will be induced at low energies by
integrating out the χ field. This term induces a Higgs portal
interaction between the DM and SM. For μ0 < mh=2, it
induces an exotic Higgs decay to two DM particles, which
is constrained by the LHC data. This constraint is included
in our analysis. We assume that the effects of the Higgs
portal term in all other observables of interest are sub-
dominant to those of the Z-portal interactions in (5.8). This
assumption does not require strong tuning of λΦ. For
example, in relic density calculations, we need λΦ ≲
gsin2α ∼ 10−2 − 0.1 in the parameter region of interest.
This constraint is further weakened for DM gap scale below
the W mass, thanks to extra Yukawa suppression in Higgs-
mediated annihilation. An additional phenomenological
constraint arises from the Higgs portal due to late-time
DM decays DMðμ1Þ → DMðμ2Þ þ 2γ, mediated by the off-
shell Higgs exchange. This decay (absent in the Z portal
model) can reionize hydrogen atoms after CMB decou-
pling, contrary to observations. This constraint rules out a
model in which the Higgs portal is the dominant DM-SM
interaction. However, if both Z and Higgs portals are
operational, the 2γ branching ratio is suppressed by an
additional factor of ðα=πÞ2 ∼ 10−5 from the hγγ loop-
induced vertex, which is sufficient to avoid this constraint.
Beyond the Higgs portal, there may be additional non-
renormalizable interactions between Φ and the SM. We
assume that such interactions, if present, are generated at a
scale well above electroweak, and thus their effects are
negligible.

B. Relic abundance of continuum Z-portal DM

In this section, we compute rates for processes relevant
for the thermal freeze-out of continuum DM introduced
above. We then show a region of parameter space
ðsin α; μ0Þ that reproduces observed relic density. The
spectral density is assumed to have the generic form in
Eq. (4.13), although as remarked in Sec. IV the relic density
is essentially independent of this assumption.

9Charged components of χ have mass mχ ≫ μ0 and will not
play a role in DM phenomenology.
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Thermal-relic WIC occurs when the DM sector is in
thermal and chemical equilibrium with SM at high temper-
ature, at least T ∼ TeV. This requirement places a lower
bound on the effective coupling, and hence on sin α:

Γ ¼ hσvin ∼
g4Zsin

4α

8π
T ≳ T2

Mpl
→ sin α ≳ 10−4

�
TeV
Mpl

�
1=4

:

ð5:9Þ

Below we assume that this bound is satisfied and thermal
freeze-out occurs. The observed relic density indicates
values of sinα that are easily consistent with this bound,
so the calculation is self-consistent.
We now move on to the discussion of thermal freeze-out.

Recall that the quasielastic scattering process which estab-
lishes thermal equilibrium between DM sector and SM
decouples much later than the annihilations (see Sec. IV).
Therefore, when thermal freeze-out occurs we can safely
assume that the DM sector is in thermal equilibrium with
the SM.
As discussed around Eqs. (4.6) and (4.7) the Boltzmann

equation for continuum is the same as particle DM except
that, crucially, the thermal averaged rate includes averaging
over the continuum spectrum. The relevant annihilation
processes depend on the size of gap scale μ0:
(1) μ0 < mW : The dominant process is ϕϕ� → ff̄ via

the s-channel Z exchange. Here, f denotes SM
fermions (excluding top quark). The rate is given by

hσvðϕϕ� → Zð�Þ → ff̄Þi

≈
g2Zsin

4αv2rel
128μ20

ΓZ

mZ

��
1−

m2
Z

4μ20

�
2

þm2
ZΓ2

Z

16μ40

�−1
: ð5:10Þ

The appearance of the relative velocity v2rel shows
that this process is p wave. The factor ΓZ=mZ comes
from the Z → ff̄ vertex of the Feynman diagram,
and the last factor in the square bracket is the Z
propagator. When μ0 ≪

mZ
2
, one sees that

hσvi ∝ sin4 αμ2
0

m4
Z

, and so for the correct relic density

sin α decreases as μ0 increases. On the other hand,
for mZ

2
≪ μ0 < mZ, instead we get hσvi ∝ sin4 α

μ2
0

.

Hence, sinα increases with μ0. These features are
seen in Fig. 3.

(2) μ0 ∼mW : In this regime, in addition to ϕϕ� → ff̄,
the three-body process, ϕϕ� → WW� → Wlν̄ can
make a significant contribution. This, however, will
be only relevant for μ0 very close to mW and we
leave its explicit computation for a future inves-
tigation. For this reason, we warn that an Oð1Þ (at
most) correction may be required to the relic density
curve in Fig. 3 for μ0 ≈mW.

(3) mW < μ0 < mZ: Now, a W pair can be produced on
shell: ϕϕ� → WþW−. The rate is estimated to be

hσvðϕϕ� → WþW−Þict

≈
g4 sin4 α
128πμ20

ffiffiffiffiffiffiffiffiffiffiffi
1 −

1

y

s
ð4y2 − 4yþ 3Þ; ð5:11Þ

hσvðϕϕ� → WþW−Þis

≈
g4sin4αv2rel
96πμ20

ffiffiffiffiffiffiffiffiffiffiffi
1 −

1

y

s
4y2 þ 20yþ 3

y2

�
4 −

1

x

�
−2
;

ð5:12Þ

where y ¼ μ20=m
2
W and x ¼ μ20=m

2
Z. The first con-

tribution comes from a contact interaction, while the
second is from an s-channel Z exchange.10 Equa-
tion (5.11) is an s-wave process while Eq. (5.12) is p
wave. As μ0 ≫ mW , the rates become hσvict ∝
sin4 α
m4

W
μ20 and hσvis ∝ sin4 α

μ2
0

. This means that at

μ0 ≫ m2
W , the contact contribution dominates and

sin α drops with increased μ0 for fixed relic density.
As μ0 is brought close to mW (so y ≈ 1), both
processes get phase-space suppression as captured
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=y

p
. The observed relic abundance then is

achieved by taking larger and larger sin α. These
features are all seen in Fig. 3.

