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In the seesaw framework, in the basis of MR being diagonal, we explore the simplified
textures of MD that can naturally yield the trimaximal neutrino mixings and their
consequences for the neutrino parameters and leptogenesis. We first formulate the generic
textures of MD that can naturally yield the trimaximal mixings and then examine if their parameters
can be further reduced. Our analysis is restricted to the simple but instructive scenario that there is
only one phase parameter ϕ responsible for both the CP violating effects at low energies and
leptogenesis. Our attention is paid to the textures of MD that possess some vanishing or equal
elements. On the basis of these results, we further examine if ϕ can also take a particular value. The
consequences of the phenomenologically-viable simplified textures for the neutrino parameters and
leptogenesis are studied. A concrete flavor-symmetry model that can realize one representation of
them is given.
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I. INTRODUCTION

The observation of the phenomenon of neutrino oscil-
lations indicates that neutrinos are massive and the lepton
flavors are mixed [1]. In the literature, the most popular
and natural way of generating the tiny but nonzero
neutrino masses is the type-I seesaw mechanism, in which
three right-handed neutrinos NI (for I ¼ 1, 2, 3) are added
into the Standard Model [2]. These newly introduced
fields not only have the usual Yukawa couplings with the
left-handed neutrinos (which constitute the Dirac neutrino
mass matrix MD after the eletroweak symmetry breaking)
but also have their own Majorana mass matrix MR.
Without loss of generality, we will work in the basis of
MR ¼ diagðM1;M2;M3Þ with MI being three right-
handed neutrino masses. The essence of the seesaw
mechanism is to have MI be much larger than the
electroweak scale, yielding an effective Majorana mass
matrix for the light neutrinos as

Mν ¼ MDM−1
R MT

D: ð1Þ

Then, in the basis where the flavor eigenstates of three
charged leptons are identical with their mass eigenstates,
the neutrino mixing matrix U [3] is to be identified as the
unitary matrix for diagonalizing Mν,

U†MνU� ¼ diagðm1; m2; m3Þ; ð2Þ

with mi being three light neutrino masses. In the standard
parametrization, U is expressed in terms of three mixing
angles θij (for ij ¼ 12, 13, 23), one Dirac CP phase δ, and
two Majorana CP phases ρ and σ as

U¼

0
BB@

c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13
s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13

1
CCA

×

0
BB@
eiρ

eiσ

1

1
CCA; ð3Þ

where the abbreviations cij ¼ cos θij and sij ¼ sin θij
have been used.
Neutrino oscillations are sensitive to six neutrino param-

eters; three mixing angles, two independent neutrino mass
squared differences Δm2

ij ≡m2
i −m2

j (for ij ¼ 21, 31), and
δ. Several groups have performed global analyses of the
existing neutrino oscillation data to extract the values of
these parameters [4,5]. For definiteness, we will use the
results in Ref. [4] (see Table 1) as reference values in the
following numerical calculations. Note that the sign of
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Δm2
31 remains undetermined, thus allowing for two pos-

sible neutrino mass orderings; the normal ordering (NO)
m1 < m2 < m3 and inverted ordering (IO) m3 < m1 < m2.
In comparison, neutrino oscillations have nothing to do
with the absolute values of neutrino masses and Majorana
CP phases. In order to extract or constrain their values,
one has to resort to some nonoscillatory experiments such
as the neutrinoless double beta decay experiments [6].
Unfortunately, such experiments have not yet placed any
lower constraint on the lightest neutrino mass, nor any
constraint on the Majorana CP phases.
From Table 1 we see that θ12 and θ23 are close to some

special values; sin2 θ12 ∼ 1=3 and sin2 θ23 ∼ 1=2. Before
the value of θ13 was pinned down in 2012, the conjecture
that it might be vanishingly small was very popular. For the
ideal case of sin θ12 ¼ 1=

ffiffiffi
3

p
, sin θ23 ¼ 1=

ffiffiffi
2

p
, and θ13 ¼ 0

[referred to as the tribimaximal (TBM) mixing [7]], the
neutrino mixing matrix can be described by a few simple
numbers and their square roots

