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We introduce an effort to catalog the gauge-invariant interactions of Standard Model (SM) particles and
new fields in a variety of representations of the SM color gauge group SUð3Þc. In this first installment, we
direct this effort toward fields in the six-dimensional (sextet, 6) representation. We consider effective
operators of mass dimension up to seven (comprehensively up to dimension six), featuring both scalar and
fermionic color sextets. We use an iterative tensor-product method to identify the color invariants
underpinning such operators, emphasizing structures that have received little attention to date. In order to
demonstrate the utility of our approach, we study a simple but novel model of color-sextet fields at the
Large Hadron Collider (LHC). We compute cross sections for an array of new production channels enabled
by our operators, including single-sextet production and sextet production in association with photons or
leptons. We also discuss dijet-resonance constraints on a sextet fermion. This example shows that there
remains a wide array of fairly minimal but well motivated and unexplored models with extended strong
sectors as we await the high-luminosity LHC.
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I. INTRODUCTION

The search for physics beyond the Standard
Model (bSM), spearheaded by the CERN Large Hadron
Collider (LHC) [1], continues unabated, spurred on by a
constellation of theoretical deficiencies and experimental
anomalies that continue to bedevil the Standard Model.
These issues range from the well-known naturalness
problems [2–5] to the collection of persistent muon [6]
and flavor anomalies [7,8] and the ongoing search for
particle dark matter [9,10]. While there exist a wide variety
of specific, sometimes ultraviolet-complete, frameworks
that seek to rectify some or all of the Standard Model’s
shortcomings, some—in the absence of experimental evi-
dence for any specific bSM model—have turned to an
effective field theory (EFT) approach to study new physics
in a simplified and more model-independent manner.
The EFT approach, which in the simplest terms allows

one to study the experimentally accessible degrees of
freedom in a theory while remaining agnostic about physics

at higher energy scales, has been used to great effect in
many contexts. Some pertinent examples include the
Standard Model effective field theory (SMEFT) [11],
which now includes (in at least one basis) every indepen-
dent operator comprising SM fields of up to mass dimen-
sion eight [12–14] and has lately been used to probe
experimental anomalies; and the variety of effective oper-
ators employed in supersymmetric frameworks in which
supersymmetry breaking is communicated by heavy mes-
sengers from a hidden sector to the visible world [15,16].
Lying somewhere between the SMEFT and supersym-

metric models on the scale of bSM theories ranked by
exotic particle content are simplified models in which the
SM is augmented only by new matter whose only nontrivial
gauge transformations are under the SM gauge group
GSM ¼ SUð3Þc × SUð2ÞL × Uð1ÞY . A particularly simple
but fruitful subset of these models feature a new color-
charged SUð2ÞL singlet perhaps with nonvanishing weak
hypercharge. While new color-charged fields—particularly
SUð3Þc triplets and octets (adjoints)—occur in a panoply of
bSM theories and have long been studied in those specific
contexts, there has been far less attempt at a coherent and
comprehensive accounting of bSM strong interactions in an
EFT framework. We intend to address this gap in the
literature, beginning with the present work.
We construct a catalog of effective operators governing

fields in the six-dimensional (sextet) representation of
SUð3Þc, which remain hypothetical but can be copiously
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produced in proton-proton (pp) collisions and are therefore
highly relevant to the ongoing LHC program. Using an
iterative tensor-product method to construct new color
invariants, we enumerate all possible operators of mass
dimension up to six connecting sextets to Standard Model
fields, and additionally identify a few potentially interesting
dimension-seven operators. Several of these operators have
to date received little or no attention. In order tomotivate this
operator catalog ex post facto, we construct two simplified
models of color-sextet fields and explore the phenomenol-
ogy of these particles at the LHC. These models are notably
different from previous models of color sextets in that the
novel particles couple not to quark pairs, like the aptly
named “sextet diquarks” [17–19], but instead to a quark and
a gluon. We find fairly light constraints on sextet fermions
from a CMS search for dijet resonances [20] and propose
future searches for the other interesting multijet þγ=Z or
lepton signatures generated by these simple models.
This paper is organized as follows. In Sec. II, we show

how to build a catalog of exotic-color operators starting from
first principles, and we produce such a catalog for color-
sextet fields. In Sec. III, we use a small subset of these
operators to explore a simplified model of color-sextet
scalars and fermions. We compute cross sections for a
variety of production modes and discuss LHC phenomenol-
ogy while surveying constraints on these novel particles.
Section IV concludes. The Appendix contains a thorough
discussion of the representation theory of the SU(3) sextet,
along with some notes about the implementation of our
specific color-sextet models in public computing tools.

II. EFFECTIVE INTERACTIONS OF EXOTIC
COLOR-CHARGED STATES

Our aim is to catalog the interactions of new SUð3Þc-
charged matter with the Standard Model. Ultimately, one
could imagine considering bSM fields up to the twenty-
seven-dimensional representation of SUð3Þc, which is the
highest representation that can be produced resonantly in a
pp collision via gg fusion. In order to generate results that
are novel and useful but also relatively simple, we choose to
focus on particles in the six-dimensional (sextet, 6) repre-
sentation of SUð3Þc. The method we describe can be easily
generalized to other color representations.

A. Color singlets by iteration

The goal is to find all gauge- and Lorentz-invariant
operators governing exotic color-charged matter and the
Standard Model. As an initial step, we need to identify all
relevant1 gauge-invariant contractions of SM color-charged
fields with color sextets. We therefore begin by

enumerating the gauge-invariant contractions of three
color-charged fields that can be realized at the LHC. To
do this, we recall the tensor decompositions of direct
product (reducible) representations N ⊗ M, fN;Mg ≤ 8,
of SU(3) [21,22]:

3 ⊗ 3 ¼ 3̄a ⊕ 6s;

3 ⊗ 3̄ ¼ 1 ⊕ 8;

6 ⊗ 3 ¼ 8 ⊕ 10;

6 ⊗ 3̄ ¼ 3 ⊕ 15;

6 ⊗ 6 ¼ 6̄s ⊕ 15a ⊕ 150s;

6 ⊗ 6̄ ¼ 1 ⊕ 8 ⊕ 27;

8 ⊗ 3 ¼ 3 ⊕ 6̄ ⊕ 15;

8 ⊗ 6̄ ¼ 3 ⊕ 6̄ ⊕ 15 ⊕ 24;

and 8 ⊗ 8 ¼ 1s ⊕ 8s ⊕ 8a ⊕ 10a ⊕ 10a ⊕ 27s; ð1Þ

where the subscripts s (a) indicate a symmetric (antisym-
metric) contraction. There are four reducible representa-
tions of SU(3), given by the direct product of three
irreducible representations (smaller than 8 and including
at least one sextet) that contain a color singlet. As a
shorthand, we refer to these reducible representations as
invariants, and we write them as

3 ⊗ 3 ⊗ 6̄;

3 ⊗ 6 ⊗ 8;

6 ⊗ 6 ⊗ 6;

and 6 ⊗ 6̄ ⊗ 8: ð2Þ

This shorthand indicates that there exists (at least) one way
to contract fields in the corresponding representations of
SUð3Þc that results in a color singlet. These “three-field”
invariants produce a number of interesting operators by
themselves, but only scratch the surface of what is possible
in SU(3). In order to go deeper, we make a straightforward
observation about reducible representations of SU(3) based
on the simple fact that the direct product of an irreducible
representation p with its conjugate p̄ contains a gauge
singlet. In particular:
Observation. If there exist invariant combinations of nþ

1 and mþ 1 fields transforming in the direct product
representations r1⊗ � � �⊗ rn⊗p and q1 ⊗ � � � ⊗ qm ⊗ p
of SU(3), then there exists an invariant combination
of nþm fields in the reducible representation r1 ⊗ � � �
⊗ rn ⊗ q̄1 ⊗ � � � ⊗ q̄m.
This observation allows us to systematically identify all

gauge-invariant color structures in and beyond the Standard
Model. Applying this technique to the list (1), with
n ¼ m ¼ 2, yields ten independent invariants of four fields
that can be used to construct effective operators of

1At present, our goal is a comprehensive catalog at dimensions
five and six, but we identify interesting dimension-seven operators
throughout. In other words, we ignore SUð3Þc invariants that can
only produce dimension-eight or higher (smaller) operators.
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dimension seven or lower (larger) including at least
one sextet and at least one SM field. We write these
“four-field” invariants in order of increasing representation
dimension as

3 ⊗ 3 ⊗ 6 ⊗ 6;

3 ⊗ 3 ⊗ 6̄ ⊗ 8;

3 ⊗ 3̄ ⊗ 3̄ ⊗ 6̄;

3 ⊗ 3̄ ⊗ 6 ⊗ 6̄;

3 ⊗ 6 ⊗ 6 ⊗ 6̄;

3 ⊗ 6 ⊗ 8 ⊗ 8;

3 ⊗ 6̄ ⊗ 6̄ ⊗ 8;

6 ⊗ 6 ⊗ 6̄ ⊗ 6̄;

