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Right-handed neutrinos appear in several extensions beyond the Standard Model, especially in connection
to neutrino masses. Motivated by this, we present a model of right-handed neutrino dark matter that interacts
with Standard Model particles through a new gauge symmetry as well as via mass mixing between the new
vector field and the Z boson, and investigate different production mechanisms.We derive the dark matter relic
density when the Hubble rate is faster than usual, when dark matter decouples in a matter domination epoch,
and when it decouples in a radiation domination regime, which is then followed by a matter domination era.
The direct detection rate features a spin-independent but velocity suppressed operator, as well as a spin-
dependent operator when the mass mixing is correctly accounted for. We put all these results into perspective
with existing flavor physics, atomic parity violation, and collider bounds. Lastly, we outline the region of
parameter space in which weak-scale right-handed neutrino dark matter stands as a viable dark matter
candidate.
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I. INTRODUCTION

The presence of dark matter in our Universe is ascer-
tained through a variety of datasets, from dwarf galaxy
scales to cosmological scales. The precision acquired by
cosmic microwave background (CMB) probes allowed us
to quantify precisely the abundance of dark matter in our
Universe. Dark matter accounts for nearly 27% of the total
energy density [1]. Its nature is unknown, though. Massive
particles that feature weak interactions with Standard
Model (SM) particles, dubbed (WIMPs), have stood out
from the crowd, driving most experimental efforts for many

years [2]. Currently, other plausible dark matter candidates
such as the axion and axionlike particles, which have
always been theoretically compelling, gained lots of
interest from the community due to the nonpositive signals
in WIMP searches [3]. However, no solid positive signals
have been observed favoring other dark matter candidates
either. The customary assumption that dark matter had a
thermal production has given us a misapprehension that a
positive signal should appear in the current generation of
experiments. There are ways to successfully have a thermal
dark matter candidate while yielding no signal at current
direct detection experiments. Hence, this sudden disbelief
for the WIMP miracle does not seem justified. It has always
been worthwhile to explore well-motivated dark matter
production mechanisms that lead to attainable detection,
especially if the mechanism still leaves imprints at current
experiments.
Besides the dark matter siege, neutrino masses stand as

concrete evidence for physics beyond the Standard Model.
With the observation of neutrino oscillations, we have
concluded that at least two neutrinos are massive [4–11].
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It should be noted that the sum of the neutrino masses is
constrained by CMB observations because the energy density
of neutrinos, which depends on the sum of neutrino masses,
affects both the relativistic and nonrelativistic energy density
relevant to the derivation of the CMB temperature and
polarization power spectra [12]. In fact, CMB probes give
rise to the most stringent bound which reads Σmν < 0.12 eV
[13]. However, the individual masses are unknown.
An elegant solution to theoretically generate neutrino

masses is offered by right-handed neutrinos. In particular, if
copies of right-handed neutrinos are added to the Standard
Model, one can naturally address neutrino masses through a
type I seesaw mechanism when both Dirac and Majorana
mass terms are included in the Yukawa Lagrangian. The
Majorana mass is expected to be very large to play the
seesaw and bring the active neutrino masses down below
the eV scale.
That said, one may wonder if the mechanisms behind the

presence of dark matter in our Universe are somehow
connected to neutrino masses. This question has driven a
multitude of works. In particular, we will be interested in
connecting these two new physics landmarks in the context
of the type I seesawmechanism [14–28], which features the
Lagrangian

L ⊃ yabLaΦNbR þMa

2
Nc

aRNaR; ð1Þ

where Φ is the SM Higgs doublet, and M is the Majorana
mass term for the right-handed neutrinos. Note that this
Majorana mass is a 3 × 3 matrix. After spontaneous
electroweak symmetry breaking, the first term yields a
Dirac mass term for the active neutrinos. The presence of a
Majorana mass allow us to employ the so-called type I
seesaw mechanism that results into mν ≃mT

DM
−1mD

and mN ∼M.
For Yukawa couplings of order one in Eq. (1), this simple

and plausible framework requires the right-handed neutrino
masses to be very large–above 1012 GeV. Consequently,
this mechanism is hardly testable by existing experiments.
It would be interesting if one could successfully explain
neutrino masses and dark matter without invoking a very
large energy scale suppression. A possible route is to
consider light right-handed neutrinos with masses around
1 keV. If one of the three right-handed neutrinos is lighter
than the others, then it can be made cosmologically stable
as long as the mixing between active and right-handed
neutrinos is sufficiently small. This scenario is dubbed
sterile neutrino dark matter [29,30].1 The dark matter relic
density is found through a nonresonant production [29],
which is based on the active-sterile neutrino oscillations.
The approximate relic density is [32–36]

ΩNh2 ∼ 0.1

�
sin2 θi

3 × 10−9

��
mN

3 keV

�
1.8
; ð2Þ

where sin2 θi ∼
P

a y
2
abv

2=M2 is the active-sterile neutrino
mixing and v is the SM Higgs vacuum expectation value.
As mentioned earlier, the sterile neutrino is unstable
because of its mixing with the active neutrinos. In fact,
this mixing leads to the decays N → ννν and N → νγ
[37,38]. The latter decay has been extensively looked for in
x-ray surveys. However, such x-ray searches combined
with structure formation requirements rule out this sterile
neutrino production [39,40]. There are ways to bypass this
exclusion by evoking other production mechanisms
[41,42]. Instead of dwelling on light sterile neutrinos as
dark matter, we investigate under which circumstance we
can accommodate the type I seesaw mechanism, while
hosting a TeV scale right-handed neutrino dark matter.
Note that we have renamed sterile neutrino as right-handed
neutrino. Theoretically speaking, they are the same field,
but when one refers to sterile neutrinos small masses and
suppressed mixing angles are typically adopted. When
these sterile neutrinos are heavy, with masses above 1 MeV,
the term right-handed neutrino is used more often.2

Anyway, how can we have a weak-scale right-handed
neutrino dark matter have the presence of the first term in
Eq. (1), which is necessary for the type-I seesaw to work,
but make it unstable? The idea is to invoke a Z2 symmetry,
where only one of the right-handed neutrinos is odd under it
[45–48]. In this way, two massive right-handed neutrinos
will play a role in the seesaw mechanism, whereas the
lightest becomes a plausible dark matter candidate. In
absence of a symmetry one should invoke a fine-tuned
suppression of the Yukawa couplings to make the right-
handed neutrino a viable DM candidate. We focus on the
latter. Similar works have been carried out in this direction
[49–51]. However, our work extends previous studies
because we go beyond the standard freeze-out case.
Concretely, we investigate the right-handed neutrino dark
matter scenario under three different cosmological histor-
ies, namely fast expansion, matter domination during
freeze-out, and matter domination after freeze-out. These
cosmological histories change the theoretical predictions
for the dark matter relic density compared to the standard
freeze-out case, and consequently lead to different con-
clusions. Besides computing the dark matter relic density
under different cosmological scenarios, we also compute
the dark matter scattering cross section. We highlight that
for right-handed neutrino dark matter, the dark matter
scattering cross section does not fall into the standard
classification of spin-independent or spin-dependent dark-
matter-nucleon scattering. Therefore, we need to compare
the resulting scattering rate with the data to derive the

1For a sterile neutrino and Higgs portal considering a freeze-in
production mechanism, see [31].

