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We derive supernova (SN) bounds on muon-philic bosons, taking advantage of the recent emergence of
muonic SNmodels. Ourmain innovations are to consider scalarsϕ in addition to pseudoscalars a and to include
systematically the generic two-photon couplingGγγ implied by amuon triangle loop. This interaction allows for

Primakoff scattering and radiative boson decays. The globular-cluster bound Gγγ < 0.67 × 10−10 GeV−1

carries over to themuonic Yukawa couplings as ga < 3.1 × 10−9 and gϕ < 4.6 × 10−9 forma;ϕ ≲ 100 keV, so
SN arguments become interesting mainly for larger masses. If bosons escape freely from the SN core the main
constraints originate from SN 1987A γ rays and the diffuse cosmic γ-ray background. The latter allows at most
10−4 of a typical total SN energy of ESN ≃ 3 × 1053 erg to show up as γ rays, for ma;ϕ ≳ 100 keV implying

ga ≲ 0.9 × 10−10 and gϕ ≲ 0.4 × 10−10. In the trapping regime the bosons emerge as quasi-thermal radiation

from a region near the neutrino sphere andmatchLν for ga;ϕ ≃ 10−4. However, the 2γ decay is so fast that all the

energy is dumped into the surrounding progenitor-star matter, whereas at most 10−2ESN may show up in the
explosion. To suppress boson emission below this level we need yet larger couplings, ga ≳ 2 × 10−3 and
gϕ ≳ 4 × 10−3. Muonic scalars can explain the muon magnetic-moment anomaly for gϕ ≃ 0.4 × 10−3, a value
hard to reconcile with SN physics despite the uncertainty of the explosion-energy bound. For generic axionlike
particles, this argument covers the “cosmological triangle” in the Gaγγ–ma parameter space.

DOI: 10.1103/PhysRevD.105.035022

I. INTRODUCTION

Traditionally muons have been ignored in core-collapse
supernova (SN) simulations, although it is well known that
neutron stars contain lots of muons. Moreover, comparing
the muon mass of mμ ¼ 105.66 MeV with temperatures of
30–60 MeV in the hottest regions of collapsed SN cores
reveals that muons are not strongly suppressed. However,
it is only recently that muons and concomitant six-species
neutrino transport was implemented in the Garching group’s
PROMETHEUS VERTEX code in a unique effort [1,2]. While
directly after collapse the trapped electron lepton number
provides for large e and νe chemical potentials, the core soon
begins to deleptonize by νe emission and to muonize by ν̄μ
losses. For illustration we show in Fig. 1 the Garching model
SFHo-18.8 at 1 s postbounce (pb), the coldest of the models

of Ref. [3]. In the critical region around 10 km with a typical
temperature of 30MeV, the muon density is around a quarter
that of electrons.
This large muon density invites one to extend the tradi-

tional SN 1987A particle bounds [4–6] to bosons that couple
specifically to muons in violation of flavor universality.
Otherwise more information would be expected from
interactions with first-generation fermions. One case in point
that has been studied in the SN context is a new Z boson
from a gauged Lμ − Lτ number [7]. For very small masses,
such bosons can also engender long-range muonic forces
between neutron stars [8] or carry away energy from binary
pulsars [9].
We here focus on a new muon-philic scalar ϕ (muonic

scalar for short) that is motivated as one explanation for the
observed discrepancy between the measured and predicted
muon magnetic moment [10] that now stands at a 4.2σ
significance [11–14]. The required muonic Yukawa cou-
pling is [15]

gϕ ≃ 0.4 × 10−3; ð1aÞ
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whereas a much larger value makes the discrepancy worse.
A pseudoscalar always makes it worse, implying an upper
bound [16]

ga ≲ 0.95 × 10−3: ð1bÞ

In both cases Yukawa couplings larger than the 10−3 level
are excluded by gμ − 2 and thus marks the largest coupling
worth studying with astrophysical arguments.
Our work is inspired by a recent analysis concerning a

muonic axionlike pseudoscalar [3], but scalars may be more
interesting in that they are actually ruled in rather than ruled
out by gμ − 2 alone. In the SN context, differences arise from
the cross section of the main production process γ þ μ →
μþ a or ϕ that we show explicitly in Fig. 3 below. The gist
is that for the same Yukawa coupling, the pseudoscalar cross
section is always smaller. Deep in the SN core where photon
energies are of the same order as the muon mass, the
reduction is around a factor of 3. In the trapping limit where
decoupling is in the neighborhood of the neutrino-sphere, the

relative factor is ðω=mμÞ2 and thus the pseudoscalar cross
section is relatively suppressed by a factor of around 10. In
both cases we find a gap between the gμ − 2 inspired values
and the SN 1987A cooling argument.
However, these specific results depend on the exponen-

tially decreasing muon abundance at the proto-neutron star
(PNS) surface in our 1D reference models. A very different
picture may arise in more realistic 3D models where the
material in this region can be subject to strong motions,
redistributing the muons.1 In our case this question becomes
moot once we include Primakoff scattering as the main
opacity source.
This crucial effect comes about because actually our main

innovation is to include systematically the generic effective
two-photon interaction. A (pseudo)scalar, even if it couples
exclusively to muons, at one loop inevitably obtains a two-
photon vertex that allows for ϕ–γ Primakoff conversion and
for the decay ϕ → 2γ. Unless this 2γ coupling is fine-tuned
to disappear in a UV complete theory, it dominates our
arguments and especially the 2γ decays provide the most
restrictive SN limits. So we do not consider (pseudo)vectors
because their 2γ decay is forbidden by the Landau-Yang
theorem.
In accordance with the previous literature we normalize

the two-photon couplings Gaγγ and Gϕγγ such that pseudo
(scalars) have the same Primakoff cross section and the same
decay rate. Conversely this means that for a given limit on
Gγγ ¼ Gaγγ ¼ Gϕγγ, notably from the CAST experiment
[17] and the helium-burning lifetime of horizontal-branch
(HB) stars [18–20], translates to a bound on the underlying
gϕ that is a factor of 2=3 less restrictive than on ga as can be
seen in our summary plot Fig. 2. Here and in the following,
the differences between scalars and pseudoscalars are never
dramatic, yet always warrant separate treatments.
The loop-induced two-photon vertex of muonic pseu-

doscalars was also mentioned by Croon et al. in their
discussion of SN limits [7]. However, they assumed an
axial-vector derivative interaction structure of the form
ðga=2mμÞ∂νaμ̄γνγ5μ instead of the pseudoscalar form
−igaaμ̄γ5μ. These two possibilities are often equivalent
[22], but provide different loop factors in the present
situation of virtual muons. For massless pseudoscalars,
the loop contribution vanishes for the derivative structure,
while it is unsuppressed for the pseudoscalar case. Which
form is appropriate depends on the UV completion of the
theory and the possible Nambu-Goldstone nature of the
pseudoscalar. We will always use the pseudoscalar cou-
pling because in this case the radiative decay is not
suppressed and dominates our arguments. However, if
one assumes the opposite one can always fall back on our
“tree-level only” constraints that are explicitly listed, for
example, in our summary Table IV below and that broadly

FIG. 1. Profile of the Garching muonic SN model SFHo-18.8
at tpb ¼ 1 s [3] that we will use as our “cold reference model.”
Top: chemical potentials, temperature, plasma frequency ωp,
and Debye screening scale ks. Bottom: number densities ni,
normalized to n0 ¼ 0.181 fm−3, corresponding to nuclear density
of 3 × 1014 g cm−3.

1We thank Thomas Janka for stressing this point in a private
communication.
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agree with the earlier literature. For scalars there is no
such ambiguity.
For large couplings, on the SN trapping side, the

pseudoscalar opacity in the decoupling region is dominated
by Primakoff scattering on charged particles and comparable
for scalars. As a consequence, the SN 1987A energy-loss
limits are essentially the same for scalars and pseudoscalars
shown in Fig. 2 and not even close to the gμ − 2 inspired
values.
However, the most dramatic consequence of the two-

photon vertex is the radiative decay ϕ; a → 2γ even though it
is strongly phase-space suppressed for low-mass bosons.
However, the HB-star bounds onGγγ pertain up to masses of
around 100 keV, so the SN arguments are anyway interesting
mainly for larger masses. In this case the 2γ decay becomes
so fast that it is a dominating effect and far more important
than Primakoff scattering for most of our arguments.
The effect of decays is particularly dramatic on the trapping

side. If the boson luminosity is comparable to that of
neutrinos, essentially corresponding to the SN 1987A
energy-loss limit, the entire boson energy is dumped into
the surrounding matter of the progenitor star and makes
SN explosions far too energetic.2 Thevisible energy of a core-
collapse SN explosion of 1 − 2 × 1051 erg is less than 1%

of the binding energy of the final neutron star of
ESN ¼ 2–4 × 1053 erg, most of which is normally carried
away by neutrinos. Therefore, the energy carried away by
bosons must be much less than what is allowed by SN 1987A
neutrinos.We find that this argument actually closes thegap to
the gμ − 2 level as shown in Fig. 2 if we demand that bosons
carry less than 1%of the total, but even 10%would be enough
to close the gap. This argument also covers what has been
called the “cosmological triangle” for generic axionlike
particles (ALPs) as can be seen in Fig. 12.
These and the following discussions heavily use the

Garching muonic SN models [3], using their SFHo-18.8
model with an inner T of around 30 MeV as our cold
reference case and LS220-20.0 as our hot one with around
twice the inner T. We derive nominal bounds by post-
processing these models and show them separately for the
hot and cold models, for example in our summary Table IV.
This approach ignores the feedback of the new particles on
SN physics, but probably gives us a good sense of the
relevant parameter range.
These remarks do not necessarily pertain to the Falk-

Schramm argument because to suppress the emission to
0.01Lν means that the bosons derive from a region at
significantly larger radii than the neutrino sphere. Post-
processing an unperturbed model could yield an unreli-
able answer in a region where the atmospheric structure
must depend on boson energy transfer. In this sense we are
least confident of the excluded region “Explosion energy”

FIG. 2. Constraints on the muonic Yukawa coupling ga of pseudoscalars (left panel) and gϕ of scalars (right panel) as a function of
boson mass. We also show the constraint where the muon gμ − 2 discrepancy would get worse (pseudoscalars) or could be explained
(scalars). The shading or double arrows indicate the excluded range, except for the scalar range ruled in by gμ − 2. The SN bounds are
derived in this paper and summarized in Table IVusing both a hot and a cold SN reference model. We here show conservative limits (the
larger number in the free-streaming case and the smaller one in the trapping regime). The HB-star bounds are taken from Ref. [18], the
cosmological Neff constraint from Ref. [21].

2We call this the Falk-Schramm argument because in 1978
these authors used similar reasoning to constrain radiative decays
of neutrinos [23].
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in Fig. 2. On the other hand, the class of subluminous
Type-II Plateau SNe has much smaller explosion energies,
perhaps as low as 1050 erg or less [24–29]. Our reference
models do not necessarily provide good proxies for this
class. Either way, the explosion-energy argument may
deserve a dedicated investigation of energy transfer by
ALPs in this SN region.
Our arguments become much more straightforward on the

feeble-interaction side of the exclusion range where the new
particles stream freely from the SN core once produced. The
boson luminosity turns on slowly after collapse in sync with
the inner core heating up and a significant muon population
building up. So the feedback on SN explosion physics is
minimal.
For SN 1987A, the boson decay photons, not neutrinos,

provide the most sensitive probe. The 100-MeV-range γ rays
from bosons decaying between SN 1987A and Earth would
have been picked up by the Gamma-Ray Spectrometer
(GRS) on board the Solar Maximum Mission (SMM)
satellite that was operational at the time. A long time ago,
these data were used to constrain neutrino radiative decays
[30–32] and very recently ALPs, particles that interact only
by their two-photon vertex [33]. Our case is analogous,
except that here photo production on muons dominates, not
Primakoff production.
This argument relies on the GRS γ-ray signal integrated

over a time window of 223.2 s after the neutrino burst and as
such does not depend on the detailed time structure of the
putative γ-ray signal, only on the total SN energy emitted in
the form of bosons and their typical energies. With this
information, the constraint follows from a simple analytic
expression derived, e.g., in Ref. [32]. The constraint on the
boson coupling strength here requires taking a fourth root
relative to the limiting γ fluence because the coupling
strength enters quadratically both at production and decay,
so these constraints are particularly forgiving of uncertainties
of the assumed SN 1987A model. On the other hand, boson
emission is here indeed a perturbative effect, so in principle
the unperturbed neutrino signal might discriminate between
possible SN 1987A models and make the boson emission
characteristics more specific.
For most masses, however, the boson decay photons from

all past SNe to the diffuse cosmic γ-ray background are yet
more constraining. Recently this approach was used for
ALPs that are emitted from a SN core by different processes
[34]. We investigate the dependence of this argument on
the cosmic core-collapse rate and redshift distribution as well
as the boson emission characteristics of an average SN.
We find that the redshift distribution impacts the constraint
only on the 10% level, so the only relevant information is
the total number of past SNe per comoving volume of
ncc ¼ 0.6–1 × 107 Mpc−3. We thus find that an average SN
is allowed to emit at most 10−4 of the neutron-star binding
energy in the form of radiatively unstable bosons, practically
independent of their exact spectral distribution. In this form

the limit applies if most bosons decay within a Hubble time,
which in our context applies for ma;ϕ ≳ 100 keV. For
smaller masses the constraint deteriorates as can be seen
in Fig. 2, yet continues to dominate the SN 1987A gamma-
ray limit.
The diffuse γ-ray limit is far more constraining than the

one from the explosion energy, so it can be avoided only if
the bosons decay within the progenitor-star radius. By the
same token, the explosion-energy argument cannot be
avoided by decays outside of the progenitor star, so both
arguments can be avoided only by producing fewer bosons.
The main part of our paper is devoted to working out these

arguments in detail and comparing with recent results of other
authors. In Sec. II we discuss the interaction structure, the
two-photon coupling, and production processes for (pseudo)
scalar muonic bosons. In Sec. III we turn to the traditional SN
1987A energy-loss argument, paying particular attention to
the trapping regime to clear up some confusion that has crept
into the recent literature. This is followed in Sec. IV by a
discussion of the Falk-Schramm argument of excessive
energy deposition by decaying particles that would render
SN explosions too energetic. We then turn to the feeble-
interaction side of our exclusion plot and first consider in
Sec. V decay photons from SN 1987A that would have been
picked up by the Gamma-Ray Spectrometer (GRS) on board
the Solar Maximum Mission (SMM) satellite. This discus-
sion is followed in Sec. VI by our most constraining
argument, the contribution of decay photons to the cosmic
diffuse γ-ray background in the sub-100-MeV range from all
past SNe. In Sec. VII we briefly summarize some pertinent
limits from cosmology and colliders. Our arguments are often
very similar to those for generic ALPs, so we summarize our
results in Sec. VIII specifically for this case, facilitating a
direct comparison with the earlier literature. The final Sec. IX
is given over to a discussion and summary of our findings.
Our constraints are summarized in Figs. 2 and 12 and
Table IV.

II. MUONIC BOSON INTERACTIONS

A. Tree-level interaction structure

The starting point for our discussion is the assumption of
scalars ϕ or pseudoscalars a that couple to muons through
the Yukawa operators

Lϕ ⊃ −gϕϕμ̄μ and La ⊃ −igaaμ̄γ5μ: ð2Þ

For completeness sometimes we will also consider the
vector coupling LZ ⊃ gZZμμ̄γ

μμ, with Z being a new
massive vector boson coupled to muons only.
No other tree-level interactions are assumed to exist. For

tree-level processes, the pseudoscalar interaction is often
equivalent to the axial-vector derivative structure [22]
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La ⊃
ga
2mμ

∂νaμ̄γνγ5μ: ð3Þ

We will see, however, that the effective two-photon vertex
through a muon triangle loop is strongly suppressed in the
derivative case. Notice also that in the scalar case there is no
equivalent derivative structure of the form ∂νϕμ̄γνμ because
after a partial integration it is equivalent to a total derivative
of the conserved muon vector current, i.e., such a structure
yields a vanishing matrix element in a scattering process.
In the following we always ignore both the boson mass

and the photon plasma mass, which for the parameters and
conditions of interest give negligible modifications.

B. Photo production

The main boson production process in the inner SN core
where muons abound is photo production of the form
γ þ μ → μþ ϕ. The nonrelativistic cross section for this
“semi-Compton process” is the Thomson cross section

σT ¼ αg2ϕ
3m2

μ
: ð4Þ

It is understood as the cross section of one unpolarized
photon to produce ϕ. The reverse process of ϕ absorption
sports a factor of 2 to count two possible final-state photon
polarizations.3

The usual Thomson cross section for photon scattering,
σT ¼ 8πα2=3m2

μ, arises with gϕ → e, α ¼ e2=4π, and a
factor of 2 for the two final-state polarizations, i.e., the
initial-state polarizations are averaged, the final-state ones
summed as usual.
For pseudoscalars we substitute gϕ → ga and need an

additional factor ðω=mμÞ2 for photon energy ω that arises
from the spin-dependent nature of the low-energy pseudo-
scalar coupling, so the cross section is σTðω=mμÞ2 at low
energies.4

For general kinematics when ω is not small relative to
mμ, the semi-Compton cross section for the production of
(pseudo)scalars and photons is [4,37,38]

σϕ ¼ σT
3

4

�
1 − 3ŝ
2ŝ2

−
16

ðŝ − 1Þ2 þ
ðŝþ 3Þ2
ðŝ − 1Þ3 ln ŝ

�
; ð5aÞ

σa ¼ σT
3

4

�
1 − 3ŝ
2ŝ2

þ ln ŝ
ŝ − 1

�
; ð5bÞ

σγ ¼ σT
3

4

�
16

ðŝ − 1Þ2 þ
ŝþ 1

ŝ2
þ 2ðŝ2 − 6ŝ − 3Þ

ðŝ − 1Þ3 ln ŝ

�
; ð5cÞ

with ŝ≡ s=m2
μ and

ffiffiffi
s

p
the center of mass energy. In Fig. 3

we show these expressions as a function of photon energy
ω in the rest frame of the muon where s ¼ m2

μ þ 2mμω. At
large and small energies the scalar cross section is half the
cross section of the photon case, but for large energies the
asymptotic convergence is very slow. We also notice that
for ω ≫ mμ the pseudoscalar cross section is identical
with the scalar case, whereas for ω ≪ mμ it is suppressed
according to σa ¼ σTðω=mμÞ2 as mentioned earlier.

C. Bremsstrahlung

The bremsstrahlung process μþ p → pþ μþ ϕ is
another potential particle source. The corresponding axion
emission rate for nonrelativistic electrons was calculated
in Ref. [39]. We follow the steps in that paper and note
that in the squared matrix element we need to substitute

Pseudoscalar

--- Scalar

— Vector/2

10 3 10 2 10 1 1 10 10210 2

10 1

1

FIG. 3. Cross section for the muonic Compton process with a
final-state vector (solid), scalar (dashed) or pseudoscalar (dotted).
The vector case requires a factor of 2 for the final-state polar-
izations. The energy ω is considered in the muon rest frame. For
ω≳mμ the scalar and pseudoscalar cross sections quickly
approach each other, while asymptotic agreement with the vector
case requires very large energies.

