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In this work, we study the status of negative coupling modifiers in extended Higgs sectors, focusing on
the ratio of coupling modifiers that probes custodial symmetry violation λWZ ¼ κW=κZ. Higgs sectors with
multiplets larger than doublets are the only weakly coupled models that give tree-level modifications to
λWZ, and we explore all such models allowed by the constraint from the ρ parameter and perturbative
unitarity. This class of models has a custodial symmetry violating potential, while the vacuum
configuration preserves the symmetry. We apply precision measurements from ATLAS and CMS and
show that each dataset can exclude a vast set of models with λWZ < 0 at greater than 95% confidence level.
We give evidence that λWZ < 0 is excluded in all weakly coupled models.
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I. INTRODUCTION

The Higgs boson was the last missing piece for the
standard model (SM). After its discovery [1,2], the hunt to
uncover its underlying proprieties started. The LHC experi-
ments have measured many of its properties and showed
that the corrections from new physics, if they exist,
appear to be small [3–5]. We know, however, the SM
cannot be a complete theory of nature, so a thorough
search for deviations in the Higgs sector is of paramount
importance.
The fact that deviations from the properties of the SM

Higgs appear to be small may be an artifact of the way we
are accessing its information. Most observables of the
Higgs sector are cross sections and decay rates, which
normally are not sensitive to the sign of the underlying
coupling. This means that some new physics could hide in
plain sight if it generates couplings accidentally close to the
SM, but with flipped signs. A simple example of such a
scenario can be explored in looking at modifications of the
Higgs couplings to electroweak gauge bosons. If we
parametrize deviations from the SM predictions to those
couplings using κW and κZ [6], then the agreement of the
measurements of H → ZZ� [7,8] and H → WW� [9,10]
with the SM prediction indicate that κ2W ≈ 1 and κ2Z ≈ 1. If
we define

λWZ ¼ κW
κZ

; ð1:1Þ

then the data imply λWZ ≈�1, but these processes cannot
distinguish the negative from the positive sign scenario.
This can be confirmed with a global fit of all the
Higgs data [4,5], which indicates that jλWZj ≈ 1 with
Oð10%Þ precision. The ATLAS analysis [5], however,
assumes λWZ > 0 in its fit. The CMS analysis [4] does
allow either sign, but it has almost no discrimination
power for the sign. Interestingly, a negative value of λWZ is
slightly preferred in the CMS fit.
Higgs couplings with similar magnitudes but opposite

signs of the SM prediction can be probed using
interference effects, for example in Higgs decays to
four leptons [11], WþW−H production [12], VBF-VH
production [13], and the combination of Zh and tH
production [14]. These measurements, however, could
also be affected by the presence of new states that can
also contribute to the interference measured, so it is
difficult to make a model-independent determination of
the sign of the couplings.
A particularly interesting feature of the Higgs sector in

the SM is that it exhibits an accidental custodial symmetry
[15] of SUð2ÞL × SUð2ÞR. This custodial symmetry pre-
dicts the value of the ρ parameter:

ρ ¼ m2
W

c2wm2
Z
≈ 1; ð1:2Þ

After a more careful accounting of custodial symmetry
breaking effects within the SM, the measured value ρ
parameter agrees with the SM prediction with a precision
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∼10−4 [16]. This is very strong evidence that custodial
symmetry is realized in nature. The custodial symmetry
also predicts λWZ ¼ 1, and taking the precision of the ρ
parameter as a naive guide, deviations from 1 of λWZ are
expected to be small.
In order to quantitatively explore these flipped sign

scenarios, we must have models that go beyond the SM
and can modify the Higgs couplings. We are particularly
interested in the λWZ < 0 scenario, which means that these
models must break custodial symmetry.1 The only weakly
coupled models that give tree-level modifications of λWZ
are models with extended Higgs sectors that have repre-
sentations larger than doublets, which are the models we
focus on in this work. These models are of course strongly
constrained by the measurement of the ρ parameter.
This constraint can be evaded in models that have
custodial symmetry built into them such as the Georgi-
Machacek model [18,19] and its generalizations [20].
In those models, the vacuum expectation values (VEVs) of
scalars in the same custodial representation are equal
and their contributions to the ρ parameter cancel at tree
level. In that case, however, modifications to λWZ are
also small.
In this work, we highlight that the ρ parameter has its

source in the vacuum configuration of the extended scalar
sector, while the Higgs coupling modifiers have most of
their contributions coming from the mixing between
multiplets. This means that there are models that avoid
the ρ parameter constraint and can still have a large
amount of custodial violation. These models have a
VEV that is custodial symmetric, but a potential that
violates such symmetry. We call this class of models
accidentally custodial symmetric (AC). These models
have the same field content as generalized Georgi-
Machacek models [20], while having a custodial breaking
potential. For completeness, we will also consider more
general field contents where contributions to the ρ
parameter from different custodial multiplets cancel one
another.2

Naively, one would think that it is necessary to work out
the potential for each possible extension and then perform
individual parameter scans, which would make it compu-
tationally infeasible to systematically cover the whole
parameter space. We can make the following observation
to avoid this problem: the parameters ρ and λWZ depend
only on the Higgs VEVs and the matrix that rotates
between the gauge and mass bases for the Higgs states.
While the VEVs and rotation matrices do in turn depend

on the full scalar potential of the model, we will assume
that they are independent and consider the most general
possibility. Since we can then treat both the Higgs
eigenvector and the VEV as independent quantities,
the parameter scan is lower dimensional compared to
scanning the potential, and we can explore a wider class
of models. We will then show that even with this
assumption, all models studied are excluded at more than
95% C.L. using the ATLAS or CMS data.3 Given this
exclusion, it becomes unnecessary to study the full
potential of the model, since any solution arising from
the potential will be covered by our analysis and thus
excluded.
The remainder of this work is organized as follows.