6 ⊗ 6 ⊗ 6 ⊗ 8;

and 6 ⊗ 6̄ ⊗ 8 ⊗ 8: ð3Þ

This larger set of invariants underpins a significantly larger
set of gauge-invariant operators than what is generated by
the three-field invariants. The final iteration required to
fit the scope of this work takes n ¼ 2,m ¼ 3, and produces
the following list of ten “five-field” invariants:

3 ⊗ 3 ⊗ 3 ⊗ 3 ⊗ 6;

3 ⊗ 3 ⊗ 3 ⊗ 3̄ ⊗ 6̄;

3 ⊗ 3 ⊗ 6 ⊗ 6̄ ⊗ 6̄;

3 ⊗ 3̄ ⊗ 6 ⊗ 6 ⊗ 6;

3 ⊗ 3̄ ⊗ 6 ⊗ 6̄ ⊗ 8;

3 ⊗ 6 ⊗ 6 ⊗ 6 ⊗ 6;

3 ⊗ 6 ⊗ 6̄ ⊗ 6̄ ⊗ 6̄;

6 ⊗ 6 ⊗ 6 ⊗ 6̄ ⊗ 6̄;

6 ⊗ 6 ⊗ 6̄ ⊗ 6̄ ⊗ 8;

and 6 ⊗ 6 ⊗ 6 ⊗ 8 ⊗ 8: ð4Þ

Many of the invariants in (3) and (4) produce operators with
a minimum mass dimension of seven, but several work at
dimension six. At any rate, the three preceding lists provide
all the group-theoretic ingredients of dimension-seven or
lower operators governing color-charged fields. As we
implied in the Introduction, we build operators from these
invariants assuming that only the sextet is novel; i.e., we
take the triplets (3) to be SM quarks and the octets (8) to be
SM gluons. It should therefore be noted that specific
assignments of sextet weak hypercharge may be necessary
in order to preserve invariance under the full SM gauge
group GSM.
Most of the four- and five-field invariants enumerated

above permit more than one contraction, which happens

when there exists more than one intermediate representa-
tion p implying the SU(3) invariant r1 ⊗ � � � ⊗ rn ⊗ q̄1

⊗ � � � ⊗ q̄m (as defined in the observation on the previous
page). Distinct gauge-invariant contractions of a fixed set of
fields are realized with distinct sets of generalized Clebsch-
Gordan coefficients. As an example, the invariant com-
posed of three color octets can be built in a totally
symmetric or a totally antisymmetric manner, and an
observable associated with these two possible vertices
(summed over colors) carries a factor proportional to

fabcfabc ¼ 24 vs: dabcdabc ¼
40

3
for SUð3Þc: ð5Þ

In this example, the Clebsch-Gordan coefficients corre-
spond to the structure constants fabc and the SU(3) totally
symmetric symbol, dabc ¼ 2 trfta3; tb3gtc3 with tar the gen-
erators of the irreducible representation r of SU(3). Other
Clebsch-Gordan coefficients have been computed in prior
studies of exotic color-sextet fields; these are the coef-
ficients linking three color triplets (Lijk, totally antisym-
metric) and two triplets to an antisextet (K s

ij, symmetric
under i ↔ j interchange) [18]. In Tables I–III, we specify
all possible contractions of color indices generating the
invariants listed in (2), (3), and (4). In these tables, and
throughout this document, index heights in Clebsch-
Gordan coefficients (associated with irreducible represen-
tations that are not self-conjugate) are fixed in order to

TABLE I. Color index contractions yielding the three-field
color invariants needed for a catalog of dimension-six or lower
operators governing color sextet interactions with SM quarks and
gluons. This table establishes our notation for invariant (Clebsch-
Gordan) coefficients, some of which are used for phenomenology
later in this work. Tables II and III extend this catalog to four- and
five-field invariants.

Invariant
Clebsch-Gordan
coefficients Notes

3 ⊗ 3 ⊗ 3 Lijk Totally antisymmetric
3 ⊗ 3 ⊗ 6̄ K s

ij i ↔ j symmetric
3 ⊗ 3̄ ⊗ 8 ½ta3�ij Generators of 3
3 ⊗ 6 ⊗ 8 Js ia See Appendix
3 ⊗ 6 ⊗ 10 E x

is

3 ⊗ 6̄ ⊗ 15 Qq i
s

3 ⊗ 8 ⊗ 15 V q
ia

6 ⊗ 6 ⊗ 6 Sstu t ↔ u symmetric
6 ⊗ 6 ⊗ 15 W q

st s ↔ t antisymmetric
6 ⊗ 6̄ ⊗ 8 ½ta6�st Generators of 6
6 ⊗ 6̄ ⊗ 27 F n

s
t

6 ⊗ 8 ⊗ 15 X q sa

8 ⊗ 8 ⊗ 8 fabc dabc (fabc) dabc totally
(anti)symmetric

8 ⊗ 8 ⊗ 10 Gx ab a ↔ b antisymmetric
8 ⊗ 8 ⊗ 27 Hn ab a ↔ b symmetric
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contract correctly with fields in the representations speci-
fied in the first column, so for instance the totally anti-
symmetric coefficients for the invariant 3 ⊗ 3 ⊗ 3 are
written so that

L ⊃ Lijkφiφjφk ð6Þ

would be a color singlet composed of three scalars φi in the
fundamental representation of SUð3Þc. Appendix A con-
tains a more thorough discussion of Clebsch-Gordan
coefficients, including further explanation of notation, a
method for computing them, and some important results
used later in this work.
Tables I–III display a wide variety of index contractions

leading to color singlets. The number of valid contractions
naturally rises with the order of the invariant, since higher-
order contractions are built from smaller ones. Therefore,
while most three-field invariants permit only one contrac-
tion, the five-field invariant 3 ⊗ 3̄ ⊗ 6 ⊗ 6 ⊗ 6 (for exam-
ple) permits six. There are in total a few dozen contractions

available for all possible sets of color-charged fields
relevant to our operator catalog, even before considering
sextet spin(s) and electroweak representation(s)—and the
other fields required to form singlets under the full SM
gauge group.

B. Lorentz invariance

The construction of Lorentz-invariant operators naturally
depends on the spin(s) of the exotic field(s). We consider
scenarios with one or two (distinct) color-sextet fields
assigned as either a complex scalar or a Dirac fermion (or
one of each species). In order to collect all sextet operators,
we identify all possible Lorentz structures built out of the
SUð3Þc invariants collected above. Since it turns out that
most operators in our catalog contain Dirac fermions—
either quarks, leptons, or color-sextet fermions—a natural
starting place is the nonvanishing Dirac bilinears, displayed
in Table IV, with their Hermitian conjugates implied.
This table establishes a shorthand for nonvanishing Dirac

bilinears in addition to cataloging these objects. The top

TABLE II. Color index contractions yielding the four-field color invariants needed for the operator catalog, ordered by the dimension
of the representation whose index is summed over.

Invariant Clebsch-Gordan coefficients Notes

3 ⊗ 3 ⊗ 6 ⊗ 6 K u
ijSust ∋ ½Π3366�ij st

3 ⊗ 3 ⊗ 6̄ ⊗ 8 LijkJ̄s ka K ik
s ½ta3 �jk K ij

r ½ta6�sr Qq i
sV

ja
q ∋ ½Π336̄8�ijsa

3 ⊗ 3̄ ⊗ 3̄ ⊗ 6̄ L̄jklK s
li ½ta3 �jiJ̄s ak ∋ ½Π33̄ 3̄ 6̄�ijks

3 ⊗ 3̄ ⊗ 6 ⊗ 6̄ δj
iδt

s ½ta3 �ji½ta6�ts ∋ ½Π33̄66̄�ijst
3 ⊗ 6 ⊗ 6 ⊗ 6̄ Js ia½ta6�ut Qq i

uW q
st ∋ ½Π3666̄�i stu

3 ⊗ 6 ⊗ 8 ⊗ 8 ½ta3�jiJs jb J t ia½tb6 �ts Js icff; dgabc E x
isGx ab V q

iaX q sb ∋ ½Π3688�i s ab
3 ⊗ 6̄ ⊗ 6̄ ⊗ 8 K s

ijJ̄s ai Js iaS̄s tu ∋ ½Π36̄ 6̄ 8�ista
6 ⊗ 6 ⊗ 6̄ ⊗ 6̄ δu

sδv
t ½ta6 �us½ta6�vt ∋ ½Π666̄ 6̄�stuv

6 ⊗ 6 ⊗ 6 ⊗ 8 Sstr½ta6 �ru W q
stX q ua ∋ ½Π6668�stu a

6 ⊗ 6̄ ⊗ 8 ⊗ 8 δt
sδb

a ½t c6�ts½t c8�ba F n
t
sHn ab ∋ ½Π66̄88�stab

TABLE III. Color index contractions yielding the required five-field color invariants.