3This photo-production cross section is the polarization-
averaged cross section of a single photon. The scalar or axion
emission rate from a medium thus involves the number density of
photons summed over both polarizations. The often-cited photo
production rate (for the case of pseudoscalars) was given in
Eq. (2.19) of Ref. [35] with the additional explanation after
Eq. (2.9) that the total rate requires a factor of 2 to count both
photon polarizations. Apparently this proviso was frequently
overlooked, leading to a missing factor of 2, for example, in
Eq. (5.2) of Ref. [7], Eq. (6) of the original version of Ref. [3], and
Eq. (9) and the subsequent inline equations of Ref. [36].

4Notice that this expression applies only for ω=mμ ≪ 1,
whereas in a SN core with T ≳ 30 MeV, a typical ω ≃ 3T is
similar tomμ. The nonrelativistic expansion at such large energies
[3,7] vastly overestimates the cross section as acknowledged in
the updated version of Ref. [3]. In the trapping limit the relevant
conditions are those where the bosons decouple with much
smaller T, so in this case the low-energy expansion is appropriate.
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ω2
a → 2m2

e to go from pseudoscalar to scalar emission.
This factor follows in analogy to the transition between
pseudoscalar and photon emission in free-free, free-
bound and bound-bound transitions that was discussed
in Refs. [35,40]. Ignoring screening effects, we thus find for
the energy-loss rate from μþ p → pþ μþ ϕ

ϵϕ ¼ g2ϕYμYp
nB

mμmp

4α2

3π

ffiffiffi
2

π

r �
T
mμ

�
1=2

¼ g2ϕYμYp
nB
n0

�
T

30 MeV

�
1=2

1.86 × 1038
erg
gs

; ð6Þ

where n0 ¼ 0.181 fm−3 is the baryon density correspond-
ing to 3 × 1014 g=cm3 (nuclear density).5

For our reference conditions, bremsstrahlung is about
an order of magnitude smaller than the Compton rate. In
addition, bremsstrahlung is somewhat suppressed by
screening effects. On the other hand, the nonrelativistic
approximation is not very good in either case, so the exact
ratio is somewhat uncertain. We neglect bremsstrahlung,
but if it were to contribute some amount of additional
emission, our final bounds err in the conservative direction
by neglecting it. In the trapping limit, what matters are
interactions in the neutrino-sphere region where brems-
strahlung for sure is negligible.

D. Two-photon coupling

A (pseudo)scalar that couples to muons according to
Eq. (2) inevitably also has a effective two-photon coupling
through a triangle loop. The effective coupling can be
written in the form

Lϕγγ ¼ GϕγγϕðE2 −B2Þ; ð7aÞ

Laγγ ¼ GaγγaE ·B; ð7bÞ

with the effective couplings

Gϕγγ ¼
2α

3π

gϕ
mμ

BaðxÞ; ð8aÞ

Gaγγ ¼
α

π

ga
mμ

BϕðxÞ: ð8bÞ

The loop factors B depend on x ¼ ma;ϕ=2mμ. Assuming
x < 1 so that the bosons cannot decay into a muon pair, the
loop factors are [42,43]

pseudoscalar :

BaðxÞ ¼
ArcSin2ðxÞ

x2
¼ 1þ x2

3
þOðx4Þ; ð9aÞ

derivative :

BaðxÞ ¼
ArcSin2ðxÞ

x2
− 1 ¼ x2

3
þOðx4Þ; ð9bÞ

scalar :

BϕðxÞ ¼
3

2x4
½x2 − ð1 − x2ÞArcSin2ðxÞ�

¼ 1þ 7x2

30
þOðx4Þ: ð9cÞ

We consider bosons with m≲ 10 MeV so that x2 ¼
ðm=2mμÞ≲ 2 × 10−3. Therefore, the loop factors can be
safely neglected except in the derivative case where the
coupling is strongly suppressed by x2=3≲ 0.7 × 10−3. So,
for pseudoscalars, the two-photon vertex depends on the
assumed interaction structure, i.e., the axial-vector derivative
vs. the pseudoscalar one which are neither identical nor
always equivalent as explained earlier.
For boson decay, in the rest-frame of the decaying

particles and with ma;ϕ ≪ mμ the muon mass is largest
scale. In Primakoff scattering, the external photon energy
can be around mμ in the deep interior where a typical
ω ¼ 3T and T can be as large as 30–50 MeV. While a
possible modification of the low-energy expansion will
not be large, it occurs in the deep interior where the
semi-Compton process dominates. Of course, for the
latter one also needs to avoid the low-energy expan-
sion. In our context, the Primakoff effect dominates in
the decoupling region where the approximation ω ≪
mμ holds.

E. Primakoff process

The two-photon coupling allows, for example, for the
Primakoff conversion between (pseudo)scalars and photons
in external electric or magnetic fields. The way we have
written the interaction structure, the Primakoff amplitude
on a charged particle comes either fromE2 (scalar) orE · B
(pseudoscalar) and thus leads to the same cross section for
the same value of Gγγ which now stands for either Gaγγ

or Gϕγγ.
The Primakoff cross section for γ þ Ze → Zeþ a or ϕ

on a nonrelativistic charged particle with charge Ze,
averaged over photon polarizations, is

σZ ¼ Z2αG2
γγ

2
fs; ð10Þ

where the screening factor is [39]

5The scalar bremsstrahlung emission rate was also calculated
in Ref. [41] and the result was given in terms of a multidimen-
sional phase-space integral over angular coordinates. Evaluating
it numerically for our conditions we find that our result is larger
by a factor that is

ffiffiffi
2

p
within numerical accuracy, but as Ref. [41]

does not document enough details we cannot pinpoint the origin
of the discrepancy.
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fs ¼
1

4

��
1þ k2s

4ω2

�
log

�
1þ 4ω2

k2s

�
− 1

�
: ð11Þ

In the Debye approximation this is

k2s ¼
4παn̂
T

where n̂ ¼
X
j

Z2
jnj ≡ ŶnB; ð12Þ

which defines the effective charge Ŷ per baryon. As we
neglect the boson mass and photon plasma mass, the cross
section diverges logarithmically in the forward direction, an
effect that we control with Debye screening.
In this form the rate was derived for a nonrelativistic and

nondegenerate stellar plasma. For relativistic electrons, the
Primakoff cross section should not be very different, but
electrons are degenerate in all regions of interest in the SN
core. So their contribution both as scattering targets and for
screening is significantly smaller and we neglect them. We
also neglect muons because in those regions where they
abound the Compton process is much more important.
One often thinks of the SN medium to consist primarily

of neutrons and protons, so the main Primakoff targets
would be protons. However, in the neutrino decoupling
region of the muonic SN models there also appear small
nuclear clusters or small nuclei. In Fig. 4 we show the
profiles of charged-particle abundances in our reference
model, where Yj is the number fraction per baryon. The
difference between Ye þ Yμ and Yp highlights the appear-
ance of these structures.
If we had abundance profiles for the individual clusters j of

charge Zj we could simply use their abundances, but what is
explicitly listed are profiles for light and heavy clusters as
well as alpha particles. Notice that what is listed are mass
fractions Xj which are constrained by

P
j Xj ¼ 1. If all

nuclei were alpha particles, we would have 1 ¼ Xp þ Xn þ
Xα and Ŷ ¼ Yp þ 4Xα=4 ¼ Yp þ Xα. For protons and
neutrons, Y and X is the same, so Xα ¼ 1 − Yn − Yp and
finally

Ŷ ¼ 1 − Yn: ð13Þ

In reality, some of the clusters have smaller or larger Z=A
ratios than α particles, so this is an approximation, but
perhaps not worse than neglecting electrons. Another
approximation is to neglect degeneracy effects of the charged
particles that should be small wherever the Primakoff
process is important, but in any case is yet another small
modification of the effective screening scale ks. The benefits
of a more refined treatment are limited because of the overall
uncertainties of the SN arguments.
For our reference model, the screening scale is shown in

the bottom panel of Fig. 1. For energy losses in the deep
interior, relevant for the energy-loss argument in the free-
streaming limit, we need the average Primakoff scattering

rate for a thermal distribution of initial-state photons, and
an additional factor of ω because we actually need the
energy-loss rate. In this case what we call thermal average
is computed as

hfsiT ¼ 15

π4

Z
∞

0

dxfsðx; ks=TÞ
x3

ex − 1
; ð14Þ

where we use ω ¼ xT. We show hfsiT as a blue line in the
bottom panel of Fig. 4.
For our purposes, Primakoff scattering is mostly

important in the trapping case where bosons decouple
in the 16–18 km region where ks ≃ T. To identify the
“axiosphere” we use the Rosseland average of the mean
free path (MFP) as explained in Sec. III B 5 with the
weight function defined in Eq. (37). Notice that hfsiR is
calculated by integrating f−1s over the normalized weight
function and taking the inverse afterward because we need
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FIG. 4. Top: charged-particle abundances in our reference
model shown in Fig. 1. The difference between Ye þ Yμ and
Yp highlights the appearance of light nuclei or nuclear clusters in
the decoupling region. Bottom: average screening factor fs for
Primakoff scattering defined in Eq. (11). The red line is the
Rosseland average, the blue line a thermal average for boson
emission as explained in the text.
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the average MFP, not the average interaction rate. We
show hfsiR as a function of radius as a red line in the
bottom panel of Fig. 4.
Notice that fsðω; ksÞ ¼ fsðx; ks=TÞ depends only on x

and the dimensionless ratio ks=T. The two averages are
fortuitously very similar in the region where ks ≃ T because
of the weak ω dependence and do not change much as
a function of radius. For simple estimates on the 20%
precision level one could use something like fs ¼ 0.8
everywhere, in particular as the overall precision of the
Primakoff cross section is probably not better than this
because of the discussed uncertainties of the chemical
composition, electron contribution, degeneracy effects, and
concomitant screening prescription.

F. Bounds from Primakoff conversion

The two-photon vertex is the main interaction channel to
search for axions, leading to many constraints and ongoing
and future projects [22,44]. One intriguing approach, first
proposed by Sikivie [45], is to consider axion-photon
conversion in large-scale external magnetic fields in anal-
ogy to neutrino flavor oscillations [46]. This method is
particularly powerful for smaller axion masses than we
consider here, so we mention explicitly only the conversion
of axionlike particles emitted by SN 1987A in the galactic
B field, leading to Gaγγ < 5.3 × 10−12 GeV−1 for ma <
4.4 × 10−10 eV [47,48].
The solar axion search by the CAST experiment has

established the constraint [17]

Gaγγ < 0.66 × 10−10 GeV−1 ð95% C:L:Þ ð15Þ

that has become a reference value for this coupling, but
only applies for ma ≲ 0.2 eV. Another longstanding con-
straint derives from the energy loss of horizontal-branch
(HB) stars that would reduce their lifetime. As a result,
fewer HB stars would be observable in globular clusters
relative to other phases of evolution [19]. A recent update
happens to be identical with Eq. (15) at two significant
digits [20], but extends to masses up to some 10 keV,
corresponding to the internal HB-star temperature. For
larger masses, the e−ma=T suppression kicks in only slowly
with increasing mass, but then drops sharply at ma ≳
200 keV [18].6

As reference limits for the Yukawa couplings of our
muonic (pseudo)scalar bosons we translate Eq. (15) accord-
ing to Eq. (15) and find the 95% C.L. limits

gϕ < 4.6 × 10−9; ð16aÞ

ga < 3.1 × 10−9: ð16bÞ

We show them in Fig. 2, where the mass dependence
follows from Ref. [18].

G. Two-photon decay

In addition, for a nonvanishing (pseudo)scalar mass, the
two-photon decay ϕ or a → 2γ is possible and occurs with
the rate

Γγγ ¼
G2

γγm3
ϕ

64π
ð17Þ

for both the scalar and pseudoscalar case. In terms of the
Yukawa couplings, the decay rates are

Γϕγγ ¼
�
2

3

�
2 g2ϕα

2

64π3
m3

ϕ

m2
μ
; and Γaγγ ¼

g2aα2

64π3
m3

a

m2
μ
: ð18Þ

Numerically this is in the scalar case

Γϕγγ ¼ 260 s−1
�

gϕ
0.4 × 10−3

�
2
�

mϕ

MeV

�
3

; ð19Þ

where the reference coupling strength corresponds to the
approximate value required to explain the muon magnetic
moment anomaly. It is allowed by the SN 1987A energy-
loss argument.
The lab-frame decay rate involves a Lorentz factor

mϕ=Eϕ, so the MFP against decay is

λlabϕγγ ¼ 1.2 × 109 cm

�
0.4 × 10−3

gϕ

�
2
�
MeV
mϕ

�
4 Eϕ

10 MeV
:

ð20Þ

The reference energy of Eϕ ¼ 10 MeV is characteristic of
bosons emitted from the neutrino-sphere region. The
smallest mass before entering the HB-star exclusion range
is perhaps 0.2 MeV, implying λlabaγγ ≃ 0.7 × 1012 cm, within
the envelope of the progenitor of SN 1987A.

H. Two-photon coalescence

The reverse process of photon coalescence 2γ → ϕ is
also possible. Of course the in-medium effective photon
mass must be small enough compared with the boson mass.
Lucente et al. [49] studied SN limits on ALPs and found
that photon coalescence as an emission process is negli-
gible compared to Primakoff scattering except for boson
masses beyond a few 10 MeV. As we will restrict our
discussion to boson masses up to 10 MeV we may ignore
this process.

6We use the curve from Fig. 4 of Ref. [18]. However notice that
the SN bound (green region) in that figure which seems to cover
the entire globular-cluster excluded region is incorrect and
actually in contradiction with, e.g., Fig. 16 of Ref. [49] by some
of the same authors. So the globular-cluster argument indeed
covers a range of parameters not excluded by SN arguments.
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III. SN 1987A ENERGY LOSS

A. Free-streaming case

1. Introductory remarks

Shortly after the observation of the SN 1987A neutrino
signal it became clear that the duration of several seconds
and the observed energy is incompatible with excessive
energy loss in hypothetical new forms of radiation such as
axions [50–53]. After the explosion, probably some hun-
dreds of ms after collapse, the evolution of the remaining
proto neutron star (PNS) is deleptonization and cooling on
a diffusion time scale of a few seconds because neutrinos
are trapped [54–56]. In this way one probes the interaction
strength of very feebly interacting particles that escape
freely from the SN core.
From a modern perspective, to derive such constraints in

earnest one should implement the new energy sink in a
state-of-the-art numerical simulation of SN 1987A for a
plausible range of input assumptions (equation of state,
progenitor properties), derive the expected neutrino signal,
and compare it with the data. One could thus derive a
quantitative confidence range for the allowed particle
coupling strength. In practice this has never been fully
done. Shortly after SN 1987A, besides many simple
estimates [57], numerical simulations with axion losses
were performed [58–60], sometimes using the time Δt90%
when 90% of the neutrino signal would have been
registered as a measure of signal duration [60].
One of us later developed a simple criterion to put the

previous work on a common footing: the new energy loss
should not exceed 1019 erg g−1 s−1, or an overall luminosity
of around 3 × 1052 erg s−1, to be calculated at nuclear
density ρ ¼ 3 × 1014 g cm−3 and T ¼ 30 MeV [4,19].
These conditions are meant to represent the PNS somewhat
after the explosion when the cold interior has heated up. The
T profile has a maximum (cf. Fig. 1) that moves inward as
the core deleptonizes, so volume particle emission will reach
full strength only some time after core bounce. This behavior
is also manifest from Fig. 5, where we show a contour plot
for the radial and time evolution of the temperature, baryon
density, and muon abundance for the same SN model.
In contrast, the standard neutrino luminosity is largest at

the beginning when it is partly powered by accretion and
may carry away up to half the full amount during the first
second. Particle emission removes energy from deep inside
the PNS that would otherwise power the late neutrino signal.
So the SN 1987A signal duration is considered the main
observable to constrain energy losses from the PNS interior.
A modern analysis might be more constraining because

contemporary models, especially with muons, tend to be
hotter. Moreover, PNS convection speeds up cooling,
leaving less room for a yet shorter signal.

Ideally, of course, the neutrino signal of the next galactic
SN would become available to obtain a high-statistics
result. This would also overcome the doubts that have been
cast on the SN 1987A particle constraints because the SN
1987A neutron star has not yet clearly shown up [61],
although ALMA radio observations [62] are best explained
as first evidence for a non-pulsar compact remnant heating
the overlying dust layer [63]. Improving particle bounds
would be one of the many benefits of observing the
neutrino signal of the next nearby SN.
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panel), baryon number density normalized to nuclear density
n0 ¼ 0.181 fm−3 (central panel), and muon abundance Yμ for the
SN model SFHo-18.8 [3] that was also used in Fig. 1.
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2. Application to muonic bosons

As a first estimate we use this simple back-of-
the-envelope recipe to constrain bosons b that couple
to muons with Yukawa strength gb. The main emission
process is photo production on muons that at first we
treat as nonrelativistic and nondegenerate. The scale
for the production cross section is set by the Thomson
cross section of Eq. (4). So the energy-loss rate per unit
volume is simply the thermal energy density of photons,
ðπ2=15ÞT4, times the cross section times the muon
number density nμ ¼ YμnB. To obtain the energy loss
per unit mass we divide by the mass density7 ρ ¼ nBmu
so that

ϵb ¼ ξYμσT
π2

15

T4

mu

¼ 1.70 × 1038
erg
g s

ξg2bYμ

�
T

30 MeV

�
4

ð21Þ

where ξ is a fudge factor accounting for corrections to
the cross section.
To estimate the muon density we consider a PNS some-

what after SN explosion when the outer core has deleptonized
and heated. If we neglect the neutrino chemical potentials,
those of electrons and muons are the same. For nuclear
density and an assumed proton fraction of Yp ¼ 0.1 and that
the negative e and μ charges balance the protons implies
μe;μ ≃ 120 MeV and Yμ ≃ Yp=3, i.e., a muon fraction of
Yμ ≃ 0.03. The numerical model of Fig. 1 confirms this
estimate. The criterion ϵb < 1019 erg g−1 s−1 then implies

gb < 1.4 × 10−9=
ffiffiffi
ξ

p
ð22Þ

as a first limit.
However, for T ¼ 30 MeV a typical photon energy of

3T is about the same as the muon mass, so from Fig. 3 we
glean that for scalars the semi-Compton cross section is
around 3 times smaller than the Thomson value, so
ξϕ ≃ 1=3. For vectors, the two final-state polarizations
introduce a factor of 2, so ξZ ≃ 2=3. For pseudoscalars
finally ξa ≃ 1=10, implying the bounds shown in Table I.

3. Using the Garching SN models

To go beyond a back-of-the-envelope estimate we next
calculate the emission rates numerically for the Garching
Group’s muonic SN models [3]. In their core-collapse
supernova archive [64] they provide radial hydrodynamical
and neutrino profiles for different equations of state and

different progenitors at many time shots between core
bounce and 10 s afterwards. We use these models to
calculate the muonic-boson luminosity for each time shot
and in Fig. 6 compare it with the instantaneous neutrino
luminosity. Details about the emission-rate calculation are

FIG. 6. Muonic boson luminosity of the numerical Garching
models [3] compared with their instantaneous Lν as a function of
postbounce time. Luminosities are given for a distant observer.
As in Fig. 1 we use the coldest muonic model SFHo-18.8 (top)
and in addition the hottest one LS220-20.0 (bottom). The shown
boson couplings were taken such that in each case the boson
luminosity equals Lν at 1 s.