UTBM ¼ 1ffiffiffi
6

p

0
B@

2
ffiffiffi
2

p
0

−1
ffiffiffi
2

p ffiffiffi
3

p

1 −
ffiffiffi
2

p ffiffiffi
3

p

1
CA: ð4Þ

Such a particular mixing might be suggestive of an
underlying flavor symmetry in the lepton sector. Along
this direction, many flavor symmetries have been trialed
to realize it [8], but the actual relative largeness of θ13
compels us to abandon or modify this mixing. An
economical and predictive way out is to keep its first
or second column unchanged while modifying the other
two columns within the unitarity constraints, leading us to
the first or second trimaximal (TM1 or TM2) mixing [9].
Such variants of UTBM can be obtained by multiplying it
from the right-hand side by a complex (2,3) or (1,3)
rotation matrix U23 or U13,

UTM1 ¼ UTBMU23 with

U23 ¼

0
BB@

1 0 0

0 cos θ sin θe−iφ

0 − sin θeiφ cos θ

1
CCA;

UTM2 ¼ UTBMU13 with

U13 ¼

0
BB@

cos θ 0 sin θe−iφ

0 1 0

− sin θeiφ 0 cos θ

1
CCA; ð5Þ

where θ is a rotation angle and φ a phase parameter.
By comparingUTM1 andUTM2with the standard formofU

in Eq. (3), one can derive their consequences for the neutrino
mixing parameters, among which we will use the following
expressions of s213 and s223 to infer the values of θ and φ

TM1∶ s213 ¼
1

3
sin2θ; s223 ¼

1

2
þ

ffiffiffi
6

p
sin 2θ cosφ

6 − 2sin2θ
;

TM2∶ s213 ¼
2

3
sin2θ; s223 ¼

1

2
−

ffiffiffi
3

p
sin 2θ cosφ

6 − 4sin2θ
: ð6Þ

Given the 3σ ranges of s213 and s
2
23, θ and jφj are respectively

constrained into the ranges 0.25–0.27 (0.17–0.19) and
0.36π–0.60π (0.30π–0.99π) for the TM1 (TM2) mixing.
Taking into account the relations in Eq. (6), one arrives at the
following predictions for θ12 and δ [9]

TM1∶ s212 ¼
1

3
−

2s213
3 − 3s213

;

tan 2θ23 cos δ ¼ −
1 − 5s213

2
ffiffiffi
2

p
s13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3s213

p ;

TM2∶ s212 ¼
1

3
þ s213
3 − 3s213

;

tan 2θ23 cos δ ¼
1 − 2s213

s13
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 3s213

p : ð7Þ

TABLE I. The best-fit values, 1σ errors and 3σ ranges of six neutrino oscillation parameters extracted from a global analysis of the
existing neutrino oscillation data [4].

Normal ordering Inverted ordering

Best fit �1σ 3σ range Best fit �1σ 3σ range

sin2 θ12 0.318þ0.016
−0.016 0.271 → 0.370 0.318þ0.016

−0.016 0.271 → 0.370

sin2 θ23 0.566þ0.016
−0.022 0.441 → 0.609 0.566þ0.018

−0.023 0.446 → 0.609

sin2 θ13 0.02225þ0.00055
−0.00078 0.02015 → 0.02417 0.02250þ0.00056

−0.00076 0.02039 → 0.02441

δ=π 1.20þ0.23
−0.14 0.80 → 2.00 1.54þ0.13

−0.13 1.14 → 1.90
Δm2

21

10−5 eV2
7.50þ0.22

−0.20 6.94 → 8.14 7.50þ0.22
−0.20 6.94 → 8.14

jΔm2
31
j

10−3 eV2
2.56þ0.03

−0.04 2.46 → 2.65 2.46þ0.03
−0.03 2.37 → 2.55
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At the 3σ level, s212 and jδj are respectively constrained into
the ranges 0.317–0.319 (0.340–0.342) and 0.33π–0.59π
(0.31π–1.00π) for the TM1 (TM2) mixing, which are in
good agreement with the experimental results.
Due to their simple structures and phenomenologically-