2We can also find heavy right-handed neutrinos in an asym-
metric dark matter scenario [43,44].

ARCADI, NETO, QUEIROZ, and SIQUEIRA PHYS. REV. D 105, 035016 (2022)

035016-2



correct limits. Lastly, we also include collider bounds on
the mediator masses based on the LHC search for heavy
dilepton resonances.
All of this procedure is done in a well-motivated two

Higgs doublet model (2HDM) featuring an Abelian gauge
symmetry, a model that can elegantly solve the flavor
problem present in general 2HDM constructions, and
address neutrino masses via the type I seesaw mechanism.
2HDMs featuring new gauge symmetries are increasingly
getting interest from the community because they offers new
collider signatures [50,52–55] and avenues to be explored
concerning atomic parity violation [56,57], neutrino-electron
scattering [58], axionlike particles [59], exotic Higgs decays
[60–62], neutrino masses [63–65], flavor studies [66–69],
and dark matter [15,70–75], among others [76–80]. Hence, it
is definitely worthwhile to investigate how feasible it is to
host a dark matter candidate connected to neutrino masses
and cosmological histories that go beyond the standard
freeze-out.

II. THE MODEL

2HDMs have been extensively studied in the literature
[81–83] for naturally keeping the ρ parameter unchanged
despite the extended scalar sector. Furthermore, it leads to
interesting collider searches that are within reach of the
LHC. However, the canonical version of the 2HDM suffers
from flavor changing neutral interactions and does not
address neutrino masses. It would be appealing if one could
solve both issues via gauge symmetries. This is precisely the
idea behind the 2HDM-U(1). An Abelian gauge symmetry is
incorporated to the 2HDM in such a way that only one scalar
doublet contributes to fermion masses, and three right-
handed neutrinos are required to cancel the gauge anomalies
and consequently play a role in the type I seesaw mechanism
aforementioned. We will choose the new Abelian gauge
symmetry to be the baryon-lepton (B − L) number, for
concreteness, but we highlight that other gauge symmetries
are also conceivable. The purpose of our work is to
incorporate dark matter without adding new fields and
explore the impact of our conclusions under different
cosmological histories. Concerning the model itself, which
is based on the SUð3Þc × SUð2ÞL × Uð1ÞY ×Uð1ÞB−L, the
fermion content features

QaL ¼
�
uaL
daL

�
∼ ð3; 2; 1=6; 1=3Þ;

uaR ∼ ð3; 1; 2=3; 1=3Þ and daR ∼ ð3; 1;−1=3; 1=3Þ;
and

LaL ¼
�
eaL
νaL

�
∼ ð1; 2;−1=2;−1Þ;

eaR ∼ ð1; 1;−1;−1Þ and NaR ∼ ð1; 1; 0;−1Þ:

Notice that thus far the only difference to the SM is the
presence of right-handed neutrinos. The model has three
scalar fields,

Φ1 ¼
�
ϕþ
1

ϕ0
1

�
∼ ð1; 2; 1=2; 2Þ; ð3Þ

Φ2 ¼
�
ϕþ
2

ϕ0
2

�
∼ ð1; 2; 1=2; 0Þ; ð4Þ

and

Φs ∼ ð1; 1; 0; 2Þ;

where the subscript a ¼ 1, 2, 3 accounts for the three
generations. We stress that the presence of the scalar singlet
is twofold: (i) it breaks the U(1) gauge symmetry generating
mass to the Z0 gauge boson; (ii) it gives rise to the Majorana
mass for the right-handed neutrinos. In the original version
of the type I seesaw, we have a Majorana bare mass term for
the right-handed neutrino masses, but in our work it is
generated through a mechanism of spontaneous symmetry
breaking. This fact will be clear below. Fermions get mass
through the Yukawa Lagrangian LY ¼ LY1

þ LY2
, where

LY1
¼−ydabQ̄aΦ2dbR−yuabQ̄aΦ̃2ubR−yeabL̄aΦ2ebRþH:c:;

ð5Þ

and

LY2
⊃ −yabL̄aΦ̃2NbR − yMabðNaRÞcΦsNbR: ð6Þ

Having a weak-scale right-handed neutrino from Eq. (6)
requires the addition of an extra discrete symmetry. We will
invoke a Z2 symmetry to stabilize, say N1R, the lightest
right-handed neutrino. In this way, the first term in Eq. (6)
involves only two right-handed neutrinos, whereas the latter
remains unaltered as long as yMij is diagonal. The two right-
handed neutrinos in the Dirac mass term act the type I
seesaw mechanism leading to two massive active neutrinos
and a massless one, in agreement with neutrino oscillation
observations [84]. This is a well-known fact which can be
directly seen using the Casas-Ibarra parametrization where
the neutrino masses are directly tied to the Yukawa cou-
plings. As we are basically removing one Yukawa coupling,
the first term of Eq. (6), which is a 6 × 6matrix, should have
at least four nonzero entries. Using the Casas-Ibarra para-
metrization one can see that the Yukawa matrix will depend
on two right-handed neutrino masses and two active neutrino
masses [85]. We emphasize that we have assumed that the
Majorana mass matrix is purely diagonal.
The scalar potential, in agreement with the gauge charges

of the doublets, including the singlet scalar, is given by
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VðΦ1;2;sÞ ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 þm2

sΦ
†
sΦs

þ λ1
2
ðΦ†

1Φ1Þ2 þ
λ2
2
ðΦ†

2Φ2Þ2 þ
λs
2
ðΦ†

sΦsÞ2

þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ
þ μ1Φ

†
1Φ1Φ

†
sΦs þ μ2Φ

†
2Φ2Φ

†
sΦs

þ ðμΦ†
1Φ2Φs þ H:c:Þ: ð7Þ

The neutral components of all scalars acquire vacuum
expectation values (VEVs) as

Φi ¼
1ffiffiffi
2

p ðvi þ ρi þ iηiÞ; ð8Þ

and

Φs ¼
1ffiffiffi
2

p ðvs þ ρs þ iηsÞ;

which give mass to all fermions and gauge bosons. It is
important to emphasize that the dark matter candidate N1R
becomes massive through the singlet scalar VEV, vs,

mN ¼ yMNffiffiffi
2

p vs: ð9Þ

Concerning the gauge sector, kinetic mixing arises at
tree-level,

Lgauge ¼ −
1

4
B̂μνB̂

μν þ ϵ

2 cos θW
X̂μνB̂

μν −
1

4
X̂μνX̂

μν; ð10Þ

with ϵ, the kinetic mixing parameter, and θW , the
Weinberg angle. The Lagrangian responsible for gauge
bosons’ masses is given by