In Sec. II, we introduce the AC triplet scenario which is the
simplest one that can give rise to large modifications of λWZ
and be consistent with bounds from the ρ parameter. In
Sec. III, we generalize to all multiplets allowed by
perturbative unitarity and discuss the set of models that
we are considering. In Sec. IV, we apply the experimental
bounds to the models and highlight the general features
that are common among all of them. We conclude in
Sec. V, and various technical details are given in the
appendixes.

II. ACCIDENTALLY CUSTODIAL SYMMETRIC
TRIPLETS

In extended electroweak sectors, particularly those with
scalar representations larger than doublets, the custodial
violation can come from two distinct sources: the vacuum
configuration, and the Lagrangian. The vacuum contribu-
tion modifies the ρ parameter at tree level, and it is heavily
constrained [16]. The custodial violation from interactions
enters only at loop level for the ρ parameter and is thus less
constrained. In the Standard Model, this is the case of the
hypercharge and Yukawa breaking of custodial symmetry.
We are interested in models that can avoid the ρ parameter
bound and still have large custodial violation. The class of
models that satisfy these conditions have a custodial
violating potential, but they have a limit where the vacuum
is custodial symmetric.
The simplest such model, which we study in this section,

has the same field content as the Georgi-Machacek model
[18,19], while the potential is the most general allowed by
the standard model symmetries. We have the usual Higgs
doublet (ϕþ, ϕ0) with hypercharge Y ¼ 1,4 a complex

1A custodial 5-plet does have λWZ ¼ −1=2 [17], but such a
state has no couplings to fermions, so it is highly implausible that
the Hð125Þ is a 5-plet.

2The contributions from different multiplets are independent of
one another, so having their effects cancel is, of course, a fine-
tuning, but in this work we seek to explore even fine-tuned
models.

3Using the ATLAS analysis, one model is excluded at
99.5% C.L., while all the rest are excluded at more than
99.7% C.L. (3σ). The CMS analysis does not give a correlation
matrix for the ratio of coupling modifiers, making it difficult to
make a more precise statement than we make here.

4The quark doublet has Y ¼ 1=3 in this convention.
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triplet (χþþ, χþ, χ0) with hypercharge Y ¼ 2, and a real triplet (ξþ, ξ0, ξ−) with hypercharge Y ¼ 0. The most general
potential can be written as

V ¼ μ22ϕ
†ϕþ μ023 χ

†χ þ μ23
2
ξ†ξþ λ1ðϕ†ϕÞ2 þ λ2jχC†χj2 þ λ3ðϕ†τaϕÞðχ†taχÞ þ λ4½ðϕC†τaϕÞðχ†taξÞ þ H:c:�

þ λ5ðϕ†ϕÞðχ†χÞ þ λ6ðϕ†ϕÞðξ†ξÞ þ λ7ðχ†χÞ2 þ λ8ðξ†ξÞ2 þ λ9jχ†ξj2 þ λ10ðχ†χÞðξ†ξÞ −
1

2
½M0

1ϕ
†Δ2ϕ

C þ H:c:�

þM1

2
ϕ†Δ0ϕ − 6M2χ

†Δ̄0χ; ð2:1Þ

where τi and ti are the generators of the doublet and triplet
representations that can be seen in Appendix B. It is also
defined as

Δ2 ≡
 χþffiffi

2
p −χþþ

χ0 − χþffiffi
2

p

!
; ð2:2Þ

Δ0 ≡
 ξ0ffiffi

2
p −ξþ

−χþ� − χ0ffiffi
2

p

!
; ð2:3Þ

Δ̄0 ≡
0
B@

−ξ0 ξþ 0

ξþ� 0 ξþ

0 ξþ� ξ0

1
CA; ð2:4Þ

and the charge conjugation defined as

ϕC ≡
 

0 1

−1 0

!
ϕ�; ð2:5Þ

χC ≡
0
B@

0 0 1

0 −1 0

1 0 0

1
CAχ�: ð2:6Þ

This is the most general renormalizable potential for
these fields and was defined in [21–23] to study the
custodial violation in the Georgi-Machacek (GM) model
from the loop corrections. In the custodial limit, χ and ξ can
be organized into a bi-triplet written as

X ¼

0
B@

χ0� ξþ χþþ

−χþ� ξ0 χþ

χþþ� −ξþ� χ0

1
CA; ð2:7Þ

and the allowed couplings can all be written in terms of X.
The specific relations between the couplings that enforce
the custodial limit can be seen in Eq. (27) of [22]. In our
case, we assume that the custodial symmetry is not an
underlying symmetry of the potential, rather it is emergent
from the vacuum configuration. Since the ρ parameter at
tree level is mostly sensitive to the vacuum, we can have a

large custodial violation without large contributions to the
ρ parameter. One loop corrections do contribute to the
ρ parameter, and even if they are small, they can be of the
same order as the experimental precision. This will gen-
erate additional bounds on the parameters of the model
[21]. Since we want to study the custodial vacuum, one
should also determine whether such a configuration is
stable. This analysis can be done using the methods
developed in [24,25]. In the analysis that we will perform
here, these bounds can enter in the final stages, if there is
any parameter space left.
The couplings of the scalars to the gauge bosons come

from the kinetic term that has the standard form:

Lkin ¼ ðDμϕÞ†Dμϕþ ðDμχÞ†Dμχ þ
1

2
ðDμξÞ†Dμξ; ð2:8Þ

where the covariant derivative depends on the representa-
tion of the field,

Dμ ¼ ∂μ −
igffiffiffi
2

p ðW−tþ þWþt−Þ −
ie

swcw
ðt3 − s2wQÞ: ð2:9Þ

The basis for each representation for ti can be found in
Appendix B, the charge matrix, and t� is defined as

Q ¼ t3 þ Y=2; ð2:10Þ

t� ¼ t1 ∓ it2: ð2:11Þ

Couplings of the scalars to fermions are very similar to the
SM: in the gauge basis, the doublet couples to all fermions
while the triplets do not.
We are interested here in the contributions from this

model to the coupling modifiers of the Higgs. After
electroweak (EW) symmetry breaking, we have the follow-
ing field redefinitions for the vacua:

ϕ0 ¼ νϕffiffiffi
2

p þ 1ffiffiffi
2

p ðϕ0
R þ iϕ0

I Þ; ξ0 ¼ νξ þ ξ0R;

χ0 ¼ νχ þ
1ffiffiffi
2

p ðχ0R þ iχ0I Þ: ð2:12Þ

Each CP even neutral component has a coupling to gauge
bosons. In this specific case, we have from the kinetic term
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gϕ0
RWW ¼ g2

2
νϕ; gϕ0

RZZ
¼ e2

2c2ws2w
νϕ;

gχ0RWW ¼
ffiffiffi
2

p
g2νχ ; gχ0RZZ ¼ 2

ffiffiffi
2

p
e2

c2ws2w
νχ ;

gξ0RWW ¼ 2g2νξ; gξ0RZZ ¼ 0: ð2:13Þ

These couplings are in the gauge basis, but generically all
the states with the same electric charge will mix. Therefore,
once we go to the mass basis, states will couple with linear
combinations of the couplings in Eq. (2.13). One mass
eigenstate will be the 125 GeV Higgs, and its overlap with
the different gauge eigenstates can be used to compute the
coupling to the gauge bosons. Measurements of the
couplings of the Higgs at the LHC can then be used to
constrain the model.
As noted in the Introduction, deviations from the SM

predictions of couplings can be parametrized in terms of
coupling modifiers by dividing out the SM value [6]. To set
the notation, we first define the total Standard Model
vacuumexpectationvalue in terms of the Fermi constantGF:

ν ¼ ð
ffiffiffi
2

p
GFÞ−

1
2 ≈ 246 GeV: ð2:14Þ

Then, let us define the general coupling modifier for a scalar
field X as

κXW ¼ gXWW
ðg2νÞ
2

; κXZ ¼ gXZZ
ðe2νÞ
2c2ws2w

: ð2:15Þ

We can include the fermion coupling modifiers by noting
that the fermions only couple the doublet in the gauge basis.
So in the gauge basis, the coupling modifiers are given by

κϕf ¼ νϕ
ν
; κϕW ¼ νϕ

ν
; κϕZ ¼ νϕ

ν
;

κχf ¼ 0; κχW ¼ 2
ffiffiffi
2

p
νχ

ν
; κχZ ¼ 4

ffiffiffi
2

p
νχ

ν
;

κξf ¼ 0; κξW ¼ 4νξ
ν

; κξZ ¼ 0: ð2:16Þ

The coupling modifiers in the mass basis can then be
computed in terms of the rotation matrix between the two
bases. This approach can be generalized to any multiplet.
The expressions of different coupling modifiers from differ-
ent multiplets can be seen in Appendix C.
Finally we can work out the ρ parameter at tree level. The

mass of the W and Z boson in this model is

m2
W ¼ g2

4
ðν2ϕ þ 4ν2χ þ 4ν2ξÞ; ð2:17Þ

m2
Z ¼ e2

4c2ws2w
ðν2ϕ þ 8ν2χÞ: ð2:18Þ

From the definition of the ρ parameter we have

ρ ¼ m2
W

c2wm2
Z
¼ ν2ϕ þ 4ν2χ þ 4ν2ξ

ν2ϕ þ 8ν2χ
: ð2:19Þ

We can see that we restore ρ ¼ 1 if νχ ¼ νξ as in the
original GM model [18,19]. This is the custodial limit of
this model. Given the precise measurement of ρ, the model
is excluded unless νχ ≈ νξ. For models with more than two
multiplets, we can have configurations that cancel the
contribution of the ρ parameter without being a custodial
symmetric vacuum, which we explore further in the
analysis of the other models.
Now, we posit that the model is in the custodial vacuum

and study the mixing between the gauge eigenstates. The
important mixing is the one that will generate the 125 GeV
Higgs eigenstate in the neutral sector. The mass matrix, in
the basis ðχ0R; ξ0R;ϕ0

RÞ in terms of the parameters of
Eq. (2.1), is

M2
0 ¼

0
BBB@

ν2ϕðM
0
1

4νχ
− λ4

2
ffiffi
2

p Þ þ 4λ7ν
2
χ ν2ϕ

λ4
2
þ 2

ffiffiffi
2

p
λ10ν

2
χ − 6

ffiffiffi
2

p
M2νχ νϕνχðλ4 þ

ffiffiffi
2

p
λ5 þ λ3ffiffi

2
p Þ −M0

1

νϕffiffi
2

p

ν2ϕ
λ4
2
þ 2

ffiffiffi
2

p
λ10ν

2
χ − 6

ffiffiffi
2

p
M2νχ ν2ϕðM1

4νχ
− λ4ffiffi

2
p Þ þ 8λ8ν

2
χ þ 6M2νχ νϕνχð2λ6 þ

ffiffiffi
2

p
λ4Þ − M1

2
νϕ

νϕνχðλ4 þ
ffiffiffi
2

p
λ5 þ λ3ffiffi

2
p Þ −M0

1

νϕffiffi
2

p νϕνχð2λ6 þ
ffiffiffi
2

p
λ4Þ − M1

2
νϕ 2λ1ν

2
ϕ

1
CCCA: ð2:20Þ

At this point, one could do a scan for the full
parameter space of the model and obtain for each parameter
point an eigenvector that corresponds to the Higgs.
Here we take a different approach and consider the
Higgs mass eigenvector and the set of VEVs to be

independent. This will encompass all possible model
points and may also contain points that are unphysical.
Therefore, if we can exclude this more general para-
metrization, we can conclude that the model is indeed
excluded.
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The 125 GeV Higgs eigenvector in the most general
form can be written as

h ¼ R1χ
0
R þ R2ξ

0
R þ R3ϕ

0
R: ð2:21Þ

The VEVs can be written as

ν2 ¼ ν2ϕ þ 4ν2χ þ 4ν2ξ : ð2:22Þ

Let us now investigate the behavior of the ratios of coupling
modifiers for the AC custodial triplet (νχ ¼ νξ). In terms of
these parameters we have