Invariant Clebsch-Gordan coefficients Notes

3 ⊗ 3 ⊗ 3 ⊗ 3 ⊗ 6 ½Π3366�ij stK t
kl ∋ ½ϒ33336�ijkl s

3 ⊗ 3 ⊗ 3 ⊗ 3̄ ⊗ 6̄ ½Π33̄66̄�iltsK t
jk ½Π336̄8�ijsa½ta3�lk ∋ ½ϒ3333̄ 6̄�ijkls

3 ⊗ 3 ⊗ 6 ⊗ 6̄ ⊗ 6̄ ½Π3366�ij srS̄rtu ½Π336̄8�ijta½ta6�us ∋ ½ϒ3366̄ 6̄�ijstu
3 ⊗ 3̄ ⊗ 6 ⊗ 6 ⊗ 6 ½Π33̄66̄�ijsrSrtu ½Π̄36̄ 6̄ 8�jstaJu ia ½Π6668�stu a½ta3 �ji ∋ ½ϒ33̄666�ijstu
3 ⊗ 3̄ ⊗ 6 ⊗ 6̄ ⊗ 8 ½Π3688�i sabJ̄ tbj ½Π66̄88�stab½tb3�ji ∋ ½ϒ33̄66̄8�ijsta
3 ⊗ 6 ⊗ 6 ⊗ 6 ⊗ 6 ½Π3666̄�i strSruv ∋ ½ϒ36666�i stuv
3 ⊗ 6 ⊗ 6̄ ⊗ 6̄ ⊗ 6̄ ½Π36̄ 6̄ 8�itua½ta6 �vs ½Π̄6668�tuv aJsia ∋ ½ϒ366̄ 6̄ 6̄�istuv
6 ⊗ 6 ⊗ 6̄ ⊗ 6̄ ⊗ 8 ½Π666̄ 6̄�stur½ta6�vr ½Π66̄88�suab½tb6 �vt ∋ ½ϒ666̄ 6̄ 8�stuva
6 ⊗ 6 ⊗ 6 ⊗ 8 ⊗ 8 ½Π6668�stu cff; dgabc ∋ ½ϒ66688�stu ab
6 ⊗ 6̄ ⊗ 6̄ ⊗ 6̄ ⊗ 6̄ ½Π666̄ 6̄�rs0 stS̄s0uv ∋ ½ϒ66̄ 6̄ 6̄ 6̄�rstuv
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block contains bilinears reminiscent of Standard Model
structures, including all contractions of some generic weak
doublet XL ¼ ðχþL ; χ−LÞT , and a weak singlet χR. This class
of bilinears is useful for invariants containing direct
products of the form r̄ ⊗ q—an irreducible representation
with a (possibly distinct) conjugate irreducible representa-
tion. A familiar example is the SM operator

LSM ⊃ −ydIJðQ̄i
LIHdRJiÞ; ð7Þ

with I; J ∈ f1; 2; 3g generation (flavor) indices, the coef-
ficients of which form the down-type Yukawa matrix ydIJ.
The color invariant underpinning this operator is 3̄ ⊗ 3. We
have found many higher-order color invariants that include
a structure like this—either between two color-charged
fields or between a color-charged field and a lepton—so
these Dirac bilinears are quite useful. But we also need
bilinears for direct products of the form r ⊗ q—an
irreducible representation with a (possibly distinct) irre-
ducible representation. These bilinears are displayed in the
middle block of Table IV. They comprise Dirac fermions
and charge-conjugated fermions:

χc ≡ Cχ̄T with C satisfying CγμC−1 ¼ −γμ: ð8Þ

While these structures do not appear in the Standard
Model, some occur in a variety of bSM theories ranging
frommodels of color-sextet scalars [19] to supersymmetric
models with Dirac gauginos [23]. The lower block of
Table IV displays various objects in weak or Dirac space
that can be inserted in the bilinears listed above. Omitted
from this particular list is the fifth Dirac matrix γ5,
which when inserted between two Dirac fields of
definite chirality, as considered in this work, modifies
the bilinear only by a global sign. Crucially, some of these

objects are themselves Standard Model fields, including
any of the SM field-strength tensors2 Bμν;Wμν; Gμν and
the SMHiggs doublet, which in the unitary gauge takes the
form

H ¼ 1ffiffiffi
2

p
�

0

vþ h

�
: ð9Þ

As is well known, operators containing insertions
of the Higgs doublet generate operators of lower “effective
dimension” when the Higgs is replaced by its vacuum
expectation value v. A complete operator catalog follows
from cycling through all of the bilinears and insertions that
satisfy our criteria for gauge and Lorentz invariance.
The desired catalog of operators governing color-sextet

fields interacting with the Standard Model can be con-
structed from the set of Dirac bilinears and color invariants.
The number of dimension-five and -six operators contain-
ing at least one sextet and at least one SM field is ofOð102Þ,
and thus is quite large. Consequently, we limit the listings in
Tables V–VII to the minimal field content at each order in
the EFT expansion for each color invariant. These “sche-
matic” operators are built using the shorthand Dirac
bilinears introduced in Table IV, with the generic Dirac
fermions χ; χ0 in that table replaced by quarks, leptons, and
weak singlet color-sextet fermions. Here we use a similar
shorthand notation in which the familiar SM quarks and
leptons with quantum numbers ðSUð3Þc; SUð2ÞL;Uð1ÞYÞ
are denoted by

TABLE IV. Fermion bilinears that can be used, possibly by themselves or paired with an appropriate second bilinear, to build all
Lorentz-invariant operators of mass dimension up to seven including at least one color-sextet field. Hermitian conjugates are allowed
where distinct. Stipulations exist on the use of some bilinears listed above; some comments are offered where appropriate. Extra
insertions of jHj2 may be allowed in dimension-five operators where gauge invariant. The dual Higgs field H̃ ¼ iτ2H† could be used in
place ofH anywhere to e.g., allow a specific sextet weak hypercharge.CP-odd bilinears replacing 1with γ5 are also allowed in principle.

Examples Bilinears Notes

ðχ̄χ0Þ ðq̄q0Þ (3̄ ⊗ 3),
ðΨ̄ΨÞ (6̄ ⊗ 6),
ðq̄lÞ (3̄ ⊗ 1)

X̄LHΓχ0R
X̄LΩγμX0

L Only if half of four-fermion
operator with second γμχ̄Rγ

μχ0R
ðχχ0Þ ðqq0Þ (3 ⊗ 3Þ,

ðΨΨÞ (6 ⊗ 6),
ðqlÞ (3 ⊗ 1)

χcRΓχ0R Γ ¼ σμν nonvanishing only if χ0 ≠ χ

Xc
LΩΓX0

L

Xc
LHγμχ0R Needs second γμ again

Operator Notes
Γ ∈ f1; σμνg σμν must be accompanied by σμν or a field-strength

tensor Fμν, Fμν ∈ fBμν; tA2W
A
μν; Ga

μνgΩ ∈ fHH†; iτ2g

2The SUð2ÞL (weak-isospin) field-strength tensorWμν must be
accompanied by tA2 ¼ τA=2, A ∈ f1; 2; 3g, the generators of the
fundamental representation 2 of SU(2). These generators must
furthermore be contracted with SUð2ÞL doublets XL.
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TABLE V. Schematic table of three-field invariant operators, plus the unique two-field invariant 6 ⊗ 6̄, of minimum mass dimension
dmin ≤ 7 that can be constructed using the fermion bilinears in Table IV and that include at least one color-sextet field. We consider
scenarios with a sextet scalar, a sextet (Dirac) fermion, and at least one of each species. Note that operators requiring a single gluon field-
strength tensor G must be made Lorentz invariant by judicious choice of fermion bilinear(s) or a weak-hypercharge field strength B.
Lists marked with † have indicated dmin once accompanied by minimal set of SM fields.

Scalar sextet Φ only Dirac sextet Ψ only ≥ 1 of each

SUð3Þc invariant dmin Structure dmin Structure dmin Structure

6 ⊗ 6̄ 4† Φ†Φ 5† ðΨ̄ΨÞ 4 ðΨ̄lÞΦ
ðΨlÞΦ†

ðl̄ΨÞΦ†

3 ⊗ 3 ⊗ 6̄ 4 ðqq0ÞΦ† 6 ðqq0ÞðΨ̄lÞ
6 ðqq0ÞjHj2Φ† ðΨ̄qÞðqlÞ

ðΨ̄qÞðl̄qÞ
3 ⊗ 6 ⊗ 8 6 ðqlÞΦG 5 ðqΨÞG

ðl̄qÞΦG 7 ðqΨÞjHj2G
6 ⊗ 6 ⊗ 6 5† ΦΦΦ 6 ðΨΨÞðΨlÞ 5 ðΨlÞΦΦ

ðΨΨÞðl̄ΨÞ ðl̄ΨÞΦΦ
6† ðΨΨÞΦ

6 ⊗ 6̄ ⊗ 8 6 Φ†ΦGB 5 ðΨ̄ΨÞG 6 ðΨ̄lÞΦG
7 ðΨ̄ΨÞjHj2G ðΨlÞΦ†G

ðl̄ΨÞΦ†G

TABLE VI. Schematic table of four-field invariant operators. Fields are left blank if operators exist only with dmin ¼ 8. Lists marked
with � are not exhaustive. Lists marked with † have indicated dmin once accompanied by minimal set of SM fields.