(4) μ0 > mZ: Finally, for μ0 larger than the Z mass, a
pair of Z bosons can be produced on shell.
This process is due to the contact interaction
and the rate is

hσvðϕϕ� → ZZÞi

≈
g4zsin4α
256πμ20

ffiffiffiffiffiffiffiffiffiffiffi
1 −

1

x

r �
4x2 − 4xþ 3 − 8xðx − 1Þsin2α

þ 16x2ðx − 1Þ2sin4α
ð2x − 1Þ2

�
: ð5:13Þ

Here, again, x ¼ μ20=m
2
Z. This process is s wave as

hσvi ∝ v0rel. We also note that at large x, the
expression in the square bracket behaves as
½� � �� → x2 cos4 α. The growth with x indicates that
longitudinal Z modes do not decouple. This is in
fact required by the Goldstone boson equivalence
theorem due to nonvanishing ΦχH coupling in this
model. (If the DM were directly coupled under the
gauge symmetry, we would have sin α ¼ 1 and in

fact jMj2 does not grow at large x in this limit, as
expected.) For x ≫ 1, the rate becomes

10The absence of the interference between the contact and
s-channel contributions to the matrix element is due to the fact that
the former is purely real while the latter is purely imaginary.
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hσvi ∝ sin42α
m4

Z
μ20, the same scaling as in the case of

the WW final state above.
The region of parameter space where the observed relic

density is reproduced is shown in Fig. 3: roughly, for
μ0 ∼ 100 GeV, the effective coupling geff ≈ g sin2 α ≳ 10−2

is required. This is similar to ordinary particle DM with a Z
portal. The crucial difference is that while for ordinary
particle the coupling of this size is completely ruled out by
direct detection experiments, in the case of WIC this bound
is much weaker due to the suppression of direct detection
rates discussed in Sec. II. The bounds from direct detection,
as well as from the consistency of ionization history of the
universe in the presence of late-time WIC decays, are
discussed in the companion paper [55] and are summarized
in Fig. 3. Z-portal WIC dark matter is consistent with all
experimental bounds.

VI. CONTINUUM SPECTRAL DENSITY AND
UV-COMPLETE WIC MODEL FROM A WARPED

SPACETIME

Finally we present a realistic implementation of the
continuum DM scenario with a Z in a local and unitary 5D
theory. The main goal is to construct a UV completion of
the 4D effective theory shown in Sec. VA and used for the
relic density calculation in Sec. V B. We start by recalling
the soft-wall construction of a gapped continuum in 5D
warped space following [30]. In Sec. VI B we examine the
detailed properties of the resulting spectral density, paying
particular attention to the behavior of ρ close to the gap,
which turns out to be crucial for the dark matter phenom-
enology. Finally in Sec. VI C we present an explicit 5D
model whose 4D effective theory (by integrating out the

bulk) matches the effective theory given in Sec. VA, and
which makes a concrete prediction for the form of the
spectral density ρðμ2Þ. The holographic dual description of
our 5D gapped continuum in terms of strongly coupled
CFT is discussed in Appendix C.

A. The Cabrer-von Gersdorff-Quiros (CGQ)
background

In the warped 5D setup we will have a 3-brane placed at
the position z ¼ R, which from the point of view of the
bulk field will be a UV brane cutting off the space. Toward
the IR the extra dimension is noncompact, supplemented by
a background scalar field φðyÞ, whose backreaction is
responsible for a so-called soft wall, resulting in a finite
proper length for the extra dimension. Note that in this
paper we are not trying to solve the Higgs hierarchy
problem, but merely provide a complete construction of
a gapped continuum. Hence our UV scale defined by the
location of the UV brane is not exponentially larger than the
weak scale, but rather comparable to it. (If we did try to
embed this setup into a traditional Randall-Sundrum (RS)-
type warped extra dimensional model [63] we would need
to extend it beyond our UV brane. In fact in that UV
complete theory the brane we are using as a UV cutoff here
would actually be identified with the traditional IR brane of
Randall-Sundrum, and a new UV brane would have to be
introduced in the far UVat scales exponentially higher than
the weak scale.) Another point we want to mention is that
below we will work in zero temperature background. In the
context of cosmology, such a zero temperature geometry
will arise after a thermal phase transition around T ≲ Tc
(assuming not highly super-cooled phase transition). In a
dual CFT description, at T > Tc, the theory is in hot CFT

FIG. 3. The parameter space of the Z-portal WIC DM, for ρ0 ¼ 1 (left) and 2π (right). The red curve corresponds to the observed relic
density. The region below the blue (magenta) line is ruled out by the CMB [Big-Bang Nucleosynthesis (BBN)] observations. The region
above the green line is constrained by the XENON1T direct detection experiment [21]. For comparison, the direct detection constraint
for Z-portal particle DM is shown in the cyan dashed line. The region above the gray line is ruled out by LHC constraint on exotic Higgs
decays (for mχ ¼ 500 GeV). LEP bound from on-shell decays Z → ϕϕ� is also shown. The details of the bounds are discussed in the
companion paper [55].
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phase (dual to AdS black hole phase in 5D), while at T <
Tc it is in gapped continuum phase. A nontrivial cosmology
of gapped continuum is possible provided μ0 < Tc which
we assume. We note that at finite T < Tc, the geometry is
not quite yet that of zero temperature, but rather thermal
AdS where the temporal direction is compactified with
radius ∼1=T. It is then expected that spectral density
computed in such a background will exhibit T dependence.
On the other hand, naive dimensional analysis suggests that
thermal corrections are suppressed as OðT=TcÞ. In this
work, we ignore such thermal corrections.
The 5D action of the coupled scalar-gravity system is

given by

S ¼
Z

d5x
ffiffiffi
g

p �
−M3Rþ 1

2
gMNð∂MφÞð∂NφÞ − VðφÞ

�

−
Z

d4x
ffiffiffiffiffiffiffi
gind

q
V4ðφÞ; ð6:1Þ

where M3 is the 5D Planck mass and we are using the
metric signature ðþ;−;−;−;−Þ.11
Using the proper distance as the coordinate along the

extra dimension we parametrize the metric as

ds2 ¼ e−2AðyÞdx2 − dy2; ð6:2Þ

where AðyÞ is the warp factor. While solving the coupled
Einstein-scalar equations analytically in general is rather
challenging, there is a special case when the coupled second
order equations simplify to first order ordinary differential
equations which can be analytically solved. Such a sim-
plification occurs when the scalar potential can be given in
terms of a superpotential W via the relation [66,67]

VðφÞ ¼ 1

8

�∂W
∂φ

�
2

−
1

12M3
W2: ð6:3Þ

In terms of the superpotential, the bulk EoMs take a simple
form

dφ
dy

¼ 1

2

∂W
∂φ ;

dA
dy

¼ 1

12M3
W: ð6:4Þ

The superpotential leading to the desired 5D background12 is
given by [30]

WðφÞ ¼ 12kM3ð1þ eφ=
ffiffiffiffiffiffiffi
6M3

p
Þ; ð6:5Þ

where k is the AdS curvature scale asymptotically away from
the soft wall. The solution of the first order differential
equations yields the background

AðyÞ ¼ ky − log

�
1 −

y
ys

�
; ð6:6Þ

and

φðyÞ ¼ −
ffiffiffiffiffiffiffiffiffi
6M3

p
log ðkðys − yÞÞ: ð6:7Þ

It is observed that there is a singularity located at ys and it
corresponds to the finite distance location of the curvature
singularity where the spacetime ends in the y coordinates
(corresponding to z → ∞ in the conformally flat coordi-
nates). It is also seen that for y ≪ ys, A → ky and the
geometry is just AdS5. The beauty of this solution is that it
fully includes the backreaction of the metric to the presence
of the scalar field—which is indeed the origin of the actual
curvature singularity.