TABLE I. Muonic boson upper coupling limit from SN 1987A
energy-loss argument. The simple estimate is from the often-used
argument of Sec. III A 2, whereas the Garching muonic SN
models were used in Sec. III A 3. We show two significant digits
to avoid blurring the differences by rounding errors.

Particle
Coupling Simple Numerical SN Models
½10−9� estimate cold hot

Scalar gϕ 2.4 4.2 1.9
Vector gZ 1.7 2.7 1.2
Pseudoscalar ga 4.4 9.1 3.5

7In SN physics, what is called the mass density ρ is usually
defined as the number density of baryons times the atomic mass
unit mu ¼ 931.494 MeV that is based on the 12C atom. The local
gravitating energy density depends on the local composition and
temperature together with the equation of state.
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given in Sec. III A 4 below as well as redshift corrections to
the emission rate in Sec. III A 5. What is shown in Fig. 6 are
luminosities in the reference frame of a distant observer.
Unsurprisingly, the boson luminosity is initially very

small and only gets larger as the core heats up and muons
become abundant—the emission rate is essentially propor-
tional to YμT4. On the other hand, Lν is largest at the
beginning, mostly powered by accretion and energy from
the outer SN core layers. Therefore, as in the generic
argument of Sec. III A 2, comparing Lϕ with Lν at around
1 s looks reasonable and we adopt this criteria as a nominal
bound. For the case of the coldest model that was used in
the upper panel of Fig. 6, the boson luminosity, calculated
on the basis of the unperturbed model, takes over and
would carry away much of the energy that otherwise would
power late-time neutrino emission.
For pseudoscalars, the revised version of Ref. [3] found

ga < 8.4 × 10−9 based on the same numerical model, very
similar to our bound, although this agreement is somewhat
fortuitous. There should have been a factor of 2 in their
emission rate (see our footnote 3). On the other hand, they
compared with Lν ¼ 3 × 1052 erg s−1 from the generic
argument, whereas the native Lν of the actual model,
ignoring redshift effects, is around 5.7 × 1052 erg s−1,
almost a factor of 2 larger. These factors approximately
cancel and the remaining differences may be due to
different treatments of the cross section.
Next we consider one of the hottest models of Ref. [3]

and specifically use LS220-20.0 which is based on a
different equation of state. The inner temperature is about
a factor of 1.7 larger, so the ϕ emission rate about a factor
of 10 larger. The neutrino luminosity, on the other hand,
is around a factor of 2 larger. Notice that the neutron-
star binding energy liberated in the coldest model is
1.98 × 1053 erg and 3.94 × 1053 erg for the hottest one
(see Table I of Ref. [3]). So the nominal limit should be
about a factor of 5 more restrictive on the luminosity and
a factor of 2–3 on the coupling constant.
However, the time profile of the boson luminosity, shown

in the bottom panel of Fig. 6, is quite different in that it drops
much more quickly than in the earlier case. Actually we have
checked that for the hot model SFHo-20.0 with the same
equation of state as the cold model, the time profile looks
very similar to the latter, except that the boson luminosity
overall is roughly 8 times larger. Therefore, the exact impact
of boson emission on the neutrino signal of SN 1987A
probably would differ significantly between the two hot
models for the same boson coupling constant.
In Table I we compare the nominal limits from the

coldest and hottest Garching models thus obtained with
the ones from our earlier back-of-the-envelope generic
argument. The estimates are somewhere between the two
Garching extremes and thus provide a reasonable magni-
tude. Without a detailed analysis of the neutrino signal in
the historical detectors for different cases, it is not obvious

if the data would clearly distinguish between these models
or if one of them rules new bosons out, the other might
rule them in.
To be specific and conservative, we use the constraints

derived from the coldest numerical SN model in the
summary plot of Fig. 2.

4. Emission rate

To complete this discussion we finally provide some
details about our numerical integration. For the emission
rate we note that at T ≳ 30 MeV the muons (mμ ¼
105.66 MeV) are not strictly nonrelativistic, so one cannot
use the low-energy expansion of the cross section, and recoil
effects are important. No simple approximation is very good
for these conditions, so one should evaluate the boson
production rate from the thermal environment, including
the appropriate photon and muon occupation numbers, by a
numerical evaluation.
However, this leads to a multidimensional numerical

integral that we have found too cumbersome to deal with in
view of the large other uncertainties, e.g., the appropriate
SN 1987A model. Moreover, we have checked that the
main impact comes from the reduced cross section seen in
Fig. 3. Therefore, we have opted to calculate the emission
rate in analogy to Eq. (21), determining the fudge factor by
averaging the cross sections given in Eq. (5) over a thermal
Bose-Einstein distribution of ω.

5. Relativistic corrections

To integrate over the SN core we include redshift
corrections and show the neutrino and boson luminosities
for a distant observer. The Garching SN models include
general-relativistic effects in an approximate way as
described by Rampp and Janka [65] and Case A of Marek
et al. [66]. In practice this means for us that the spatial
coordinates should be interpreted as in flat space, so the
volume integral is performed with flat-space coordinates.
Moreover, the time coordinate is the one of a distant observer
and does not require any transformations.
However, the emitted particles suffer a gravitational

redshift before reaching infinity. In the tabulated models,
this effect is encoded in the “gravitational lapse” that is listed
for every radius and is to be understood as ð1þ zÞ−1, where
z is the redshift. So the particle energy at infinity is “local
energy × lapse.” Moreover, the rate of emission suffers
another redshift factor, so the contribution to the luminosity
at infinity by a given spherical shell in the PNS is the naively
calculated one times ðlapseÞ2 or times ð1þ zÞ−2. Of course,
this is only a 20%–30% correction, but it is trivial to include
when post-processing the numerical models.
Moreover, the physical properties of the medium are given

in Lagrange coordinates and thus co-moving with the
medium, also causing redshift effects. Within the PNS the
radial velocity vr is small, whereas at larger distances it is not
negligible and suffers a discontinuity at the shock-wave

MUONIC BOSON LIMITS: SUPERNOVA REDUX PHYS. REV. D 105, 035022 (2022)

035022-11



radius, in turn causing a discontinuity in the tabulated
LνðrÞ. The Doppler effect causes a redshift or blueshift of
1þ z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − vrÞ=ð1þ vrÞ

p ¼ 1 − vr þOðv2rÞ. Again Lν

is affected by the square of this factor, so in the appropriate
limit of vr ≪ 1 we multiply the tabulated LνðrÞ with 1þ
2vr to interpret Lν in the rest frame of a distant observer.
After both corrections have been applied, LνðrÞ is

constant beyond the decoupling radius of around 18 km,
but somewhat increases at very large distances. The
required time to reach a large distance means that LνðrÞ
for a given time shot reflects earlier neutrino emission. To
be specific and to avoid this time-of-flight effect, we extract
Lν at 400 km, but the exact radius is not important.
The reference model shown in Fig. 1 at 1 s pb has a

neutrino luminosity at infinity of 4.4 × 1052 erg s−1,
whereas the maximum value in local coordinates at
around 16 km is 5.7 in these units, some 30% larger
than the value seen by a distant observer. In the upper
panel of Fig. 6 we show LνðtÞ for this model, including the
redshift corrections. The integral up to the largest avail-
able time is Lν;tot ¼ 1.95 × 1053 erg, in good agreement
with the final mass deficit of 1.98 × 1053 erg of this model
[3]. Therefore, while redshift corrections are not a huge
effect, one needs to include them to obtain consistent
results and cross-checks.

B. Trapping limit

1. Introductory remarks

The main attraction of the SN 1987A energy-loss
argument is that it probes particles that are more feebly
interacting than neutrinos, often providing unique infor-
mation. However, sometimes one may wish to consider
new particles that interact so strongly that they are
trapped and can escape only from their own decoupling
region, in the axion case called the axiosphere in analogy
to the neutrino sphere [50–53]. Typically such particles
will be excluded by other arguments, ranging from
laboratory to cosmological evidence, although we will
see that for muonic bosons there is a sliver of parameter
space on the trapping side where SN arguments are
unique.
Such particles can compete with neutrinos for several

different tasks in SN physics. They can radiatively transfer
energy from deep inside the SN core to the PNS surface in
competition with neutrinos and convection and in this way
speed up PNS cooling. They can carry away some of the
liberated neutron-star binding energy, leaving less for
detectable neutrinos. Even after beginning to stream freely
in their decoupling region, they can deposit some energy
behind the shock wave and contribute to reviving the shock
wave in the delayed explosion scenario. But also the
opposite can be the case: a self-consistent SN model may
no longer have a gain radius within the shock radius beyond
which there is net energy deposition. The new particles could

also show up in neutrino detectors and could have caused
some of the SN 1987A events [67]. Some of these effects
may be more important than others, so it is hard to formulate
a generic argument.
A self-consistent simulation with axions in the trapping

limit revealed that the SN 1987A signal was shortened in
terms of Δt90%, whereas the number of events in the
KamII and IMB detectors remained the same [53]. The
axion energy transfer heats the PNS surface, leading to
larger emitted neutrino energies, and thus to a larger
detection rate.
Another self-consistent study, motivated by nuclear-

physics issues, decreased the effective neutrino cross
section on nucleons, speeding up PNS cooling and thus
decreasing Δt90%, yet increasing the SN 1987A event
numbers by the same heating effect of the PNS surface [68].
Notice that the energy flux from the PNS surface is

largely fixed deeply inside, driven by the gradients of T and
lepton number. Because the surface area is essentially
fixed, the need to radiate a larger flux requires a larger
effective surface T. So the correlation between a reduced
PNS cooling speed and increased observable neutrino event
energies is quite generic.

2. Simple bound from energy transfer

The energy flux carried by a trapped (pseudo)scalar
boson at radius r is Lr ¼ −ðλ=3Þ½dðaT4

rÞ=dr�4πr2 with
a ¼ π2=30 is the thermal energy content of one bosonic
degree of freedom and λ is the MFP. As a simple estimate
we use dT=dr ¼ −T=r with T ¼ 30 MeV, r ¼ 10 km and
L ¼ 3 × 1052 erg=s, all meant to mimic a situation similar
to the earlier energy-loss argument. (Notice that the model
in Fig. 1 shows a nearly constant dT=dr ≃ −4 MeV=km
for r ¼ 8–15 km, which is stratified by convection and
numerically very similar to our estimate.) So the
MFP needed to compete with standard energy transfer
is λ ¼ 45L=8π3rT4 ¼ 11 m.
For our muonic scalar we use λ−1 ¼ ð0.3σTÞYμn0, so

λ ¼ g−2ϕ 6.5 × 10−9 cm, implying gϕ ≳ 2 × 10−6 to avoid
excessive energy transfer. We will see, however, that
avoiding excessive energy loss here provides a far more
restrictive limit because the density of muons quickly drops
toward the PNS surface. Therefore, the bosons may have
rather large couplings to compete with neutrinos in the
decoupling region and then will be irrelevant for energy
transfer deeper inside.

3. Energy loss from the boson sphere

In the trapping limit, our bosons emerge from a region
near the PNS surface whence they escape without being
reabsorbed on their way out, in analogy to the neutrino
sphere. If we picture them being emitted as blackbody
radiation by a spherical surface with radius Rϕ, the
luminosity is given by the Stefan-Boltzmann (SB) law
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Lϕ ¼ 4πR2
ϕ

π2

120
T4ðRϕÞ; ð23Þ

where TðRϕÞ is the SN temperature at radius Rϕ.
To find Lϕ as a function of coupling strength we

determine Rϕ by the requirement that the optical depth
at that radius is τðRϕÞ ¼ 2=3 beyond which the bosons
essentially stream freely. The optical depth is defined as

τðrÞ ¼
Z

∞

r
dr0Γðr0Þ; ð24Þ

where in natural units the interaction rate is the same as the
inverse MFP, Γ ¼ λ−1.
For our constraint we finally seek the coupling strength

such that Lϕ ¼ Lν. In this context we define the Stefan-
Boltzmann radius RSB of a given SN model by

Lν ¼ 4πR2
SB

π2

120
T4ðRSBÞ: ð25Þ

It is defined as the radius where the SB law for one boson
degree of freedom matches this model’s Lν. The SB radius
is a property of a given SN model without reference to any
particular particle-physics assumption. Of course, RSB is
always close to the neutrino-sphere radius Rν.
Our constraint then derives from the requirement that

τðRSBÞ ¼ 2=3, i.e., the coupling strength is such that the
boson-sphere radius Rϕ coincides with the SB radius.

4. Reduced absorption rate

Before applying this method a number of clarifications
are in order. To compute the optical depth we need to
distinguish carefully between different variants of inter-
action rates that apply to our bosons where the MFP is
dominated by absorption (not scattering). The absorption
rate, e.g., by inverse bremsstrahlung, is termed ΓA, whereas
the corresponding spontaneous emission rate is ΓE. In the
Boltzmann collision equation for a given mode of the boson
field with occupation number f that travels along some ray
with spatial coordinate s, these quantities appear as

ð∂t þ ∂sÞf ¼ ΓEð1þ fÞ − ΓAf ¼ ΓE − ðΓA − ΓEÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Γ�
A≡Γ

f: ð26Þ

Here Γ�
A is called the reduced absorption rate, including

stimulated emission in the form of a negative absorption
rate. If the medium is in thermal equilibrium, detailed
balance implies ΓE ¼ e−ω=TΓA so that the reduced absorp-
tion rate is

Γ≡ Γ�
A ¼ ΓAð1 − e−ω=TÞ; ð27Þ

which we use as the absorption rate. The spontaneous
emission rate is then expressed as

ΓE ¼ Γ
eω=T − 1

: ð28Þ

It is Γ, the reduced absorption rate, that appears in the
optical-depth integral of Eq. (24).
In a stationary and homogeneous situation, the lhs of

Eq. (26) vanishes and the equation is solved by a thermal
Bose-Einstein distribution feq ¼ ðeω=T − 1Þ−1. So we may
write this equation instead for the deviation from equilib-
rium Δf ¼ f − feq and then reads

ð∂t þ ∂sÞΔf ¼ −ΓΔf: ð29Þ

So it is the reduced absorption rate Γ which damps the
deviation of f from equilibrium, explaining its central
importance for radiative transfer.
For our case of muonic bosons, the situation sim-

plifies because we only consider the absorption on either
muons or the Primakoff conversion on charged particles
which are both of the type ϕþ X → X þ γ. Therefore,
ΓA ¼ ΓSð1þ fγÞ, where ΓS ¼ σnX and fγ a boson stimu-
lation factor for the final-state photon in the thermal
environment.8 If the targets do not recoil much, the photon
energy is nearly the same as that of the boson, so fγ ¼
1=ðeω=T − 1Þ and 1þ fγ ¼ 1=ð1 − e−ω=TÞ. So overall one
finds

Γ ¼ Γ�
A ¼ ΓS; ð30Þ

i.e., in our case the reduced absorption rate fortuitously is
simply the naive “cross section × target density.”9

5. Spectral average

In our cases of interest the reduced opacity barely
depends on boson energy ω, but in general this spectral
dependence could be pronounced. In differential form, the
SB boson luminosity is

dLϕ

dω
¼ 4πR2

ω
1

4

4πω3

ð2πÞ3
1

eω=TðRωÞ − 1
; ð31Þ

where the factor 1=4 includes one factor 1=2 to count only
the outgoing modes of a blackbody distribution, another
factor 1=2 for the average velocity of the outgoing modes
because we are determining a flux. The final factors include
the boson phase space and Bose-Einstein occupation

8Here the cross section σ is for the boson in the initial state and
includes a factor of 2 for the final-state photon polarizations.
The cross sections listed in Eq. (5), on the other hand, are for
photon scattering and thus averaged over the initial-state photon
polarizations.

9In some of the recent literature on muonic bosons [7,69] the
optical depth was based on the unreduced absorption rate. On the
other hand, in the updated version of Ref. [3] and in Ref. [49]
dedicated to ALPs the reduced opacity was used.
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number. Here Rω is the radius where the ω-dependent
optical depth is 2=3. The critical coupling strength would
be found by choosing the coupling strength such that the
spectral integral matches Lν.
Instead it may be more practical to use an average

opacity and apply the SB argument in integral form. One
approach is to use the Rosseland mean opacity. It is based
on the diffusion limit where one boson degree of freedom at
some radius r carries an energy flux given by

1

4πr2
dLϕ

dω
¼ −

λω
3
∇Bω; ð32Þ

where for a massless boson the thermal energy density at
energy ω is

Bω ¼ 4π

ð2πÞ3
ω3

eω=T − 1
; ð33Þ

implying

∇Bω ¼ 1

2π2
eω=Tω4=T

ðeω=T − 1Þ2
∇T
T

: ð34Þ

Here ð∇TÞ=T ¼ ∇ logT is the inverse length scale of
temperature decrease; the diffusion approximation is jus-
tified when this length scale is large compared with λ.
For purely absorptive boson interactions as in our case,

the MFP λω ¼ Γ−1
ω is based on the reduced absorption rate.

If it does not depend on ω, explicit integration yields

1

4πr2
Lϕ ¼ −

λ

3

2π2T4

15

∇T
T

¼ −
λ

3
∇ðaT4Þ ð35Þ

where a ¼ π2=30 is the radiation constant for a single
boson degree of freedom.
If the reduced absorption rate does depend on ω,

comparing Eq. (32) with Eq. (35), the integrated flux
can be written in the form

1

4πr2
Lϕ ¼ −

hλi
3

∇ðaT4Þ ð36Þ

with the Rosseland average of the MFP

hλi ¼ hΓ−1i ¼
R∞
0 dωΓ−1

ω dBω=dTR
∞
0 dωdBω=dT

¼ 15

4π4

Z
∞

0

dx
1

ΓðxTÞ
x4ex

ðex − 1Þ2 ; ð37Þ

where we have used ω ¼ xT. The key point is that it is the
MFP λ ¼ Γ−1, not the interaction rate Γ, that is averaged
with a weight function derived from the black-body energy
distribution.

While the Rosseland average is the appropriate quantity
to compute the boson radiative energy flux in the diffusion
limit deep inside the PNS, it is less obvious how good it
quantifies the energy-dependent decoupling process in the
spirit of the integral SB approach.