appealing consequences, the trimaximal mixings have
attracted a lot of attention after the observation of a
relatively large θ13 [10–15]. However, they are not restric-
tive enough so that is not predictive enough. Therefore, in
the literature many attempts to combine them with other
constraints on the neutrino mass matrix have been made.
For example, in Ref. [11] the authors have studied the
combination of the trimaximal mixings with the μ − τ
reflection symmetry [16]. In Ref. [12] the authors have
studied if one element of the Mν that can yield the
trimaximal mixings is phenomenologically allowed to be
vanishing (i.e., the combination of the trimaximal mixings
with texture zeros) but this study has only been performed
at the level of Mν. In a series of works about the so-called
littlest seesaw model [13,14], in the minimal seesaw
framework, the authors have studied the simplified textures
ofMD that can yield the TM1 mixing. But this study is only
confined to the minimal seesaw framework and the TM1
mixing.
In this paper, in the general seesaw framework, we will

explore the simplified textures ofMD that can naturally yield
the trimaximal (including both the TM1 and TM2) mixings
and study their consequences for the neutrino parameters
and leptogenesis. From the simplicity viewpoint, our atten-
tion will be paid to the textures of MD that possess some
vanishing or equal elements. But wewill only focus on those
that can find a simple symmetry justification.
The rest part of this paper is organized as follows. In the

next section, we will first formulate the generic textures of
MD that can naturally yield the trimaximal mixings and
discuss how to realize them by slightly modifying the
flavor-symmetry models for realizing the TBM mixing.
Then, we will examine if their parameters can be further
reduced, giving more simplified textures of them. The
consequences of the phenomenologically-viable simplified

textures ofMD for the neutrino parameters and leptogenesis
will be studied. The studies for the TM1 and TM2 mixings
will be performed in Secs. III and IV, respectively. In
Sec. V, a concrete flavor-symmetry model that can realize
one representation of the obtained simplified textures of
MD is given. In Sec. VI, we will discuss the impacts of the
renormalization group running effects on our results.
Finally, our main results will be summarized in the last
section.

II. GENERIC TEXTURES OF MD FOR THE
TRIMAXIMAL MIXINGS

In this section we first formulate the generic textures of
MD that can naturally yield the trimaximal mixings. Let us
parametrize the most generic MD as

MD ¼

0
B@

a1
ffiffiffiffiffiffiffi
M1

p
b1

ffiffiffiffiffiffiffi
M2

p
c1

ffiffiffiffiffiffiffi
M3

p

a2
ffiffiffiffiffiffiffi
M1

p
b2

ffiffiffiffiffiffiffi
M2

p
c2

ffiffiffiffiffiffiffi
M3

p

a3
ffiffiffiffiffiffiffi
M1

p
b3

ffiffiffiffiffiffiffi
M2

p
c3

ffiffiffiffiffiffiffi
M3

p

1
CA; ð8Þ

where ai, bi, and ci are generally complex parameters. In
terms of the QR parametrization, such an MD can be
decomposed into MD ¼ ULΔ [17]. Here UL is a unitary
matrix as

UL ¼

0
BBBBBBBBBBBB@

a1
ja⃗j

b1− a⃗·b⃗
ja⃗j2a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jb⃗j2−ja⃗·b⃗j2
ja⃗j2

q c1− a⃗·c⃗
ja⃗j2a1−

ja⃗j2 b⃗·c⃗−b⃗·a⃗ a⃗ ·c⃗
ja⃗j2 jb⃗j2−ja⃗·b⃗j2ðb1−

a⃗·b⃗
ja⃗j2a1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jc⃗j2−ja⃗·c⃗j2
ja⃗j2 −

jja⃗j2 b⃗·c⃗−b⃗·a⃗ a⃗ ·c⃗j2
ja⃗j2ðja⃗j2 jb⃗j2−ja⃗·b⃗j2Þ

q

a2
ja⃗j

b2− a⃗·b⃗
ja⃗j2a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jb⃗j2−ja⃗·b⃗j2
ja⃗j2

q c2− a⃗·c⃗
ja⃗j2a2−

ja⃗j2 b⃗·c⃗−b⃗·a⃗ a⃗ ·c⃗
ja⃗j2 jb⃗j2−ja⃗·b⃗j2ðb2−

a⃗·b⃗
ja⃗j2a2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jc⃗j2−ja⃗·c⃗j2
ja⃗j2 −

jja⃗j2 b⃗·c⃗−b⃗·a⃗ a⃗ ·c⃗j2
ja⃗j2ðja⃗j2 jb⃗j2−ja⃗·b⃗j2Þ

q

a3
ja⃗j

b3− a⃗·b⃗
ja⃗j2a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jb⃗j2−ja⃗·b⃗j2
ja⃗j2