B. Realistic gapped continuum spectral density

The gapped continuum is obtained by considering addi-
tional fields (scalar, vector or fermion) in this background.13

To be concrete, we consider the simplest case of a scalar
continuum with a mass gap, by introducing an additional
scalar field Φ (which would play the role of dark matter) in
this 5D setup with the assumption of a stabilizing symmetry.
We take this symmetry to be a discrete Z2, under which Φ is
odd. The Lagrangian for this additional scalar is

L ¼ ffiffiffi
g

p ½gMNDMΦ†DNΦ −m2jΦj2�; ð6:8Þ

where for simplicity we choose to set brane localized
potentials to zero and ignore scalar self-interaction terms
in the bulk. By means of integration by parts along the fifth
dimension, the bulk action can be written so that it is
proportional to the bulk EoM. This is a useful representation
since it leads to a vanishing bulk action once the bulk field is
evaluated at its classical solution. The integration by parts,
however, induces a UV-localized term,

ΔSUV ¼
Z
UV

d4x e−4AΦ†∂yΦ; ð6:9Þ

which then turns into the (holographic) effective action
[68,69] once the bulk is integrated out at tree level.

11Since our spacetime manifold has a boundary, the Gibbons-
Hawking-York boundary term is required so that the variational
principle for gravity is well defined [64,65]. Its explicit form is
not needed for our discussion and we ignore it.

12Note that this is a special case of a class of superpotentials

parametrized asW ¼ 12kM3ð1þ eνφ=
ffiffiffiffiffiffiffi
6M3

p
Þ. For ν > 1 one has a

discrete spectrum, while for ν < 1 a continuum without a gap.
The critical value ν ¼ 1 corresponds to a gapped continuum of
the sort we are considering.

13For the case of the fermions, one needs to introduce an
additional Yukawa-like coupling to the background scalar field φ
to yield a gapped continuum. Without such coupling the
continuum would start at zero.
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Using a field redefinition Ψðp; yÞ ¼ e−2AðyÞΦðp; yÞ
where p ¼

ffiffiffiffiffi
p2

p
, the bulk EoM in the mixed momen-

tum-position coordinates becomes

ð−∂2
y þ V̂ðyÞÞΨðp; yÞ ¼ e2AðyÞp2Ψðp; yÞ; ð6:10Þ

where the potential V̂ðyÞ is given in terms of the warp
factor by

V̂ðyÞ ¼ m2 þ 4ðA0ðyÞÞ2 − 2A00ðyÞ: ð6:11Þ

Here ðÞ0 denotes the derivative with respect to y. Further
insight into the modes in this potential can be gained by
transforming Eq. (6.10) into a Schrödinger form, which can
be achieved by going into the conformally flat z coordinates
via dz=dy ¼ eA and an additional rescaling ψ ¼ eA=2Ψ. In
this frame, the bulk EoM turns into the standard Schrödinger
equation

−ψ̈ þ VðzÞψ ¼ p2ψ ð6:12Þ

with the potential given by

VðzÞ ¼ m2e−2A þ 9

4
ð _AÞ2 − 3

2
Ä: ð6:13Þ

Here _ðÞ denotes the derivative with respect to the conformal
coordinate z. An explicit expression for V can be obtained
using Eq. (6.6):

VðzÞ ¼ e−2ky

4y2s
½4m2ðys − yÞ2 þ 15ð1þ kðys − yÞÞ2 − 6�:

ð6:14Þ

It is understood that y should be expressed in terms of the
conformally flat coordinate yðzÞ via the transformation
dz=dy ¼ eA. The potential approaches a constant

μ20 ¼
9

4y2s
e−2kys ð6:15Þ

for y → ys, providing the mass gap for the continuum.
Once the solution to the EoM, Eqs. (6.12) and (6.13), is
found, we obtain the boundary (or holographic) effective
action. The 5d field Φðx; zÞ can be written in terms of
the source field in momentum space as Φðp; zÞ ¼
fðp; zÞΦ̂ðpÞ where fðp; zÞ is the wave function related
to the functions ψ satisfying the simple Schrödinger-type
equation as fðp; zÞ ¼ e3A=2ψðp; zÞ. Using this definition
the holographic effective action is

Seff ¼
Z
UV

d4xe−4AΦ†ðx;yÞ∂yΦðx;yÞjy¼0

¼
Z
UV

d4p
ð2πÞ4 Φ̂

†ðpÞ
�
e−3AðzÞ

f0ðz;pÞ
fðR;pÞ

�
z¼R

Φ̂ðpÞ ð6:16Þ

which is the final 5D expression for the effective action.
We would like to translate this to our 4D effective theory
in Eqs. (5.1)–(5.4). For this we need to also write the
proper 5D version of the localized SM terms:

Z
d4x

ffiffiffi
g

p ðDμHDμHe2A þDμχDμχe2A

− λ̂k
1
2ΦχH þ H:c:Þz¼R; ð6:17Þ

where λ̂ is a dimensionless number, and we have used the
AdS curvature scale k to make up for the dimension of
the coupling. In order to get the proper 4D effective
action with an effective λ ¼ λ̂ke−A of the order of the
electroweak scale we need the field redefinitions
H → He−A; χ → χe−A;Φ → Φe−

3
2
A

ffiffiffiffi
R

p
. This will result

in the 5D prediction of the effective 4D kinetic function
Eq. (3.1) from Sec. III to be

ΣðpÞ ¼ 1

R
f0ðz; pÞ
fðR; pÞ

����
z¼R

; ð6:18Þ

where R is the location of the brane R−1 ¼ ke−A for AdS-
like metrics with eA ¼ zk. Note that the units of the
kinetic function are set by Σ ∼ 1=R2 the location of the
brane. We emphasize again that this effective action was
obtained starting from a local and unitary scalar field
theory propagating in a self-consistent 5D background
space, and should automatically be yielding a consistent
effective 4D theory.
We can now find the expression for the spectral density

close to the mass gap μ0. While the above potential VðzÞ
cannot be obtained analytically, the asymptotic form of the
potential for z → ∞ needed for the spectral density near the
mass gap can be found explicitly. As y → ys, we may get
the expression for kðys − yÞ in terms of z by noting that the
integrand in

z ¼
Z

dy
ys

ys − y
eky ð6:19Þ

has a rapidly varying factor 1=ðys − yÞ and we may treat eky

to be approximately constant. Performing the integral with
this approximation yields

z ¼ −ysekys logðkðys − yÞÞ

¼ −
3

2μ0
logðkðys − yÞÞ → kðys − yÞ ¼ e−

2
3
μ0z; ð6:20Þ
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where we used Eq. (6.15). Hence, the potential Eq. (6.14)
can be written near z → ∞ as