Scalar sextet Φ only Dirac sextet Ψ only ≥ 1 of each

SUð3Þc invariant dmin Structure dmin Structure dmin Structure

3 ⊗ 3 ⊗ 6 ⊗ 6 5 ðqq0ÞΦΦ 6 ðqq0ÞðΨΨÞ 7 ðqq0ÞðΨlÞΦ
7 ðqq0ÞΦjHj2Φ ðqΨÞðq0ΨÞ ðqlÞðq0ΨÞΦ

3 ⊗ 3 ⊗ 6̄ ⊗ 8 6 ðqq0ÞΦ†G

3 ⊗ 3̄ ⊗ 3̄ ⊗ 6̄ 7 ðq̄q0Þðq̄00lÞΦ 6 ðq̄q0Þðq̄00ΨÞ
ðqq0Þ†ðq00lÞΦ ðqq0Þ†ðq̄00ΨÞ

3 ⊗ 3̄ ⊗ 6 ⊗ 6̄ 5 ðq̄q0ÞΦ†Φ 6 ðq̄q0ÞðΨ̄ΨÞ 7� ðq̄q0ÞðΨ̄lÞΦ
7 ðq̄q0ÞΦ†jHj2Φ ðq̄ΨÞðΨ̄q0Þ ðq̄ΨÞðq0lÞΦ†

3 ⊗ 6 ⊗ 6 ⊗ 6̄ 6 ðqlÞjΦj2Φ 6 ðqΨÞðΨ̄ΨÞ 5 ðqΨÞΦ†Φ
ðl̄qÞjΦj2Φ ðΨ̄qÞðΨΨÞ ðΨ̄qÞΦΦ

7� ðqΨÞðΨlÞΦ†

ðqlÞðΨ̄ΨÞΦ
3 ⊗ 6 ⊗ 8 ⊗ 8 7 ðqΨÞGG
3 ⊗ 6̄ ⊗ 6̄ ⊗ 8 7 ðqlÞΦ†Φ†G 6 ðΨ̄qÞΦ†G

ðl̄qÞΦ†Φ†G

6 ⊗ 6 ⊗ 6̄ ⊗ 6̄ 6† jΦj4 6 ðΨ̄lÞjΦj2Φ
ðΨlÞjΦj2Φ†

ðl̄ΨÞjΦj2Φ†

7 ðΨ̄ΨÞjΦj2jHj2
6 ⊗ 6 ⊗ 6 ⊗ 8 7 ΦΦΦGB 6 ðΨΨÞΦG

7 ðΨlÞΦΦG
ðl̄ΨÞΦΦG

6 ⊗ 6̄ ⊗ 8 ⊗ 8 6 jΦj2GG 7 ðΨ̄ΨÞGG
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q ∈

8>><
>>:

QLI ∼ ð3; 2; 1
6
Þ

uRI ∼ ð3; 1; 2
3
Þ

dRI ∼ ð3; 1;− 1
3
Þ

and l ∈
�
LLX ∼ ð1; 2;− 1

2
Þ

lRX ∼ ð1; 1;−1Þ;

ð10Þ
where I; X ∈ f1; 2; 3g are generation indices; and in which

Φ ∼ ð6; 1; YΦÞ and Ψ ∼ ð6; 1; YΨÞ ð11Þ

respectively denote a color-sextet scalar and fermion. The
gluon and weak-hypercharge field strength tensors appear
explicitly as G and B, as does the SM Higgs doublet H.
Each entry in Tables V–VII, therefore, represents a set of
operators given by appropriately combining all valid
Lorentz structures with all available color index contrac-
tions as displayed in Tables I–III. SUð2ÞL invariance
generally has to be ensured by judicious choices of
quark/lepton bilinears, but it is straightforward to preserve
Uð1ÞY by fixing the sextet hypercharge(s) after all of the
other ingredients are specified. Most operators can be
generalized beyond the minimal field content (to even
higher-dimensional operators) by insertions of Higgs or
gauge boson in their Dirac bilinears. These tables represent
a comprehensive catalog at dimensions five and six, and
also include a variety of interesting dimension-seven
operators as well.

C. Examples

It is clear upon inspection of Tables V–VII that this
catalog contains a formidable variety of gauge-invariant
interactions for color-sextet fields. Not only do we recoup
the fairly small set of interactions that have previously

been investigated between sextet scalars and quark pairs
qq0 [17–19]—but we find many sextet interactions with
quarks and a lepton, and many of these permit gauge
bosons pursuant to either a color invariant or a Dirac
bilinear. The operators become increasingly spectacular for
the higher-order invariants: even at dimension six, for
instance, there are triple-sextet interactions with quark
pairs in Table VII. In order to demonstrate how it can
be used to develop a concrete model, we expand two
subsets of the catalog and provide the associated operators
explicitly. The sections we expand correspond to the three-
field invariants 3 ⊗ 3 ⊗ 6̄ and 3 ⊗ 6 ⊗ 8, which are
schematically cataloged in the second and third sections
of Table V. The resulting list of explicit operators are
displayed in Tables VIII and IX.
These tables show all the details hidden in the schematic

operator lists by fully specifying the wide range of
operators with color indices, Clebsch-Gordan coefficients,
couplings,3 and EFT cutoffs ΛfΦ;Ψg made explicit. In
addition, these tables specify the lepton numbers L and
weak hypercharges Y the sextet field must assume in order
to preserve gauge invariance and the accidental lepton
number conservation of the Standard Model. SUð2ÞL
(weak) indices are suppressed throughout, and Dirac
indices are contracted between objects within parentheses.
Table VIII, which targets the invariant 3 ⊗ 3 ⊗ 6̄, is

fairly large, even though there exists only one way to
contract color indices to form this invariant. This structure
minimally couples a color sextet to quark pairs qq0, which

TABLE VII. Schematic table of five-field invariant operators. Here we consider scenarios with a sextet scalar and at least one of each
species, since for these invariants there are no suitable fermion-only operators. Lists marked with � are not exhaustive.

Scalar sextet Φ only ≥ 1 of each

SUð3Þc invariant dmin Structure dmin Structure

3 ⊗ 3 ⊗ 3 ⊗ 3 ⊗ 6 7 ðqq0Þðq00q000ÞΦ
3 ⊗ 3 ⊗ 3 ⊗ 3̄ ⊗ 6̄ 7 ðqq0Þðq̄00q000ÞΦ†

3 ⊗ 3 ⊗ 6 ⊗ 6̄ ⊗ 6̄ 6 ðqq0ÞjΦj2Φ† 7� ðqq0ÞðΨ̄ΨÞΦ†

ðΨ̄qÞðq0ΨÞΦ†

3 ⊗ 3̄ ⊗ 6 ⊗ 6 ⊗ 6 6 ðq̄q0ÞΦΦΦ 7 ðq̄q0ÞðΨΨÞΦ
ðq̄ΨÞðq0ΨÞΦ

3 ⊗ 3̄ ⊗ 6 ⊗ 6̄ ⊗ 8 7 ðq̄q0ÞjΦj2G
3 ⊗ 6 ⊗ 6 ⊗ 6 ⊗ 6 7 ðqlÞΦΦΦΦ

ðl̄qÞΦΦΦΦ
3 ⊗ 6 ⊗ 6̄ ⊗ 6̄ ⊗ 6̄ 7 ðqlÞjΦj2Φ†Φ†

ðl̄qÞjΦj2Φ†Φ†

6 ⊗ 6 ⊗ 6̄ ⊗ 6̄ ⊗ 8 7 ðΨ̄ΨÞΦ†ΦG
6 ⊗ 6 ⊗ 6 ⊗ 8 ⊗ 8 7 ΦΦΦGG
6 ⊗ 6̄ ⊗ 6̄ ⊗ 6̄ ⊗ 6̄ 7 ΦΦ†Φ†Φ†Φ†jHj2

3In the interest of generality, the scalar couplings λðXÞIðJÞ and
Dirac couplings κðXÞIðJÞ are matrices in quark (and sometimes
lepton) generation space.
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historically motivated the term “sextet diquarks.” The first
and third rows of Table VIII reproduce the gauge-invariant
interactions cataloged for weak-singlet color-sextet scalars
in [17,19]. In addition to these known couplings, we find
numerous operators with various quark chiralities and extra
SM gauge and Higgs bosons. The operators become even
more exotic for sextet fermions in this color structure, with
leptons being necessary in every case to form gauge and
Lorentz singlets.
Table IX concerns the invariant 3 ⊗ 6 ⊗ 8, which despite

being a simple three-field invariant has received scant
attention in the literature. This invariant couples a color

sextet to a quark and a gluon, and while no operators can be
built at mass dimension four, it is potentially very important
in LHC searches for color sextets. Here, as for the other
three-field invariant, we find basic qg couplings, as well as
interactions containing extra B or Higgs bosons.
Interestingly, the situation with respect to leptons is flipped
relative to Table VIII, with the scalar sextet interactions
requiring leptons. In short, this table depicts a fairlyminimal
but rich portal between the StandardModel and color-sextet
scalars and fermions. We highlight some of the operators in
this table in a phenomenological investigation in Sec. III.