λWZ ¼ 2
ffiffiffi
2

p
νχR1 þ 4νχR2 þ νϕR3

4
ffiffiffi
2

p
νχR1 þ νϕR3

: ð2:23Þ

If we assume that λWZ ¼ −1, we can find a relation
between the vector components and the VEVs:

R1 ¼ −
R3νϕ þ 2νχR2

3
ffiffiffi
2

p
νχ

: ð2:24Þ

Now, we can explore if it is possible for the other coupling
modifiers to be close to �1 to be consistent with Higgs
data. In this case we can use

λfZ ¼ κf
κZ

; ð2:25Þ

κfZ ¼ κfκZ
κh

; ð2:26Þ

where we use κh parametrizes the deviation of the total
width of the Higgs away from the SM value,

Γh ¼
κ2hΓSM

h

1 − BBSM
: ð2:27Þ

Without the inclusion of loop induced processes,5 κh can be
written as

κh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.75κ2f þ 0.22κ2W þ 0.03κ2Z

q
: ð2:28Þ

First, let us assume that λfZ ¼ �1, and this can give us the
following relation:

R2 ¼∓ R3νϕ
2νχ

: ð2:29Þ

Finally, we want to know what are the possible values for
the last observable κfZ, and doing the substitutions we have

κfZ ¼ R3

νϕ
ν

for λfZ ¼ 1; ð2:30Þ

κfZ ≈ −1.39R3

νϕ
ν

for λfZ ¼ −1: ð2:31Þ

From this result, we can see that it is impossible to have an
accidental cancellation in λWZ and still be close to the
Standard Model value for the other coupling modifiers.
We can at most have two of these three coupling modifiers
close to the SM value. In Eq. (2.30) both R3 and νϕ

ν
are smaller than one, moving away from the SM value.
Using the unitarity of R⃗ we can place an upper bound
of κfZ ≲ 0.6. This highlights that accidental cancellations
can happen, but they can generally be constrained
by multiple observables. This analysis does not include
the correlation between νχ and R⃗ which is present in the
model and could even further constrain the para-
meter space.
Using this type of reasoning we can explore this region

of parameter space without scanning the 16 parameters of
the theory. In the end, if the model or a region of the
parameter space is excluded for general VEVs and eigen-
vectors, the correlations of the variables will not change the
exclusion. When going to models with higher representa-
tions, this procedure will generalize to generating a random
vector R⃗ and a random VEV configuration. In summary,
treating the vectors as independent can exclude some parts
of the parameter space, but if some configurations are not
excluded by the data, the model would need to be further
investigated. This is the approach that we use for this
model and the generalization that we introduce in the next
section.

III. GENERAL PARAMETRIZATION OF AC
EXTENDED SCALAR SECTORS

We now generalize the analysis of the last section to
larger representations of SUð2Þ. We already saw that the
AC triplets have the possibility of negative couplings
provided the mass eigenvector has the correct values.
Any extended sector with multiplets larger than doublet
can also have a region in parameter space where λWZ ≈ −1,
provided the potential is custodial violating. We will
continue to use the nomenclature of accidentally symmetric
(AC) for models that have a custodial limit satisfied by the
vacuum but not the potential. The AC models can generate
negative couplings in a simple way, but we could also have
a situation where we are not in the symmetric vacuum or we
do not have any custodial symmetric limit. We also
investigate these possibilities to have an overall picture
of the status of negative coupling modifiers for any
extended Higgs sector.

5The only limit where κγ or κZγ could give important
contributions to κh in a realistic scenario is where both κf and
κV are small. However, in such a limit κfZ behaves as κfZ ∼ 0
which is excluded. We assume that the gluon coupling modifier is
controlled by κf, since we do not include new colored states.
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Since we want to give a general statement of the state of
such negative couplings for an arbitrary extended sector, we
first assess how many different models there are that can
have λWZ ≈ −1. We can use perturbative unitarity of boson
scattering to constrain the number and size of additional
multiplets, which will in turn limit the total number of
possible models. In AC scenarios, the allowed multiplets
are those of the generalized GM models [20]: AC
triplet, AC quartet, AC pentet, or AC sextet. These models
have a field content that can be written as ðN;NÞ of
SUð2ÞL × SUð2ÞR, and under the EW group SUð2ÞL ×
Uð1ÞY has the following particle decomposition:
AC triplets have the representations (1,2) and (1,0). AC
quartets have the representations ð3=2; 3Þ and ð3=2; 1Þ.
AC pentets have the representations (2,4), (2,2), and (2,0).
AC sextets have the representations ð5=2; 5Þ, ð5=2; 3Þ, and
ð5=2; 1Þ. We can also have different combinations of those
models. In addition, we explore the possibility of intro-
ducing small custodial violation on the VEVs which is
constrained by the ρ parameter. As we will discuss, those
modifications are usually small, since the main source of
custodial violation needs to come from the potential.
Following [20], we construct a perturbative unitary

bound by computing the scattering matrix in the scalar
sector. The largest eigenvalue of the scattering matrix for a
single complex scalar multiplet with size n is given by

a0ðTÞ ¼
g2

16π

ffiffiffi
n

p ðn2 − 1Þ
2
ffiffiffi
3

p : ð3:1Þ

For a real multiplet, the eigenvalue needs to be divided byffiffiffi
2

p
. We impose the perturbative unitarity constraint

jRea0j < 1=2. In the case with more than one multiplet,
the largest eigenvalue of the overall scattering matrix is
found by adding the eigenvalues for each multiplet in
quadrature. Using this expression and considering the case
with only one doublet, we have 4487 possible combina-
tions of scalar multiplets that preserve perturbative
unitarity. From these combinations, we can only have at
most one AC sextet, four AC pentets, 23 AC quartets, or