6. Application to muonic bosons

We will see that in our context the spectral dependence
of the decoupling process is weak so that is most prac-
tical to apply the SB argument in integral form, using
the Rosseland average for the residual spectral opacity
dependence.
For scalars, we write the tree-level scattering rate on

muons, ϕþ μ → μþ γ, in the form

Γϕ;tree ¼ Ŷϕ;tree
μ nB2σT; ð38Þ

where σT is the Thomson cross section given in Eq. (4),
the factor of 2 counts two final-state photon polarizations,
and nB is the baryon density. For nonrelativistic and non-
degenerate muons, Ŷϕ;tree

μ is the same as the muon abun-
dance Yμ. Otherwise it includes all corrections coming from
muon degeneracy and the deviation of the true cross section
σϕ given in Eq. (5) from the Thomson value. Because σϕ
depends on ω, the Rosseland average needs to be taken.
So finally

Ŷϕ;tree
μ ¼

�
σϕ
σT

	
Yμ ð39Þ

is what we call the effective tree-level muon density for
scalars.
The loop-induced two-photon coupling provides an

additional source of opacity that is irrelevant in the deep
interior, but becomes dominant in the decoupling region.
The corresponding Primakoff scattering rate is

Γϕ;loop ¼ αG2
ϕγγhfsið1 − YnÞnB ð40aÞ

¼ 2α2

3π2
hfsið1 − YnÞnB2σT ð40bÞ

where we have also included a factor of 2 for final-state
photon polarizations relative to Eq. (10), hfsi is the
Rosseland average of the screening factor of Eq. (11),
and we have used Eq. (8a) for the scalar-photon coupling.
Comparing this expression with the tree-level contribution
of Eq. (38) we may define an effective muon density
contributed by Primakoff scattering of

Ŷϕ;loop
μ ¼ 2α2

3π2
hfsið1 − YnÞ: ð41Þ

While the numerical factor 2α2=3π2 ¼ 3.60 × 10−6 is very
small, the loop contribution still dominates in the
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decoupling region. For our reference SN model we show
the radial profile of Ŷϕ;tree

μ and Ŷϕ;loop
μ in Fig. 7; they cross

at r ¼ 17.71 km.
The Stefan-Boltzmann radius of this model, i.e., the

radius where the scalar optical depth should be 2=3 so that
the scalar luminosity matches Lν, is RSB ¼ 16.97 km, and
the corresponding temperature T ¼ 7.43 MeV. We con-
clude that tree-level scattering somewhat dominates, but
both sources of opacity are important.
For pseudoscalars, we normalize the rates in the same

way to σT, so the effective tree-level muon density is

Ŷa;tree
μ ¼

�
σa
σT

	
Yμ: ð42Þ

We recall that for ω ≪ mμ we have σa=σT ¼ ω2=m2
μ, so

here the effective muon density never corresponds to the
naive one. The relationship between the two-photon and
Yukawa coupling is now given by Eq. (8), implying a larger
loop-induced contribution of

Ŷa;loop
μ ¼

�
3

2

�
2

Ŷϕ;loop
μ : ð43Þ

So for pseudoscalars, Ŷa;tree
μ is smaller, Ŷa;loop

μ larger relative
to scalars and the radius of equality is now deeper inside at
r ¼ 16.50 km as seen in Fig. 7. As this radius is smaller
than RSB, the dominant opacity source is Primakoff
scattering so that the case of pseudoscalars is practically
identical to ALPs that interact only by their two-photon
coupling.

With these ingredients we finally determine the Yukawa
couplings such that the optical depth at the SB radius is 2=3
and find

gϕ > 0.84 × 10−4 ð44aÞ

ga > 0.96 × 10−4 ð44bÞ

as our nominal lower bounds from SN 1987A energy loss
that we show in our summary plot Fig. 2. If we use the
hottest SN model LS220-20.0 instead, these limits are gϕ >
0.56 × 10−4 and ga > 1.2 × 10−4.
We now use the limiting coupling strength thus identified

at 1 s postbounce and compute the SB luminosity at τ ¼
2=3 for all time shots and compare the SB luminosity with
Lν in Fig. 8 for the cold and hot SN models. In contrast to
the free-streaming case, the boson luminosity here essen-
tially tracks Lν because like Lν it is generated in the PNS
surface region and thus governed by similar physical
conditions. The idea that one should derive a limit by a

FIG. 7. Effective tree-level and loop-induced muon abundan-
ces in our cold reference model for scalars and pseudoscalars
as indicated and defined in the text. The dashed red line
is the physical muon abundance Yμ. The Stefan-Boltzmann
radius of this model is RSB ¼ 16.97 km, where the temperature
is T ¼ 7.43 MeV.

FIG. 8. Muonic boson luminosity in the trapping limit of the
numerical Garching models [3] compared with their instanta-
neous neutrino luminosity as a function of postbounce time. As
in Fig. 6 we use the coldest muonic model SFHo-18.8 (top
panel) and in addition the hottest one LS220-20.0 (bottom).
The boson couplings were chosen such that the boson lumi-
nosity equals Lν at 1 s.
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comparison at 1 s postbounce that was advanced as a
“modified luminosity constraint” is not particularly moti-
vated, but on the other hand, it makes little difference at
which exact time one compares the luminosities.
One can perform the same exercise without the loop-

induced Primakoff contribution and instead use only the
tree-level muon interaction. In this case we find gϕ >
1.1 × 10−4 and ga > 6.2 × 10−4, significantly more restric-
tive especially for pseudoscalars where the scattering cross
section on muons is reduced by the factor ω2=m2

μ as
discussed earlier. However, these bounds do not quite
reach the 10−3 level and do not exclude the gμ − 2

motivated value. Moreover, one would be hard-pressed
to take these nominal bounds very seriously because they
depend on the exponentially decreasing muon abundance in
the decoupling region. The muon distribution in this region
would be strongly affected by 3D effects in a nonspheri-
cally symmetric SN simulation. Therefore, a 1D muonic
model may be a poor proxy for this situation.
Including the loop effect, the limiting coupling strength

is essentially set by the Primakoff interaction channel, so
the trapping case of our bosons is practically identical with
that of generic ALPs that interact only with photons. So we
now ignore the tree-level effect and again use the 1 s time
shot of the cold model. We thus find

Gγγ > 2.1 × 10−6 GeV−1; ð45Þ

where Gγγ stands for either Gϕγγ or Gaγγ. For the hot model
we find Gγγ > 3.0 × 10−6 GeV−1.
Based on the SB argument, Lucente et al. [49] found the

corresponding bound Gγγ > 7.7 × 10−6 GeV−1, a factor of
3.7 more restrictive. This is a significant difference because
it involves taking a square root of the limiting flux. Besides
a different SN model, sources of difference include: (i) The
Primakoff opacity that in Ref. [49] was based on the proton
abundance, ignoring small nuclear clusters. (ii) Integrating
to τ ¼ 2=3 at a radius that was identified as the neutrino
sphere on the basis of assumed neutrino opacities.10

It is plausible to expect that the SN 1987A neutrino
signal will be strongly affected when the boson luminosity
is comparable to Lν, but of course the exact modification
has not been shown by a detailed analysis. The latter would
require implementing boson energy transfer and losses self-
consistently in a SN simulation, a formidable task probably
not much less demanding than neutrino transport itself.

7. Volume emission vs. SB approximation

In the recent literature on SN particle bounds, the SB
procedure was critiqued and instead a “modified luminosity

constraint” was formulated for the trapping limit [6,69] and
followed in subsequent papers [49]. It was correctly noted
that physically the boson emission was not blackbody
emission from a hypothetical axiosphere (or the equivalent
for other bosons), but from an extended volume in the outer
regions of the star and it was asserted that the luminosity
thus determined exceeded the SB estimate.
For an unperturbed SN background model, the differ-

ential boson luminosity for any degree of trapping is

dLϕ

dω
¼

Z
∞

0

dr4πr2
4πω3

ð2πÞ3 ΓEðω; rÞhe−τðω;rÞi; ð46Þ

where the optical depth τðω; rÞ is based on the reduced
absorption rate Γ and then ΓE is given by Eq. (28). The
directional average of the absorption factor is

he−τðω;rÞi ¼ 1

2

Z þ1

−1
dμe−

R
∞
0

dsΓðω;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þs2þ2rsμ

p
Þ; ð47Þ

where μ ¼ cos β and β is the angle between the outward
radial direction and a given ray of propagation along which
ds is integrated.
So β ¼ 0 corresponds to the radial direction out of the

star and thus to the smallest optical depth τ0ðrÞ for a boson
emitted in any direction at radius r. The quantity τ0ðrÞ is
called τradial;outðrÞ in Eq. (B.1) of Ref. [69] or simply τðω; rÞ
in Eq. (7) of Ref. [3]. So if one uses e−τ0 instead of he−τi as
in Ref. [3] one overestimates the luminosity in the trapping
regime by a factor of a few. In Eq. (B.4) of Ref. [69], and
propagating into Eq. (4.3) of Ref. [49], a geometrical
correction to e−τ0 was applied where typically τ would
actually become smaller than τ0, thus implying less damp-
ing than the minimal possible amount. So the boson
luminosity must have been overestimated even more.
It is true, however, that Lϕ for any degree of trapping is

given by the volume integral Eq. (46), so when postpro-
cessing a numerical SN model, one can evaluate this
integral without reference to the SB argument and compare
Lν with Lϕ as a function of coupling strength.
We have investigated the comparison between the

boson luminosity thus obtained with the one provided
by the SB approach and find them to agree very well if the
reduced absorption rate does not depend on ω. One key
element is that in the decoupling region of the SN core the
density falls much more quickly as a function of radius
than the temperature. If the absorption rate is proportional
to the density, as in the Primakoff case, and if we express
the temperature profile as a function of optical depth, then
typically T ∝ τp with the power-law index p ≃ 1=4.
(Notice that the optical depth as a radial coordinate
increases from outside in.)
The SB picture does not imply that the emitted bosons

derive from a sharp geometric radius. They are emitted
from an extended region as shown, for example, in Fig. 19

10We thank the authors for explaining this procedure in a
private communication. It is somewhat different from what is
described in their Ref. [49].
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of Ref. [49], but this is not in contradiction with the SB
approach which does not imply that the emission region is a
quasi-delta function of geometric radius.
Making these arguments more precise is a somewhat

extended exercise in the physics of radiative transfer,
especially when spherical geometry is included as in
Eq. (46). Actually it is somewhat magical how the volume
integration of Eq. (46) in the trapping regime turns itself
into a quasisurface emission with all the right flux factors,
although physically this has to be the case, of course.
When the reduced absorption rate depends strongly on ω
it is not clear if the Rosseland mean gives a very good
approximate description, a question that we have not yet
investigated. We defer these discussion to a dedicated
future paper.

IV. EXPLOSION ENERGY

Using the SN 1987A neutrino signal as a constraining
argument is motivated by thinking of the boson losses as an
invisible energy-loss channel. However, the loop-induced
two-photon decay allows our muonic bosons to strongly
show up in electromagnetic radiation and, depending on
parameters, can light up the material of the SN progenitor,
in the case of SN 1987A show up in the Gamma-Ray
Spectrometer on board the Solar Maximum Mission, or
contribute to the cosmic diffuse gamma-ray background
from all past SNe.
We have seen that in the trapping limit, muonic boson

decoupling is dominated by Primakoff scattering because
of the exponential decline of the muon density near the
PNS surface. Therefore, we now deal with generic scalar or
pseudoscalar ALPs in the Gγγ–m parameter space. The SN
1987A energy-loss argument implies the lower limit Gγγ ≳
2 × 10−6 GeV−1 given in Eq. (45).
From the two-photon decay rate of Eq. (17) follows,

after including the Lorentz factor, a MFP against radiative
decay of

λa→2γ ¼
64π

G2
γγ

E
m4

¼ 4.0 × 1010 cm

×

�
10−6 GeV−1

Gγγ

�
2
�
1 MeV

m

�
4
�

E
10 MeV

�
: ð48Þ

This is very much less than the Hubble scale, so the decay
photons would show up in the cosmic diffuse γ-ray
background. We will see in Sec. VI that at most about
10−4 of an average SN energy may appear in this form, so
one would conclude that Gγγ must be so large, the ALPs
so strongly trapped, that the overall energy they carry
remains below this limit.
This argument, however, does not necessarily apply

because the decay can be so fast that it happens within the
surrounding matter of the progenitor star. The smallest

relevant mass beyond the HB-star limit is around
0.2 MeV, extending λa→2γ to 2.5 × 1013 cm. Typical
core-collapse progenitors are red supergiants and as such
may have radii up to some 1000R⊙ ¼ 6 × 1013 cm,
corresponding, e.g., to the radius of the red supergiant
Betelgeuze. The progenitor of SN 1987A was the blue
supergiant Sanduleak − 69°202 with a somewhat smaller
radius of ð3� 1Þ × 1012 cm [70].
So for boson masses so small that they are covered by the

HB-star argument, the decays can happen beyond the
progenitor-star radius and are thus also constrained by
diffuse cosmic γ rays. Therefore, there is little benefit in
making the SN constraint more precise in this mass range.
For larger masses, where the HB-star argument no longer
applies, the cosmic diffuse γ rays also cease to apply and we
need to consider the energy deposition in the progenitor star
as the only relevant argument.
The outer layers of a red supergiant have a density of the

order of 10−8 g cm−3, corresponding to an electron density
of around 6 × 1015 cm−3. For 10 MeV γ rays, the Compton
cross section is around 5 × 10−26 cm2, leading to a MFP
against Compton scattering of around 3 × 109 cm which is
much smaller than the radius. Therefore, the entire energy
emitted in ALPs is dumped into the progenitor star and thus
becomes visible in the form of SN explosion energy and
luminosity.
The idea of using the progenitor matter surrounding the

collapsing core as a calorimeter for decay photons was
first advocated by Falk and Schramm [23] in 1978 in the
context of putative radiative neutrino decays, years before
the now-standard delayed explosion paradigm was devel-
oped. The neutron-star binding energy released in a core
collapse is 2–4 × 1053 erg, whereas a typical explosion
energy is some 1051 erg, so less than 1% of the total
energy release shows up in the explosion (see also
Ref. [71] for a recent application of this criterion to the
dark photon case).
The ALP energy deposition can be reduced to this limit

only by a smaller flux through a larger Gγγ, causing the
decays to be yet faster and even more conservatively within
the progenitor star. To reduce the boson energy release to a
level below 1% of ESN we require

Gγγ > 5.3ð4.8Þ × 10−5 GeV−1 ð49Þ

based on the SB flux calculated on the unperturbed
reference cold (hot) model. The corresponding Yukawa
couplings are

gϕ > 3.6ð3.3Þ × 10−3 ð50aÞ

ga > 2.4ð2.2Þ × 10−3 ð50bÞ
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shown in our summary plot Fig. 2. For the scalar case, this
bound excludes the gμ − 2 explanation in that it is an order
of magnitude more restrictive than what is the required
value of Eq. (1).
These values were actually determined calculating the

radius at which the SB emission matches 1% of Lν at
the reference time of one second, and then imposing the
optical depth to be 2=3. The SB radius in the cold (hot)
model is 42.1 (34.2) km, far beyond the neutrino sphere.
This is also the reason why the bounds from the cold and
the hot models are basically the same, as the two profiles
are significantly different only in the inner cores. We have
verified that this procedure is not sensitive to the time at
which the luminosity is calculated. This matters because
the Falk-Schramm argument refers to the time-integrated
energy deposition, not the instantaneous luminosity.
If we repeat this exercise for a less stringent requirement of

a 10% energy deposition, the SB radius for the cold (hot)
model is at 21.4 (19.6) km, closer to the neutrino sphere. The
corresponding nominal bounds on the Yukawa couplings are
gϕ > 0.81ð0.75Þ × 10−3 and ga > 0.54ð0.51Þ × 10−3, still
excluding the scalar gμ − 2 explanation.
However, our nominal “1% criterion” of a typical

neutron star binding energy is very conservative because
SN explosion energies can be much smaller than the
canonical 1051 erg. The class of subluminous type II
plateau SNe, besides having small Ni masses, also have
small explosion energies even below 1050 erg [24–26].
Reconstruction of the explosion energy of SN 1054
that has led to the Crab Nebula and Pulsar reveals a
value around 1050 erg or less [27,28]. Some or all of such
low-energy explosions could correspond to the lowest-
mass progenitors that evolve as electron-capture SNe
[29]. So the most restrictive Falk-Schramm constraints
will arise from core collapses with the lowest-energy
explosions.
On the other hand, our treatment is based on calculat-

ing the boson losses from specific unperturbed numerical
models. To take advantage of the lowest observed
explosion energies one should consider appropriate SN
models. More importantly, the bosons themselves will be
the dominant agents of energy transfer in the region
between the neutrino and boson sphere, so one may not
necessarily assume one can compute the boson luminos-
ity reliably from post processing an unperturbed model.
Conceivably one could develop an approximate model of
this region without solving the entire SN evolution self-
consistently, but this is a project for future research.
However, given the small amount of energy transfer to

the progenitor-star matter that is enough to violate the
explosion-energy constraint, it looks very hard to hide a
scalar with the required coupling strength to explain the
muon magnetic-moment anomaly.

V. DECAY PHOTONS FROM SN 1987A

A. SMM observations

Photons from putative radiative decays of neutrinos or
new particles emitted by SN 1987A would have been
picked up by the Gamma-Ray Spectrometer (GRS) on
board the Solar Maximum Mission (SMM) satellite that
operated 02/1980–12/1989. The GRS consisted of seven
NaI detectors surrounded on the sides by a CsI annulus and
at the back by a CsI detector plate [72]. Because the GRS
was observing the Sun, γ-rays associated with the SN
1987A neutrino burst would have hit almost exactly from
the side and first had to traverse about 2.5 g cm2 of
spacecraft aluminum and 11.45 g cm2 of CsI shielding,
effects that are small but were included to calculate the
effective detector areas [31,32].
Neutrinos with up to 10 eV-range masses would not have

strongly dispersed the roughly 10 s SN 1987A burst and the
same applies to the hypothetical burst of decay photons. To
constrain radiative decays, Chupp et al. [31] have analysed
the three energy channels shown in Table II for 10 s after
the arrival of the first IMB neutrino at UT 7∶35∶41.37 on
23 February 1987 where no excess counts were found,
leading to the fluence limits shown in Table II. One key
element of this analysis was to construct and verify a time-
dependent background model because for a satellite in orbit
the background rate is not constant. For the spectrum of
decay photons it was assumed that it is flat in the lowest
channel and that it follows E−2

γ for higher-energies.
If SN 1987A (distance 51.4 kpc) emitted 1 × 1053 erg in

one species of massive neutrinos (ν plus ν̄) with an average
energy of 15 MeV, the fluence at Earth was around
1.3 × 1010 cm−2, so the SMM γ limits imply that less than
some 10−10 of them should have decayed on their way
to Earth.
While such limits may look impressive at first, what one

is really constraining is the underlying effective transition
dipole moment μν and so the decay scales as μ2νm3

ν while the
relativistic Lorentz factor provides another factormν=Eν, so
we are punished with an m4

ν phase-space factor. A similar
remark applies to ALPs where the decay rate scales as
G2

aγγm3
a and in both cases theoretical models for the

effective photon coupling often introduce yet more powers

TABLE II. GRS 3σ upper fluence limits for the two indicated
time intervals after the arrival of the first SN 1987A neutrino.