TABLE VIII. Gauge-invariant operators coupling color sextets to quark pairs, based on the SU(3) invariant 3 ⊗ 3 ⊗ 6̄ with Clebsch-
Gordan coefficients K s

ij (viz. Appendix A). Hermitian conjugates also exist where distinct. Quark generation indices fI; Jg, lepton
generation indices fX; Yg, and all color indices are kept explicit, while Dirac spinor indices and SUð2ÞL indices are suppressed. L and Y
are respectively the sextet lepton numbers and weak hypercharges in each scenario.

Singlet (Lorentzþ GSM)

3 ⊗ 3 ⊗ 6̄ Generic Specific Coupling L Y

Scalar Φs ðqq0ÞΦ† K s
ijΦ†sðqcR IiqRJjÞ λIJ 0 f− 2

3
; 1
3
; 4
3
g

K s
ijΦ†sðqcR Iiσ

μνqRJjÞBμν
1
Λ2
Φ
λIJ

K s
ijΦ†sðQc

L Iiiτ2QLJjÞ λIJ 1
3

K s
ijΦ†sðQc

L Iiσ
μνiτ2QLJjÞBμν

1
Λ2
Φ
λIJ

K s
ijΦ†sðQc

L IiHH†QLJjÞ 1
Λ2
Φ
λIJ

K s
ijΦ†sðQc

L Iiσ
μνtA2QLJjÞWμνA

ðqq0ÞjHj2Φ† K s
ijΦ†sðqcR IiqRJjÞjHj2 f− 2

3
; 1
3
; 4
3
g

Dirac Ψs ðqq0ÞðΨ̄lÞ K s
ijðqcR IiqRJjÞðΨ̄slRXÞ 1

Λ2
Ψ
κXIJ 1 f− 5

3
;− 2

3
; 1
3
g

K s
ijðqcR IiqRJjÞðΨ̄sH†LLXÞ 1

Λ3
Ψ
κXIJ

K s
ijðqcR Iiσ

μνqRJjÞðΨ̄sσμνH†LLXÞ
K s

ijðQc
L Iiiτ2QLJjÞðΨ̄slRXÞ 1

Λ2
Ψ
κXIJ

4
3

K s
ijðQc

L Iiiτ2QLJjÞðΨ̄sH†LLXÞ 1
Λ3
Ψ
κXIJ − 2

3

K s
ijðQc

L IiHγμqRJjÞðΨ̄sγμlRXÞ f− 2
3
; 1
3
g

ðΨ̄qÞðqlÞ K s
ijðΨ̄sσμνqRIiÞðqcR JjσμνlRXÞ 1

Λ3
Ψ
κXIJ f− 5

3
;− 2

3
; 1
3
g

K s
ijðΨ̄sγμqRIiÞðQc

L JjHγμlRXÞ 1
Λ2
Ψ
κXIJ f− 2

3
; 1
3
g

ðΨ̄qÞðl̄qÞ K s
ijðΨ̄sγμqRIiÞðL̄LXγμiτ2QLJjÞ −1 f1

3
; 4
3
g

K s
ijðΨ̄sγμqRIiÞðl̄RXγμqRJjÞ f1

3
; 4
3
; 7
3
g

TABLE IX. Gauge-invariant operators coupling color sextets to quarks and gluons, based on the SU(3) invariant 3 ⊗ 6 ⊗ 8 with
Clebsch-Gordan coefficients Jsia (viz. Appendix A). Conventions are similar to those of Table VIII.

Singlet (Lorentzþ GSM)

3 ⊗ 6 ⊗ 8 Generic Specific Coupling L Y

Scalar Φs ðqlÞΦG JsiaΦsðqcR Iiσ
μνlRXÞGμνa

1
Λ2
Φ
λXI −1 f1

3
; 4
3
g

ðl̄qÞΦG JsiaΦsðL̄LXHσμνqRIiÞGμνa
1
Λ3
Φ
λXI 1 f− 5

3
;− 2

3
g

Dirac Ψs ðqΨÞG JsiaðqcR Iiσ
μνΨsÞGμνa

1
ΛΨ

κI 0 f− 2
3
; 1
3
g

JsiaðqcR IiΨsÞBμνGμνa
1
Λ3
Ψ
κI

ðqΨÞjHj2G JsiaðqcR Iiσ
μνΨsÞjHj2Gμνa

CARPENTER, MURPHY, and TAIT PHYS. REV. D 105, 035014 (2022)

035014-8



III. SEXTETS AT THE LHC

In the previous section we introduced a wide variety of
operators governing the production and decay of exotic
color-charged states in the six-dimensional representation
(6) of the Standard Model SUð3Þc. In this section we
exploit the operator catalog to investigate models of color-
sextet fields based on a subset of these operators. In
particular, we consider color-sextet fermions and scalars
coupling to gluons, up- or down-type quarks, and some-
times leptons and the Uð1ÞY gauge boson(s) B; these
couplings are enabled by the color invariant 3 ⊗ 6 ⊗ 8.
The sextet fermion models are defined by

L ⊃ Ψ̄qði=D −mΨq
ÞΨq

þ 1

ΛΨq

½κIqJsiaðqcR Iiσ
μνΨqsÞGμνa þ H:c:�

þ 1

Λ3
ΨqB

½κIqBJsiaðqcR IiΦqsÞBμνGμνa þ H:c:� ð12Þ

for q ∈ fu; dg (so for instance Ψu couples to up-type
quarks). The models for sextet scalars are analogously
given by

L ⊃ ðDμΦqÞ†DμΦq −m2
Φq
Φ†

qΦq

þ 1

Λ2
Φq

½λXIq JsiaΦqsðqcR Iiσ
μνlRXÞGμνa þ H:c:�: ð13Þ

In both Lagrange densities (12) and (13), as elsewhere,
spinor indices are contracted within parentheses. The
couplings and cutoff scales are taken with light modifica-
tion from Table IX. The Clebsch-Gordan coefficients Jsia

(with Hermitian conjugates Jsai) providing the gauge-
invariant contraction of a color sextet with a quark and a
gluon were introduced in Table I. We discuss these novel
coefficients in detail and explicitly provide them in a useful
basis in Appendix A. As we noted in Sec. II, these color
sextets must have particular weak hypercharges and lepton
numbers in order to preserve the symmetries of the

Standard Model. We summarize the quantum numbers of
the fields in (12) and (13) in Table X.
We implement these simplified models in version 2.3.43

of FeynRules [24,25], a package for Mathematica©
version 12.0 [26]. Some notes on the implementation
of the Clebsch-Gordan coefficients Jsia are offered in
Appendix A. We have used FeynRules to generate a Universal
FeynRules Output (UFO) [27] for leading-order (LO) event
generation in MadGraph5_aMC@NLO (MG5_aMC) version 3.2.0
[28,29]. For both cross section computations and event
simulation, hard-scattering amplitudes have been con-
volved with the NNPDF 2.3 LO set of parton distribution
functions [30]. The renormalization and factorization scales
have been set to μR ¼ μF ¼ mΨ or mΦ.

A. Cross sections and LHC signatures

At a high-energy hadron collider, color sextets can be
produced in pairs (predominantly through their SUð3Þc
gauge interactions) as well as singly, often in association
with SM leptons or gauge bosons. Representative
diagrams for pair production are displayed in Fig. 1
and proceed via gluon fusion and quark-antiquark anni-
hilation. Contributions to ΨΨ̄ production from the higher
dimensional operators in (12) are typically negligible for
reasonable choices of ΛΨq

. The cross sections of sextet
fermion and scalar pair production at the LHC with

ffiffiffi
s

p ¼
13 TeV are displayed in Fig. 2, with systematic errors
estimated by adding the scale and PDF variations reported
by MG5_aMC in quadrature. Because pair production is
dominated by gauge interactions, the cross sections are
not only essentially independent of κIq and ΛΨq

, but are
also nearly identical for sextets coupling to up- and down-
type quarks. The spin of the sextet is important, with the
scalar cross section(s) hovering a bit less than an order of
magnitude below those of the fermions. All cross sections
are of Oð1 − 10Þ pb for masses below the TeV scale but
fall quite steeply with increasing sextet mass. It is worth
noting that these results are consistent with the small
existing literature for sextet fermions [31,32] and scalars
[18,19,33].
The novel interactions between sextet fermions, quarks,

and gluons in the second line of (12) allow sextet fermions
to be singly produced in quark-gluon fusion. Here the
quantum numbers of the sextet are significant, and we
display the cross sections for both sextet fermions and
their antiparticles in Fig. 3. We have chosen a simple
benchmark in which all first- and second-generation
quarks couple to sextets with equal strength: κIu ¼ κId ¼
0.05 ∀ I ∈ f1; 2g and ΛΨu

¼ ΛΨd
¼ 1 TeV. These

choices correspond to single-production cross sections
for all sextet fermions which are comparable to those for
pair production. The differences in cross section for the
two fermions and their conjugates are largely the result of
the significant difference between quark and antiquark

TABLE X. Exotic field content of color-sextet models consid-
ered in Sec. III. Representations in SM gauge group GSM and
charges under accidental symmetries are noted.