q c3− a⃗·c⃗
ja⃗j2a3−

ja⃗j2 b⃗·c⃗−b⃗·a⃗ a⃗ ·c⃗
ja⃗j2 jb⃗j2−ja⃗·b⃗j2ðb3−

a⃗·b⃗
ja⃗j2a3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jc⃗j2−ja⃗·c⃗j2
ja⃗j2 −

jja⃗j2 b⃗·c⃗−b⃗·a⃗ a⃗ ·c⃗j2
ja⃗j2ðja⃗j2 jb⃗j2−ja⃗·b⃗j2Þ

q

1
CCCCCCCCCCCCA

; ð9Þ

with ja⃗j≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja1j2 þ ja2j2 þ ja3j2

p
and a⃗ · b⃗≡ a�1b1 þ

a�2b2 þ a�3b3 (and so on). On the other hand, Δ is the
triangular matrix

Δ ¼

0
BBBBBBBB@

ja⃗j ffiffiffiffiffiffiffi
M1

p a⃗·b⃗
ja⃗j

ffiffiffiffiffiffiffi
M2

p a⃗·c⃗
ja⃗j

ffiffiffiffiffiffiffi
M3

p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jb⃗j2 − ja⃗·b⃗j2

ja⃗j2

r ffiffiffiffiffiffiffi
M2

p ja⃗j2b⃗·c⃗−b⃗·a⃗ a⃗ ·c⃗
ja⃗j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja⃗j2jb⃗j2−ja⃗·b⃗j2

p ffiffiffiffiffiffiffi
M3

p

0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc⃗j2 − ja⃗·c⃗j2

ja⃗j2 − jja⃗j2b⃗·c⃗−b⃗·a⃗ a⃗ ·c⃗j2
ja⃗j2ðja⃗j2jb⃗j2−ja⃗·b⃗j2Þ

r ffiffiffiffiffiffiffi
M3

p

1
CCCCCCCCA
: ð10Þ

Correspondingly, Mν turns out to be given by Mν ¼
ULΔM−1

R ΔTUT
L. It is easy to see that the resulting neutrino

mixing matrix can be expressed as U ¼ ULUR with UR

being the unitary matrix for diagonalizing ΔM−1
R ΔT ,

U†
RΔM−1

R ΔTU�
R ¼ diagðm1; m2; m3Þ: ð11Þ

With the help of this result, one can make the following
observation; when UR coincides with U23 (or U13), which
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will be the case for a⃗ · b⃗ ¼ a⃗ · c⃗ ¼ 0 (or a⃗ · b⃗ ¼ b⃗ · c⃗ ¼ 0),
U will retain the first (or second) column of UL which is in
turn proportional to the corresponding column of MD.
Therefore, in order to obtain a TM1 or TM2 mixing, MD
should have a texture such that one column of it is
proportional to the first or second column of UTBM while
the other two columns are orthogonal to it.1 To be specific,
the generic textures of MD that can naturally yield the
trimaximal mixings can be parametrized as

TM1∶MD ¼

0
B@

2l
ffiffiffiffiffiffiffi
M1

p
mx

ffiffiffiffiffiffiffi
M2

p
ny

ffiffiffiffiffiffiffi
M3

p

−l
ffiffiffiffiffiffiffi
M1

p
mð1þxÞ ffiffiffiffiffiffiffi

M2

p
nð1þyÞ ffiffiffiffiffiffiffi

M3

p

l
ffiffiffiffiffiffiffi
M1

p
mð1−xÞ ffiffiffiffiffiffiffi

M2

p
nð1−yÞ ffiffiffiffiffiffiffi

M3

p

1
CA;

TM2∶MD ¼

0
B@

2lx
ffiffiffiffiffiffiffi
M1

p
m

ffiffiffiffiffiffiffi
M2

p
2ny

ffiffiffiffiffiffiffi
M3

p

lð1−xÞ ffiffiffiffiffiffiffi
M1

p
m

ffiffiffiffiffiffiffi
M2

p
nð1−yÞ ffiffiffiffiffiffiffi

M3

p

lð1þxÞ ffiffiffiffiffiffiffi
M1

p
−m

ffiffiffiffiffiffiffi
M2

p
nð1þyÞ ffiffiffiffiffiffiffi

M3

p

1
CA;

ð12Þ

where l, m, n, x, and y are generally complex parameters.
Then, we discuss how to realize the textures of MD in