Channel
Energy band Gamma fluence limits [cm−2]

[MeV] 10 s [31] 223.2 s [32]

1 4.1–6.4 0.9 6.11
2 10–25 0.4 1.48
3 25–100 0.6 1.84
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of the mass. Therefore, typically much more information is
gained from looking at processes such as the plasmon
decay γpl → νν̄ in stars [73] or the coherent Primakoff
conversion of very low-mass ALPs in astrophysical
B-fields (see Refs. [48,74] for recent discussions and
references to the earlier literature).
Motivated by the option of MeV-mass τ neutrinos, still a

distinct possibility 30 years ago, Oberauer et al. [32] in
1993 extended this discussion to higher masses. In this case
time-of-flight dispersion extends the hypothetical γ signal
to a much longer time than the original burst of low-mass
neutrinos. Therefore, these authors considered the signal up
to 232.2 s, after which the GRS went into a calibration
mode for 10 min. More data are available later until the
satellite passed through the South Atlantic radiation
anomaly and the instruments were switched off. The later
data was not used because it would have required a
dedicated background study. The fluence limits for the
232.2 s interval are shown in Table II.

B. Gamma signal from massive-particle decays

To predict the γ burst from decaying particles with
masses above a few tens of eV, several new effects need to
be included. The first decays happen directly at the source,
so the first photons arrive contemporaneously with the
first (massless) neutrinos, but the signal is stretched
because, strictly speaking, the decays never stop, even
when the massive neutrinos have passed the Earth. Of
course, the first photons really come from decays outside
of the progenitor star, not immediately from the PNS
surface, so in this sense there is a brief delay for the onset
of the signal. Moreover, the laboratory-frame photon
energies are the boosted rest-frame energies and thus
depend on the rest-frame emission angle. The received
photons come from a small angle away from the line of
sight, depending on emission angle, so that the trajectory
of the parent neutrino and decay photon trace out a
triangle, implying a larger time of flight for a larger
emission angle. So for a fixed rest-frame energy of
emission, the length of the photon burst is larger for
smaller received energies. Taking all of these effects into
account, Oberauer et al. [32] derived a general expression
for the time-energy structure of the expected signal. Then
several simplifications were made: (i) The neutrino burst
of a few seconds is treated as instantaneous emission and
so we only need the fluence spectrum of parent particles
ΦaðEaÞ at Earth (units cm−2 MeV−1), i.e., the time-
integrated flux passing the Earth if there were no decays.
(ii) The short period between leaving the PNS and passing
the progenitor surface is ignored, so the signal onset is a
step function at the time of the first massless neutrino.
(iii) Photons arriving within the 232.2 s interval come
from a spatial region around the source which is much
smaller than our distance to SN 1987A. (iv) We use
isotropic rest-frame emission (in Ref. [32] the neutrino

Majorana case), but also appropriate for (pseudo)scalar
bosons. (v) We include a factor of 2 for two photons per
decay. (vi) The parent particle is taken to be very
relativistic so that the range of lab-frame photon energies
is a box spectrum on the interval 0–Ea if Ea is the lab-
frame parent energy. In this case the expected γ-ray flux
spectrum according to Eq. (18) of [32] is, later also
confirmed, e.g., in Eq. (5) of Ref. [75],

dFγ

dEγdt
¼ 2

2Eγ

maτa
e−2Eγt=maτa

Z
∞

Eγ

dEa
ΦaðEaÞ
Ea

; ð51Þ

where τa is the rest-frame boson lifetime. In practice it will
be so long that we can neglect the exponential. In this
case, the time structure is flat, so the hypothetical signal
should show up as a sudden upward jump of the GRS
counting rate at the time of the neutrino burst.
To check the key assumptions explicitly, we recall that

the time-of-flight difference to travel a distance L between
a massless particle and one with mass ma is

Δt ¼ m2
a

2E2
a
L: ð52Þ

With L ¼ 3 × 1012 cm for the radius of the SN 1987A
progenitor and with our most extreme mass ma ¼ 10 MeV
and Ea ¼ 100 MeV as a typical boson energy, one finds
Δt ¼ 0.5 s. So the envelope absorption at the source cuts
off only a negligible period at the signal onset.
Conversely we may ask where those photons originate

that we see at the end of the observation period of 223.2 s.
Taking now our smallest mass of interest, ma ¼ 0.1 MeV,
with Δt ¼ 223.2 s we find L ¼ 14 yr to be compared with
the distance to SN 1987A of 160,000 yr. So indeed the
detectable decays would happen within a very small
angular range around the direction of the source.

C. ALP decays

Recently the SMM data were used to constrain radiative
ALP decays, i.e., pseudoscalars that are emitted from the
SN core by their photon coupling alone [33]. These authors
considered all of the effects leading to Eq. (51), but being
unaware of Ref. [32] they derived the detection spectrum
by a Monte Carlo simulation instead of an analytical
integration. Therefore, we here briefly reconsider this case
as a mutual test of consistency.
From their Fig. 8, the lower edge of the excluded region

corresponds to

Gaγγ < 1.75 × 10−11 GeV−1

ffiffiffiffiffiffiffiffiffiffi
MeV
ma

s
; ð53Þ

where the scaling with mass is stated in their Eq. (19) but
otherwise follows from their numerical analysis.
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The fluence spectrum ΦaðEaÞ was obtained from the
time integration of a 18.0 M⊙ SN model of the Wroclaw
group. The same model was previously used to constrain
Gaγγ from the galactic B-field conversion of very low-mass
ALPs [48], where many details of the SN model are
documented. The analytic representation for ΦaðEaÞ pro-
vided in Ref. [33] is an excellent match to the numerical
result as shown in their Fig. 3 and corresponds to a total
number of emitted ALPs of Na ¼ 5.26 × 1053G2

10 where
G10 ¼ Gaγγ=10−10 GeV−1. The average axion energy is
hEai ¼ 102.0 MeV, in agreement with typical interior
temperatures of around 30–35 MeV.
Inserting their analytic ΦaðEaÞ into Eq. (51), ignoring

the exponential, and demanding that multiplied with
223.2 s the γ-fluence in Channel 3 obeys the 3σ limit
given in Table II of 1.84 cm−2, we find

Gaγγ < 1.53 × 10−11 GeV−1

ffiffiffiffiffiffiffiffiffiffi
MeV
ma

s
; ð54Þ

similar to Eq. (53). However, the limit on Gaγγ involves
taking the fourth root. So in terms of the predicted photon
fluence, our bound is a factor 1.7 more restrictive, i.e., we
have a larger photon fluence by this factor. Actually they
used a slightly more restrictive fluence limit of 1.78 cm−2

instead of our 1.84 cm−2, making the discrepancy slightly
worse. We have carefully checked the derivation of
Eq. (51) but could not find any extraneous factor of 2
that might have crept in. Alternatively, a small error may
have sneaked into the Monte Carlo implementation of
Ref. [33].11

For comparison we may perform the same analysis for
our cold reference model that has similar interior temper-
atures of around 30 MeV. We find Na ¼ 1.73 × 1053G2

10

with hEai ¼ 89.9 MeV, providing

Gaγγ < 2.0 × 10−11 GeV−1

ffiffiffiffiffiffiffiffiffiffi
MeV
ma

s
: ð55Þ

For a similar interior T our model emits a factor of 3 fewer
axions, a difference that follows from the time period of
emission. The average time of ALP emission in our model
is htei ≃ 2 s, whereas in their model it is 6 s. The long time
it takes for their model to cool can also be seen, e.g., in
Fig. 1 of Ref. [48]. Conversely, the short time scale of our
model is probably explained by the role of PNS convection
in the muonic Garching models.
Finally the same exercise for our hot model provides

Na ¼ 1.28 × 1054G2
10 with hEai ¼ 136.8 MeV and almost

the same average time of emission of htei ≃ 2 s. The
corresponding constraint is

Gaγγ < 1.24 × 10−11 GeV−1

ffiffiffiffiffiffiffiffiffiffi
MeV
ma

s
: ð56Þ

This result is most restrictive because of the large interior T
of the hot model.
The constraint on Gaγγ involves taking a fourth root

because the coupling strength enters both at production and
decay. Even though the total number of emitted axions
varies by a large factor between the models, the spread of
the limiting Gaγγ is only a factor of 1.6.
Of course, it may not be completely arbitrary which

model best represents SN 1987A. In principle one could
derive the expected neutrino signal and compare it with
the historical data. Conceivably one could discriminate
between the models. Notice that here ALP emission is but a
small perturbation because the constraint comes from ALP
decays, not from the backreaction on the PNS cooling
speed, so this comparison would be between the unper-
turbed numerical models.

D. Muonic bosons

We finally turn to our main case of interest and calculate
the fluence Φa and Φϕ for (pseudo)scalars based on the
photo production process γ þ μ → μþ a or ϕ as a function
of the Yukawa couplings, both for our cold and hot
reference models. For future reference we provide a simple
fit function for the boson fluence in terms of a Gamma
distribution

dNa;ϕ

dEa;ϕ
¼ C

�
Ea;ϕ

hEa;ϕi
�

α

e
−ðαþ1Þ Ea;ϕ

hEa;ϕi ð57Þ

where hEa;ϕi is the average energy of the boson fluence as
reported in Table III, α represents the amount of spectral
pinching, and C is an overall normalization. For α ¼ 2
we recover a Maxwell-Boltzmann distribution with
hEa;ϕi ¼ 3T. For the cold model we find these parameters
to be α ¼ 0.937 (2.49) and C ¼ 6.42ð3.38Þ × 1072 MeV−1

TABLE III. Limits on the Yukawa couplings of (pseudo)scalar
muonic bosons from the Garching muonic SN models and the
SMM γ-ray limits. (Notice that here we do not consider the vector
case because vectors do not decay into photons.

Model Boson Na;ϕ × g2a;ϕ

hEa;ϕi
[MeV]

te
[s]

Limit on ga;ϕ
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MeV=ma;ϕ

p
Cold a 1.48 × 1073 105.8 2.3 1.74 × 10−10

ϕ 11.5 × 1073 67.8 2.5 1.11 × 10−10

Hot a 13.4 × 1073 142.3 2.4 1.01 × 10−10

ϕ 78.8 × 1073 92.5 2.9 0.68 × 10−10

11We thank J. Jaeckel for a private communication, explaining
that the probable origin is insufficient resolution of the original
MC.
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for the scalar (pseudoscalar) case. For the hot model we
find α ¼ 0.77ð2.08Þ and C ¼ 2.54ð1.41Þ × 1073 MeV−1.
Using the numerical fluence results to predict the

expected γ fluence we finally find the constraints shown
in Table III. The cold model provides the most conservative
constraints which we use in our summary plot of Fig. 2. For
masses larger than 0.70(0.47) keV for the scalar (pseudo-
scalar) case these results are more restrictive than those
from the SN 1987A energy-loss argument.

VI. DIFFUSE GAMMA-RAY BACKGROUND

A. Redshift integral

The (pseudo)scalar boson emission from all past SNe
creates a cosmic background density in analogy to the
diffuse SN neutrino background (DSNB) [56,76–79].
Radiative decays of these particles contribute to the
diffuse cosmic γ-ray background and thus can be con-
strained, an idea that probably goes back to an early
paper by Cowsik [80]. Because of the phase-space issue
discussed earlier, such arguments are not especially
powerful for low-mass particles such as ordinary neu-
trinos, but very useful for MeV-range bosons that we
consider. Recent discussions include ALPs that are
emitted by their photon coupling [34] or by processes
involving nucleons or electrons [81].
Closely following Ref. [82] we recall that the SN boson

density spectrum accumulated from all cosmic epochs
today is given by the redshift integral

dna
dE

¼
Z

∞

0

dzðzþ 1ÞFaðEzÞn0ccðzÞ; ð58Þ

where FaðEÞ ¼ dNa=dE is the boson number spectrum
emitted by an average SN; the integral is the total number
Na of emitted bosons. Moreover, Ez ¼ ð1þ zÞE is the
blue-shifted energy at emission of the arrival energy E.
The first factor (1þ z) is a Jacobean dEz=dE ¼ ð1þ zÞ
between emitted and detected energy interval.
Finally n0ccðzÞ ¼ dncc=dz is the core-collapse number per

comoving volume per redshift interval. It is usually
expressed as

n0ccðzÞ ¼ RccðzÞt0ðzÞ ð59Þ

where the rate-of-change of cosmic time with regard to
redshift is

t0ðzÞ ¼ dt
dz

¼ 1

H0ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þ zÞ3 þ ΩΛ

p : ð60Þ

Here H0 is the Hubble expansion parameter, while ΩM
and ΩΛ are the present-day cosmic matter and dark-energy
fractions. In the usual flatΛCDM cosmologyΩΛ ¼ 1 − ΩM.
In the literature one usually finds RccðzÞ, the number of

core collapses per comoving volume per unit time
(units Mpc−3 yr−1). However, RccðzÞ is derived in terms
of an assumed cosmological model because observations for
a given redshift interval need to be translated to intervals of
cosmic time, so only n0ccðzÞ has direct meaning. We will use
H0 ¼ 70 km s−1 Mpc−1 ¼ ð13.9 GyrÞ−1, ΩM ¼ 0.3, and
ΩΛ ¼ 0.7. These are not the latest best-fit parameters, but
consistent with RccðzÞ that we will use.
To derive the present-day number density of decay

photons we assume that the boson mass is sufficiently
small to treat them as ultra-relativistic. In this case the
spectrum of decay photons is box-shaped on the range
0–Ea where Ea is the particle energy at the instant of decay.
Moreover, in the ultra-relativistic limit the parent energy
and that of a decay photon redshift the same way, so this
condition does not depend on when the decay takes place.
However, the rate of decay at redshift zD does depend on
the cosmic epoch through the Lorentz factor

ΓzD ¼ 1

τa

ma

EzD

; ð61Þ

where EzD is the parent energy at redshift zD.
Integrating over the photon spectrum provided by the

bosons produced at redshift z, the present-day spectrum of
decay photons is found to be

dnγ
dω

¼
Z

∞

0

dzð1þzÞn0ccðzÞ
Z

∞

ωz

dEzfDðEzÞ
2

Ez
FaðEzÞ; ð62Þ

where ωz ¼ ð1þ zÞω and the factor of 2 represents two
decay photons on the interval 0–Ez. The first factor 1þ z
now represents the Jacobean between the detected and
emitted photon energy—the spectrum of decay photons is
evaluated at the fixed redshift z of emission because in our
ultra-relativistic approximation the relation between energy
of parent boson and decay photons is independent of
redshift. Our result, Eq. (62), agrees with the corresponding
expression derived in Ref. [83] for the nonradiative two-
body decays of the SN relic neutrinos.
Finally we need the fraction of bosons that has decayed

between the epoch of emission at redshift z and today

fDðEzÞ ¼ 1 − exp

�
−
Z

z

0

dzD
t0ðzDÞ
τa

ma

EzD

�
; ð63Þ

where EzD ¼ Ezð1þ zDÞ=ð1þ zÞ is the energy of a boson
at the decay redshift zD if it had energy Ez at emission.
Therefore, the integral can be written asZ

z

0

dzD
t0ðzDÞ
τa

ma

EzD

¼ ma

Ez

1

H0τa
gDðzÞ: ð64Þ

Here the function of redshift
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gDðzÞ¼ð1þzÞ
Z

z

0

dzD
ð1þzDÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þzDÞ3þΩΛ

p ð65Þ

depends only on the assumed cosmological model.
For bosons that decay within a Hubble time, fD ¼ 1.

In the opposite limit of long-lived bosons the exponential
can be expanded, so the spectrum of decay photons is

dnγ
dω

¼ ma

H0τa

Z
∞

0

dzð1þ zÞn0ccðzÞgDðzÞ
Z

∞

ωz

dEz
2FaðEzÞ

E2
z

:

ð66Þ

So we needed to replace fDðEzÞ → ðma=H0τaÞgDðzÞ=Ez.

B. Cosmic core-collapse rate

One central ingredient is the cosmic core-collapse rate
n0ccðzÞ. The starting point is the comoving star-formation
rate _ρ�ðzÞ for which several groups provide results in the
form of analytic approximation functions [84–87]. Widely
used is the one of Yüksel et al. [84] which is piecewise
linear in log z of the form

_ρ�ðzÞ¼ _ρ0

�
ð1þzÞaηþ

�
1þz
B

�
bη
þ
�
1þz
C

�
cη
�
1=η

; ð67Þ

where _ρ0 ¼ 0.02 M⊙ Mpc−3 yr−1, a ¼ 3.4, b ¼ −0.3,
c ¼ −3.5, B ¼ 5000, C ¼ 9, and the somewhat arbitrary
smoothing parameter is η ¼ −10.
This star-formation rate is converted to a cosmic core-

collapse rate RccðzÞ ¼ kcc _ρ�ðzÞ with the coefficient kcc ¼
ð135 M⊙Þ−1 as explained in Ref. [82] and very similar to
ð143 M⊙Þ−1 of Ref. [77]. We finally multiply with t0ðzÞ of
Eq. (60) to obtain n0ccðzÞ shown in Fig. 9 (top line).
A similar representation was obtained by Mathews et al.

[85] with somewhat different fit parameters, also shown in

Fig. 9 (second line from top). Their stated uncertainty is
nearly a factor of 2, depending on redshift.
A somewhat different result and representation was

found by Robertson et al. [86] who also used slightly
different cosmological parameters. Transformed to our
reference cosmology their result is the third line from
top in Fig. 9. They also state a large uncertainty range,
comparable to that of Mathews et al. [85].
We finally consider explicitly the star-formation rate of

Madau and Dickinson [87] who provided

_ρ�ðzÞ ¼
0.015 M⊙

Mpc3 yr
ð1þ zÞ2.7

1þ ½ð1þ zÞ=2.9�5.6 : ð68Þ

It leads to the lowest core-collapse rate in Fig. 9.
The total number of past core collapses is ncc ¼ 1.05,

0.83, 0.68, and 0.58 × 107 Mpc−3 in the four cases from
top to bottom. In other words, the spread between these
different cases as well as the internal uncertainties stated by
some of them roughly span a factor of 2. Indeed, one of the
goals of measuring the DSNB in the gadolinium-enhanced
Super-Kamiokande and in the forthcoming JUNO scintil-
lator detectors is to settle the overall normalization of the
cosmic star-formation rate. To represent the uncertainty
from ncc we will often express our results in terms of the
parameter

ncc7 ¼ ncc
107 Mpc−3

: ð69Þ

It varies between 0.58 and 1.05 between the lowest and
highest of the cited star-formation rates, but of course a
broader range can be considered.