VðzÞ → μ20

�
1þ 10

3
e−

2
3
μ0z þ

�
4m2

9k2
þ 15

9

�
e−2

2
3
μ0z

�
: ð6:21Þ

The solution of the Schrödinger equation for the asymptotic
potential (assuming an outgoing wave boundary condition
(BC) ψ → eikz for z → ∞, and setting the bulk mass to zero
for simplicity) can also be explicitly found in terms of a
generalized Laguerre polynomial:

ψðz;μÞ ¼DLn
l ð3

ffiffiffi
5

p
e−2zμ0=3Þexp

×

�
3

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1−

μ2

μ20

s
logðe−2μ0z

3 Þ− 3
ffiffiffi
5

p

2
e−

2μ0z
3

�
; ð6:22Þ

with l¼−ð3 ffiffiffi
5

p þ1Þ=2−3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−μ2=μ20

p
, n¼3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−μ2=μ20

p
,

and an arbitrary coefficient D is fixed by the normalization
condition. The spectral density is related to the kinetic function
ΣðpÞ given in Eq. (6.18) as

ρðpÞ ¼ −2ImΣðpÞ−1: ð6:23Þ

Since the potential in Eq. (6.21) is only valid for large z → ∞
which is relevant for modes μ2 ∼ μ20 we can expand the
arguments of the Laguerre polynomial around the mass gap
(with an expansion

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2=μ20 − 1

p
≪ 1) to obtain the approxi-

mate form of the spectral density near the mass gap μ ≈ μ0,

ρðμ2Þ ¼ ρ0
μ20

�
μ2

μ20
− 1

�
1=2

; ð6:24Þ

where ρ0 is a dimensionless constant.We can in fact show in a
model independentway that around themass gap this is indeed
the expected formof the spectral density in a very general case.
The one assumption we have to make is that for large z the
potential is well approximated by a constant (which was
clearly the case in the concrete 5Dmodel investigated above).
This discussion is presented in Appendix B.
While the wave function and spectral density for general

μ2 cannot be analytically determined, we can nonetheless
solve the Schrödinger equation numerically (with the
outgoing wave boundary conditions). It can be done either
in the z or y coordinates (for the latter case the outgoing BC
should be imposed very close to the singularity y → ys).
This confirms the expression of the spectral density around
the gap in Eq. (6.24), which is illustrated in Fig. 4. In Fig. 5
we show the entire spectral density function obtained from
numerically solving the Schrödinger equation.
We close this discussion by describing the overall

normalization ρ0 of the spectral density. As explained
above this is fixed by identifying the 4D action (3.1) with
the holographic effective action, using normalization that

will produce our 4D effective theory from Eqs. (5.1)–(5.4).
The resulting ρ0 will depend on the details of the model: as
we have seen Σ ∼ 1=R2, hence we expect ρ0 ∼ ðμ0RÞ2. In
order to obtain ρ0 ∼Oð1Þ one needs R−1 ∼ μ0, which is
numerically verified in Fig. 6, where we plot ρ0 as a
function of the position of the brane R. The requirement of
ρ0 ∼Oð1Þ which is needed to obtain phenomenologically
interesting models will imply a tuning of order ðμ0=TeVÞ2,
of the percent level for this simplest model with a single
bulk scalar playing the role of the gapped continuum.

FIG. 4. The shape of the spectral density near the gap scale μ0.
For this plot, we choose μ0 ¼ 750 GeV, m ¼ 0, and
R−1 ¼ 300 GeV. The red solid curve is from the exact numerical
solution and the blue dashed curve is a fit by a function ρðμ2Þ ¼
ρ0=μ20ðμ2=μ20 − 1Þ1=2 with a dimensionless normalization param-
eter ρ0. We have fixed k ¼ 1018 GeV and assumed a vanishing
bulk scalar mass m ¼ 0.

FIG. 5. In this plot, we show the numerically obtained spectral
density function over the full energy range assuming mass gaps:
μ0 ¼ 300 (blue), 750 (red), and 1200 (orange) GeV, again for
k ¼ 1018 GeV andm ¼ 0. Below the cutoff of orderO (TeV), we
show ρðμÞ in solid curves, while above the cutoff they are shown
as dashed curves. As usual, ρ above the cutoff is not supposed to
be used in effective theory calculations. Nevertheless, it is
instructive to observe that ρ exhibits universal behavior, i.e.,
that of CFT.
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C. 5D Z-portal model

We are now ready to present the full 5D construction that
incorporates the interactions of the continuum DMwith the
W and Z. We start with the same setup as previously in
Secs. VI A and VI B and assume the background as in
Eqs. (6.6) and (6.7). The SM is localized on the UV brane.
The action for the scalar dark matter Φ reads

S ¼ Sbulk þ SUV ð6:25Þ

Sbulk ¼
Z

d4xdy
ffiffiffi
g

p ðgMNð∂MΦÞ†ð∂NΦÞ−m2jΦj2Þ ð6:26Þ

SUV ¼
Z
UV

d4x
ffiffiffi
g

p ðLSM þ gMNDMχ
†DNχ − m̂2

χ jχj2

− λ̂k
1
2ΦχH þ H:c:Þ: ð6:27Þ

As explained below Eq. (6.8) in Sec. VI B, using integra-
tion by parts, the bulk action can be rewritten so that the
integrand is proportional to the EoM ofΦ, but with an extra
boundary term induced on the UV brane given in Eq. (6.9).
We have also seen that the bulk EoM takes the form of a
standard Schrödinger equation in terms of a new variable
ψ ¼ e−

3
2
AΦ and conformal coordinate z related to y via

dz=dy ¼ eA. The profile of Φ is given by f ¼ ψe
3
2
A. The

potential Eq. (6.14) approaches a constant value at large z,
see Eq. (6.15), revealing that the spectrum consists of a
continuum starting at the gap scale μ0. Once the solution for
the “profile” fðz; pÞ is found, we can integrate out the bulk
by substituting f back into the action. The bulk action
vanishes trivially since it is directly proportional to the
EoM. After proper rescaling as explained in the previous
section we obtain the boundary (or holographic) effective
action [see also Eq. (6.16)]:

Seff ¼
Z

d4p
ð2πÞ4

1

R
Φ̂†ðpÞf

0ðz;pÞ
fðR;pÞ

����
z¼R

Φ̂ðpÞ

þ
Z

d4xðLSMþjDμχj2−m2
χ jχj2− λ̂R−1Φ̂χHþH:c:Þ;

ð6:28Þ

where the quadratic action of Φ̂ is expressed in momentum
space since it is nonanalytic in general. As promised this
effective action is reproducing the 4D effective model
Eqs. (5.1)–(5.4) with the identifications

Σðp2Þ ¼ 1

R
f0ðz; pÞ
fðR; pÞ

����
z¼R

λ ¼ R−1λ̂: ð6:29Þ

Here, we started with a local and unitary microscopic
theory in 5D, which predicts a specific form of Σðp2Þ as
given in Eq. (6.29). While the explicit form of the spectral
density for arbitrary p2 is not easy to work out analytically,
nonetheless it is straightforward to find it numerically.
Moreover, importantly, the form of the spectral density near
the gap scale μ0 takes a universal form, Eq. (6.24), as shown
in Sec. VI B through an explicit 5D calculation. We also
provide a more general argument in Appendix B.
The couplings of the DM modes with the SM weak and

hypercharge gauge bosons needed to study phenomenology
can be obtained as described in Sec. V. The final results are
simply Eqs. (5.7) and (5.8). The dependence on ρðμ2Þ
comes in when we compute rates using the formalism
presented in Sec. III.

VII. CONCLUSION AND OUTLOOK

We presented a novel type of DMmodel, where the role of
the dark sector is played by a weakly interacting continuum
(WIC). The continuum is assumed to be gapped at the weak
scale, and interact with the SM EW sector, producing a
continuum version of standard weakly interacting massive
particle (WIMP) models. The continuum kinematics ensures
that direct detection processes are strongly suppressed com-
pared to familiar WIMPs, while in many other respects (relic
abundance, indirect detection and some of the collider
bounds)WICDM is very similar toWIMPs. The suppression
of the direct detection bounds re-opens the possibility of
viable Z-portal DM models.14 An unusual distinguishing
aspect ofWICDM is the appearance of late decays of the sort
DMðμ1Þ → DMðμ2Þ þ SM. Bounds on these late decays
provide a lower bound on the interaction strength, leading to a
well-defined allowed band in the parameter space (see Fig. 3).
In addition, theWICmodel has spectacular collider signatures

FIG. 6. In this plot, we show the numerically obtained spectral
density normalization ρ0 as a function of the location of the brane
R−1. We have again fixed k ¼ 1018 GeV and m ¼ 0.

14For recent work on particle Z-portal DM with CP violation
in the dark sector, see Ref. [70].
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driven by cascade decays of the continuum DM states
produced at a collider.
In this paper we have focused on providing the details of

the underlying construction both of the continuum itself as
well as its interactions with the SM. We have carefully
defined the structure of generic free continuum field
theories, which are subsequently coupled to the EW sector
of the SM. We presented the structure of the Hilbert space
for the free continuum and the basic elements of thermo-
dynamics involving such states, which allowed us to derive
the appropriate Boltzmann equation. We showed how to
couple the continuum to the EW sector of the SM via a
Higgs induced mixing. Using a simple effective theory of
the continuum, we were able to calculate the relic density
from the freeze-out of the WIC. A complete realistic model
was obtained by considering a scalar field in a soft wall
background in warped extra dimensions. This allowed us to
find a concrete expression for the spectral density of a
gapped continuum in a fully self-consistent theory, and
verify the general form of the spectral density around the
gap. The actual coupling to the SM is induced on the UV
brane, providing a full implementation of the effective
theory examined earlier. The full analysis of the phenom-
enology of this model will be presented in the companion
paper [55].
In summary, we showed that a dark sector described by a

gapped continuum QFT can provide a fully realistic dark
matter candidate, with unique phenomenological features
qualitatively different from any particle DM model. This
opens up a new direction in DMmodel building.While here
we focused on weak-scale DM with a Z portal, the idea can
be applied tomany other contexts, such as axionic DM, light
thermal relics at the keV-GeV scales such as SIMPs, and so
on. We look forward to further exploration in this direction.
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APPENDIX A: GAPPED CONTINUUM FROM
FIVE-DIMENSIONAL FLAT SPACE

In this Appendix we consider an infinite, flat 5D space
with coordinates ðxμ; zÞ. A 5D scalar field Φðxμ; zÞ with
mass m0 propagates on this space. We discuss how this
theory can be alternatively described as a 4D theory with a
gapped continuum spectrum. We should note that this setup
cannot be used to construct realistic models of the kind we
consider in the paper, because gravity remains five-dimen-
sional at all distance scales. Still, it is a useful example to
consider to gain intuition about gapped continuum spectrum
and spectral density in a simple context.

1. Infinite 5D and spectral density

The scalar propagator has the form

hΦðxμ; zÞΦð0Þi ¼
Z

d5P
ð2πÞ5

i
P2 −m2

0 þ iϵ
e−iðp·x−zkÞ; ðA1Þ

where P ¼ ðpμ; kÞ. Fourier transforming into momentum
space along the four xμ dimensions, we get

Πðp2; zÞ ¼
Z

dk
2π

i
p2 − ðk2 þm2

0Þ þ iϵ
eizk: ðA2Þ

Consider a 4D “brane” at z ¼ 0. The brane-to-brane
propagator is

Πðp2; 0Þ ¼
Z

dk
2π

i
p2 − ðk2 þm2

0Þ þ iϵ
: ðA3Þ

Defining s ¼ k2 þm2
0, we can rewrite

Πðp2; 0Þ ¼
Z þ∞

m2
0

ds
2π

i
p2 − sþ iϵ

ρðsÞ; ðA4Þ

where

ρðsÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s −m2

0

p ðA5Þ

is the spectral density. Thus we have recast this trivial 5D
theory as a 4D theory with gapped continuum spectrum and
a nontrivial spectral density.