Eq. (12) by slightly modifying the flavor-symmetry models
for realizing the TBM mixing. Let us first recapitulate the
key points of the latter [8]: under the specified flavor
symmetry (e.g., A4 and S4), three lepton doublets constitute
a triplet representation L ¼ ðLe; Lμ; LτÞ while three right-
handed neutrinos are simply singlets. To break the flavor
symmetry in a proper way, three flavon fields ϕJ (for J ¼ 1,
2, 3) are introduced. Each of them is a triplet (with three
components ϕJ ¼ ½ðϕJÞ1; ðϕJÞ2; ðϕJÞ3�T) under the flavor
symmetry. Owing to such a setting, the following dimen-
sion-five operators

X
I;J

yIJ
Λ

½L̄eðϕJÞ1 þ L̄μðϕJÞ2 þ L̄τðϕJÞ3�HNI; ð13Þ

will serve to generate the Dirac neutrino mass terms after
the electroweak and flavor symmetries are respectively
broken by nonzero vacuum expectation values (VEVs) of
the Higgs and flavon fields. Here yIJ are dimensionless
coefficients and Λ is the energy scale for the flavor-
symmetry physics. In the so-called indirect models [18],
the successful realization of the TBM mixing is crucially
dependent on the following two practices; three flavon
fields are respectively associated with three right-handed
neutrinos (i.e., yIJ ¼ 0 for I ≠ J), which can be fulfilled by
invoking an auxiliary flavor symmetry; they acquire some
particular VEV alignments as

hϕ1i∝ ð2;−1;1ÞT; hϕ2i∝ ð1;1;−1ÞT; hϕ3i∝ ð0;1;1ÞT;
ð14Þ

which can be achieved via the so-called F-term alignment
mechanism [19]. It is then straightforward to verify thatMD
will take a form as

MD ¼

0
B@

2l
ffiffiffiffiffiffiffi
M1

p
m

ffiffiffiffiffiffiffi
M2

p
0

−l
ffiffiffiffiffiffiffi
M1

p
m

ffiffiffiffiffiffiffi
M2

p
n

ffiffiffiffiffiffiffi
M3

p

l
ffiffiffiffiffiffiffi
M1

p
−m

ffiffiffiffiffiffiffi
M2

p
n

ffiffiffiffiffiffiffi
M3

p

1
CA; ð15Þ

which subsequently gives rise to the TBM mixing.
By slightly modifying the above flavor-symmetry mod-

els for realizing the TBM mixing, one can realize the
textures of MD in Eq. (12); the one that can naturally yield
the TM1 mixing can be realized by associating hϕ1i in
Eq. (14) with N1 and both hϕ2i and hϕ3i with N2 and N3,
while the one that can naturally yield the TM2 mixing can
be realized by associating hϕ2i with N2 and both hϕ1i and
hϕ3i with N1 and N3. This can be achieved by slightly
modifying the charge assignments of the relevant fields
under the aforementioned auxiliary flavor symmetry.
Apparently, for the texture of MD that can naturally yield
the TM1 (or TM2) mixing, x and y can be viewed as a
measure for the relative size between the contributions of
hϕ2i and hϕ3i (or hϕ1i and hϕ3i) to the second and third (or
first and third) columns of it.
As is known, the S4 group (i.e., the permutation group of

four objects) is the unique group that can naturally
accommodate the TBM mixing from the group-theoretical
consideration [20]. Since the trimaximal mixings are some
variants of the TBMmixing, the S4 group can also naturally
accommodate them [10–15]. The S4 group has 24 elements
and five irreducible representations; two singlets 1 and 10,
one doublet 2, and two triplets 3 and 30. The matrix forms
of the 24 elements in these representations, the Kronecker
products of two representations and the Clebsch relations
can be found in Ref. [21] (see also Appendix B
of Ref. [14]).

III. SIMPLIFIED TEXTURES OF MD
FOR THE TM1 MIXING

In this section we examine if the parameters of the
generic texture of MD that can naturally yield the TM1
mixing can be further reduced, giving more simplified
textures of it. The consequences of the phenomenologi-
cally-viable simplified textures of MD for the neutrino
parameters and leptogenesis will be studied.