C. Generic limit

1. Short-lived bosons

As a first simple case we consider bosons that decay so
fast relative to the Hubble time that we can set the decay
fraction fD ¼ 1. Moreover, to derive a first estimate of the
expected γ-ray signal we assume that a fraction ζa of a
typical SN energy release of ESN ¼ 3 × 1053 erg is emitted
in ALPs with average energy Eav. The spectrum will be
quasi-thermal, so as a rough description we model it as a
Maxwell-Boltzmann distribution of the form

FaðEÞ ¼ ζa
ESN

Eav

E2

2T3
e−E=T; ð70Þ

where Eav ¼ 3T. We actually anticipate that the detailed
energy distributions of the emitted boson has a very small
impact on the results.
The SN redshift distribution is concentrated at z ¼ 1, so

for now we assume that all SNe occur at exactly this
redshift, i.e., n0cc ¼ nccδðz − 1Þ, leading to

FIG. 9. Cosmic core-collapse rate n0ccðzÞ from top to bottom
according to (1) Yüksel et al. [84], (2) Mathews et al. [85],
(3) Robertson et al. [86], and (4) Madau and Dickinson [87].
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dnγ
dω

¼ ζa
ESN

Eav
ncc

2ðT þ 2ωÞ
T2

e−2ω=Tα ð71Þ

as our prediction for the present-day cosmic γ density.
To compare this diffuse γ flux with the measurements

summarized in Fig. 10 we observe that in our region of
interest of 2–200 MeV the spectrum is essentially flat when
multiplied with ω2, i.e., the measured flux in this range is
approximately

ω2
dΦγ

dω
≃ 2 × 10−3 MeVcm−2 s−1 ster−1: ð72Þ

Notice that our prediction is on the γ density, whereas the
flux per solid angle shown in Fig. 10 requires a factor of the
speed of light (which is c ¼ 1 in natural units) and to be
divided by 4πster, so our prediction is translated as
dΦγ=dω ¼ ðdnγ=dωÞ=4π and then is a flux per ster. So
in this form our prediction is

ω2
dΦγ

dω
¼ ζa

ESN

Eav
ncc

2ðT þ 2ωÞω2

4πT2
e−2ω=T: ð73Þ

This is again a quasi-thermal shape with a maximum at
ωmax ¼ Tð1þ ffiffiffi

3
p Þ=2 ≃ 1.37T. Inserting this in Eq. (73),

using Eav ¼ 3T, and the fudge factor ncc7 defined in Eq. (69)
we find

ω2
dΦγ

dω






max

¼ ζaESNncc
7þ 4

ffiffiffi
3

p

12π
e−ð1þ

ffiffi
3

p Þ

¼ ζancc7 46.2 MeVcm−2 s−1 ster−1: ð74Þ

The nice key point of this expression is that it does not
depend on the assumed T and that the observed spectrum is
flat in the region of interest.
Comparing this prediction with Eq. (72) we finally find

our generic limit

ζa ≲ 0.43 × 10−4=ncc7 ð75Þ

independently of the assumed average energy of the
emitted bosons. This result applies both to bosons emitted
near the PNS surface in the trapping limit with relatively
small energies or for those emitted from the inner core with
much larger temperatures.
One key approximation was a fixed redshift of emission

z ¼ 1. As a next step we consider the extreme opposite case
provided by the broad redshift distribution derived from
the Dickinson and Madau (DM) star-formation rate (bottom
curve in Fig. 9) that has an average core-collapse redshift
of 1.51. The average photon energy in the earlier case was
hωi ¼ ð3=4ÞT ¼ 0.75T, whereas in the DM case it hardly
changes to 0.71T. The location of the maximum of
ω2dΦγ=dω changes even less fromωmax ¼ Tð1þ ffiffiffi

3
p Þ=2 ¼

1.366T to 1.340T. The maximum itself is 0.80 of the earlier
value, so finally we find

ζa ≲ 0.54 × 10−4=ncc7 : ð76Þ
Using this very different nccðzÞ distribution causes only a
minimal modification, much smaller than many other uncer-
tainties such as our rough representation of the observational
data. We conclude that in practice the exact core-collapse
redshift distribution is irrelevant as well as the exact spectrum
of emitted bosons. The main uncertainty derives from the
integrated core-collapse rate ncc where the published range
spans a factor of 2.

2. Long-lived bosons

For bosons that decay more slowly—and this will be the
case for some of the interesting mass ranges for muonic
bosons—we expand the decay fraction fD and use the
predicted photon density of Eq. (66). Otherwise we can go
through the same steps where the main difference is that the
result now depends on the emission spectrum which sets
the scale for the Lorentz factor ma=Ea in the decay rate.
Using the Dickinson-Madau version for the redshift dis-
tribution we find

ζa
ma

EavH0τa
< 0.58 × 10−4=ncc7 ð77Þ

as a generic limit.

D. ALPs

To make contact with the previous literature we can
immediately apply these results to ALPs. Our cold reference
model emits a total energy in the form of ALPs of ESN;a ¼
G2

102.5 × 1049 erg [see text above Eq. (55)] and G2
102.8 ×

1050 erg for thehotmodel [see text aboveEq. (56)].Relative to
our cosmological average SNwithEtot ¼ 3 × 1053 erg this is
a fraction of ζa ¼ G2

10 0.83 × 10−4 and G2
10 9.3 × 10−4

respectively. With the limit Eq. (76) for short-lived bosons
that use the Dickinson-Madau redshift distribution we find

FIG. 10. The extragalactic background light (EBL) over a large
range of energies according to Ackermann et al. [88]. (Figure
reproduced with permission.).
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Gaγγ < 0.81ð0.24Þ × 10−10 GeV−1
�

1

ncc7

�
1=2

; ð78Þ

if all cosmic SNe emit on average as many ALPs as our
cold (hot) reference model. This bound agrees well with
Ref. [34] where Gaγγ < 0.5 × 10−10 GeV−1 was stated
for ma ¼ 5 keV.
For long-lived bosons we use instead Eq. (77) with the

same ALP fractions from the cold (hot) models. Moreover,
the decay time is

H0τa ¼ H0

64π

G2
aγγ

1

m3
a
¼ 3.02 × 10−5

G2
10

�
10 keV
ma

�
3

: ð79Þ

With the average energies 89.9 (136.8) MeV we then find

Gaγγ < 0.65ð0.39Þ × 10−11 GeV−1
�
0.1 MeV

ma

��
1

ncc7

�
1=4

:

ð80Þ

For the cold model and ncc7 ¼ 0.58 these bounds are shown
in gray in Fig. 12. The short and long-lived cases cross
at ma ≃ 10 keV.

E. Muonic bosons

1. Simplified estimates

We now turn to our main case of interest, muonic
(pseudo)scalars that are emitted from SN cores by the
photo production processes of Sec. V D and then of course
decay by the loop-induced two-photon coupling. The
analysis is fully analogous, except that the SN emission
now derives from photoproduction on muons. We will go
through the steps for both our cold and hot Garching
reference models as if they were an average cosmic core
collapse to obtain a generous range of possibilities. While
the main uncertainty depends on which model is taken to be
representative, we first repeat the previous study on the
impact of the ncc redshift distribution as well as the detailed
boson emission spectrum.
So beginning with our simplified estimate once more we

assume n0cc ¼ nccδðz − 1Þ and a quasithermal boson emis-
sion separately for the cold and hot SN model. For the
short-lived case we write the analog of Eq. (73), but using
the energy release ESN ¼ Na;ϕ × hEa;ϕi, where the total
number of emitted bosons and their average energy are
given in Table III. Comparing with the measured flux in
Eq. (72) the limit on the Yukawa coupling is then

ga;ϕ < 2.8 × 1027
�

1

ncc7

�
1=2

�
1

Na;ϕ

�
1=2

�
MeV
hEa;ϕi

�
1=2

; ð81Þ

and therefore, using the values reported in Table III, the
bounds from the cold (hot) model are

gϕ < 0.32ð0.11Þ × 10−10
�

1

ncc7

�
1=2

; ð82aÞ

ga < 0.72ð0.21Þ × 10−10
�

1

ncc7

�
1=2

: ð82bÞ

As expected they are indeed roughly two orders of
magnitude stronger than those from the SN 1987A cooling
argument.
Now we study the opposite limit of long lived bosons. In

this case, following the steps of Sec. VI C 2, the condition
on the Yukawa coupling are found to be

gϕ < 1.11 × 107
�
0.1 MeV

mϕ

��
1

Nϕ

�
1=4

�
1

ncc7

�
1=4

; ð83aÞ

ga < 0.91 × 107
�
0.1 MeV

ma

��
1

Na

�
1=4

�
1

ncc7

�
1=4

: ð83bÞ

Therefore using the Nϕ;a values reported in Table III the
limits for the cold (hot) model are

gϕ < 0.34ð0.21Þ × 10−10
�
0.1 MeV

mϕ

��
1

ncc7

�
1=4

; ð84aÞ

ga < 0.46ð0.27Þ × 10−10
�
0.1 MeV

ma

��
1

ncc7

�
1=4

: ð84bÞ

2. Full numerical distributions

In order to verify the quality of these simple approx-
imations, we now proceed to directly evaluate Eq. (62) in
full generality, using the numerical boson fluxes together
with the complete cosmic core-collapse rate n0ccðzÞ. To
show the maximum plausible effect we use the n0cc of
Madau and Dickinson who provided a total core collapse
rate of ncc7 ¼ 0.58.
In Fig. 11 we show the resulting limits for the scalar

(solid red curve) and pseudoscalar case (solid black
curve). In the same plot the dotted curves are instead
the results from the simple analytical recipe of Sec. VI E 1,
rescaled with the corresponding total number of past core
collapses ncc7 ¼ 0.58. We see that the agreement in the two
opposite limits, short-lived and long-lived bosons, is
excellent, with a smooth and fast transition between the
two around ma;ϕ ≃ 0.1 MeV.
It was already clear in the ALP case and we confirm once

more that the detailed energy distributions of the emitted
bosons as well as the exact redshift distribution of the
cosmic collapses modify the limit on the 10%–20% level.
The real uncertain parameters of interest are the total core
collapse rate ncc and the coupling-strength dependent total
energy emitted by an average cosmic SN. In our summary
plot we have used the coldest Garching model to be
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conservative although we are afraid that we may be taking
conservatism to extremes because the cosmic distribution
must involve a range of progenitor masses. Deriving a
plausible cosmic average of this type would be an interest-
ing exercise along the lines of what has been done for the
DSNB [79].

VII. FROM COLLIDERS TO COSMOLOGY

We now briefly comment on other bounds of interest for
the considered range of masses and couplings. In particular,
we discuss bounds from cosmology and colliders which are
relevant for the strong coupling regime in the neighborhood
of the gμ − 2 inspired values.

A. Cosmology

Cosmology is a powerful tool to constrain new light
particles. In particular, they can change the cosmic
radiation density that normally consists of the cosmic
microwave background (CMB) at a present-day T ¼ 2,
726 K and the cosmic neutrino background (CNB) with
Tν ¼ ð4=11Þ1=3TCMB ¼ 1.946 K, although neutrinos today
are nonrelativistic and contribute to dark matter, not to
radiation.
The cosmic radiation density is traditionally expressed in

terms of Neff , the effective number of neutrino species,
defined by the CMB radiation density today [89],

ρrad ¼
�
1þ 7

8

�
4

11

�
4=3

Neff

�
ρCMB: ð85Þ

The standard-model prediction is NSM
eff ¼ 3.045 [90–93]

where the difference from 3 derives from small deviations
from equilibrium when neutrinos freeze out. The Planck
collaboration recently reported, within the framework of
the standard ΛCDM cosmology, the restrictive range
Neff ¼ 2.99� 0.34 at 95% CL [94].
While new particles usually add to Neff , our case is

different and reduces it. Early on, the new bosons are in
equilibrium with muons, providing more radiation.
However, if they decay radiatively after neutrino decoupling,
they will heat the photons so that later the CNB
will yet colder than the CMB, an effect that reduces Neff
[21]. One additional thermal boson increases the entropy
degrees of freedom before the adiabatic disappearance of
electron-positron pairs and before boson decay to
2γ þ 1boson þ 7

8
4eþe− ¼ 13

2
. After eþe− and boson disappear-

ance, we are left with the 2 photons, so the ratio between
them is now 4=13, instead of 4=11. To write Eq. (85) in the
traditional form we need to replace ð4=11Þ4=3Neff with
ð4=13Þ4=33.045 and find ΔNeff ¼ −0.608. This large neg-
ative deviation is strongly excluded by Planck.
This powerful argument applies to bosons decaying after

neutrino freeze out, i.e., for masses ma;ϕ ≲ 2 MeV, as
shown in the upper left panel in Fig. 3 of Ref. [21].12 For
larger masses the density of the new boson is strongly
Boltzmann suppressed by the time of neutrino decoupling,
making the new degrees of freedom harmless.
Finally, one can also ask for which range of the Yukawa

coupling the above argument holds. In fact, we have
assumed the new boson to be in thermal equilibrium with
the standard model (SM) bath in the early universe, but for
small enough Yukawa couplings this will not be the case. In
order to determine the lower limit on the couplings, we can
compare the interaction rate with the Hubble expansion rate
for T ≃mμ. In a radiation dominated universe the Hubble
rate is [30]

HðTÞ ¼ 1.66
ffiffiffiffiffiffiffiffiffiffiffiffi
g⋆ðTÞ

p T2

MPl
; ð86Þ

where g⋆ðTÞ are the relativistic degrees of freedom [of
Oð10Þ for T ≃mμ] and MPl ¼ 1.22 × 1022 MeV is the
Planck mass. We then determine the Yukawa coupling such
that

nμ2σϕ;ajT¼mμ
¼ HðmμÞ; ð87Þ

where we use the semi-Compton unpolarized cross sections
in Eq. (5) for ω ¼ 3mμ, and the factor of two comes from
photon polarizations. We then find for the (pseudo)scalar

FIG. 11. Bound on the Yukawa coupling for the scalar (red
curves) and pseudoscalar (black curves) from the diffuse SN γ
rays. The solid curves are obtained numerically computing
Eq. (62) for the cold SN model and the cosmic core-collapse
rate according to Madau and Dickinson [87]. The dotted curves
instead are obtained with the analytical prescription of Sec. VI E
1, normalized to a total number of past core collapses ncc7 ¼ 0.58.

12See also Fig. 6 of Ref. [95], although in that case the limit
extends to slightly larger masses because the vector has three
degrees of freedom instead of one.
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case that for gϕ;a < 2.0ð2.9Þ × 10−8 thermal equilibrium is
not reached and therefore no limits from Neff can be placed.
While this is not a strict limit, in this range of parameters
the SN arguments strongly dominate. Therefore CMB
bounds are particularly relevant only for the strong cou-
pling regime and for masses below 2 MeV.
For very small couplings, other interesting cosmological

bounds come from BBN and CMB spectral distortions
[21,96]. However, for the masses and lifetime of interest for
our γ-ray constraints, these cosmological bounds are
strongly model dependent, e.g., on the assumed temper-
ature in the dark sector and the reheating temperature of the
universe. Of course also the CMB bound from Neff may be
easily circumvented, for example with the addition of new
light degrees of freedom increasing Neff .

B. Colliders

For masses above 1–10 MeV, muonphilic particles can
also be efficiently probed at colliders [97,98]. In particular,
electron beam-dump experiments, such as the SLAC E137
experiment [99] or the planned Jefferson Lab BDX [100]
experiment provide an excellent source of secondary
muons, which can then be used to look for muonic
(pseudo)scalars. Some other experimental prospects
include the proposed CERN Gamma Factory [101],
extremely efficient to look for couplings to photons, or
the MUonE experiment which aims to study the scattering
of high-energy muons on atomic electrons of a low-Z target
[102,103].
The typical setup of an electron beam dump experiment

searching for muonic scalar particles is the following.

The primary electron beam impinges on the fixed target
through a tertiary process involving secondary muons. The
muons then propagate in the target and radiatively emit
the (pseudo)scalar particles. Then, for the masses of interest
for us (mϕ;a ≪ mμ), the produced bosons will decay into a
photon pair, which will be measured by a detector placed
behind the beam-dump.
Following Ref. [97] the bound from E137 for muonic

scalars reads gϕ < 8 × 10−5 at mϕ ¼ 20 MeV, which is the
lowest mass displayed in the plot. This means (extrapo-
lating to lower masses) that for mϕ ≳ 10 MeV beam dump
experiments exclude the scalar explanation for the gμ − 2

anomaly. It appears that a similar study for pseudoscalars is
missing from the literature.
Together the cosmological and collider bounds exclude

the muon-magnetic moment explanation by a scalar
muonic boson everywhere except in the approximate mass
range 2–10 MeV. In this mass range SN arguments are
unique. If we trust the Falk-Schramm argument, also in this
remaining mass range, there is no muonic-boson explan-
ation available.

VIII. AXIONLIKE PARTICLES

The dominance of the effective two-photon vertex in
many of our arguments implies that our results are often
similar to those of generic axionlike particles (ALPs) that
by definition couple only to photons. Throughout our
discussion we have compared and cross-referenced our
results to earlier works on ALPs wherever appropriate.
Therefore, here we summarize only briefly our results
if interpreted in terms of ALPs. The limiting coupling

TABLE IV. Summary of our limits on muonic bosons and ALPs. We list the bounds when using only the tree-level coupling to muons
or also including the two-photon coupling (full). As in the main text we show the result from the cold SN reference model and then in
parenthesis those from the hot one. The parameter ncc7 is the total cosmic core-collapse density in units of 107 Mpc−3 as defined in
Eq. (69). The HB-star bounds are from Refs. [18,20], whereas all SN bounds were derived here.

Pseudoscalars (ga) Scalars (gϕ) Vectors (gZ) ALPs (Gaγγ)
Tree Full Tree Full Tree [GeV−1�

Trapping regime, lower limits on coupling strength
• Explosion energy

� � � 0.24ð0.22Þ × 10−2 � � � 0.36ð0.33Þ × 10−2 � � � 5.3ð4.8Þ × 10−5

• SN 1987A energy loss
6.2ð2.9Þ × 10−4 0.96ð1.2Þ × 10−4 0.11ð0.59Þ × 10−4 0.84ð0.56Þ × 10−4 0.74ð0.41Þ × 10−4 2.1ð3.0Þ × 10−6

Free-streaming regime, upper limits on coupling strength
• SN 1987A energy loss

3.5ð9.1Þ × 10−9 Same 1.2ð2.7Þ × 10−9 Same 2.7ð1.22Þ × 10−9 7.5ð3.4Þ × 10−9

• SN 1987A, γ rays, ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.1 MeV=ma;ϕ

p
� � � 5.5ð3.2Þ × 10−10 � � � 3.5ð2.2Þ × 10−10 � � � 6.3ð3.9Þ × 10−11

• All past SNe, γ rays, short-lived bosons, ×ð1=ncc7 Þ1=2
� � � 0.72ð0.21Þ × 10−10 � � � 0.32ð0.11Þ × 10−10 � � � 0.81ð0.24Þ × 10−10

• All past SNe, γ rays, long-lived bosons, ×ð0.1 MeV=ma;ϕÞ × ð1=ncc7 Þ1=4
� � � 0.46ð0.27Þ × 10−10 � � � 0.34ð0.21Þ × 10−10 � � � 0.65ð0.39Þ × 10−11

HB stars in globular clusters, upper limits (ma;ϕ ≲ 200 keV)
� � � 3.1 × 10−9 � � � 4.6 × 10−9 � � � 6.7 × 10−11
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strengths are given in our summary Table IValong the ones
for muonic (pseudo)scalars.
We summarize the ALP constraints in Fig. 12 in full

analogy to Fig. 2. In the strong-interaction (trapping)
regime, the bounds are practically the same as those for
muonic pseudoscalars except for rescaling the vertical axis
to Gaγγ because the pseudoscalar opacity in the decoupling
region is dominated by Primakoff scattering.
An important consequence pertains to the so-called

“cosmological triangle,” which is the indicated region in
Fig. 12 that is delineated by the HB bound, the trapping-
regime SN 1987A neutrino limit, and beam-dump con-
straints [104,106]. Hitherto this range was only accessible
to model-dependent cosmological arguments [21,107] and
very recently the possibility of exploring it with future
experiments was discussed [105]. However, we see from
Fig. 12 that the explosion-energy argument already covers
this part of the parameter space.
In the feeble-interaction (free-streaming) regime, the

differences to muonic pseudoscalars are more pronounced
because ALPs are produced by Primakoff scattering,
whereas muonic bosons emerge from photo production
on muons. The relative importance for muonic pseudosca-
lars can be gleaned from Fig. 7 where we show an effective
muon abundance that is equivalent to Primakoff scattering.
In the crucial region (in Fig. 7 around a radius of 10 km),
the Primakoff emission is smaller by around four orders of
magnitude.