Quantum numbers

GSM L

Scalars Φu ð6; 1; 1
3
Þ −1

Φd ð6; 1; 4
3
Þ

Fermions Ψu ð6; 1;− 2
3
Þ 0

Ψd ð6; 1; 1
3
Þ
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parton luminosities at LHC. (One can see in (12) that the
initial state for Ψ̄q production is essentially qg, whereas
Ψq is produced by q̄g.) The situation would be quite
different at a pp̄ collider like the Tevatron, but here the
differences amount to factors of around five. As expected,
these cross sections fall more gently with increasing mΨ
than that of pair production.
A third interesting production mode involving a sextet

fermion is enabled by the final line of (12). We find that

processes with up to two photons or Z bosons in the final
state may have cross sections of Oð1 − 10Þ fb, which is on
the margins of what is observable at the LHC. We display
these cross sections for the optimal case of a sextet
antifermion coupling to up-type quarks in Fig. 4. These
results correspond to a benchmark with (light) flavor-
universal couplings (κIuB ¼ 0.10 ∀ I ∈ f1; 2g) and a cutoff

FIG. 2. Leading order cross sections for pair production of
color-sextet fermions and scalars at the LHC as a function of
sextet mass.

(a)

(b)

FIG. 1. Representative diagrams for pair production of color-sextet (a) fermions and (b) scalars. Blobs mark vertices corresponding to
an effective operator with some cutoff scale. Quarks coupling directly to sextets must have appropriate hypercharge; viz. (12) and (13).
These contributions are negligible for realistic ΛΨu

, ΛΨd
.

FIG. 3. Cross sections of color-sextet fermion single produc-
tion. These are comparable to fermion pair-production cross
sections for indicated couplings/cutoffs. Conjugate fermion (Ψ̄)
cross sections dominate because quarks have greater parton
luminosity than antiquarks at LHC.
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scale of ΛuB ¼ 1 TeV. As expected, the cross section for
pp → Ψ̄u þ γ is a few times larger than that of
pp → Ψ̄u þ Z. On the other hand, Ψ̄u þ γZ is the largest
of the two-boson associated production modes, followed by
γγ and ZZ. For the same reasons as for unaccompanied
single fermion production, other sextet fermions produced
in association with photons and Z bosons exhibit smaller
cross sections.
While no operator in (13) allows for the production

of a lone color-sextet scalar at LHC, the production
of such particles in association with SM leptons is allowed
by the second line. These again are due to quark-gluon
fusion and exhibit the same behavior with respect to q=q̄

initial states. We display in Fig. 5 some suggestive cross
sections for sextet scalar production with an electron or its
antiparticle. Here we adopt a benchmark in which the
coupling matrices λXIu;d are diagonal in generation space, so
for instance Ψu þ e is produced only by ūg fusion. We
specifically let λXIu;d ¼ 0.1 × δXI and again choose cutoffs of
ΛΦu

¼ ΛΦd
¼ 1 TeV. In this scenario, these cross sections

are up to a few times larger than those of sextet fermion
with γ=Z production.

B. Constraining color sextets at LHC

As we have seen, color-sextet particles can be produced
at the LHC singly and in pairs, sometimes in association
with leptons and bosons. They will subsequently decay to a
variety of two or more SM particles. Many of these decay
products will hadronize in a detector, ultimately producing
final states with possibly large jet multiplicities, possibly
accompanied by leptons and electrically neutral bosons.
This rich phenomenology makes color-sextet models ripe
for exploration at the LHC, and indeed a small subset of
these models, mostly corresponding to the top row of
Table VIII, have received attention in the literature
[18,19,34,35].
However, most of the important signatures generated by

the example models (12) and (13) are fringe cases that have
not been directly targeted by either experimental collabo-
ration. This ability to evade LHC searches by producing
exotic signatures is typical of our expanded color-sextet
catalog; viz. Tables VIII and IX. In this discussion, we
enumerate the most interesting signatures worthy of future
study, which in principle arise both from leading-order
color-sextet decays to SM particles [20,36] and from sextet
loop contributions to meson-antimeson mixing [35].
We first examine the single conventional signal with

existing constraints and map some experimental results
onto our EFT parameter space. In particular, we note that
the second line of (12)—which enables single sextet
fermion production via quark-gluon fusion—also allows
sextet fermions to decay to a quark and a gluon. The full
process pp → Ψq → q̄g (etc.) allows us to constrain the
sextet fermions Ψq as dijet resonances. Both experimental
collaborations have conducted a number of dijet-reso-
nance searches during Run 2 of the LHC. The search
easiest to interpret within our model framework was
conducted by the CMS collaboration using up to L ¼
36 fb−1 of pp collisions at

ffiffiffi
s

p ¼ 13 TeV [20]. This
analysis targets dijet resonances over a wide mass range
(mjj ∈ ½0.6; 8.0� TeV) and is specifically used to constrain
(among others) a benchmark model of excited first-
generation quarks decaying to a gluon and a same-flavor
quark (q� → qg; q ∈ fu; ū; d; d̄gÞ. We can use the model-
independent limits at 95% confidence level (CL) [37] on
the fiducial cross section σðpp → XÞ × BFðX → qgÞ ×A
computed by CMS to estimate constraints on our sextet
fermions decaying to a gluon and a first-generation quark.

FIG. 4. Cross sections of Ψ̄u single production in association
with up to two photons and/or Z bosons. Cross sections for Ψu

and Ψd, Ψ̄d are smaller in analogy with single production (viz.
Figure 2 and discussion).

FIG. 5. Cross sections of sextet scalar single production in
association with an electron or positron. Conjugate scalar
production dominates in a fashion similar to sextet fermion
single production. Cross sections for associated production with
μ, τ are orders of magnitude smaller if all else is equal.
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Our estimates for the fermion that couples to up-type
quarks, Ψu, are displayed in Fig. 6.
Figure 6 is in the ðmΨu

;ΛΨu
Þ plane. We provide no

results in the region where mΨu
> 2ΛΨu

, since we take
mΨu

¼ 2ΛΨu
as a threshold past which the effective field

theory’s applicability is dubious. Next, there are two (four)
exclusion regions in the plot; solid curves denote observed
limits and dashed curves indicate expected limits. We have
provided two sets of results in order to show the importance
of the branching fraction of the sextet fermion to ūg. The
green region(s) correspond closely to the results displayed
in Figs. 3 and 4: all couplings and cutoffs except for ΛΨu

take the same values as in the previous plots. Recall that in
these benchmarks, the couplings κIu, κIuB take the same
values of Oð10−1Þ for each generation I. This choice
ultimately produces4 BFðΨu → ūgÞ ≈ 0.26. We emphasize
that these limits apply to the up-type sextet antifermion
decay, Ψ̄u → ug, since—viz. Fig. 3—the single-production
process pp → Ψ̄u enjoys the largest cross section at LHC.
Similar reinterpretations for the other sextet fermions
would yield looser constraints, all else being equal.

Finally, the red region(s) use the same cross sections but
take BFðΨu → ūgÞ ¼ 1. These choices could be made
consistent by appropriately adjusting κ1u, κ1uB relative to
the couplings to heavier up-type quarks. These results serve
as a worst-case (high cross section accompanied by high
branching fraction) scenario for our sextet fermions from an
integrated luminosity of L ≤ 36 fb−1. In general, we find
that light sextet fermions can still be accommodated by
these data if ΛΨu

is in the low multi-TeV range. The limits
on this cutoff weaken to nearly 1 TeV in the “realistic”
scenario plotted in green.
Dijet-resonance searches are the only searches of which

we are aware that currently target a signature produced by
these sextet models. Even for these searches, a notable gap
exists for sextets decaying to a heavy quark (especially a
top quark) and a gluon (again, the CMS search [20] targets
resonances decaying to first-generation quarks). A search
tailored to fill this gap may be a good avenue of future
study. In the interest of completeness, we note that there
exists a CMS search [36], using L ≈ 37 fb−1 of Run 2 data,
for pair-produced spin-3

2
color triplets t� (“excited top

quarks”) each decaying promptly to a top quark and a
gluon. This search, finding no signal of physics beyond
the Standard Model, was used to exclude excited top
quarks of around mt� ¼ 1 TeV with fiducial cross sections
σðpp → t� t̄�Þ × BF2ðt� → tgÞ ≈ 100 fb. A similar lower
limit would be imposed by this search on a pair-produced
up-type sextet fermionmΨu

given identical acceptances, but
a detailed reinterpretation or a dedicated experimental
analysis would be required to obtain credible constraints
on spin-0 or spin-1

2
sextets producing this final state. A

search for final states involving top quarks from singly
produced color sextets would also be welcome.
The other important signals that can be produced by our

model catalog are exotic and likely also require dedicated
reinterpretations or novel search strategies. The sextet
fermions, per the last line of (12), undergo a suppressed
decay to a quark, a gluon, and a photon or Z boson. This
decay minimally (in the case of single fermion production)
produces an interesting dijet resonance þγ=Z signature.
The sextet scalars, which we have neglected so far, generate
another “dijet resonance-adjacent” signature by decaying to
a quark, a gluon, and a lepton. Finally, we note that the pair
production of any sextet—which occurs copiously at
LHC—potentially generates an array of interesting signa-
tures, particularly for the fermion. For instance, since one
fermion could undergo the two-body decay while the other
decays to three or even four SM particles, one could expect
signatures comprising at least four jets and up to four
electrically neutral bosons (and the decays of up to four Z
bosons would render these signatures even more complex).
Searches for any of these signals would be excellent ways
to leverage the higher luminosity of the next planned run of
the LHC.