L¼ ðDμϕ1Þ†ðDμϕ1Þþ ðDμϕ2Þ†ðDμϕ2Þþ ðDμϕsÞ†ðDμϕsÞ;
ð11Þ

where the covariant derivative is

Dμ ¼ ∂μ þ igTaWa
μ þ ig0

QY

2
B̂μ þ igX

QX

2
X̂μ; ð12Þ

with QY and QX being the charges under Yukawa and
B − L gauge symmetries, respectively, g and g0 being the
usual gauge couplings associated with SUð2ÞL and Uð1ÞY
symmetries, respectively, and gX, the B − L coupling.
Diagonalizing the matrices for Xμ and Zμ bosons (for
details we recommend [71]), we get the following gauge
boson masses:

m2
W ¼ 1

4
g2v2; ð13Þ

m2
Z ¼ 1

4
g2Zv

2; ð14Þ

m2
Z0 ¼ g2Xv

2
s þ g2Xv

2cos2βsin2β; ð15Þ

where v2 ¼ v21 þ v22 ¼ 2462 GeV2 and gZ ¼ g= cos θW .
The Lagrangian in Eq. (11) is also responsible for the
interactions between gauge bosons and scalars, for exam-
ple Z0WþW−, Z0WþH−, HZ0Z0, hZ0Z0, HZZ0, which are
also relevant for the dark matter phenomenology. These
couplings can be found in [71]. We emphasize that we
have taken the kinetic mixing to be zero at tree-level. At
the one-loop level, it can be safely ignored, as our
phenomenology will be driven by the gauge coupling gX.
The dark matter phenomenology of the model is

governed by the neutral current involving the Z and Z0
gauge bosons that read [49,86]

LNC ¼ −eJμemAμ −
g

2 cos θW
JμNCZμ

−
�
ϵeJμem þ ϵZg

2 cos θW
JμNC

�
Z0
μ

−
gX
2
QXf

ðψ̄fγ
μψfÞZ0

μ

þ 1

4
gXðN1Rγ

μγ5N1RÞZ0
μ;

where QXf
¼ −1 for charged leptons, QXf

¼ 1=3 for
quarks, and where

ϵZ ≡ 2gX
gZ

cos2 β; ð16Þ

and

JμNC ¼ ðT3f − 2QYfsin2θWÞψ̄fγ
μψf − T3fψ̄fγ

μγ5ψf: ð17Þ

Identifying N1R as our dark matter candidate, we can
straightforwardly carry out the dark matter phenomenology
within the standard freeze-out and ΛCDM model. This
scenario was investigated somewhere else, Ref. [71]. Our
plan is to go beyond and explore other cosmological
scenarios. To do so, we start by reviewing the important
ingredients of dark energylike early radiation, and early
matter domination epochs. We have now set the particle
physics model, and we will review the cosmological
background.

III. NONSTANDARD COSMOLOGY HISTORIES

In this section, we explore how the dark matter relic
density may be affected by a nonstandard cosmological
history, where the right-handed neutrino dark matter candi-
date decouples from thermal equilibrium in different scenar-
ios. The key aspect of different cosmology histories is the
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effect on the Hubble expansion rate, because it directly
impacts the Boltzmann equations. The Hubble rate evolves
differently for matter, radiation, and dark energylike fields.
Thus, depending on which component dominates H, distinct
solutions to the dark matter relic abundance are found.
The standard cosmology predicts that the Universe is

radiation dominated at early times. However, before the big
bang nucleosynthesis (BBN), we have the freedom to choose
different cosmological histories for short period of times. For
example, the expansion rate may be governed by matter or a
new field, which leads to a faster expansion rate. That said,
we tease out the dark matter phenomenology when the dark
matter particles decouples during (i) an expansion rate faster
than radiation (Sec. III A); (ii) a radiation-dominated era,
early radiation domination (ERD), followed by a matter-
dominated period (Sec. III B); and (iii) in a matter-dominated
phase, early matter domination (EMD) (Sec. III C). We start
reviewing the key ingredients of a faster expansion episode
and how it changes the Boltzmann equation.

A. Faster than usual early expansion

We assume that a new scalar field ϕ has an energy
density that grows with the scale factor as

ρϕðtÞ ∝ aðtÞ−ð4þnÞ; n > 0; ð18Þ

where n encodes the nonstandard cosmological evolution.
Notice that for n ¼ 0, we recover the radiation energy
density ρRðtÞ ∝ aðtÞ−4 that corresponds to the standard
case. Then, the scalar field energy density ρϕ dominates
over radiation at early times and redshifts faster than usual
as the universe expands.
Let us start by assuming that at some period of the early

Universe, the Hubble expansion rate was driven by radi-
ation and ϕ energy densities. Thus, the total energy density
can be written as

ρ ¼ ρR þ ρϕ: ð19Þ

Nevertheless, the radiation energy density ρR must over-
come ρϕ at a time before BBN to avoid any tension with
observations [87]. Then, we define the temperature Tr at
which ρRðTrÞ ¼ ρϕðTrÞ. To be consistent with BBN
observations, we impose

Tr ≳ ð15.4Þ1=n MeV: ð20Þ

When the scalar energy density ρϕ is negligible, the
radiation energy density evolves with the temperature
as usual, with

ρRðTÞ ¼
π2

30
g⋆ðTÞT4; ð21Þ

where g⋆ðTÞ is the effective number of relativistic degrees
of freedom at temperature T.
The next step is to express the energy density of ϕ in

terms of temperature. Firstly, it is important to remember
that the entropy density is given by

sðTÞ ¼ 2π2

45
g⋆sðTÞT3; ð22Þ

where g⋆sðTÞ is the effective degrees of freedom of the SM
entropy density. Using entropy conservation per comoving
volume, sa3 ¼ const., we get,

aðTÞ ∝ ðg1=3⋆ ðTÞTÞ−1: ð23Þ

Inserting this result into Eq. (18), and taking the ratio
ρϕðTÞ=ρϕðTrÞ, the ϕ energy density can be written as a
function of temperature as

ρϕðTÞ ¼ ρϕðTrÞ
�
g⋆sðTÞ
g⋆sðTrÞ

�ð4þnÞ=3� T
Tr

�
4þn

: ð24Þ

Finally, using the definition ρRðTrÞ ¼ ρϕðTrÞ, the total
energy density at temperature T > Tr becomes

ρðTÞ ¼ ρRðTÞþ ρϕðTÞ

¼ ρRðTÞ
�
1þ g⋆ðTrÞ

g⋆ðTÞ
�
g⋆sðTÞ
g⋆sðTrÞ

�ð4þnÞ=3� T
Tr

�
n
�
: ð25Þ

From this equation, we conclude that ϕ dominates the
universe for temperatures T ≳ Tr.
Once we know the evolution of the energy density, we

can determine the Hubble rate using the Friedmann
equation [88],

H ¼
ffiffiffiffiffiffiffiffiffiffi
ρ

3M2
Pl

r
; ð26Þ

where MPl ¼ ð8πGÞ−1=2 ¼ 2.4 × 1018 GeV. Assuming
that g⋆ðTÞ ¼ g⋆ is a constant for temperatures T ≫ Tr,
i.e., for the period in which ρϕ completely dominates over
ρR, the Hubble rate becomes [87]