The relatively inefficient ALP production in a SN core
implies that in the feeble-interaction regime other con-
straints, such as the one from HB stars, are relatively more
important. The diffuse cosmic γ-ray limit no longer plays a
significant role relative to the absence of γ rays from
SN 1987A.
This constraint as a function of mass, derived from our

cold reference model, is provided in Eq. (55). On the 10%
level it agrees with the often-cited one of Ref. [33] that we
provide explicitly in Eq. (53). This surprising similarity
actually results from compensating differences. Our cold
reference model has a similar temperature, yet our ALP
fluence is a factor of 3 smaller. In the Garching models,
PNS convection speeds up cooling significantly. On the
other hand, based on the given ALP fluence of Ref. [33] we
find almost twice their γ fluence, probably due to insuffi-
cient Monte Carlo resolution. This example also illustrates
that it is always hard to reduce uncertainties of such
astrophysical information to the precision level because
of various sorts of systematic effects that can both com-
pensate or add up.

IX. DISCUSSION AND SUMMARY

The persisting muon magnetic-moment anomaly has
motivated us to study astrophysical bounds on putative
muon-philic bosons (muonic bosons for short) that we
assume have no other tree-level interactions. Cosmology
and experiments tend to leave open a range of intermediate
masses broadly in the MeV range, where SN physics can
provide complementary information, in particular because
of the recent emergence of muonic SN models. Our main
innovation compared with similar recent works is to
include systematically the generic two-photon interaction
caused by a muon loop. It allows both for Primakoff
production and absorption as well as two-photon decays,
effects that dominate the SN arguments.
We have noted that for pseudoscalars the triangle loop

crucially depends on whether the tree-level interaction has
pseudoscalar or derivative axial-vector structure, two cases
that are often presented as if they were equivalent. In
analogy to axions we have focused on the pseudoscalar
structure, so for both scalars and pseudoscalars all inter-
actions are governed by dimensionless Yukawa couplings
gϕ;a. We summarize our mass-dependent constraints on
these in Fig. 2 and Table IV.
Some of our arguments depend on the two-photon

coupling alone, notably for pseudoscalars in the trapping
regime. In this situation the phenomenology is equivalent to
that of generic ALPs, particles with only two-photon
interactions. In these cases our results are complementary
to those from the earlier literature. Our limits on ALPs are
also summarized in Table IVand in Fig. 12. It is noteworthy
that our constraints also cover the often-discussed “cos-
mological triangle” of parameters, at least if our explosion-
energy argument is taken at face value.

FIG. 12. Constraints on the ALP-photon coupling Gaγγ as a
function of mass in analogy to Fig. 2. Here we also add the limits
from beam dump experiments following Ref. [104] to highlight
that the explosion energy criterion completely closes the “cos-
mological triangle” [105].
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We have extensively used muonic SN models of the
Garching group as well as detailed redshift distributions of
the cosmic core-collapse rate. While these detailed studies
are quite illuminating, the final results tend to be more
generic and mostly depend on a few global properties rather
than fine points of specific models.
One case in point is the constraint from the cosmic diffuse

γ-ray background. It depends on the integrated core-collapse
rate ncc as well as on the total amount of boson energy
Etotðga;ϕÞ emitted by an average SN. On the other hand,
it is surprisingly independent of the core-collapse redshift
distribution and of the emitted boson spectrum. Forthcoming
DSNB measurements may improve ncc determinations,
but the interpretation depends on the predicted average
SN neutrino flux spectrum. It could be interesting to develop
simultaneous average-SN predictions for new particles
emitted from the inner core together with neutrino fluxes.
The SN 1987A constraint from the absence of a γ-ray

excess in the SMM satellite depends on the predicted boson
flux for this particular core collapse. Earlier ALP bounds
based on a Wroclaw SN model used a 3-fold larger boson
flux than provided by our cold Garching model despite
similar internal temperatures, but very different cooling
times. This example illustrates just how useful it would be
to investigate if the SN 1987A neutrino signal can actually
discriminate between such models.
The usual SN 1987A energy-loss argument uses the

modification of the measured neutrino signal as a con-
straining observation. Once more it would be revealing to
compare the signal modifications from self-consistent
models with the actual data. The argument is often used
as a back-of-the-envelope estimate formulated by one of us
a long time ago based on early numerical studies. A self-
consistent modern treatment, e.g., for the specific case of
ALPs could clarify, for example, the role of PNS con-
vection on the signal properties. For muonic bosons, this is
not the most constraining argument and so of lesser direct
interest.
The discussion is more involved when the bosons

interact so strongly that like neutrinos they are trapped.
They would contribute to radiative energy transfer within
the SN, they can transfer energy to regions outside the SN
core, and carry away significant amounts of energy at the
expense of neutrinos and the expense of the SN 1987A
signal. Based on unperturbed numerical models we have
unsurprisingly found that the boson luminosity tracks Lν

for many seconds after core bounce, in contrast to the free-
streaming case where the bosons are created deep inside
and become important only when the core has heated up.
So it is quite straightforward to determine the coupling
strength where the bosons compete with neutrinos in the
decoupling region, but the exact impact on the SN 1987A
neutrino signal is less obvious. Still, the limiting coupling
strength is easy to determine and does not depend on the
exact SN model.

We have also commented on a conceptual confusion in
the recent literature about boson emission in the trapping
limit. We have used the traditional picture of thermal
emission from a boson sphere according to the Stefan-
Boltzmann law. In principle, it is more accurate to calculate
the losses as volume emission with reabsorption effects
included, but of course makes sense only if the volume
integration is geometrically consistent. Of course, either
approach is approximate if used on a fixed SN model
without feedback. In this case we have explicitly checked
that in simple examples the volume integration and Stefan-
Boltzmann approach are equivalent as they must be. The
transition from one to the other actually is an entertaining
exercise in the physics of radiative transfer that we leave to
a future paper.
In the present case, however, a more crucial question is the

efficiency of energy transfer to the material of the progenitor
star through radiative decays of bosons emitted in the
trapping limit. The decay is so fast that excessive energy
deposition of less than 1% of the total available energy can
be avoided only if the boson production is suppressed by a
sufficiently strong interaction, pushing boson emission far
beyond the neutrino sphere. This effect is crucial to constrain
the coupling strength of scalars that could explain the gμ − 2
anomaly and to cover the cosmological triangle for ALPs.
On the other hand in this case it is least justified to use an
unperturbed SN model to estimate this effect. Therefore, the
original question if the coupling strength of around gϕ ≃
10−3 is actually excluded in the few-MeV mass range is the
most difficult to answer with full confidence.
It may not be necessary to perform fully self-consistent

SN simulations—it may be enough to study analytic
models of the radiating atmosphere to understand boson
decoupling in this situation where the self-consistent
atmosphere is governed by boson energy transfer itself.
This too would be a project for future research.
Besides the specific constraints derived in our paper, the

study of muonic bosons in SN physics has opened a
number of practical and conceptual questions that perhaps
will also inspire others to follow them up.

ACKNOWLEDGMENTS

Wewarmly thank Paul Frederik Depta, Giuseppe Lucente
and Diego Redigolo for useful conversations. We especially
thank Hans-Thomas Janka and Robert Bollig for enlight-
ening discussions and for providing the SN profiles used for
the numerical estimates. A. C. is supported by the Foreign
Postdoctoral Fellowship Program of the Israel Academy of
Sciences and Humanities. A. C. acknowledges support also
from the Israel Science Foundation (Grant No. 1302/19), the
US-Israeli BSF (Grant No. 2018236) and the German-Israeli
GIF (Grant No. I-2524-303.7). A. C. also acknowledges
hospitality and support from the MPP of Munich. E. V. was
supported in part by the U.S. Department of Energy (DOE)
Grant No. DE-SC0009937. G. R. acknowledges support by

CAPUTO, RAFFELT, and VITAGLIANO PHYS. REV. D 105, 035022 (2022)

035022-28



the German Research Foundation (DFG) through the
Collaborative Research Centre “Neutrinos and Dark
Matter in Astro- and Particle Physics (NDM),” Grant

No. SFB-1258, and under Germany’s Excellence Strategy
through Cluster of Excellence ORIGINS No. EXC-2094-
390783311.

[1] R. Bollig, Muon creation and effects in supernovae, Ph.D.
thesis, Technical University Munich, 2018, https://
mediatum.ub.tum.de/1435391.

[2] R. Bollig, H.-T. Janka, A. Lohs, G. Martínez-Pinedo, C. J.
Horowitz, and T. Melson, Muon Creation in Supernova
Matter Facilitates Neutrino-Driven Explosions, Phys. Rev.
Lett. 119, 242702 (2017).

[3] R. Bollig, W. DeRocco, P.W. Graham, and H.-T. Janka,
Muons in Supernovae: Implications for the Axion-Muon
Coupling, Phys. Rev. Lett. 125, 051104 (2020); Erratum,
Phys. Rev. Lett. 126, 189901 (2021); We refer to their
consolidated post-publication update arXiv:2005.07141v6.

[4] G. G. Raffelt, Stars as Laboratories for Fundamental
Physics (University of Chicago Press, Chicago, 1996).

[5] G. G. Raffelt, Particle physics from stars, Annu. Rev. Nucl.
Part. Sci. 49, 163 (1999).

[6] J. H. Chang, R. Essig, and S. D. McDermott, Supernova
1987A constraints on sub-GeV dark sectors, millicharged
particles, the QCD axion, and an axion-like particle,
J. High Energy Phys. 09 (2018) 051.

[7] D. Croon, G. Elor, R. K. Leane, and S. D. McDermott,
Supernova muons: New constraints on Z0 bosons, axions
and ALPs, J. High Energy Phys. 01 (2021) 107.

[8] J. A. Dror, R. Laha, and T. Opferkuch, Probing muonic
forces with neutron star binaries, Phys. Rev. D 102,
023005 (2020).

[9] T. K. Poddar, S. Mohanty, and S. Jana, Vector gauge
boson radiation from compact binary systems in a
gauged Lμ − Lτ scenario, Phys. Rev. D 100, 123023
(2019).

[10] T. Aoyama et al., The anomalous magnetic moment of
the muon in the Standard Model, Phys. Rep. 887, 1
(2020).

[11] B. Abi et al. (Muon g-2 Collaboration), Measurement of
the Positive Muon Anomalous Magnetic Moment to
0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021).

[12] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang,
Reevaluation of the hadronic contributions to the muon
g-2 and to alpha(MZ), Eur. Phys. J. C 71, 1515 (2011);
Eur. Phys. J. C 72, 1874 (2012).

[13] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang,
Reevaluation of the hadronic vacuum polarisation contri-
butions to the Standard Model predictions of the muon
g − 2 and αðm2

ZÞ using newest hadronic cross-section data,
Eur. Phys. J. C 77, 827 (2017).

[14] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, A new
evaluation of the hadronic vacuum polarisation contribu-
tions to the muon anomalous magnetic moment and to
αðm2

ZÞ, Eur. Phys. J. C 80, 241 (2020); Erratum, Eur. Phys.
J. C 80, 410 (2020).

[15] C.-Y. Chen, M. Pospelov, and Y.-M. Zhong, Muon beam
experiments to probe the dark sector, Phys. Rev. D 95,
115005 (2017).

[16] S. Andreas, O. Lebedev, S. Ramos-Sanchez, and A.
Ringwald, Constraints on a very light CP-odd Higgs of
the NMSSM and other axion-like particles, J. High Energy
Phys. 08 (2010) 003.

[17] V. Anastassopoulos et al. (CAST Collaboration), New
CAST limit on the axion-photon interaction, Nat. Phys. 13,
584 (2017).

[18] P. Carenza, O. Straniero, B. Döbrich, M. Giannotti, G.
Lucente, and A. Mirizzi, Constraints on the coupling
with photons of heavy axion-like-particles from Globular
Clusters, Phys. Lett. B 809, 135709 (2020).

[19] G. G. Raffelt, Astrophysical axion bounds, Lect. Notes
Phys. 741, 51 (2008).

[20] A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi, and
O. Straniero, Revisiting the Bound on Axion-Photon
Coupling from Globular Clusters, Phys. Rev. Lett. 113,
191302 (2014).

[21] P. F. Depta, M. Hufnagel, and K. Schmidt-Hoberg,
Updated BBN constraints on electromagnetic decays of
MeV-scale particles, J. Cosmol. Astropart. Phys. 04 (2021)
011.

[22] P. A. Zyla et al. (Particle Data Group), Review of particle
physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

[23] S. W. Falk and D. N. Schramm, Limits from supernovae on
neutrino radiative lifetimes, Phys. Lett. 79B, 511 (1978).

[24] S. M. Lisakov, L. Dessart, D. J. Hillier, R. Waldman, and
E. Livne, Progenitors of low-luminosity Type II-Plateau
supernovae, Mon. Not. R. Astron. Soc. 473, 3863 (2018).

[25] O. Pejcha and J. L. Prieto, On the intrinsic diversity of type
II-plateau supernovae, Astrophys. J. 806, 225 (2015).

[26] T. Müller, J. L. Prieto, O. Pejcha, and A. Clocchiatti, The
nickel mass distribution of normal type II supernovae,
Astrophys. J. 841, 127 (2017).

[27] H. Yang and R. A. Chevalier, Evolution of the Crab nebula
in a low energy supernova, Astrophys. J. 806, 153 (2015).

[28] G. Stockinger et al., Three-dimensional models of core-
collapse supernovae from low-mass progenitors with
implications for Crab, Mon. Not. R. Astron. Soc. 496,
2039 (2020).

[29] A. Jerkstrand, T. Ertl, H.-T. Janka, E. Müller, T. Sukhbold,
and S. E. Woosley, Emission line models for the lowest-
mass core collapse supernovae. I: Case study of a 9 M⊙
one-dimensional neutrino-driven explosion, Mon. Not. R.
Astron. Soc. 475, 277 (2018).

[30] E. W. Kolb and M. S. Turner, Limits to the Radiative
Decays of Neutrinos and Axions from γ-ray Observations
of SN 1987A, Phys. Rev. Lett. 62, 509 (1989).

MUONIC BOSON LIMITS: SUPERNOVA REDUX PHYS. REV. D 105, 035022 (2022)

035022-29

https://mediatum.ub.tum.de/1435391
https://mediatum.ub.tum.de/1435391
https://mediatum.ub.tum.de/1435391
https://mediatum.ub.tum.de/1435391
https://mediatum.ub.tum.de/1435391
https://doi.org/10.1103/PhysRevLett.119.242702
https://doi.org/10.1103/PhysRevLett.119.242702
https://doi.org/10.1103/PhysRevLett.125.051104
https://doi.org/10.1103/PhysRevLett.126.189901
https://arXiv.org/abs/2005.07141v6
https://doi.org/10.1146/annurev.nucl.49.1.163
https://doi.org/10.1146/annurev.nucl.49.1.163
https://doi.org/10.1007/JHEP09(2018)051
https://doi.org/10.1007/JHEP01(2021)107
https://doi.org/10.1103/PhysRevD.102.023005
https://doi.org/10.1103/PhysRevD.102.023005
https://doi.org/10.1103/PhysRevD.100.123023
https://doi.org/10.1103/PhysRevD.100.123023
https://doi.org/10.1016/j.physrep.2020.07.006
https://doi.org/10.1016/j.physrep.2020.07.006
https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1140/epjc/s10052-010-1515-z
https://doi.org/10.1140/epjc/s10052-012-1874-8
https://doi.org/10.1140/epjc/s10052-017-5161-6
https://doi.org/10.1140/epjc/s10052-020-7792-2
https://doi.org/10.1140/epjc/s10052-020-7857-2
https://doi.org/10.1140/epjc/s10052-020-7857-2
https://doi.org/10.1103/PhysRevD.95.115005
https://doi.org/10.1103/PhysRevD.95.115005
https://doi.org/10.1007/JHEP08(2010)003
https://doi.org/10.1007/JHEP08(2010)003
https://doi.org/10.1038/nphys4109
https://doi.org/10.1038/nphys4109
https://doi.org/10.1016/j.physletb.2020.135709
https://doi.org/10.1007/978-3-540-73518-2
https://doi.org/10.1007/978-3-540-73518-2
https://doi.org/10.1103/PhysRevLett.113.191302
https://doi.org/10.1103/PhysRevLett.113.191302
https://doi.org/10.1088/1475-7516/2021/04/011
https://doi.org/10.1088/1475-7516/2021/04/011
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1016/0370-2693(78)90417-3
https://doi.org/10.1093/mnras/stx2521
https://doi.org/10.1088/0004-637X/806/2/225
https://doi.org/10.3847/1538-4357/aa72f1
https://doi.org/10.1088/0004-637X/806/2/153
https://doi.org/10.1093/mnras/staa1691
https://doi.org/10.1093/mnras/staa1691
https://doi.org/10.1093/mnras/stx2877
https://doi.org/10.1093/mnras/stx2877
https://doi.org/10.1103/PhysRevLett.62.509


[31] E. L. Chupp, W. T. Vestrand, and C. Reppin, Experimental
Limits on the Radiative Decay of SN 1987A Neutrinos,
Phys. Rev. Lett. 62, 505 (1989).

[32] L. Oberauer, C. Hagner, G. Raffelt, and E. Rieger, Super-
nova bounds on neutrino radiative decays, Astropart. Phys.
1, 377 (1993).

[33] J. Jaeckel, P. C. Malta, and J. Redondo, Decay photons
from the axionlike particles burst of type II supernovae,
Phys. Rev. D 98, 055032 (2018).

[34] F. Calore, P. Carenza, M. Giannotti, J. Jaeckel, and A.
Mirizzi, Bounds on axionlike particles from the diffuse
supernova flux, Phys. Rev. D 102, 123005 (2020).

[35] J. Redondo, Solar axion flux from the axion-electron
coupling, J. Cosmol. Astropart. Phys. 12 (2013) 008.

[36] R. Budnik, O. Davidi, H. Kim, G. Perez, and N. Priel,
Searching for a solar relaxion or scalar particle with
XENON1T and LUX, Phys. Rev. D 100, 095021 (2019).

[37] J. A. Grifols and E. Massó, Constraints on finite-range
baryonic and leptonic forces from stellar evolution, Phys.
Lett. B 173, 237 (1986).

[38] C. Itzykson and J. B. Zuber, Quantum Field Theory,
International Series in Pure and Applied Physics
(McGraw-Hill, New York, 1980).

[39] G. G. Raffelt, Astrophysical axion bounds diminished by
screening effects, Phys. Rev. D 33, 897 (1986).

[40] M. Pospelov, A. Ritz, and M. B. Voloshin, Bosonic super-
WIMPs as keV-scale dark matter, Phys. Rev. D 78, 115012
(2008).