A. Phenomenologically-viable simplified textures

Our analysis will be restricted to the simple but instruc-
tive scenario that three elements in the same column
of MD share a common phase, which is often the case

1We point out that such a guiding principle can also be
employed to formulate the generic texture of MD that gives a
neutrino mixing matrix with one column being of any desired
pattern.
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in the flavor-symmetry models [8]. Given that an overall
rephasing of MD is of no physical meaning, the second
column of MD will be taken to be real without loss of
generality. Furthermore, considering that the first-column
phase argðlÞ only contributes to ρ additively [see Eqs. (21)
and (22)], the first column of MD will also be taken to be
real. [In the case of argðlÞ ≠ 0, one just needs to make a
simple replacement ρ → ρþ argðlÞ for our results.] We are
therefore left with only one phase parameter, the third-
column phase, which will be responsible for both the CP-
violating effects at low energies and leptogenesis.
Accordingly, for convenience of the following discussions,
the texture of MD that can naturally yield the TM1 mixing
is reexpressed as

MD ¼

0
B@

2l
ffiffiffiffiffiffiffi
M1

p
mx

ffiffiffiffiffiffiffi
M2

p
neiϕy

ffiffiffiffiffiffiffi
M3

p

−l
ffiffiffiffiffiffiffi
M1

p
mð1þ xÞ ffiffiffiffiffiffiffi

M2

p
neiϕð1þ yÞ ffiffiffiffiffiffiffi

M3

p

l
ffiffiffiffiffiffiffi
M1

p
mð1 − xÞ ffiffiffiffiffiffiffi

M2

p
neiϕð1 − yÞ ffiffiffiffiffiffiffi

M3

p

1
CA;

ð16Þ

with now l, m, n, x, and y being real parameters and ϕ the
only phase parameter.
Our analysis will be further restricted to the following

simplified textures of MD, which will be instructive for the
model-building exercises: 1. there are some vanishing
elements [22]; 2. there are some equal elements [8]. It is
easy to see that such textures of MD correspond to some
particular values of x and y: 1. the value −1, 0 or 1 of x (y)
corresponds to a column pattern as ð−1; 0; 2ÞT , ð0; 1; 1ÞT or
ð1; 2; 0ÞT which has one vanishing element; 2. the value
−1=2, 0 or 1=2 of x (y) corresponds to a column pattern as
ð−1; 1; 3ÞT , ð0; 1; 1ÞT or ð1; 3; 1ÞT which have a pair of
equal elements. Altogether, the particular values of x and y
that are phenomenologically appealing include −1, −1=2,
0, 1=2, and 1. The column patterns corresponding to them
are listed in Table II.
The above particular values of x and y are motivated

from the simplicity viewpoint. Generally speaking, the
simplicity viewpoint is consistent with the symmetry
viewpoint: from the top-down viewpoint, a simple sym-
metry is more likely to lead to a simple texture of the
neutrino mass matrix; from the bottom-up viewpoint, a
simple texture of the neutrino mass matrix is easier to find a
simple symmetry justification. Of course, a simple texture
of the neutrino mass matrix is not always associated with a
simple symmetry, because it may arise accidently. For this
consideration, we will only consider the particular values of
x and y that can find a simple symmetry justification.

In the indirect flavor-symmetry models [18], the par-
ticular forms of three columns of MD are identified as the
particular VEV alignments of the flavon fields associated
with them. The latter are determined by the flavor sym-
metry and usually preserve some subgroups (i.e., residual
symmetries) of it. For the column pattern in Table II (which
are now identified as the VEV alignments of the flavon
fields associated with them), it is found that ð−1; 1; 3ÞT ,
ð0; 1; 1ÞT , and ð1; 3; 1ÞT respectively, remain invariant
under the e4, d1 and f1 elements of the S4 group in the
3 representation

e4 ¼

0
B@

0 −1 0

−1 0 0

0 0 1

1
CA; d1 ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA;

f1 ¼

0
B@

0 0 1

0 1 0

1 0 0

1
CA; ð17Þ

while ð0; 1; 1ÞT also keeps invariant under the d2 element of
the S4 group in the 30 representation

d2 ¼

0
B@

−1 0 0

0 0 1

0 1 0

1
CA: ð18Þ

Note that ð−1; 0; 2ÞT and ð1; 2; 0ÞT do not remain invariant
under any element of the S4 group. Therefore, we will only
consider the column patterns ð−1; 1; 3ÞT , ð0; 1; 1ÞT , and
ð1; 3; 1ÞT (which correspond to the particular values −1=2,
0, and 1=2 of x and y), but discard the column patterns
ð−1; 0; 2ÞT and ð1; 2; 0ÞT (which correspond to the par-
ticular values −1 and 1 of x and y).
Before proceeding, let us enumerate the formulas useful

for our numerical calculations. For MD in Eq. (16), the
resulting neutrino mixing matrix can be decomposed as
UTM1 ¼ UTBMU23 [see Eq. (5)]. Here, U23 is the unitary
matrix for diagonalizing the following matrix