FIG. 6. Parameter space excluded for sextet antifermion cou-
pling to up-type quarks (Ψ̄u) based on a CMS dijet resonance
search at

ffiffiffi
s

p ¼ 13 TeV. All limits are computed assuming
σðpp → Ψ̄uÞ as displayed in Fig. 3; but red regions assume unit
branching fraction to ūg, while green regions take more realistic
branching fractions of around 26%. In the gray region, where
mΨu

> 2ΛΨu
, the EFT is unlikely to be consistent.

4For reference, the other non-negligible branching fractions in
this benchmark are roughly as follows: BFðΨu → c̄gÞ ≈ 0.27,
BFðΨu→ t̄gÞ≈0.21, BFðΨu→ ūgAÞ≈0.18, BFðΨu→ c̄gAÞ≈0.06,
and BFðΨu → t̄gAÞ ≈ 0.001.
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On the other hand, an alternative set of constraints could
potentially be imposed on some color-sextet models by
searches for flavor-changing neutral currents (FCNCs),
which do not exist at tree level in the Standard Model
and are very tightly constrained [38]. It has been observed
[35,39], for instance, that color-sextet scalars coupling to
quark pairs (which, recall, is a renormalizable interaction;
viz. Table VIII) can generate flavor-changing processes at
tree and one-loop level. The strongest limits can be
expressed in our notation as

jλ11λ�22j ≤ Oð10−6Þ
�
mΦ

TeV

�
2

ð14Þ

from tree-level sextet scalar contributions to mixing
of neutral kaons (K0 − K̄0, with down-type scalars Φd) and
D-mesons (D0 − D̄0, with up-type scalars Φu),

5 and

jλ23λ�12j ≤ Oð10−2Þ and similar ð15Þ

from flavor-changing nonleptonic B-meson decays medi-
ated at tree level by down-type scalars [35].
Similar limits could apply to other models with color

sextets. For example, the nonrenormalizable sextet
fermion model (12) we sought to constrain in Fig. 6
can generate meson-mixing diagrams at effective
one-loop order. It could therefore be instructive to esti-
mate the size of these FCNC contributions. The superficial
degree of ultraviolet (UV) divergence of these box
diagrams in d ¼ 4 dimensions turns out to be

D ¼ 4d − Nf − 2Nb þ
X
i

hiNvi ¼ 2; ð16Þ

where Nf;b denote the number of fermion and boson
propagators in the loop and the diagram contains Nvi
vertices of type iwith hi derivatives each. But the reality is
more complicated: these are reallymultiloop diagrams, and
our ignorance of the UV physics is reflected by a factor of a
UV cutoff Λ−1

Ψ for each of the four vertices forming the
boxes. We could therefore estimate the UV divergence of
these loops as D ∼ ½loopmomentum�2Λ−4

Ψ → −2, suppos-
ing that the EFT cutoff itself is used to regularize the
superficially divergent loop integrals. This degree of
divergence matches that of the sextet scalar box contribu-
tions to meson mixing discussed above [35], so it may
indeed be necessary to suppress the quark-sextet couplings
κIq in this model to evade FCNC constraints.6 On the other

hand,models of sextet scalars or fermions that lack a “pure”
sextet-quark-quark or sextet-quark-gluon vertex (unac-
companied by leptons or bosons) appear to evade these
constraints. But it must be emphasized that this line of
thinking is inconclusive without knowledge of the micro-
scopic physics: there may exist diagrams associated with
the degrees of freedom that have been integrated out that
enhance or interfere with the loops we can compute within
the EFT framework. We therefore leave a more detailed
investigation of FCNC constraints on our effective oper-
ators to future work.

IV. CONCLUSIONS

In this work we have taken a new look at the possible
interactions of beyond-the-Standard Model particles that
are charged under the SM color gauge group SUð3Þc.
Such states can be copiously produced at the LHC, and it
is important to understand the space of their possible
interactions in order to understand how LHC data
constrains their existence. In this work, we have explored
the gauge-invariant interactions of fields in the six-
dimensional (sextet) representation of SUð3Þc, producing
a (large) catalog of operators, many of which have
received little or no attention in the literature to date
but may produce distinct phenomenology worthy of
investigation. We have focused on color sextets in this
work because they transform in the lowest-dimensional
representation of SUð3Þc not yet observed in Nature. We
have specifically focused on higher-dimensional inter-
actions linking color-sextet fermions and scalars to a SM
quark and a gluon (and possibly additional particles),
computing cross sections for a variety of production
modes and surveying existing LHC constraints on these
particles.
Much of what we have done here is intended to set up

future work. On one hand, one could undertake a much
more thorough investigation of the specific color-sextet
models we introduced above; such a study could compute
next-to-leading order (NLO) corrections within the EFT
framework or could propose an ultraviolet completion for
one or more of the operators we consider.7 It could also be
worthwhile to rigorously compute sensitivity projections
for any of the nonstandard signatures we described in
Sec. III. B at the high-luminosity LHC. Such projections
would be derived from a tailored selection strategy, which
would be interesting to develop. It would also be natural to
complete the color-sextet operator catalog at mass dimen-
sion seven, or to allow for extended sectors comprising
sextets with distinct weak hypercharges or nontrivial trans-
formations under SUð2ÞL.5Loop contributions yield lighter constraints of Oð10−2Þ×

mΦTeV−1 or larger.
6Such constraints would apply to all couplings κIq, since unlike

for tree-level diagrams there is no “flavor texture” that will
suppress the box diagrams.

7For example, the operator on the second line of (12) could
straightforwardly be generated by a loop involving SM quarks
and a color-triplet scalar, à la squarks.
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On the other hand, as we hopefully have demonstrated
with the example of color sextets, the method we have
employed to build our operator catalog can be used to build
a variety of phenomenological models containing higher
representations of SUð3Þc. Similar catalogs could be built
for other representations, including the more frequently
studied triplets and octets but also higher-dimensional
fields; we plan to investigate several such catalogs going
forward. The interactions we unearth in these catalogs
could also be embedded in richer or more complete
theories, for instance via the incorporation of a SM gauge
singlet as a dark matter candidate.
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APPENDIX: AN EXCURSION IN SU(3)
REPRESENTATION THEORY

The concrete realization of a model incorporating any
of the operators cataloged in Sec. II of this work requires
explicit knowledge of the gauge-invariant combinations
of the relevant fields. While some of our operators
contain fields charged under SUð2ÞL, all of the exotic
gauge singlets we have constructed belong to SUð3Þc.
Enumerating the gauge-invariant contractions of a given
set of SUð3Þc multiplets amounts to computing the
Clebsch-Gordan coefficients connecting the irreducible
(color) representations in which each multiplet trans-
forms. While there exist some works that confront this
problem in various contexts [40–43], explicit results
suitable for fundamental particle physics are difficult to
find. In this Appendix, we construct the two minimal
gauge-invariant combinations of a color sextet with two
other color-charged fields. We review and extend some
known basis-independent results, and we provide for the
first time a new set of Clebsch-Gordan coefficients in a

familiar basis well suited for integration into public
computing tools.
Let a field—for definiteness, a Dirac fermion—in the

sextet representation of SUð3Þc be indexed by ψ s,
s ∈ f1;…; 6g. In analogy with a quark qi transforming
in the fundamental representation of SUð3Þc, a lowered
index corresponds to the representation in question (6),
while a raised index (e.g., ψ̄ s) denotes the conjugate
representation (6̄). Two of the product decompositions of
two irreducible representations of SU(3) we studied in
the body of this work are

3 ⊗ 3 ¼ 6 ⊕ 3̄ and 3 ⊗ 8 ¼ 3 ⊕ 6̄ ⊕ 15: ðA1Þ

We noted in Sec. II that these decompositions imply
the existence of the three-field invariants 3 ⊗ 3 ⊗ 6̄
and 3 ⊗ 6 ⊗ 8. We displayed a number of operators in
Tables VIII and IX based on these invariants that couple
sextets to (respectively) quark pairs and a quark
and a gluon. While the first family of couplings has
received some attention [18,19], the latter (to our
knowledge) has not. This Appendix introduces the
explicit group-theoretical objects required for our novel
analysis while making contact with known mathematical
results.
We work in the basis where the generators of the

fundamental (3) representation of SU(3) are proportional
to the Gell-Mann matrices: 2ta3 ¼ λa, a ∈ f1;…; 8g. We
take the generators of the adjoint (8) representation to be
½ta8�bc ¼ −ifabc, where fabc are the structure constants
appearing in the SU(3) algebra