2. Compactified theory and KK picture

Let us now consider the same theory with the z
direction compactified on a circle of radius R. This gives
a familiar KK theory. The scalar field decomposes as
Φðx; zÞ ¼ P

n fnðzÞϕnðxÞ, where ϕnðxÞ are 4D fields with
masses

m2
n ¼ m2

0 þ
�
n
R

�
2

ðA6Þ
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and fn ¼ 1ffiffiffiffiffiffi
2πR

p cosðnπz=RÞ. The brane-to-brane propaga-

tor can then be expressed as

hΦðxμ; 0ÞΦð0Þi ¼
X
m;n

fnð0Þfmð0ÞhϕnðxÞϕmð0Þi; ðA7Þ

which gives

Πðp2; 0Þ ¼ 1

2πR

X
n

i
p2 −m2

n þ iϵ
: ðA8Þ

Now consider going back to the infinite 5D theory by
taking the limit R → ∞. We expect that in this limit the
sum over n turns into an integral over KK mass, labeled
by a continuum parameter μ2. For large R, the splitting
between neighboring KK modes is

Δμ2n ≡m2
nþ1 −m2

n ≈
2n
R2

¼ 2

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

0

q
: ðA9Þ

Thus,

X
n

¼
X
n

Δμ2n
Δμ2n

→
Z

∞

m2
0

dμ2ðR=2Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

0

p
¼

Z
∞

m2
0

dμ2 Rρðμ2Þ; ðA10Þ

where ρ is the spectral density function given in Eq. (A5).
Plugging into Eq. (A8)

Πðp2; 0Þ ¼
Z

∞

m2
0

dμ2

2π

i
p2 − μ2 þ iϵ

ρðμ2Þ: ðA11Þ

This is exactly the same spectral-density representation of
the brane-to-brane propagator as in Eq. (B10). This
derivation makes it explicit that the physical meaning
of the spectral density ρðμ2Þ is (up to an overall constant)
the density of KK states with respect to μ2.

3. Hilbert space, orthonormality and completeness

The one-particle Hilbert space of our theory in infinite
5D is spanned by basis states jp; ki. These are eigenstates
of 5D momentum, with eigenvalues given by ðEp;k;p; kÞ
where Ep;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ k2 þm2

0

p
. These states obey ortho-

normality and completeness relations:Z
d3p
ð2πÞ3

dk
2π

1

2Ep;k
jp; kihp; kj ¼ 1;

hp0; k0jp; ki ¼ ð2πÞ4ð2Ep;kÞδ3ðp0 − pÞδðk0 − kÞ: ðA12Þ
The factors of energy are a matter of convention; with our
choice the scalar product of basis states is Lorentz invariant.
Now, let us define μ2 ≡ k2 þm2

0. We can choose to label
our basis states by μ2 instead of k: jp; μ2i≡ jp; k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

0

p
i. Note that

dμ2

dk
¼ 2k ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

0

q
¼ 1

ρðμ2Þ : ðA13Þ

Using this Jacobean, the orthonormality and completeness
relations become

Z
d3p
ð2πÞ3

dμ2

2π

1

2Ep;μ2
ρðμ2Þjp;μ2ihp;μ2j¼1;

hp0;μ02jp;μ2i¼ð2πÞ42Ep;μ2

ρðμ2Þ δ
3ðp0−pÞδðμ02−μ2Þ; ðA14Þ

where Ep;μ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ μ2

p
. This is precisely the formulas

given in the main text [see Eqs. (3.10) and (3.12)].
An alternative derivation of this result is to start with a

compactified 5D space, where the one-particle states are the
usual KK modes jp; ni. These obey the orthonormality and
completeness relations

X
n

Z
d3p
ð2πÞ3

1

2Ep;n
jp; nihp; nj ¼ 1;

hp0; n0jp; ni ¼ ð2πÞ3ð2Ep;nÞδnn0δ3ðp0 − pÞ: ðA15Þ

Here Ep;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

n

p
. The continuum limit in the

completeness relation is obtained by replacing

X
n

→ R
Z

dμ2ρðμ2Þ; ðA16Þ

as in Eq. (A10) above. In the orthonormality relation, this
continuum limit is taken using

δn;n0 →
1

Rρðμ2Þ δðμ
02 − μ2Þ: ðA17Þ

Rescaling the one-particle states to define

jp; μ2i≡ lim
R→∞

ffiffiffiffi
R

p
jp; n ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − μ20

q
i; ðA18Þ

we again reproduce the orthonormality and completeness
relations used in the main text.

4. Boltzmann equation

The 5D flat-space model also gives a useful illustration
of Boltzmann equations for gapped continuum. A gas of
single-particle excitations in this model can be described by
a 5D phase-space distribution fðp; kÞ. To add interactions,
let us consider a toy model where the 5D field Φ is coupled
to a 4D field hðxÞ localized on a brane at z ¼ 0, via

Sint ¼
Z

d4x
λ

4
Φ2h2: ðA19Þ
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This interaction enables a 2 → 2 scattering processes ΦΦ ↔ hh. Notice that 4D momentum is conserved in this scattering,
but 5D momentum is not, due to the localized nature of the interaction. The standard textbook derivation of the Boltzmann
equation trivially generalizes to the flat 5D space, yielding15

E
∂fðp; k; tÞ

∂t ¼ −
1

2

Z
dΠ0ð5ÞdΠAdΠBð2πÞ4δ4ðqA þ qB − p − p0Þ

× jMj2ðff0ð1� fAÞð1� fBÞ − fAfBð1� fÞð1� f0ÞÞ: ðA20Þ

In the collision term on the right-hand side, qA and qB
denote the 4-momenta of the h particles in the collision,
while P ¼ ðpμ; kÞ and P0 ¼ ðp0μ; k0Þ are the 5-momenta of
the Φ particles. Once again, only the 4-momentum is
conserved, as reflected in the delta function in the collision
term. The LIPS volume elements for the 4D h particles take

their usual form, dΠA;B ≡ d3qA;B
ð2πÞ3

1
2EA;B

, while the LIPS vol-

ume element for the 5D Φ particle with momentum P0 has
the form

dΠ0ð5Þ ≡ dk0

2π

d3p0

ð2πÞ3
1

2E0 ¼
dk0

2π
dΠμ0 ; ðA21Þ

where E0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þ k02 þm2

0

p
is the particle’s energy, and

in the second equality dΠμ0 is the usual LIPS volume
element for a 4D particle with 3-momentum p0 and mass
μ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 þm2

0

p
. Changing the integration variable from k0

to μ02 yields

E
∂fðp; k; tÞ

∂t ¼ −
1

2

Z
dμ02

2π
ρðμ02Þ

Z
dΠμ0dΠAdΠBð2πÞ4δ4ðqA þ qB − p − p0Þ

× jMj2ðff0ð1� fAÞð1� fBÞ − fAfBð1� fÞð1� f0ÞÞ; ðA22Þ

where once again the spectral density ρ arises as the
Jacobean of the variable change. This is precisely
Eq. (3.24) which formed the basis of our discussion of
nonequilibrium thermodynamics in Secs. III and IV.