M0
ν≡U†

TBMMDM−1
R MT

DU
�
TBM

¼

0
B@
6l2 0 0

0 3m2x2þ3n2y2e2iϕ
ffiffiffi
6

p
m2xþ ffiffiffi

6
p

n2ye2iϕ

0
ffiffiffi
6

p
m2xþ ffiffiffi

6
p

n2ye2iϕ 2m2þ2n2e2iϕ

1
CA:

ð19Þ

TABLE II. For the TM1 mixing, the particular values of x (y) and the corresponding column patterns.

x (y) −1 −1=2 0 1=2 1

Pattern ð−1; 0; 2ÞT ð−1; 1; 3ÞT ð0; 1; 1ÞT ð1; 3; 1ÞT ð1; 2; 0ÞT
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Its parameters θ and φ can be calculated as

tan 2θ ¼ 2jM0�
22M

0
23 þM0�

23M
0
33j

jM0
33j2 − jM0

22j2
;

φ ¼ arg ðM0�
22M

0
23 þM0�

23M
0
33Þ; ð20Þ

with M0
ij denoting the ij element of M0

ν. We note that the
equality between x and y is denied, which would otherwise
lead to the unacceptable φ ¼ 0. Then, the three mixing
angles and δ can be extracted from UTM1 according to the
formulas in Eqs. (6) and (7). On the other hand, the
resulting neutrino mass eigenvalues are given by

m1e2iα ¼M0
11¼ l2;

m2e2iβ ¼M0
22 cos

2 θþM0
33 sin

2 θe−2iφ−M0
23 sin2θe

−iφ;

m3e2iγ ¼M0
33 cos

2 θþM0
22 sin

2 θe2iφþM0
23 sin2θe

iφ; ð21Þ

from which ρ and σ can be obtained as

ρ ¼ φ − δþ α − γ; σ ¼ φ − δþ β − γ: ð22Þ

It is easy to see that, under the transformation ϕ → −ϕ, the
results for the CP phases undergo a sign reversal while
those for the neutrino masses and mixing angles keep
invariant. Furthermore, ϕ has a period of π in determining
the neutrino parameters [see Eq. (19)] and the CP asym-
metries responsible for leptogenesis [as will be seen
from Eq. (32)].
Now, we confrontMD against the experimental results to

examine if x and y can take some particular values. Let us
first perform the study in the NO case. The left panel of
Fig. 1 shows the values of y versus x that can be
phenomenologically viable within the 3σ level. These

results are obtained in a way as follows; for randomly
selected values of x and y in the range of −2 to 2, ϕ in the
range of 0 to π and m1 in the range of 0.001 eV to 0.1 eV,
the values of l, m and n are determined by virtue of the
following relations for M0

ν in Eq. (19)

m1m2m3 ¼ jDetðM0
νÞj; m2

1 þm2
2 þm2

3 ¼ TrðM0†
ν M0

νÞ;
m1 ¼ l2; ð23Þ

where m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ Δm2
21

p
and m3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ Δm2
31

p
with

Δm2
21 and Δm2

31 taking random values in their 3σ ranges.
Then, we check if the resulting values of θ and φ
[calculated as in Eq. (20)] can give some values of s213
and s223 calculated as in Eq. (6) in their 3σ ranges.
[Meanwhile, the values of θ12 and δ are determined as
in Eq. (7).] If yes, then these values of x and y will be
recorded. A repetition of the above procedure for enough
times yields the results in Fig. 1. For the present, we have
not taken into account the experimental constraint on δ, but
will do so in the following χ2 calculations.
It is apparent that the results exhibit a symmetry with

respect to the interchange x ↔ y. This can be understood as
follows: After a successive action of x ↔ y, m ↔ n,
ϕ → −ϕ, andM0