HðTÞ ≈ π

3

ffiffiffiffiffi
g⋆
10

r
T2

MPl

�
T
Tr

�
n=2

; ð27Þ

with g⋆ ¼ 106.75 accounting for the entire SM degrees of
freedom. Knowing the Hubble rate in the ΛCDM radiation-
dominated cosmology [89],

HRðTÞ ¼
π

3

ffiffiffiffiffi
g⋆
10

r
T2

MPl
; ð28Þ

we can rewrite Eq. (27) as
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HðTÞ ≈HRðTÞ
�
T
Tr

�
n=2

; ð29Þ

where we can explicitly see that for temperatures T > Tr
nonstandard cosmologies (n > 0) make the Universe
expand faster than in the standard radiation-dominated
epoch. Setting Tf to be the freeze-out temperature, having a
dark matter particle freezing out in a fast expanding
universe requires Tf > Tfrad. Note that from our reasoning
for temperatures larger than Tr, a nonstandard cosmology
is at play.
With Eq. (27) at hand, we can compute the dark matter

relic abundance for the right-handed neutrino N1R when
the universe expands too fast. In the standard radiation-
dominated scenario, the Boltzmann equation that
describes the evolution of the comoving dark matter
number density YN ≡ nN=s is

dYN

dx
¼ −

shσvi
HðxÞx ðY

2
N − Yeq 2

N Þ; ð30Þ

with x≡mN=T and hσvi being the thermally averaged
annihilation cross section, and HðxÞ the standard radia-
tion-dominated Hubble rate. The comoving equilibrium
number density can be written as a function of x for a
Maxwell-Boltzmann distribution as follows [87]:

Yeq
N ðxÞ ¼

45gN
4π4g⋆s

x2K2ðxÞ; ð31Þ

where gN accounts for the degrees of freedom of the right-
handed neutrino dark matter and K2ðxÞ is the modified
Bessel function. With xr ¼ mN=Tr and xf ¼ mN=Tf, we
obtain

HðxÞ ≃ π

3

ffiffiffiffiffi
g⋆
10

r
m2

N

MPl
x−2

�
xr
x

�
n=2

; ð32Þ

and then from Eq. (30) we find

dYN

dx
¼ −

Ahσvi
x2−n=2ðxn þ xnr Þ1=2

ðY2
N − Yeq 2

N Þ; ð33Þ

where A ¼ 2
ffiffi
2

p
π

3
ffiffi
5

p g1=2⋆ MPlmN . Approximate analytical solu-
tions are given by [87]

YNðxÞ≃
xr

mNMPlhσvi
�
2

xf
þ log

�
x
xf

��
−1
; n ¼ 2

YNðxÞ≃
xn=2r

2mNMPlhσvi
�
xn=2−2f þ xn=2−1

n− 1

�
−1
; n > 2: ð34Þ

Equations (34) are valid for s-wave annihilation processes.
In other words, when hσvi does not depend on temperature.
Thus, these approximate analytical solutions can only be

extrapolated up to x ¼ xr. In Fig. 1, we present the
numerical result for the yield, assuming the dark matter
mass mN ¼ 100 GeV and the annihilation cross section
hσvi ¼ 10−9 GeV−2, for the following values of Tr ¼
0.1 GeV (brown line), Tr ¼ 1 GeV (blue line), Tr ¼
10 GeV (red line), and n ¼ 4. For completeness, we also
include the yield for the standard case (black line).
The n > 0 cosmologies can produce a higher comoving

dark matter number density at the time of freeze-out,
xf < xr. However, for the s-wave annihilation cross section
and n ≥ 2, the annihilation rate after freeze-out scales as
Γ ∝ T3, whereas H ∝ T2þn=2. Hence, the annihilation rate
redshifts either slower than (or equally to) the Hubble rate.
Consequently, after freeze-out the dark matter keeps
annihilating until the temperature Tr, i.e., until radiation
starts to govern the universe expansion. In this epoch,
HR ∝ T2, meaning that the dark matter will stop annihilat-
ing, leading to a constant energy density.
In Fig. 2, we briefly illustrate the thermal history for the

n ≥ 2 cosmologies. The dark matter decouples at Tf while
the scalar field dominates. The period Tr < T < Tf defines
the relentless phase in which the dark matter tries relentlessly
to go back to thermal equilibrium, unsuccessfully [87]. For
n ¼ 2, Eq. (34) translates the relentless effect via the slow
logarithmic decrease of the comoving dark matter number
density. Although for n > 2, the comoving dark matter
number density decreases following a power law.
Finally, solving Eq. (33) numerically, we compute the

dark matter relic density taking x → ∞ via the following
expression:

FIG. 1. We exhibit of the yield versus x for a freeze-out
happening during the fast expansion regime. For this case, we
choose the dark matter massmN ¼ 100 GeV and the annihilation
cross section hσvi ¼ 10−9 GeV−2 for the following values of
Tr ¼ 0.1 (brown line), Tr ¼ 1 GeV (blue line), Tr ¼ 10 GeV
(red line), and n ¼ 4. For completeness, we also include the yield
for the standard case (black line). Note that for Tr ¼ 10 GeV, we
have a superposition with the standard case. The shaded gray
region is the approximate range for the correct dark matter relic
abundance as measured by Planck [13]. It is clear that the longer
the period of ϕ dominance, the larger the impact on the yield.

ARCADI, NETO, QUEIROZ, and SIQUEIRA PHYS. REV. D 105, 035016 (2022)

035016-6



ΩNh2 ¼
s0
ρ0

h2mNYNðx → ∞Þ

≃ 2.82 × 108mNYNðx → ∞Þ; ð35Þ

where s0 stands for the SM entropy density today, ρ0 the
critical energy density, and h is the scale factor for the
Hubble expansion rate [90].
In summary, our dark matter phenomenology is ruled by

five free parameters. They encode the interplay between
particle physics and cosmology, namely the new gauge
coupling, gX, the dark matter mass, mN , the mediator mass,
mZ0 , and the ðn; TrÞ, which are the cosmological input
parameters that are related to the energy density of the
scalar field that eventually governs the expansion rate of the
universe.
We emphasize that the key cosmological input here is the

energy density of the scalar field. It suffices to determine
ðn; TrÞ and thus describe the entire background in which
the dark matter was thermally produced [87]. However,
many single scalar field cosmologies can reproduce the
behavior in Eq. (25). For n ¼ 2, with positive scalar
potential, it is associated to theories of quintessence fluids.
In our work, we will assume that the energy density scales
as ρϕ ∝ a−6 in the kination regime [91–93]. Also,
Chaplying gas theories can reproduce the redshift behavior
in Eq. (25) and possibly explain dark matter and dark
energy [94,95]. Although, for n > 2, the theories with
negative scalar potentials are needed [87,96].