APPENDIX B: SPECTRAL DENSITY NEAR
THE GAP

As we discussed in Secs. I and II, most of the continuum
DM phenomenology is governed by the shape of the
spectral density near the gap scale. In Sec. VI we presented
the expression for the spectral density near the mass gap
equation (6.24) for the particular background geometry of
Eqs. (6.6) and (6.7). Here we would like to argue that the
characteristic square root form obtained is quite general,
and applicable to any case with a gapped continuum
described by the Schrödinger equation:

−
d2ψ
dz2

þ VðzÞψ ¼ κ2ψ ; ðB1Þ

where κ2 ¼ p2 − μ20 is the distance from the gap while as
before μ0 is the gap scale. We assume that VðzÞ is positive
definite and V → 0 as z → þ∞ (the constant

corresponding to the gap is already included in the
definition of κ2). This equation is guaranteed to have
two real, linearly independent solutions ψ1 and ψ2. The
general solution (up to an irrelevant overall constant) is16

ψ ¼ ψ1 þ cψ2; ðB2Þ

where c can be complex. At large z, V can be ignored and
the equation can be solved:

ψ1 ¼ cos κz; ψ2 ¼ sin κz: ðB3Þ

The outgoing wave boundary condition at z → þ∞ is
ψ ∼ eþiκz, which fixes c ¼ i.
We recall that the spectral density is given by

ρðp2Þ ¼ −2Im
1

ΣðpÞ ¼ −2
ImΣ̄ðpÞ
jΣðpÞj2 ; ðB4Þ

where ΣðpÞ ¼ k∂zðe3
2
AðzÞ ψðz;pÞ

ψðR;pÞÞz¼R

17 and Σ̄ is the complex

conjugate of Σ. Obviously, ImΣ̄ ¼ −ImΣ. Explicit compu-
tation shows that

15This form of the Boltzmann equation would apply for any
interaction between two 5D fields and two fields localized on a
4D delta-function brane. For example, h can be replaced by a
particle with spin.

16In fact, the overall factor is in general a function of p2. This
however cancels out in ΣðpÞ, and hence in ρðp2Þ.

17In Sec. VI we denoted the profile as fðz; pÞ, which satisfies
the same Schrödinger equation.
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ρðp2Þ ¼ 2
ImΣðpÞ

k

��
3

2
ðkþ 1=ysÞ þ

Reðψ̄ψ 0Þ
jψ j2

�
2

z¼R

þ ðImΣÞ2
�
−1
; ðB5Þ

where we remind that k is AdS curvature scale (while
κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − μ20

p
). The point of this expression is that the

behavior of ρðp2Þ at the gap scale p2 → μ20 is understood
from that of ImΣ. Also, relatedly, the regularity (or
singularity) is determined by how jψ j2 behaves at
z ¼ R, the UV-brane scale. For this reason, from now
on, we focus on [note that AðzÞ is a real function]

ImΣðpÞ ¼ kIm
d
dz

logψ
���
z¼R

: ðB6Þ

The log-derivative of the wave function is given by

d
dz

logψ ¼ ψ 0
1 þ iψ 0

2

ψ1 þ iψ2

ðB7Þ

and its imaginary part (remembering that both ψ i’s are
real) is

Im
d
dz

logψ ¼ ψ1ψ
0
2 − ψ 0

1ψ2

jψ1j2 þ jψ2j2
: ðB8Þ

The numerator is the Wronskian W. Since Eq. (B1) has
no first-derivative term, by the Abel identity W is a
z-independent constant. We can compute W at large z
using Eq. (B3):W ¼ κðcos2 κzþ sin2 κzÞ ¼ κ. So we have

Im
d
dz

logψ ¼ κ

jψðzÞj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − μ20

p
jψðzÞj2 : ðB9Þ

This is valid at any z, in particular at the location of the UV
brane. Therefore

ρðp2Þ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − μ20

p
jψðRÞj2 : ðB10Þ

This almost proves that ρðp2Þ → 0 as p2 → μ20; the only
caveat is that we still need to prove that jψðRÞj ≠ 0 in this
limit. A simple argument is that since z ¼ R is arbitrary,
and we cannot have jψðRÞj ¼ 0 for more than a finite set
of values of z ¼ R, generically we should expect it to be
nonzero. However a stronger argument can be constructed
that in fact it cannot be 0. Multiply Eq. (B1) on both sides
by ψ�, and integrate over z from some z0 to þ∞. Then use
integration by parts on the first term. This gives

−
�
d
dz

jψ j2
�����þ∞

z0

þ
Z þ∞

z0

dz½jψ 0j2 þ VðzÞjψ j2�

¼ κ2
Z þ∞

z0

dzjψ j2: ðB11Þ

Dropping terms proportional to powers of κ (as κ → 0

for modes p2 → μ20), we have

d
dz

jψ j2ðz0Þ þ
Z þ∞

z0

dz½jψ 0j2 þ VðzÞjψ j2� ¼ 0 ðB12Þ

which implies

d
dz

jψ j2ðz0Þ < 0; ðB13Þ

for modes very close to the gap scale μ0. Since z0 was
arbitrary, this means that jψ j2 is a monotonically decreas-
ing function, and since we know that jψ j2 ¼ 1 at large
positive z [see Eq. (B3)], it means that jψ j2 ≥ 1 for any z
and therefore nonzero at the UV-brane z ¼ R.
One may still worry that the wave function itself is

diverging at z ¼ R, and hence strongly influencing the way
the spectral density goes to zero at the gap. However, again
z ¼ R is not a special point in the geometry, but in fact
arbitrarily chosen, hence the potential or wave function is
not expected to have a singularity at z ¼ R. Therefore for
the generic case, we expect that limκ→0 jψðRÞj2 ¼ C, some
finite constant. In this case according to Eq. (B10),

ρðp2Þ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − μ20

q
: ðB14Þ

One implication of this is that ρðp2Þ → 0 as p2 → μ20.
Notice also that as long as limκ→0 jψðRÞj2 ¼ C < ∞, ρðp2Þ
is regular for p2 close to μ20 as is seen directly from
Eq. (B5). In fact, this is exactly what we have found in
Sec. VI computed in the background, Eqs. (6.6) and (6.7),
both using the analytic asymptotic solution as well as the
numerical solution. It may be worth mentioning that it is
possible to solve Eq. (B1) analytically for VðzÞ ∝ e−az for
any constant a and one finds that ImΣ ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − μ20

p
. In

Sec. VI, we indeed have shown that the form of the
potential at z → ∞ does have this form with a ¼ 2

3
μ0.