[41] J. A. Grifols, E. Massó, and S. Peris, Energy loss from the
sun and red giants: Bounds on short-range baryonic and
leptonic forces, Mod. Phys. Lett. A 04, 311 (1989).

[42] M. Bauer, M. Neubert, and A. Thamm, Collider probes of
axion-like particles, J. High Energy Phys. 12 (2017) 044.

[43] M. Spira, A. Djouadi, D. Graudenz, and P. M. Zerwas,
Higgs boson production at the LHC, Nucl. Phys. B453, 17
(1995).

[44] I. G. Irastorza and J. Redondo, New experimental ap-
proaches in the search for axion-like particles, Prog. Part.
Nucl. Phys. 102, 89 (2018).

[45] P. Sikivie, Experimental Tests of the Invisible Axion, Phys.
Rev. Lett. 51, 1415 (1983); Erratum, Phys. Rev. Lett. 52,
695 (1984).

[46] G. Raffelt and L. Stodolsky, Mixing of the photon with low
mass particles, Phys. Rev. D 37, 1237 (1988).

[47] J. W. Brockway, E. D. Carlson, and G. G. Raffelt, SN
1987A gamma-ray limits on the conversion of pseudosca-
lars, Phys. Lett. B 383, 439 (1996).

[48] A. Payez, C. Evoli, T. Fischer, M. Giannotti, A. Mirizzi,
and A. Ringwald, Revisiting the SN 1987A gamma-ray
limit on ultralight axion-like particles, J. Cosmol. Astro-
part. Phys. 02 (2015) 006.

[49] G. Lucente, P. Carenza, T. Fischer, M. Giannotti, and A.
Mirizzi, Heavy axion-like particles and core-collapse super-
novae: constraints and impact on the explosion mechanism,
J. Cosmol. Astropart. Phys. 12 (2020) 008.

[50] J. R. Ellis and K. A. Olive, Constraints on light particles
from supernova SN 1987A, Phys. Lett. B 193, 525 (1987).

[51] G. Raffelt and D. Seckel, Bounds on Exotic Particle
Interactions from SN 1987A, Phys. Rev. Lett. 60, 1793
(1988).

[52] M. S. Turner, Axions from SN 1987A, Phys. Rev. Lett. 60,
1797 (1988).

[53] A. Burrows, M. T. Ressell, and M. S. Turner, Axions and
SN 1987A: Axion trapping, Phys. Rev. D 42, 3297 (1990).

[54] H.-T. Janka, Neutrino-driven explosions, in Handbook of
Supernovae, edited by A. Alsabti and P. Murdin (Springer,
New York, 2017), p. 54.

[55] A. Burrows and D. Vartanyan, Core-collapse supernova
explosion theory, Nature (London) 589, 29 (2021).

[56] A. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K.
Scholberg, R. Bollig, L. Hüdepohl, and S. Chakraborty,
Supernova neutrinos: Production, oscillations and detec-
tion, Riv. Nuovo Cimento 39, 1 (2016).

[57] G. G. Raffelt, Astrophysical methods to constrain axions
and other novel particle phenomena, Phys. Rep. 198, 1
(1990).

[58] R. Mayle, J. R. Wilson, J. R. Ellis, K. A. Olive, D. N.
Schramm, and G. Steigman, Constraints on axions from
SN 1987A, Phys. Lett. B 203, 188 (1988).

[59] R. Mayle, J. R. Wilson, J. R. Ellis, K. A. Olive, D. N.
Schramm, and G. Steigman, Updated constraints on axions
from SN 1987A, Phys. Lett. B 219, 515 (1989).

[60] A. Burrows, M. S. Turner, and R. P. Brinkmann, Axions
and SN 1987A, Phys. Rev. D 39, 1020 (1989).

[61] N. Bar, K. Blum, and G. D’Amico, Is there a supernova
bound on axions?, Phys. Rev. D 101, 123025 (2020).

[62] P. Cigan et al., High angular resolution ALMA images of
dust and molecules in the SN 1987A ejecta, Astrophys. J.
886, 51 (2019).

[63] D. Page, M. V. Beznogov, I. Garibay, J. M. Lattimer, M.
Prakash, and H.-T. Janka, NS 1987A in SN 1987A,
Astrophys. J. 898, 125 (2020).

[64] Garching core-collapse supernova research archive, https://
wwwmpa.mpa-garching.mpg.de/ccsnarchive/.

[65] M. Rampp and H.-T. Janka, Radiation hydrodynamics with
neutrinos: Variable Eddington factor method for core
collapse supernova simulations, Astron. Astrophys. 396,
361 (2002).

[66] A. Marek, H. Dimmelmeier, H.-T. Janka, E. Müller, and R.
Buras, Exploring the relativistic regime with Newtonian
hydrodynamics: An improved effective gravitational po-
tential for supernova simulations, Astron. Astrophys. 445,
273 (2006).

[67] J. Engel, D. Seckel, and A. Hayes, Emission and Detect-
ability of Hadronic Axions from SN 1987A, Phys. Rev.
Lett. 65, 960 (1990).

[68] W. Keil, H.-T. Janka, and G. Raffelt, Reduced neutrino
opacities and the SN 1987A signal, Phys. Rev. D 51, 6635
(1995).

[69] J. H. Chang, R. Essig, and S. D. McDermott, Revisiting
supernova 1987A constraints on dark photons, J. High
Energy Phys. 01 (2017) 107.

[70] S. E. Woosley, SN 1987A: After the peak, Astrophys. J.
330, 218 (1988).

[71] A. Sung, H. Tu, and M.-R. Wu, New constraint from
supernova explosions on light particles beyond the Stan-
dard Model, Phys. Rev. D 99, 121305 (2019).

[72] D. J. Forrest, E. L. Chupp, J. M. Ryan, M. L. Cherry, I. U.
Gleske, C. Reppin, K. Pinkau, E. Rieger, G. Kanbach,
R. L. Kinzer, G. Share, W. N. Johnson, and J. D. Kurfess,

CAPUTO, RAFFELT, and VITAGLIANO PHYS. REV. D 105, 035022 (2022)

035022-30

https://doi.org/10.1103/PhysRevLett.62.505
https://doi.org/10.1016/0927-6505(93)90004-W
https://doi.org/10.1016/0927-6505(93)90004-W
https://doi.org/10.1103/PhysRevD.98.055032
https://doi.org/10.1103/PhysRevD.102.123005
https://doi.org/10.1088/1475-7516/2013/12/008
https://doi.org/10.1103/PhysRevD.100.095021
https://doi.org/10.1016/0370-2693(86)90509-5
https://doi.org/10.1016/0370-2693(86)90509-5
https://doi.org/10.1103/PhysRevD.33.897
https://doi.org/10.1103/PhysRevD.78.115012
https://doi.org/10.1103/PhysRevD.78.115012
https://doi.org/10.1142/S0217732389000381
https://doi.org/10.1007/JHEP12(2017)044
https://doi.org/10.1016/0550-3213(95)00379-7
https://doi.org/10.1016/0550-3213(95)00379-7
https://doi.org/10.1016/j.ppnp.2018.05.003
https://doi.org/10.1016/j.ppnp.2018.05.003
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1103/PhysRevLett.52.695.2
https://doi.org/10.1103/PhysRevLett.52.695.2
https://doi.org/10.1103/PhysRevD.37.1237
https://doi.org/10.1016/0370-2693(96)00778-2
https://doi.org/10.1088/1475-7516/2015/02/006
https://doi.org/10.1088/1475-7516/2015/02/006
https://doi.org/10.1088/1475-7516/2020/12/008
https://doi.org/10.1016/0370-2693(87)91710-2
https://doi.org/10.1103/PhysRevLett.60.1793
https://doi.org/10.1103/PhysRevLett.60.1793
https://doi.org/10.1103/PhysRevLett.60.1797
https://doi.org/10.1103/PhysRevLett.60.1797
https://doi.org/10.1103/PhysRevD.42.3297
https://doi.org/10.1038/s41586-020-03059-w
https://doi.org/10.1393/ncr/i2016-10120-8
https://doi.org/10.1016/0370-1573(90)90054-6
https://doi.org/10.1016/0370-1573(90)90054-6
https://doi.org/10.1016/0370-2693(88)91595-X
https://doi.org/10.1016/0370-2693(89)91104-0
https://doi.org/10.1103/PhysRevD.39.1020
https://doi.org/10.1103/PhysRevD.101.123025
https://doi.org/10.3847/1538-4357/ab4b46
https://doi.org/10.3847/1538-4357/ab4b46
https://doi.org/10.3847/1538-4357/ab93c2
https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/
https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/
https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/
https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/
https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/
https://doi.org/10.1051/0004-6361:20021398
https://doi.org/10.1051/0004-6361:20021398
https://doi.org/10.1051/0004-6361:20052840
https://doi.org/10.1051/0004-6361:20052840
https://doi.org/10.1103/PhysRevLett.65.960
https://doi.org/10.1103/PhysRevLett.65.960
https://doi.org/10.1103/PhysRevD.51.6635
https://doi.org/10.1103/PhysRevD.51.6635
https://doi.org/10.1007/JHEP01(2017)107
https://doi.org/10.1007/JHEP01(2017)107
https://doi.org/10.1086/166468
https://doi.org/10.1086/166468
https://doi.org/10.1103/PhysRevD.99.121305


The gamma ray spectrometer for the Solar Maximum
Mission, Sol. Phys. 65, 15 (1980).

[73] G. G. Raffelt, Comment on “New Limits to the Infrared
Background: Bounds on Radiative Neutrino Decay and on
Contributions of Very Massive Objects to the Dark Matter
Problem”, Phys. Rev. Lett. 81, 4020 (1998).

[74] P. Carenza, C. Evoli, M. Giannotti, A. Mirizzi, and D.
Montanino, Turbulent axion-photon conversions in the
Milky Way, Phys. Rev. D 104, 023003 (2021).

[75] A. H. Jaffe and M. S. Turner, Gamma-rays and the decay of
neutrinos from SN 1987A, Phys. Rev. D 55, 7951 (1997).

[76] S. Ando and K. Sato, Relic neutrino background from
cosmological supernovae, New J. Phys. 6, 170 (2004).

[77] J. F. Beacom, The diffuse supernova neutrino background,
Annu. Rev. Nucl. Part. Sci. 60, 439 (2010).

[78] C. Lunardini, Diffuse supernova neutrinos at underground
laboratories, Astropart. Phys. 79, 49 (2016).

[79] D. Kresse, T. Ertl, and H.-T. Janka, Stellar collapse
diversity and the diffuse supernova neutrino background,
Astrophys. J. 909, 169 (2021).

[80] R. Cowsik, Limits on the Radiative Decay of Neutrinos,
Phys. Rev. Lett. 39, 784 (1977); Erratum, Phys. Rev. Lett.
40, 201 (1978).

[81] F. Calore, P. Carenza, M. Giannotti, J. Jaeckel, G. Lucente,
and A. Mirizzi, Supernova bounds on axion-like particles
coupled with nucleons and electrons, Phys. Rev. D 104,
043016 (2021).

[82] E. Vitagliano, I. Tamborra, and G. Raffelt, Grand unified
neutrino spectrum at Earth: Sources and spectral compo-
nents, Rev. Mod. Phys. 92, 045006 (2020).

[83] G. L. Fogli, E. Lisi, A. Mirizzi, and D. Montanino, Three
generation flavor transitions and decays of supernova relic
neutrinos, Phys. Rev. D 70, 013001 (2004).

[84] H. Yüksel, M. D. Kistler, J. F. Beacom, and A.M. Hopkins,
Revealing the high-redshift star formation rate with gamma-
ray bursts, Astrophys. J. Lett. 683, L5 (2008).

[85] G. J. Mathews, J. Hidaka, T. Kajino, and J. Suzuki,
Supernova relic neutrinos and the supernova rate problem:
Analysis of uncertainties and detectability of ONeMg and
failed supernovae, Astrophys. J. 790, 115 (2014).

[86] B. E. Robertson, R. S. Ellis, S. R. Furlanetto, and J. S.
Dunlop, Cosmic reionization and early star-forming galaxies:
A joint analysis of new constraints From Planck and the
Hubble Space Telescope, Astrophys. J. Lett. 802, L19 (2015).

[87] P. Madau and M. Dickinson, Cosmic star formation
history, Annu. Rev. Astron. Astrophys. 52, 415 (2014).

[88] M. Ackermann et al. (Fermi-LAT Collaboration), The
spectrum of isotropic diffuse gamma-ray emission between
100 MeV and 820 GeV, Astrophys. J. 799, 86 (2015).

[89] S. Weinberg, Goldstone Bosons as Fractional Cosmic
Neutrinos, Phys. Rev. Lett. 110, 241301 (2013).

[90] P. F. de Salas and S. Pastor, Relic neutrino decoupling with
flavour oscillations revisited, J. Cosmol. Astropart. Phys.
07 (2016) 051.

[91] G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti, and
P. D. Serpico, Relic neutrino decoupling including flavour
oscillations, Nucl. Phys. B729, 221 (2005).

[92] J. Birrell, C.-T. Yang, and J. Rafelski, Relic neutrino
freeze-out: Dependence on natural constants, Nucl. Phys.
B890, 481 (2014).

[93] M. E. Abenza, Precision early universe thermodynamics
made simple: Neff and neutrino decoupling in the Standard
Model and beyond, J. Cosmol. Astropart. Phys. 05 (2020)
048.

[94] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, Astron. Astrophys.
641, A6 (2020).

[95] M. Escudero, D. Hooper, G. Krnjaic, and M. Pierre,
Cosmology with a very light Lμ − Lτ gauge boson,
J. High Energy Phys. 03 (2019) 071.

[96] D. Cadamuro and J. Redondo, Cosmological bounds on
pseudo Nambu-Goldstone bosons, J. Cosmol. Astropart.
Phys. 02 (2012) 032.

[97] L. Marsicano, M. Battaglieri, A. Celentano, R. De Vita,
and Y.-M. Zhong, Probing leptophilic dark sectors at
electron beam-dump facilities, Phys. Rev. D 98, 115022
(2018).

[98] G. Krnjaic, G. Marques-Tavares, D. Redigolo, and K.
Tobioka, Probing Muonphilic Force Carriers and Dark
Matter at Kaon Factories, Phys. Rev. Lett. 124, 041802
(2020).

[99] J. D. Bjorken, S. Ecklund, W. R. Nelson, A. Abashian, C.
Church, B. Lu, L. W. Mo, T. A. Nunamaker, and P.
Rassmann, Search for neutral metastable penetrating par-
ticles produced in the SLAC beam dump, Phys. Rev. D 38,
3375 (1988).

[100] M. Bondí (BDX Collaboration), Light Dark Matter search
in a beam-dump experiment: BDX at Jefferson Lab, EPJ
Web Conf. 142, 01005 (2017).

[101] R. Balkin, M.W. Krasny, T. Ma, B. R. Safdi, and Y. Soreq,
Probing ALPs at the CERN Gamma Factory, arXiv:2105
.15072.

[102] K. Asai, K. Hamaguchi, N. Nagata, S.-Y. Tseng, and J.
Wada, Probing the Lμ-Lτ gauge boson at the MUonE
experiment, arXiv:2109.10093.

[103] G. Abbiendi, Letter of intent: The MUonE project,
Technical Report No. CERN-SPSC-2019-026; SPSC-I-
252, Geneva, 2019. The collaboration has not yet a
structure, therefore the names above are for the moment
an indication of contacts.

[104] J. Blümlein et al., Limits on the mass of light (pseudo)
scalar particles from Bethe-Heitler eþe− and μþμ− pair
production in a proton-iron beam dump experiment, Int. J.
Mod. Phys. A 07, 3835 (1992).

[105] V. Brdar, B. Dutta, W. Jang, D. Kim, I. M. Shoemaker, Z.
Tabrizi, A. Thompson, and J. Yu, Axionlike Particles at
Future Neutrino Experiments: Closing the Cosmological
Triangle, Phys. Rev. Lett. 126, 201801 (2021).

[106] J. Blümlein et al., Limits on neutral light scalar and
pseudoscalar particles in a proton beam dump experiment,
Z. Phys. C 51, 341 (1991).

[107] P. F. Depta, M. Hufnagel, and K. Schmidt-Hoberg, Robust
cosmological constraints on axion-like particles, J. Cos-
mol. Astropart. Phys. 05 (2020) 009.

MUONIC BOSON LIMITS: SUPERNOVA REDUX PHYS. REV. D 105, 035022 (2022)

035022-31

https://doi.org/10.1007/BF00151381
https://doi.org/10.1103/PhysRevLett.81.4020
https://doi.org/10.1103/PhysRevD.104.023003
https://doi.org/10.1103/PhysRevD.55.7951
https://doi.org/10.1088/1367-2630/6/1/170
https://doi.org/10.1146/annurev.nucl.010909.083331
https://doi.org/10.1016/j.astropartphys.2016.02.005
https://doi.org/10.3847/1538-4357/abd54e
https://doi.org/10.1103/PhysRevLett.39.784
https://doi.org/10.1103/PhysRevLett.40.201
https://doi.org/10.1103/PhysRevLett.40.201
https://doi.org/10.1103/PhysRevD.104.043016
https://doi.org/10.1103/PhysRevD.104.043016
https://doi.org/10.1103/RevModPhys.92.045006
https://doi.org/10.1103/PhysRevD.70.013001
https://doi.org/10.1086/591449
https://doi.org/10.1088/0004-637X/790/2/115
https://doi.org/10.1088/2041-8205/802/2/L19
https://doi.org/10.1146/annurev-astro-081811-125615
https://doi.org/10.1088/0004-637X/799/1/86
https://doi.org/10.1103/PhysRevLett.110.241301
https://doi.org/10.1088/1475-7516/2016/07/051
https://doi.org/10.1088/1475-7516/2016/07/051
https://doi.org/10.1016/j.nuclphysb.2005.09.041
https://doi.org/10.1016/j.nuclphysb.2014.11.020
https://doi.org/10.1016/j.nuclphysb.2014.11.020
https://doi.org/10.1088/1475-7516/2020/05/048
https://doi.org/10.1088/1475-7516/2020/05/048
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1007/JHEP03(2019)071
https://doi.org/10.1088/1475-7516/2012/02/032
https://doi.org/10.1088/1475-7516/2012/02/032
https://doi.org/10.1103/PhysRevD.98.115022
https://doi.org/10.1103/PhysRevD.98.115022
https://doi.org/10.1103/PhysRevLett.124.041802
https://doi.org/10.1103/PhysRevLett.124.041802
https://doi.org/10.1103/PhysRevD.38.3375
https://doi.org/10.1103/PhysRevD.38.3375
https://doi.org/10.1051/epjconf/201714201005
https://doi.org/10.1051/epjconf/201714201005
https://arXiv.org/abs/2105.15072
https://arXiv.org/abs/2105.15072
https://arXiv.org/abs/2109.10093
https://doi.org/10.1142/S0217751X9200171X
https://doi.org/10.1142/S0217751X9200171X
https://doi.org/10.1103/PhysRevLett.126.201801
https://doi.org/10.1007/BF01548556
https://doi.org/10.1088/1475-7516/2020/05/009
https://doi.org/10.1088/1475-7516/2020/05/009