B. Freeze-out during early radiation-dominated era
followed by a matter domination period

In a similar vein, we assume the existence of a scalar
field ϕ that dominates the Hubble expansion rate during
some period in the early Universe before its decay into SM
radiation. However, at this time, ϕ behaves as a pressureless
fluid.3 After ϕ decay, the Universe is again dominated by
radiation.
To describe the evolution of this system, we have to use

the Boltzmann equations that couple the time evolution of
the ϕ energy density ρϕ, the SM entropy density s, and the
dark matter number density nN [97–101],

dρϕ
dt

¼ −3Hρϕ − Γϕρϕ; ð36Þ

ds
dt

¼ −3Hsþ Γϕρϕ
T

þ 2
E
T
hσviðn2N − neq 2N Þ; ð37Þ

dnN
dt

¼ −3HnN − hσviðn2N − neq 2N Þ; ð38Þ

where E ≃m2 þ 3T2 is the averaged energy per dark matter
particle.4 From Eqs. (37) and (38), one could see that the
injected entropy into SM radiation produced by the decay
of ϕ can dilute the thermally produced dark matter
components. Actually, it happens for any freeze-out sce-
nario before the end of ϕ decays [102].
In Fig. 3, we briefly recall the early thermal history prior

to BBN. The ERD takes place up to the temperature Teq at
which the ρϕ domination starts. Thereafter, ρϕ effectively
dominates over ρR at the temperature Tc, and the decay of ϕ
ends at temperature Tend at which the radiation dominates
back again.
The temperature Tend is one of the free parameters that

specify the cosmological background. It is defined as
[98,102]

Tend ≡
�

90M2
Pl

π2g⋆ðTendÞ
�
1=4

Γ1=2
ϕ ; ð39Þ

where Γϕ stands for the total decay rate of ϕ into SM
radiation. BBN restricts Tend ≳ 4 MeV [105–107]. The
other free parameter is

κ ¼ ρϕ
ρR

����
T¼mN

; ð40Þ

FIG. 2. Illustration of the density energy evolution and thermal
history for faster early expansion than usual cosmologies.

FIG. 3. Illustration of the density energy evolution and thermal
history for a scalar matter field dominating in the early Universe.
Here, the radiation-dominated dark matter freeze-out, discussed
in Sec. III B, takes place in the green region (before T−1

eq ), while
the matter-dominated freeze-out case, described in Sec. III C,
happens in the blue region (after T−1

eq ) still before the energy
density of the matter field takes a critical value ρcϕ at a critical
temperature Tc.

3It redshifts as matter, ρϕ ∝ a−3.

4This set of equations does not consider the possibility of the
ϕ decays also into dark matter particles because we assume ϕ
does not decay into dark matter. That can be approximately
realized, having this scalar field as a singlet with no B − L
charges. Anyway, a more general set of equations is provided in
[98,102]. Moreover, ϕ decaying into dark matter is explored in
[97,103,104].
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which is the ratio between the energy densities of the scalar
field and radiation at T ¼ mN . As we will be varying the
dark matter mass, this ratio needs to be recomputed
accordingly.
Both parameters Tend and κ are essentials to determine

the dilution resulted from the ϕ decay. Notice that the
Hubble rate is generally given by

H ¼ 1ffiffiffi
3

p
MPl

ðρϕ þ ρR þ ρNÞ1=2; ð41Þ

with the dark matter freeze-out happening at temperature
Tf during the ERD as usual.
As the dark matter freezes out at a temperature

higher than Teq, i.e., Teq ≪ Tf, the Hubble in Eq. (41)
is reduced to Eq. (28), which in terms of the time variable
x becomes [102]

HRðxÞ ≃
π

3

ffiffiffiffiffi
g⋆
10

r
m2

N

MPl
x−2: ð42Þ

We emphasize that dark matter decouples much before
the decay of ϕ. Hence, the SM entropy is conserved,
ds=dt ¼ 0, and Eq. (38) turns into

dYN

dx
¼ −

shσvi
HRx

ðY2
N − Yeq 2

N Þ; ð43Þ

which yields

Ystd
N ¼ 15

2π
ffiffiffiffiffiffiffiffiffiffi
10g⋆

p xf
mNMPlhσvi

; ð44Þ

the standard solution for the comoving dark matter number
density long after the freeze-out and much before the ϕ
decays. In this way, the freeze-out temperature depends
neither on Tend nor on κ [102]. As the dark matter
abundance is firstly computed in the standard freeze-out
case, but will be changed due to ϕ decay (as showed in
Fig. 4), this modification is set by the entropy injection
episode that yields a dilution factor defined as

D≡ sðT2Þ
sðT1Þ

¼
�
T2

T1

�
3

: ð45Þ

The dilution factor is simply the ratio between the SM
entropy density at temperatures immediately after T2 and
before T1, the decay of the scalar field. We remind the
reader that a similar reasoning is done in textbooks to
obtain the temperature difference between photon and
neutrinos after eþe− annihilations. Assuming the instanta-
neous decay approximation, the conservation of energy
results to

ρRðT1Þ þ ρϕðT1Þ ¼ ρRðT2Þ: ð46Þ

As ρϕðmÞ ¼ κρRðmÞ, and taking T2 ¼ Tend, the dilution
factor is

D ¼ κ
mN

Tend
: ð47Þ

In principle,D can take a wide range of values, but κ varies
with the dark matter mass, and Tend should be larger than
4 MeV. Moreover, κ should be smaller than one at high
temperatures to guarantee that the freeze-out happens
during a radiation phase. Anyway, combining Eqs. (44)
and (47), we obtain the final comoving dark matter number
density [102],

YN ¼ Ystd
N

D
; ð48Þ

and consequently, the overall dark matter relic density is
found,

ΩNh2 ¼
Ωstd

N h2

D
; ð49Þ

where Ωstd
N h2 stands for the dark matter relic abundance

computed in the standard radiation freeze-out scenario.
Notice that one cannot randomly pick D at will, pick any
dilution factor wished to salvage dark matter models from
exclusions, because the value chosen for D is still con-
nected to the dark matter mass and properties of the scalar
field. Very large dilution factors are not feasible. Within this

FIG. 4. Illustration of the yield versus x (red line) provided by a
dark matter freeze-out happening during or before a matter-
dominated period in the early Universe. For this case, we choose
the dark matter mass mN ¼ 100 GeV and the annihilation cross
section hσvi ¼ 10−9 GeV−2. We choose Tend ¼ 0.007 and
D ¼ 550. For completeness, we also include the yield for the
standard case (black line). Again, the shaded gray region is the
approximate range for the correct dark matter relic abundance as
measured by Planck [13].
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production mechanism, we vary the free parameters
ðgX;mN;mZ0 ; Tend; DÞ to outline the region of parameter
space consistent with existing bounds. In the next section,
we obtain the dark matter relic density for freeze-out
occurring while ρϕ drives the expansion rate instead.

C. Freeze-out during early matter-dominated era

Pre-BBN thermal history is the same as discussed in the
last section. Similarly, we consider an unstable scalar field
ϕ in the early Universe which behaves as matter, ωϕ ¼ 0.
Moreover, before and after the ρϕ dominates the expansion,
the Universe is radiation-dominated. Now, we investigate
the freeze-out process taking place during the period at
which the scalar field ϕ governs the expansion rate.
However, freeze-out happens much earlier than the decay
of ϕ. Taking as reference Fig. 3, the freeze-out in this case
happens between T−1

eq and T−1
c .