145 AC triplets. For this work, we study the following
cases: AC triplet, AC quartet, AC pentet, AC sextet,
AC pentetþ AC sextet, and two ACpentetþ AC sextet.
Additionally, we also explore the case with general
VEVs for each of these models.
Each different multiplet has a coupling modifier for the

vector bosons V ¼ W, Z that can be seen in Appendix C.
After the diagonalization to the mass basis, the Higgs will
have a coupling modifier of the form

κhV ¼R1κ
doublet
V þR2κ

multiplet1
V þ���þRnκ

multipletðn-1Þ
V : ð3:2Þ

The coupling modifiers are a function of the vacuum
expectation value of the given multiplet, while the diago-
nalization vector R⃗ depends also on the specific potential.
As noted already, we will assume that we have enough
freedom on the potential such that we can treat R⃗ as a
random unit vector that is independent of the VEVs.
Because of this assumption, we only need to generate a
random vector and the VEVs. Then, we check if it is
possible to generate a negative λWZ, and also how the other
observables behave in such a region.
Besides these models, there could be a situation with a

large number of multiplets, each with a small VEV, but with
the total contribution to κ’s being order one. To study these
possibilities, we pick the extremal cases of 145 AC triplets,
23 AC quartets, and 4 pentets. In these models we assume
that the VEVs are equal, but an arbitrary fraction of the total
VEV. In this case, the generation of the parameter space is
challenging because of the number of free parameters.
However, because we are interested only on the most
extremal case, where the couplings can be as close as
possible to the standard model, we can use the Cauchy-
Schwarz inequality to rewrite the κ’s in terms of only three
random variables for the first two cases or four random
variables for the 4 pentets case. In order to illustrate this, let
us work the situation with N copies of two electroweak
multiplets6:

κhV ¼ R1κ
doublet
V þ ðR2κ

multiplet 1
V þ R3κ

multiplet 2
V Þ þ ðR4κ

multiplet 1
V þ R5κ

multiplet 2
V Þ þ � � �

¼ R1κ
doublet
V þ ðR2 þ R4 þ � � �Þκmultiplet 1

V þ ðR3 þ R5 þ � � �Þκmultiplet 2
V

¼ R1κ
doublet
V þ R̃2κ

multiplet 1
V þ R̃3κ

multiplet 2
V : ð3:3Þ

The inequality relations that can be constructed to bound R̃2

and R̃3 are the following: R2
1 þ

R̃2
2

N
þ R̃2

3

N
≤ 1; ð3:4Þ

jR̃2j ≤
ffiffiffiffi
N

p
; jR̃3j ≤

ffiffiffiffi
N

p
: ð3:5Þ

Using these relations we can simplify the parameter
space and also obtain the maximal contributions for the
observables without having to resolve the degeneracy.

6This encompasses the situation of 145 AC triplets and 23 AC
quartets. The generalization for the 4 pentets is straightforward,
by adding one additional variable R̃4.
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Now that the framework is set we can apply the Higgs
data to the specific cases and try to understand the current
state of such models.

IV. EXPERIMENTAL BOUNDS ON NEGATIVE λWZ
FOR EXTENDED SCALAR SECTORS

The experimental values that we use for this analysis are
from ATLAS Higgs combination [5]. Our detailed stat-
istical procedure, as well as an analysis of the CMS
combination [4] data, is given in Appendix A. Our analysis
will use the fits for the ratios of coupling modifiers λWZ,
λfZ, and κfZ defined in Eqs. (1.1), (2.25), and (2.26),
respectively. We fix λWZ to be negative and conservatively
allow it to be within the 5σ allowed region:

−1.44 ≤ λWZ ≤ −0.69: ð4:1Þ

We can then see how the other ratios of coupling modifiers
jλfZj and jκfZj behave given this constraint. We could be
more stringent and bound λWZ to be inside the 3σ region
and include the correlation in this parameter. As we will
see, all models are excluded with this conservative bound;
thus they will also be in the stringent one. Note that we are
ignoring the contributions of κγ and κZγ to κh as explained
in footnote 5.
At this point, we should reinforce the reason that we are

using the ratio of coupling modifiers, instead of the κ’s
directly. In these models, there is the contribution of
additional particles inside the processes h → γγ, h → Zγ,
and potential new Higgs decays. Although direct and
indirect experimental constraints on the Higgs boson width
exist, they are usually model dependent. Since Γh is not
experimentally constrained in a model-independent way,
only ratios of coupling strengths can be measured
in the most generic parametrization considered in the κ
framework. This is important because the negative κV is
disfavored in every other fit [26], especially because

cancellations in the diphoton decay cannot be counteracted
by new particles. The ATLAS analysis ignores the negative
κV region because of this, but ends up also ignoring this
possibility in fits to the ratios of coupling modifiers.
In the left panel of Fig. 1, we give the accessible regions

in the jλfZj and jκfZj plane for different models with a
single AC multiplet. These curves were generated with a
parameter scan, and the details are given in Appendix D.
We then compare the allowed region to the ATLAS fit and
see that these models are all excluded with greater than
99.7% C.L. It is interesting to note that larger multiplets can
come closer to the SM value of the couplings. This suggests
that if we could go to arbitrarily large multiplets, then we
could find a model that would still be allowed by the Higgs
precision measurements. However, these models are
excluded by perturbative unitarity, or at least, we cannot
trust the perturbation theory. This shows that, at least for
perturbative theories, all models with one AC multiplet are
excluded in the negative λWZ region.
On the right panel of Fig. 1, we also include the

possibility of custodial violation on the vacuum configu-
ration. Such models are bounded by the ρ parameter, and
we again take a conservative 5σ allowed region for ρ:

0.99944 ≤ ρ ≤ 1.00134: ð4:2Þ

We use only the tree-level contributions to ρ given in
Eq. (2.19) and its generalization to larger multiplets. Model
dependent one-loop contributions could potentially be of
similar size to the experimental precision on the ρ param-
eter. Therefore, in order to provide a model-independent
analysis, we use the loose 5σ relation and we can expect
that the one-loop contributions will not significantly
modify the allowed values. Loop contributions to ρ, and
more generally bounds from precision electroweak and
flavor physics, are model dependent and require knowing
the full scalar potential and/or the particle spectrum of a
particular model. These bounds can be computed, for

FIG. 1. Accessible parameter space in jκfZj vs jλfZj plane for models with a single AC (general) multiplet on the left (right). We also
show the 2 and 3σ allowed regions from the ATLAS combination [5].
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example as in [27], but computing them for all possible
models would be technically challenging.
Comparing the two panels in Fig. 1, we see that custodial

violation on the potential is not important; it only slightly
changes the curves, but does not change the overall picture.
This occurs because the ρ parameter is a strong constraint,
even at 5σ. The small change does push some regions of the
GEN sextet model inside of the 3σ ellipse; this model is
now excluded at 99.5% C.L., still well more than 2σ.
To give a general picture of other possible scenarios, we

can include the situations with more than one AC multiplet.
The overall picture does not change much since the main
contribution still comes from the largest multiplet. We can
see in Fig. 2 that we are still away from the 3σ region and
there is little difference between the case with only one AC
sextet with the case where we add an AC pentet to the mix.
The extension for the general VEVs also shows the same
trend as before and does not differ much from the custodial
vacuum case. Note that in order to explore the boundary in
Fig. 2 from a high dimensional parameter space scan,
besides a random scan, MultiNest [28–30] is used to
scan the parameter that exploits nested sampling and

automatically generates points close to the experiment’s
contours.
It is worth pointing out one important thing about the

behavior of the κ’s in the case with more than one multiplet.
One would expect, given that models with more multiplets
have more free parameters, that those models have more
freedom to generate large contributions to the coupling
modifiers. However, it is possible to see in Fig. 2 that
adding more multiplets does not bring the coupling
modifiers closer to the Standard Model values or raise
the location of the bounding curve. The contribution is
always equal to or smaller than the case with only the
largest multiplet, which in this case is the sextet. This
behavior can be traced to the constraint on the total EW
VEV. The more multiplets share the EW symmetry break-
ing, the smaller is the individual contribution. In turn, the
lower possible values of VEVs constrain the maximum
contribution for the κ’s and thus suppress the coupling
modifiers. This effect is greater than the possibility of
accidental cancellations between multiplets to enhance the
couplings. Then, adding more multiplets makes it harder to
generate a negative λWZ, not easier.

FIG. 2. Scatter plots for the cases of AC sextetþ ACpentet (left), AC sextet þ2 AC pentets (right), and general VEVs for sextetþ
pentet (bottom). In all cases the expected behavior of being equal or worse than the situation with only the largest multiplet is
highlighted.
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To highlight this behavior, we consider the possibility of a
large number of multiplets with equal VEVs as described in
detail in Eq. (3.3). One could imagine that the contribution of
each multiplet is small, but they add to make a large
modification to the coupling modifiers. This turns out not
to be the case as shown in Fig. 3, where the scenarios with
multiple multiplets are always further from the allowed
region than models with the next largest multiplet. Because
of that, we can conjecture that all weakly coupling exten-
sions of the Higgs sector have the negative coupling region
excluded, independent of the number of multiplets.

V. CONCLUSION

In this work, we studied the current status of negative
coupling modifiers in extended Higgs sectors, with the
focus on the observable λWZ which measures the amount of
custodial violation in the model. The experimental data
have bounded jλWZj ≈ 1, but there is currently very little
information on its sign. We present the class of extended
scalar sectors (AC multiplets) that have the best chance of
generating λWZ ≈ −1, while avoiding ρ parameter con-
straints. We analyze the simplest case of AC triplets, and
then we show how to generalize the procedure to different
multiplets.

The possibility of exploring this wide range of models
lies in the fact that the coupling modifiers, in the end,
depend only on the diagonalization matrix and the VEVs.
Thus we assume that the potential has enough parameters
such that we can treat the eigenvector as a random unit
vector that is uncorrelated with the VEVs. This approach is
more general than doing the individual potential scans, and
it is useful when one is looking for the exclusion of
parameter regions. With this tool at hand, we explore
different models that have a custodial vacuum.
Our analysis shows that all the models with one or more

AC multiplets studied here are excluded by the ATLAS [5]
results at 99.5% C.L. in Appendix Awe also compare to the
CMS data [4] and show the exclusion is larger than
95% C.L. Making a more precise statement would require
the correlation of the coupling modifiers. This result
tays almost the same even when we allow for custodial
breaking vacua on these models. This was expected, since
the ρ parameter bound is very strong, even at using a
conservative 5σ constraint.
In the analysis with multiple AC multiplets, we can see

the effect of suppression on the parameter space, moving
away from the experimental central value. We can under-
stand that if we add more AC sectors together, the overall

FIG. 3. Scatter plots for the cases of 145 AC triplets (left), 23 AC quartets (right), and 4 AC pentets (bottom). The expectation values
for each case is assumed to be equal and a random fraction of the total VEV.
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behavior is still dominated by the largest multiplet. Because
of that, we can see that for all the cases explored here, these
models are excluded at 99.5% C.L. by the ATLAS data.
This exclusion will get stronger with future HL-LHC data.
We can also conjecture that all weakly coupled extensions
of the Higgs sector have the region with λWZ < 0 excluded,
independent of the number of multiplets.
What does this mean for negative λWZ? In any weakly

coupledmodel, the onlyway to acquire such values iswith the
useof extended scalar sectors.There could benonperturbative
effects that achieve the same feature, but this is not currently
known.We can then say that this region of parameter space is
heavily disfavored for any weakly coupled extended scalar
sector. The precision that we acquire in the Higgs sector now
is enough to detect this accidental cancellation and has a
powerful consequence for what can be beyond the SM. This
removes another potentially large custodial violation source
of the new physics, showing that custodial violation is likely a
good symmetry of nature.
In contrast, if the measured best fit value for the CMS fit

remains negative with more data and different experiments
confirm this, we would not be able to describe the new
physics using the current methods. This would indicate
the necessity of expanding the current understanding
of extended scalar sectors in the nonperturbative domain.
It may be that new physics is hiding in plain sight, after all;
only future experiments can tell.