½ta3; tb3� ¼ ifabctc3: ðA2Þ

The commutation relations (A2) are satisfied by the
generators of every representation of SU(3), which are
also traceless and Hermitian. A set of eight 6 × 6

matrices ta6 satisfying these criteria, which are therefore
valid generators of the sextet representation in the Gell-
Mann basis, is

CARPENTER, MURPHY, and TAIT PHYS. REV. D 105, 035014 (2022)

035014-14



t 16 ¼
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BBBBBBBBB@
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ffiffiffi
2
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0
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ffiffiffi
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0 0 0 0 0 1
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CCCCCCCCCA
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0
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BBBBBBBBB@
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t 76 ¼
1

2

0
BBBBBBBBB@

2 0 0 0 0 0

0 0 0 0 0 0

0 0 −2 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 0
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1
CCCCCCCCCA
; t86 ¼

1

2
ffiffiffi
3

p

0
BBBBBBBBB@

2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 −1 0 0

0 0 0 0 −4 0

0 0 0 0 0 −1

1
CCCCCCCCCA
: ðA3Þ

It is useful to consider generators of reducible (“prod-
uct”) representations of SU(3). The objects relevant to our
discussion can be constructed systematically using the
generators we have provided above. In particular, the
generators tar1⊗r2 of the direct product of irreducible
representations r1 and r2 are given by

tar1⊗r2 ¼ tar1 ⊕ tar2
≡ tar1 ⊗ 1r2 þ 1r1 ⊗ tar2 ; ðA4Þ

where the Kronecker sum ⊕ is defined in terms of the
Kronecker products (suggestively denoted by the same
symbol⊗ as the direct product of representations) between
the generators of fr1; r2g and the identity matrices with the
dimensions of fr2; r1g. In order to elucidate this point, and
to make contact with more familiar notation, we rewrite the
last line of (A4) as

½tar1⊗r2 �I1I2J1J2 ¼ ½tar1 �I1J1δI2J2 þ δI1
J1 ½tar2 �I2J2 ðA5Þ

with fIi; Jig indexing the representation ri, i ∈ f1; 2g.
The resulting generators tar1⊗r2 are again traceless and
Hermitian, but now of dimension dim r1 × dim r2. The
operation (A4) can be iterated upon, so for instance the
generators of a direct product of three representations are
given by

tar1⊗r2⊗r3 ¼ ⨁
3

i¼1

tari ¼ tar1 ⊕ tar2 ⊕ tar3

¼ ðtar1⊗r2Þ ⊕ tar3 : ðA6Þ

We provide all of this exposition because any gauge-
invariant linear combination I r1⊗���⊗rN of M fields ψ j

Ii
in

N ≤ M (not necessarily distinct) irreducible representations
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fr1;…; rNg of SU(3) (or any semisimple Lie group), which
can be written modulo index height as [44]

I r1⊗���⊗rN ¼ κI1;…;INψ1
I1
…ψM

IN
ðA7Þ

with summation understood over repeated indices, must
satisfy

κI1;…;IN ½tar1⊗���⊗rN �I1;…;IN
J1;…;JN ¼ 0 ∀ fJi; ag: ðA8Þ

The coefficients κI1;…;IN appearing in the linear combina-
tions (A7), (A8) are closely related to the Clebsch-Gordan
coefficients connecting the N irreducible representations.
The coefficients we want simply have to be extracted and
interpreted in a specific way. (A8) implies that these
coefficients can be systematically computed in any basis
by finding the kernel of the (potentially large) matrix

Mr1⊗���⊗rN ¼

0
BB@

½t1r1⊗���⊗rN �T

..

.

½tar1⊗���⊗rN �T

1
CCA: ðA9Þ

The number of independent gauge-invariant combinations
of the N fields is given by dim kerMr1⊗���⊗rN. The elements
of the ðdim r1 × � � � × dim rNÞ × 1 vectors in kerM r1⊗���⊗rN
are (up to a global factor) the desired Clebsch-Gordan
coefficients. Per our notation in (A8), these are read off in
an order determined by the construction of the product-
representation generators. As an intuitive example, the first
two nonvanishing elements (in the Gell-Mann basis) of the
only vector in kerM6⊗3⊗8 in SU(3)—which is clearly
relevant to our phenomenological study of color sextets—
are elements (10,1) and (13,1). These we label as J1;2;2 and
J1;2;5, elements of the first of six 3 × 8 matrices Jsia

(s ∈ f1;…; 6g, i ∈ f1; 2; 3g, a ∈ f1;…; 8g). This is
essentially the method employed by the recently published
Mathematica© [26] package GroupMath, which however
works in what is sometimes called the Chevalley-Serre

basis [45]. We have performed these calculations in the
Gell-Mann basis in order to obtain basis-dependent results
compatible with the literature and the popular computer
tools FeynRules and MadGraph5_aMC@NLO [24,25,28,29].
It should be noted that the method described above in

fact yields some multiple of the Clebsch-Gordan coeffi-
cients C I1;…;IN for any invariant combination of fields in
compatible irreducible representations of a given group. If
the coefficients are subsequently normalized to satisfy

trC I1C̄J1 ¼ δI1J1 with C̄ I1;…;IN ≡ ½C I1;IN ;IN−1;…;I2 ��;
ðA10Þ

where the trace is performed over all subleading indices
fI2;…; IN ; J2;…; JNg, then the coefficients further satisfy
a relation of the form

½tar̄1 �I1J1 ¼ C I1;…;IN C̄J1;…;JN ½tar2⊗���⊗rN �I2;…;IN
J2;…;JN ; ðA11Þ

which allows one to extract generators of a given repre-
sentation in an invariant combination from the generators of
the direct product of all the other representations present in
that invariant. Note that the generators on the left-hand side
of (A11) are those of the conjugate representation r̄1; recall
that the generators of r1 can then be recovered according
to ½tar1 �I1J1 ¼ −f½tar̄1 �I1J1g�.
We finally provide explicit results relevant to the body of

this work; i.e., to the gauge-invariant combinations (three-
field invariants) 3 ⊗ 3 ⊗ 6̄ and 3 ⊗ 6 ⊗ 8 of SUð3Þc
implied by the decompositions (A1). In particular, we
recoup the generators t6 of the sextet representation of
SU(3), given in the Gell-Mann basis by (A3), according to

½ta6�st ¼ K s
ijK̄ t

lk½ta3⊗3�ijkl ðA12Þ

¼ −fJsibJ̄ tcj½ta3⊗8�ibjcg�; ðA13Þ

with
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0
BB@
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0 0 0

1
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1ffiffiffi
2

p

0
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1 0 0
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1
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0
BB@

0 0 0
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0 0 0

1
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1ffiffiffi
2

p

0
BB@
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1
CCA; K 5 ¼

0
BB@

0 0 0
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0 0 1

1
CCA; K 6 ¼

1ffiffiffi
2

p

0
BB@

0 0 1

0 0 0

1 0 0

1
CCA ðA14Þ

and
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The first set (A14) of Clebsch-Gordan coefficients,
which connect the 6 to the 3 ⊗ 3 of SU(3), are exactly
what were computed in the only group-theoretical discus-
sion similar to this Appendix of which we are aware [18].
The second set, (A15), which connect the 6̄ to the 3 ⊗ 8,
have not been published before as far as we know. Both sets
of coefficients are similarly normalized:

trK sK̄
t ¼ δs

t and trJsJ̄ t ¼ δs
t ðA16Þ

and satisfy

K̄ s
ji ¼ ½K s

ji�† ¼ K s
ij and J̄sai ¼ ½Jsia�†: ðA17Þ

Our final remark concerns the relationship between the
two sets of Clebsch-Gordan coefficients K s

ij and Jsia. We
find that the latter set can be constructed using a particular
combination of the former set with other group-theoretical
objects. In particular, we have that

Jsia ¼ −i
ffiffiffi
2

p
Lijk½ta3�jlK̄ s

lk

and J̄sai ¼ i
ffiffiffi
2

p
K s

kl½ta3�ljL̄ijk; ðA18Þ

where Lijk are the Clebsch-Gordan coefficients governing
the gauge-invariant contraction of three SU(3) triplets,
which is well known to be totally antisymmetric.8 We
mention the relations (A18) because the popular model-
building and Monte Carlo simulation tools FeynRules and
MadGraph5_aMC@NLO have for some time now handled
color-sextet fields interacting with quark pairs by defining
the Clebsch-Gordan coefficients K s

ij and Lijk in terms of
(anti-)symmetric combinations of two QCD triplets.
Therefore, whereas the ability to directly handle the new
coefficients Jsia—given by (A15)—would require some
significant additions to both public codes, we are able to
construct our novel interactions with suitable combinations
of existing semihard-coded objects. This strategy does not
necessarily work for color-sextet interactions with higher-
dimensional QCD multiplets, and may in fact be a unique
exploit.
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