The Hubble parameter is found in Eq. (41). However, we
define a temperature T⋆ at which the ρϕ begins to evolve. It
allows us to parametrize the relative fraction of the total
energy density at T ¼ T⋆ in terms of [108],

r≡ ρR þ ρN
ρϕ þ ρR þ ρN

����
T¼T⋆

¼
�
1þ gϕðT⋆Þ

g⋆ðT⋆Þ þ gN

�
mϕ

T⋆

�
4
�
−1
;

ð50Þ

where r ∈ ½0; 1�. In this way, for T > T⋆ > mN, we have

H2

H2⋆
¼ g⋆r

g⋆ þ gN

�
a⋆
a

�
4

þ ð1 − rÞ
�
a⋆
a

�
3

þ gNr
g⋆ þ gN

�
a⋆
a

�
4

;

ð51Þ

where H⋆ ≡HðT⋆Þ and a⋆ ≡ aðT⋆Þ. The conservation of
entropy leads to

a⋆
a
≃
�
g⋆ðTÞ
g⋆ðT⋆Þ

�
1=4

�
T
T⋆

�
: ð52Þ

Inserting this result into Eq. (51), the Hubble parameter
becomes, approximately,

H ≃H⋆
�
g⋆ðTÞ
g⋆ðT⋆Þ

�
3=8

�
T
T⋆

�
3=2

�
ð1 − rÞ þ r

�
T
T⋆

��
1=2

:ð53Þ

Thus, a matter domination phase arises immediately at
T⋆ [see Eq. (50)] for r ≪ 1, which leads to H ∝ T3=2. For
r ≃ 1, the Hubble rate goes as H ∝ T2, which is associated
to a radiation-domination epoch. Anyway, the Universe is
radiation-dominated at T⋆, and the matter domination
phase will naturally arise at temperature

Teq ≡ T⋆
�

a⋆
aðTeqÞ

�
¼ 1 − r

r

�
g⋆ðT⋆Þ
g⋆ðTeqÞ

�
1=4

T⋆; ð54Þ

at which ρϕ accounts for 50% of the total density energy in
agreement with [102,108].
The matter field that drives the expansion decays only

when it effectively dominates over radiation at temperature

Tc ≃ ð1 − rÞ−1=3
�
g⋆ðTendÞ
g⋆ðT⋆Þ

T4
end

T⋆

�
1=3

: ð55Þ

We stress that the freeze-out takes place in a matter
domination period, which occurs much before the scalar
field decays. In other words, the freeze-out temperature
should lie in the range Tc ≪ Tf ≪ Teq [102,108].
We solve the Boltzmann equation for a matter-dominated

universe, Eq. (38), with the Hubble given in Eq. (53).
Taking the limiting case of matter domination, r ≪ 1, and
assuming an s-wave annihilation cross section, we find the
comoving dark matter number density after freeze-out long
after the matter domination epoch [108,109],

YMD
N ¼ 3

2

ffiffiffiffiffi
45

π

r ffiffiffiffiffi
g⋆

p
g⋆s

x3=2f

mNMPlhσvix1=2⋆
; ð56Þ

where x⋆ ¼ mN=T⋆ and g⋆s ≃ g⋆ ≃ cte at the time of
freeze-out. However, it will be diluted due to entropy
injection of the scalar field decay. In a similar vein, the
dilution factor is the ratio between the entropy density
computed at temperatures immediately before and after the
scalar field decay, which in terms of Tend and T⋆ leads
to [109]5

ζ ¼ sðT1Þ
sðT2Þ

≃ ð1 − rÞ−1 g⋆ðTcÞ
g⋆ðT⋆Þ

Tend

T⋆
: ð57Þ

Therefore, the comoving dark matter number density
becomes

YN ¼ ζYMD
N ; ð58Þ

and consequently,

ΩNh2 ¼ ζΩMD
N h2; ð59Þ

which is the dark matter relic density for a particle that
freezes out during a matter domination era, which later
experiences the decay of the scalar field ϕ. This scenario
can also be represented by Fig. 4, where after freeze-out we
see a dilution in the dark matter yield. In the next section,
we present the constraints for our particle physics model.

5Notice that ζ may be equal to D−1, but for a different freeze-
out scenario and different parameters.
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IV. CONSTRAINTS

As the model is based on a 2HDM fashion there are
several constraints which have been derived specifically to
the canonical 2HDM, but some are also applicable to our
model with proper adjustments. We will cover them one-
by-one below.

A. Collider

The most relevant collider limits stem from Z0 searches at
the LHC. As the Z0 coupling to SM fermions is not
suppressed, such a Z0 boson can be easily produced at
the LHC, giving rise to either dijet or dilepton signal events.
If the Z0 coupling to dark matter were different and larger
than the one with SM fermions, the invisible decay of the
Z0 boson could be significant to weaken the LHC lower
mass bound. However, in our model, the Z0 field interacts
with equal strength to all fermions. Thus, the dilepton and
dijet searches at the LHC are not meaningfully impacted by
the presence of Z0 decays into dark matter pairs [110,111].
These two datasets have been considered, and the respec-
tive bounds are displayed in our plots.

B. Flavor physics

Interestingly, our model can also be constrained by
flavor physics observed despite the absence of flavor
changing interactions. The charged Higgs boson contrib-
utes to the b → sγ at the one-loop level via the Cabibbo–
Kobayashi–Maskawa (CKM) matrix [112,113]. The limit
is reported in terms of tan β and the charged scalar mass. In
our model, the mass of the charged Higgs boson is
proportional to the vs, VEV of the singlet scalar, and
tan β. Taking tan β ¼ 1, we can convert the lower mass
limit on the charged Higgs mass into a bound on vs.
Knowing that the Z0 mass is controlled by vs and gX, for a
given value of gX we now have a constraint on the Z0 mass.
We exhibit this limit in our plots.

C. Atomic parity violation

Atomic parity violation (APV) effects are often over-
looked in physics beyond the Standard Model endeavors
[56,57,114,115]. The Z0 gauge boson rising from the B − L
gauge group has only vectorial interactions with fermions.
In principle, that would lead to no APV, but in the presence
of mass mixing with the Z boson this is no longer true.
Atomic transitions in Cesium has proven to be a great
laboratory to probe Z0 contributions to APV via mass
mixing. Following [74], the contribution to the weak charge
of Cesium in our model is found to be

ΔQW ¼ −59.84δ2 − 220δ sin θW cos θWϵ
mZ

mZ0

− 133δ2 tan β2; ð60Þ

where δ is the mass mixing parameter

δ ¼ cos β cos βdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2 β cos2 βd

p ; ð61Þ

and where we have defined tan βd ¼ v1
vs

[49]. As the vs
controls the Z0 mass, with tan β ¼ 1, we can display this
limit in terms of the Z0 mass for a given gX. We show this
constraint in our plots.