ACKNOWLEDGMENTS

We thank Heather Logan for helpful discussions.
C. H. dL. and D. S. are supported in part by the Natural
Sciences and Engineering Research Council of Canada
(NSERC). Y.W. thanks the U.S. Department of Energy for
the financial support, under Grant No. DE-SC 0016013.
Part of the computation for this project was performed at
the High Performance Computing Center at Oklahoma
State University, supported in part through the National
Science Foundation Grant No. OAC-1531128.

APPENDIX A: STATISTICAL COMBINATION OF
ATLAS AND CMS RATIOS OF COUPLING

MODIFIERS

To know if a model is excluded, we need the experi-
mental measurements for the observables. Because the
models described in this work have extended representa-
tions, we need to be careful with the existence of new
particles inside the loops for Higgs to diphoton decay.
Additionally, we assume there are no new fields that carry
color so the modification for the digluon decay occurs only
through the fermion coupling; this means that for these
extensions we have κg ¼ κf. The important observables
that we use are the following:

κfZ ¼ κfκZ
κh

; ðA1Þ

λWZ ¼ κW
κZ

; ðA2Þ

λfZ ¼ κf
κZ

; ðA3Þ

with κh defined in Eq. (2.27). We do not consider the
modification from κγ since this is model dependent and will
be bound by other observables.
As mentioned before, the CMS measurement [4] indi-

cates a negative central value for λWZ. However, in their
work, there is no information on the correlation of the other
ratios of coupling modifiers. This is in contrast with the
ATLAS results [5]. Therefore we mainly use the ATLAS
result, and we assume that it is measuring only the absolute
value of the coupling modifiers. The observables that we
used are the following: κgZ, λZg, λWZ, λτZ, λbZ. We combine
1=λZg, λτZ, and λbZ into λfZ with a least squares fit. We do
not include the correlation for λWZ to preserve the shape of
the 2D plane. The inclusion of this additional correlation
would only make the results discussed in this work stronger
since they shrink the allowed parameter space for λWZ.
From the combination we have the following central value
and covariance matrix from the ATLAS data:

ðλfZ; κfZÞ ¼ ð0.99; 0.98Þ; ðA4Þ

COV ¼
�

0.0093 −0.00054
−0.00054 0.0020

�
; ðA5Þ

λWZ ¼ 1.04þ0.08
−0.07 : ðA6Þ

The fit for CMS uses the same observables. The
measured values from the CMS fit are

κfZ ¼ 1.03� 0.09; ðA7Þ

λfZ ¼ 1.10� 0.11; ðA8Þ

λWZ ¼ −1.13þ0.10
−0.11 : ðA9Þ

In our analysis, the standard deviation of κfZ also plays an
important role, and as one can notice, the precision from
ATLAS is better than of CMS. Analyzing the CMS data
without correlations, we do have allowed points inside the
3σ region, but they are excluded at 95% C.L. The results for
the uncorrelated CMS measurement are seen in Fig. 4.
Including correlation will make this result stronger; if the
correlation is similar to ATLAS, the allowed values would
be outside the 99.7% C.L. region.
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APPENDIX B: GROUP THEORY BASIS

In this appendix we give the basis for the generators that we use for different SUð2Þmultiplets. The doublet generators are

τ1 ¼
 
0 1

2

1
2

0

!
; τ2 ¼

 
0 − i

2

i
2

0

!
; τ3 ¼

 
1
2

0

0 − 1
2

!
: ðB1Þ

The triplet generators are

t1 ¼

0
BBB@

0 1ffiffi
2

p 0

1ffiffi
2

p 0 1ffiffi
2

p

0 1ffiffi
2

p 0

1
CCCA; t2 ¼

0
BBB@

0 − iffiffi
2

p 0

iffiffi
2

p 0 − iffiffi
2

p

0 iffiffi
2

p 0

1
CCCA; t3 ¼

0
B@

1 0 0

0 0 0

0 0 −1

1
CA: ðB2Þ

The quartet generators are

t1 ¼

0
BBBBBB@

0
ffiffi
3

p
2

0 0ffiffi
3

p
2

0 1 0

0 1 0
ffiffi
3

p
2

0 0
ffiffi
3

p
2

0

1
CCCCCCA
; t2 ¼

0
BBBBBB@

0 − i
ffiffi
3

p
2

0 0

i
ffiffi
3

p
2

0 −i 0

0 i 0 − i
ffiffi
3

p
2

0 0 i
ffiffi
3

p
2

0

1
CCCCCCA
; t3 ¼

0
BBBBBB@

3
2

0 0 0

0 1
2

0 0

0 0 − 1
2

0

0 0 0 − 3
2

1
CCCCCCA
: ðB3Þ

The pentet generators are

t1 ¼

0
BBBBBBBBBB@

0 1 0 0 0

1 0
ffiffi
3
2

q
0 0

0
ffiffi
3
2

q
0

ffiffi
3
2

q
0

0 0
ffiffi
3
2

q
0 1

0 0 0 1 0

1
CCCCCCCCCCA
; t2 ¼

0
BBBBBBBBBB@

0 −i 0 0 0

i 0 −i
ffiffi
3
2

q
0 0

0 i
ffiffi
3
2

q
0 −i

ffiffi
3
2

q
0

0 0 i
ffiffi
3
2

q
0 −i

0 0 0 i 0

1
CCCCCCCCCCA
; t3 ¼

0
BBBBBB@

2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 −2

1
CCCCCCA
: ðB4Þ

FIG. 4. Relation between jλfZj and jκfZj for λWZ negative and inside the 3σ region of CMS values assuming no correlations for
models with one AC multiplet (left) or general VEVs (right).
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The sextet generators are

t1 ¼

0
BBBBBBBBBBBB@
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ffiffi
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2
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t3 ¼