APPENDIX C: AdS=CFT DUALITY OF GAPPED
CONTINUUM

In this Appendix, we describe the 4D CFT dual
description of the 5D Z-portal model introduced in
Sec. VI C. The boundary effective action Seff ½Φ̂� derived
in Sec. VI C is interpreted as (the leading order in large-N
expansion) partition function of the dual CFT via the
AdS=CFT correspondence [71–73]:
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ZAdS½Φ̂� ¼
Z
AdS

DΦjΦjUV¼Φ̂e
iSAdS½Φ� ≈ eiSeff ½Φ̂� ðC1Þ

¼
Z
CFT

DφeiSCFT½φ�þiSext½Φ̂�þi
R

1

Λd−3
Φ̂†OþH:c:¼ZCFT½Φ̂�; ðC2Þ

where d is the scaling dimension of the CFT operator O
sourced by the UV boundary value Φ̂ of 5D field Φ. With
finite UV cutoff scale Λ, the source field Φ̂ may be
dynamical, and for this reason we added the action
Sext½Φ̂� for the external field Φ̂. From this, we can derive
the relation between the CFT two-point function and
Σðp2Þ:

Σðp2Þ ¼ i
Λ2d−6 hOO†iðpÞ þ GΦ̂ðp2Þ; ðC3Þ

where GΦ̂ðp2Þ is a two-point function of Φ̂ obtained from
Sext½Φ̂�, possibly including wave function renormalization
factor. For instance, if Sext½Φ̂� ¼ Z∂μΦ̂†∂μΦ̂ then
GΦ̂ðp2Þ ¼ Zp2. In the IR, the dual 4D QFT goes through
a phase transition into gapped continuum phase. In this
phase, a CFT operator creates composite (gapped) con-
tinuum states and the source term Φ̂†O describes a mixing
between external degree of freedom Φ̂ and composite
continuum modes. To understand this mixing better, we
may write the CFT operator in terms of canonically
normalized field ϕμðxÞ which excites a mode with
p2 ¼ μ2 as

OðxÞ ¼ μd−10

Z
∞

1

dðμ=μ0Þ
2π

cðμ=μ0ÞϕμðxÞ: ðC4Þ

Here, μ0 is the gap scale and the dimensionless function
cðμ=μ0Þ has a support from μ0 to some μ ∼OðΛÞ, hence
determines the integration upper limit. As we show
below, this function is directly related to the spectral
density. Using

hϕ†
μðpÞϕμ0 ðkÞi ¼

i
p2 − μ2 þ iϵ

ð2πÞ4δ4ðp − kÞð2πÞδ

×

�
μ

μ0
−
μ0

μ0

�
ðC5Þ

we can rewrite the continuum part in Eq. (C3) as

Σcðp2Þ≡Σðp2Þ−GΦ̂ðp2Þ ¼ μ2d−30

Λ2d−6

Z
∞

μ2
0

dμ2

2π

½cðμ=μ0Þ2=2μ�
μ2 −p2− iϵ

:

ðC6Þ

This in turn implies that

ImΣcðp2Þ ¼ μ2d−30

Λ2d−6 ½cðp=μ0Þ2=4p�; p ¼
ffiffiffiffiffi
p2

q
: ðC7Þ

In addition, the mixing between the external field and the
composite continuum modes is readily found to be

L ⊃
1

Λd−3 Φ̂
†O ¼

Z
dðμ=μ0Þ

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ0μImΣc

p
Φ̂†ϕμ; ðC8Þ

where we used Eq. (C7) to get the final expression.
In the CFT picture, it is the external field Φ̂ that couples

to the SM Z andW. Then the coupling of continuummodes
to the Z and W is obtained through mixing. One thing that
we need to be a bit careful of is that we need to resum all the
diagrams to get a reliable answer, since the μ-dependent
mixing given in Eq. (C8) is generally not small. This may
be done by first computing the resummed Φ̂ propagator and
inserting such resummed propagator into the relevant
Feynman diagrams. It is straightforward to show that the
resummation of the diagrams in Fig. 7 yields

hΦ̂Φ̂†iðpÞ ¼ i
GΦ̂

þ i
GΦ̂

�
i

Λd−3

�
2

hOO†i i
GΦ̂

þ � � �

¼ i
GΦ̂ þ i 1

Λ2d−6 hOO†i ¼
i

Σðp2Þ : ðC9Þ

In fact, we could have obtained this easily from holographic
effective action by viewing it as an action for Φ̂ including
CFT contributions (i.e., resummation). Then the coupling
of a pair of continuum modes (μ1 and μ2) to the Z boson is
given by

geff ¼
�
i
2
gðp1 þ p2Þμ

��
sin αμ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ0μ1ρðμ21Þ

q �

×

�
sin αμ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ0μ2ρðμ22Þ

q �
: ðC10Þ

To get this, we used

FIG. 7. Effective coupling in CFT picture through the resum-
mation of Φ̂ − ϕμ mixing. Composite continuum modes ϕμ are
denoted as double lines and the external field Φ̂ is depicted with a
single line.
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ρðμ2Þ ¼ −2ImΣ−1 ¼ 2
ImΣc

jΣj2 ðC11Þ

and Eq. (C8). Note that ImΣ ¼ ImΣc. We also remind that
the first factor is the usual coupling to the Z boson, and
sin αμ is from the mixing Φ̂with χ that directly couples to Z
(see Sec. V). Therefore, we see that the effective coupling is
a product of the usual Z coupling of a complex scalar (the
first factor) and mixing angle for each continuummode (the
second and third factors).
Finally, let us compute the cross section for a process in

which two SM particles A and B annihilate into a pair of
continuum DMwith μ1 and μ2 through the Z exchange. For
concreteness, let us assume (as we did so far) that sinαμ is μ
independent, which may be achieved by taking mχ ≫ μ.

Denoting δμ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ0μρðμ2Þ

p
, the matrix amplitude may be

written as

MðAþ B → DMðμ1Þ þ DMðμ2ÞÞ ¼ δμ1δμ2M̂; ðC12Þ

where we factored out the entire μ-dependent piece in the
form of mixing angles, and defined the μ-independent
matrix element M̂ which is just a matrix element for
particles with mass μ1 and μ2. The cross section with the
possible final states summed over (at the level of rate, not
the matrix element) then is given by

σðAþ B → DMðμ1Þ þ DMðμ2ÞÞ

¼
Z

dμ21
2π

ρðμ21Þ
Z

dμ22
2π

ρðμ22Þσ̂; ðC13Þ

where similarly to the matrix element, σ̂ is a cross section
computed in terms of M̂ in a way that continuum modes
are treated as particles with mass μ21 and μ22. Clearly then,
the phase space density for these canonically normalized
continuum modes is the usual Lorentz invariant measure
given in Eq. (3.15). Crucially, this final expression,
obtained with mixing angles and proper mode sum defined
through Eq. (C4), agrees exactly with Eq. (3.14).
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