D. Direct detection

Dark matter particles might scatter off of nuclei, leaving
a signal at direct detection experiments. We are considering
heavy mediators only, thus the momentum transfer in the
scattering process is much smaller than the mediator mass.
Therefore, the dark matter interaction with quarks can be
treated using effective operators. Our model features the
effective Lagrangian

LDD ¼ g4X
18m2

Z0
N̄1Rγ

μγ5N1Rq̄γμq; ð62Þ

where q ¼ u, d. We point out that only the valence quarks
contribute due to the vector current present in Eq. (62).
In models where Z − Z0 mass mixing is absent, Eq. (62)

represents the only relevant source of the direct detection
signal. Interestingly, such a term does not give rise to the
standard spin-independent (SI) or spin-dependent (SD)
dark-matter-nucleon scattering signal. Hence, we need to
map this Lagrangian onto a more general formalism using
effective operators [116–118] to understand that this
interaction gives rise to the operators

N̄1Rγ
μγ5N1Rq̄γμq → 2v⃗⊥N · S⃗N þ 2iS⃗N ·

�
S⃗n ×

q⃗
mN

�
; ð63Þ

where S⃗N ¼ 1=2 is the right-handed neutrino spin, S⃗n the
net nucleus spin, v⃗⊥N ¼ v⃗þ q⃗

2μ, q⃗ is the momentum transfer,
and μ the reduced mass.
The first term in Eq. (63) features an enhancement with

the atomic mass but is velocity suppressed, whereas the
second is momentum suppressed and spin-dependent. That
said, the first term will be dominant but will yield a distinct
energy spectrum at the detector. We properly account for
this behavior using the code described in [119].
However, our model has a second Higgs doublet charged

under the new gauge symmetry. Therefore, the Z − Z0 mass
mixing in unavoidable. This mixing induces the operator,

LDD ¼ 1

Λ2
N̄1Rγ

μγ5N1Rq̄γμγ5q; ð64Þ

where Λ here encodes both the Z mediator and the Z0
mediator via t-channel diagrams. This axial-vector inter-
action is known to generate a spin-dependent scattering,
which is found to be
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σSDNp ¼
μ2Np

4π

����
�
gAZugZN
m2

Z
þ gAZ0ugZ0N

m2
Z0

�
Δp

u

þ
�
gAZdgZN
m2

Z
þ gAZ0dgZ0N

m2
Z0

�
ðΔp

d þ Δp
s Þ
����
2

; ð65Þ

where gAZu;d (gAZ0u;d) are the axial couplings of the Z (Z0)
boson with quarks, while gZN (gZ0N) are the axial cou-
plings of the Z (Z0) boson with dark matter. The explicit
expressions can be extracted directly from Eq. (16), and
Δp

u;d;s are form factors accounting for the light quark
contributions to the nucleon spin [116,117].

V. RESULTS

In this section, we present the results for each scenario
described above. We compute the dark matter relic density
for different cosmological setups and compare the afore-
mentioned bounds. The results are presented in the mZ0 vs
mN plane. We cover several cosmological scenarios, varying
their cosmological parameters. We also fixed the gauge
coupling, gX ¼ 1, since the main focus here is to study the
impact of different cosmological parameters on this model.
In any case, decreasing the gauge coupling gX will provide
lower cross sections, leading to higher relic densities. To
compensate for this change and to get the right relic density,
we have to diminish the Z0 mass, usually leading to more
constrained scenarios.6 For completeness, we also include
the main Feynman diagrams responsible for the dark matter
relic density, collider and direct searches, atomic parity
violation, and flavor physics in Fig. 5.

We assess the impact of nonstandard cosmology by
comparing our findings with those stemming from a
standard freeze-out. The colorful shaded regions represent
the bounds from direct detection (blue region), dijet (red
region), dilepton (cyan region), flavor physics (light green),
APV (dark green region), and perturbative unitarity
(magenta). We overlay the curves that delimit the param-
eter, yielding the correct relic density within the standard
freeze-out (solid black).

A. Faster than usual early expansion

In the standard freeze-out case, the right-handed neutrino
dark matter can nicely reproduce the correct relic density and
evade existing bounds around the Z0 resonance, and away
from the resonance when mN > mZ0 . In the context of a
faster expansion rate at early times, the ðn; TrÞ parameters
have an enormous impact on the dark matter relic abundance
[87,120]. Moreover, the dark matter mass also plays a key
role. We explore n ¼ 2, 4, 6 cosmologies, for temperatures
Tr ¼ 0.1, 1, 10 GeV, to have an overall idea of how a faster
expansion affects the standard relic density. The largest
temperature at the end of the relentless phase should be
Tr ¼ 10 GeV, because we must enforce Tf > Tr to keep
freeze-out occurring during the scalar field domination. That
said, we exhibit in Fig. 6 the region of the parameter in the
mN vs mZ0 plane that yields the correct relic density. For
comparison, we also display with a black curve the region of
parameter space that gives the right relic density in the
standard freeze-out regime. For all plots we took gX ¼ 1, in
the top-left panel we adopted n ¼ 2, in the top-right panel
we assumed n ¼ 4, and in the bottom plot n ¼ 6.
It is clear that the parameters n and Tr can enhance

the dark matter relic density. We explored an interplay

FIG. 5. Here we have the Feynman diagrams related to the dark matter phenomenology of this work. The diagram (a) gives the dark
matter relic abundance, (b) corresponds to collider searches, (c) is associated with the atomic parity violation bounds, (d) to direct
detection searches, and (e) & (f) come from flavor physics.

6For a detailed study on the impact of the gauge coupling on
the results, we recommend [74].
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between n and Tr, keeping one fixed and varying the
other. Due to the enhancement of the dark matter
abundance from a faster, with respect to standard cos-
mology, expansion rate of the Universe, a viable relic
density requires lower values of the mass of the Z0 to be
achieved. One can understand this conclusion, remem-
bering that the Z0 mass enters the denominator of the
thermal annihilation cross section. Hence, the smaller the
Z0 mass, the smaller the abundance. This shift to lower Z0
masses appears to counterbalance the fast expansion
present during the dark matter freeze-out. As we increase
further the expansion rate and take n ¼ 4 (top-right

panel), and n ¼ 6 (bottom panel), the regions that
reproduce the correct relic are also further shifted to
smaller Z0 masses. Furthermore, for each cosmological
background n, the larger the ratio xr ¼ mN=Tr, the longer
the relentless phase. Then, for a fixed Tr, the heavier the
right-handed neutrino dark matter particles, the larger the
Z0 masses (smaller cross sections) to compensate for the
suppression of the dark matter relic density due to their
longer time relentlessly annihilating.
The slope of the curves is mostly governed by n as it is

closely related to the equation of state of the field ϕ [87].
Notice that this fast expansion history is completely

FIG. 6. Fast expansion case: We exhibit the curves that delimit the parameter space that leads to the correct relic density for Tr ¼ 0.1
(brown), 1 GeV (blue), and 10 GeV (red). We also display the region which reproduces the correct relic density within the standard
freeze-out for comparison. The colorful shaded regions represent the bounds from direct detection (blue region), dijet (red region),
dilepton (cyan region), flavor physics (light green), APV (dark green region), and perturbative unitarity (magenta).
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excluded by existing bounds, even in the Z0 resonance. In the
face of this, we will explore the impact of the early matter-
dominated field on this model.