0
BBBBBBBBBB@

5
2

0 0 0 0 0

0 3
2

0 0 0 0

0 0 1
2

0 0 0

0 0 0 − 1
2

0 0

0 0 0 0 − 3
2

0

0 0 0 0 0 − 5
2

1
CCCCCCCCCCA
: ðB6Þ

APPENDIX C: COUPLING MODIFIERS FOR DIFFERENT MULTIPLETS

To know the total coupling modifier for the Higgs, we need the contributions from the different gauge multiplets.
Here we work out the different states that can have a custodial preserving vacuum. In this notation, the custodial limit
is the one where all the VEVs for each set of fields are equal. The general notation for the neutral component VEV is

hϕðI;YÞi ¼ νðI;YÞ: ðC1Þ
The only difference is the doublet VEV which we introduce as a factor of 1=

ffiffiffi
2

p
. The coupling modifiers are defined as

κðI;YÞi ¼ gðI;YÞi

gSMi
: ðC2Þ

First, we have the standard doublet with quantum numbers SUð2ÞL ×Uð1ÞY ¼ ð1=2; 1Þ that generates the following
contributions:

κð1=2;1Þf ¼ νð1=2;1Þ
ν

; κð1=2;1ÞW ¼ νð1=2;1Þ
ν

; κð1=2;1ÞZ ¼ νð1=2;1Þ
ν

; ðC3Þ

where ν is the total electroweak VEV defined in Eq. (2.14). For the AC triplet, we have one field with (1,2) and another with
(1,0) quantum numbers, and then the coupling modifiers are

κð1;2Þf ¼ 0; κð1;2ÞW ¼ 2
ffiffiffi
2

p
νð1;2Þ
ν

; κð1;2ÞZ ¼ 4
ffiffiffi
2

p
νð1;2Þ
ν

; ðC4Þ

κð1;0Þf ¼ 0; κð1;0ÞW ¼ 4νð1;2Þ
ν

; κð1;0ÞZ ¼ 0: ðC5Þ

The AC quartet has one field with ð3=2; 3Þ and another with ð3=2; 1Þ quantum numbers, and the coupling modifiers are

κð3=2;3Þf ¼ 0; κð3=2;3ÞW ¼ 3
ffiffiffi
2

p
νð3=2;3Þ
ν

; κð3=2;3ÞZ ¼ 9
ffiffiffi
2

p
νð3=2;3Þ
ν

; ðC6Þ

κð3=2;1Þf ¼ 0; κð3=2;1ÞW ¼ 7
ffiffiffi
2

p
νð3=2;1Þ
ν

; κð3=2;1ÞZ ¼
ffiffiffi
2

p
νð3=2;1Þ
ν

: ðC7Þ
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For the AC pentet, we have (2,4), (2,2), and (2,0) with the
following coupling modifiers:

κð2;4Þf ¼ 0; κð2;4ÞW ¼4
ffiffiffi
2

p
νð2;4Þ
ν

; κð2;4ÞZ ¼16
ffiffiffi
2

p
νð2;4Þ
ν

; ðC8Þ

κð2;2Þf ¼ 0; κð2;2ÞW ¼10
ffiffiffi
2

p
νð2;2Þ
ν

; κð2;2ÞZ ¼4
ffiffiffi
2

p
νð2;2Þ
ν

; ðC9Þ

κð2;0Þf ¼ 0; κð2;0ÞW ¼ 12νð2;0Þ
ν

; κð2;0ÞZ ¼ 0: ðC10Þ

Finally, for the AC sextet, we have ð5=2; 5Þ, ð5=2; 3Þ, and
ð5=2; 1Þ:

κð5=2;5Þf ¼0; κð5=2;5ÞW ¼5
ffiffiffi
2

p
νð5=2;5Þ
ν

; κð5=2;5ÞZ ¼25
ffiffiffi
2

p
νð5=2;5Þ
ν

;

ðC11Þ

κð5=2;3Þf ¼0; κð5=2;3ÞW ¼13
ffiffiffi
2

p
νð5=2;3Þ
ν

; κð5=2;3ÞZ ¼9
ffiffiffi
2

p
νð5=2;3Þ
ν

;

ðC12Þ

κð5=2;1Þf ¼0; κð5=2;1ÞW ¼17
ffiffiffi
2

p
νð5=2;1Þ
ν

; κð5=2;1ÞZ ¼
ffiffiffi
2

p
νð5=2;1Þ
ν

:

ðC13Þ

APPENDIX D: FIT OF THE INDIVIDUAL SCANS

In this appendix, we want to highlight the fitting method
employed to generate the solid curves in Fig. 1. The
procedure is the following: we generate a random scan
using the methods described in the paper. Then, from the
random scan, we generate a scatter plot in the jκfZj vs jλfZj
plane. To obtain the boundary of the scatter plot, for every
point in the scan, we find the point that has the largest value
of jκfZj among points with jλfZj similar to the original
point. This list of maximal values will then be a noisy
approximation to the boundary. We can then fit a smooth
curve to this list to obtain the solid curves shown in Fig. 1.
Using this method, depending on the nature of the points,
there could be a small number of points above the contour
curve. However, since the exclusion is at 99.5% C.L., this
method is still safe and makes it easier to compare the
information from different models. The comparison
between the scatter and the fit can be seen in Fig. 5 for
some specific models. The few points that lie above the
boundary are still excluded with well more than
95% confidence.

FIG. 5. Relation between the scatter plot and the fit in the jλfZj and jκfZj plane for two specific models. As in all previous figures, λWZ
is negative and inside the 5σ region of the ATLAS combination. Unlike in previous figures, we also include the 4 and 5σ exclusion
contours.
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