B. Matter field domination in the early Universe

In this section, we deal with the nonstandard freeze-out
scenarios discussed in Secs. III B and III C. Here, we use
the cosmological parameters ðTend; DÞ and ðT⋆; ζÞ for
ERD and EMD, respectively. We firstly analyze the early
radiation-dominated freeze-out, thereafter, the dark matter
decoupling during EMD in which the field ϕ drives the
Hubble expansion, but is still away from its decay.

1. Freeze-out during early radiation-dominated era
followed by a matter domination period

In this case, we explore D ¼ 550 and 2750, fixing
Tend ¼ 0.007 GeV [98]. As discussed earlier, κ is not
fixed in order to adjust to the dark matter mass scales [see
Eq. (47)]. It is common to evoke a constant and ad hoc
dilution factor to bring down the dark matter relic density
and circumvent existing bounds. Notice that this dilution
factor cannot take any value, because it does depend on
Tend and κ. Naively, one might think that κ and Tend are
completely independent parameters. As κ is the ratio
between the ϕ and radiation densities, thus it depends
on g�ðTendÞ=g�ðT ¼ mNÞ [102]. Therefore, κ does feature
a dependence on Tend. As we need to impose Tend >
4 MeV due to BBN bounds, clearly the dilution factor D
cannot take arbitrarily large values.
In Fig. 7, we see that the contours that delimit the region

of parameter space which yield the right dark matter
abundance are free from existing bounds even away from
the resonance, for mN < mZ0. Notice that the larger the
entropy after the decay of the scalar field quantified by the
dilution factors D ¼ 550 and 2750, the smaller the cross
sections and the lighter the dark matter masses that are
required to obtain the correct relic density. In other words,
there is a shift towards heavier Z0 bosons and smaller dark
matter masses. It is important to emphasize that we are
fixing the value of Tend ¼ 0.007 and leaving the κ
parameter free to get the right value of the dilution factor.
If we fix the mass m and the κ parameter, Tend will be
inversely proportional to the dilution factor D, according
to Eq. (47). Conversely, the region of parameter space that
reproduces the correct relic density in the standard freeze-
out is rather more constrained. Hence, a successful way to
salvage WIMP models from restrictive direct detection
and collider bounds is to assume a standard freeze-out
followed by a short matter domination stage governed by
the scalar ϕ, which then decays and injects entropy,
shifting the relic density curve to the right side in Fig. 7.

2. Freeze-out during early matter-dominated era

In Fig. 8, we show the results for the early matter-
dominated freeze-out. We have chosen ζ ¼ 10−6 and

FIG. 7. The correct dark matter relic abundance for dark matter
freeze-out happening during the early radiation-dominated
epoch. For gX ¼ 1, the cosmological parameters are fixed to
Tend ¼ 0.007 GeV and D ¼ 550 and 2750 (blue and red curves,
respectively). The constraints are the same as in Fig. 6.

FIG. 8. The correct dark matter relic abundance for dark
matter freeze-out happening during the matter-dominated epoch
before the decay of ϕ. For gX ¼ 1, the cosmological parameters
are set into pairs of ζ and T⋆. We have chosen ζ ¼ 10−6 and
T⋆ ¼ 106 GeV (blue curve), and ζ ¼ 10−8 and T⋆ ¼ 108 GeV
(magenta curve). The constraints are the same as in Fig. 6.
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T⋆ ¼ 106 GeV, and ζ ¼ 10−8 and T⋆ ¼ 108 GeV. These
choices are in agreement with the freeze-out during the
EMD condition, namely, Tc ≪ Tf ≪ Teq. We took
Tend ≃ 10 GeV, and r ¼ 0.99. The blue and magenta
curves delimit the region of parameter space that yields
the correct relic density. It is visible that most regions of
parameter space are now consistent with existing bounds.
Our results comparing the standard case (black lines)

lead to scenarios completely free from the bounds for dark
matter masses larger than 200 GeV, for both ERD and EMD
cases. On the other side, for the standard case, the only
regions that survive the limits are near the Z0 resonance.
Therefore, for our model, the search for dark matter masses
around the TeV scale may hint at the presence of non-
standard cosmological histories in the early Universe.

C. The relentless phase versus the entropy injection

In this section, we put all results into perspective and
discuss the key findings concerning the overall dark matter
density in the presence of nonstandard cosmologies. In
Fig. 9, we present the results for the scenarios in which a
quintessence fluid (red curve) with n ¼ 2 and Tr ¼ 10 GeV
dominates the expansion rate (faster expansion), the standard
ERD (but is followed by the decay of a matter field for
D ¼ 550 with Tend ¼ 0.007 GeV) and lastly the freeze-out
occurs during EMD for ζ ¼ 10−8 and T⋆ ¼ 108 GeV.
It is remarkable that for a quintessence-dominated

freeze-out, the contour arises in the left-hand side of the

standard freeze-out. This reflects the fact that the larger the
Hubble rate, the larger the annihilation cross section to
reproduce the correct relic density.
Instead, for freeze-out happening during periods in

which the Hubble rate is equivalent to or slower than
radiation, the contour appears in the right-hand side, which
is less constrained by data. Hence, the presence of a scalar
field that drives the Hubble rate during or after the dark
matter freeze-out represents an important direction to be
explored by the next generation of experiments.

VI. CONCLUSIONS

In this work, we investigated the dark matter phenom-
enology of a weak-scale right-handed neutrino dark matter
under three different cosmological settings. We concretely
incorporated this right-handed neutrino into a two Higgs
doublet model featuring an Abelian gauge symmetry. The
model itself is well motivated for being able to account for
neutrino masses and the absence of flavor changing
interactions in the scalar sector.
The dark matter phenomenology is driven by the

presence of a Z0 field, as well as by the Z − Z0 mass
mixing that arises because a Higgs doublet is involved in
the spontaneous symmetry breaking of the new Abelian
gauge symmetry. Concerning nonstandard cosmology, we
explored the case where the universe expands faster than
usual, and the scenarios where the dark matter freeze-out
takes place during a matter domination epoch, as well as
during a usual radiation domination, but it is then followed
by a matter domination phase.
For the faster expanding case, we found a very con-

strained scenario, since larger cross sections are necessary
to reproduce the right relic density, whereas when a matter
field dominates the expansion rate in the early Universe
either during or after the dark matter freeze-out the relic
density curves are shifted away from existing bounds. After
putting our results into perspective with flavor bounds,
direct detection, colliders and atomic parity violation, we
solidly conclude that the weak-scale right-handed neutrino
stands for a plausible dark matter candidate in the presence
of an early matter domination epoch.
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Tr ¼ 10 GeV, D ¼ 550, and ζ ¼ 10−8 and T⋆ ¼ 108 GeV,
respectively. The constraints are still the same as in Fig. 6.
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