ν → M0
νe2iϕ,M0

ν in Eq. (19) keeps invariant
except for the replacement l2 → l2e2iϕ. This means that the
results of ðx; yÞ ¼ ðy0; x0Þ can be obtained from those of
ðx; yÞ ¼ ðx0; y0Þ by making the replacements ϕ → −ϕ and
ρ → ρþ ϕ, where x0 and y0 are any given values of x and y.
For this reason, we will just consider the x < y cases.
Furthermore, there is a connection between the results of
ðx; yÞ ¼ ðx0; y0Þ and those of ðx; yÞ ¼ ð−y0;−x0Þ; after a
successive action of x ↔ −y, m ↔ n and M0

ν → M0
νe−2iϕ,

M0
ν in Equation (19) becomes

–2 –1 0 1 2
–2

–1

0

1

2

x

y

–2 –1 0 1 2
–2

–1

0

1

2

x

y

FIG. 1. For the TM1 mixing, the values of y versus x that can be phenomenologically viable within the 3σ level in the NO (left) and IO
(right) cases.
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M0
ν ¼

0
B@

6l2e−2iϕ 0 0

0 3m2x2 þ 3n2y2e−2iϕ −ð ffiffiffi
6

p
m2xþ ffiffiffi

6
p

n2ye−2iϕÞ
0 −ð ffiffiffi

6
p

m2xþ ffiffiffi
6

p
n2ye−2iϕÞ 2m2 þ 2n2e−2iϕ

1
CA: ð24Þ

From Eqs. (6)–(7), (20)–(22) it is deduced that the
results of ðx; yÞ ¼ ð−y0;−x0Þ can be obtained from those
of ðx; yÞ ¼ ðx0; y0Þ by making the replacements
ρ → −ðρþ ϕÞ, σ → −σ, δ → π − δ, and Δs223 → −Δs223
(for Δs223 ≡ s223 − 1=2).
Let us consider the possibility that both x and y take

some particular values, in which case all the three columns
ofMD take some simple and instructive patterns. It is found
that ðx; yÞ ¼ ð−1=2; 0Þ and ð0; 1=2Þ can be phenomeno-
logically viable within the 3σ level. Note that the latter case
is the x ↔ −y counterpart of the former case, so their
results can be related by the replacement rules below
Eq. (24). For these two cases, Fig. 2 shows the parameter

spaces of ϕ and the predictions for δ, ρ and σ as functions of
m1. These results are tabulated in Table III. We see that the
predictions for δ are around �π=2, in good agreement with
the experimental preference for δ ∼ −π=2. And these two
cases can be phenomenologically viable for a negligibly
small m1 (realizing an effective minimal seesaw model
[23]), implying that they can be reduced to the so-called
littlest seesaw model [13,14].
Then, we further examine if ϕ can also take a particular

value (out of�π=6,�π=4,�π=3), on the basis of particular
ðx; yÞ combinations. Table IV lists the particular ðx; y;ϕÞ
combinations that can be phenomenologically viable within
the 3σ level and their predictions for the neutrino

10–3 10–2 10–1
0

0.5

1.0

m1(eV)

10–3 10–2 10–1
0

0.5

1.0

m1(eV)

10–3 10–2 10–1
0

0.5

1.0

m1(eV)

10–3 10–2 10–1
0

0.5

1.0

m1(eV)

FIG. 2. In the NO case with the TM1mixing, the parameter spaces of ϕ versusm1 for ðx; yÞ ¼ ð−1=2; 0Þ (in the red color) and ð0; 1=2Þ
(in the blue color) to be phenomenologically viable within the 3σ level, and the predictions for jδj, ρ, and σ.

TABLE III. In the NO case with the TM1 mixing, the parameter spaces of ϕ for the phenomenologically-viable particular ðx; yÞ
combinations, and the predictions for m1, δ, ρ, and σ.

x y ϕ=π m1 (eV) δ=π ρ=π σ=π

−1=2 0 �ð0.32–0.41Þ <0.009 ∓ð0.33–0.56Þ ∓ð0.25–0.35Þ ∓ð0.18–0.31Þ
0 1=2 �ð0.32–0.38Þ <0.007 ∓ð0.44–0.59Þ ∓ð0.06–0.07Þ �ð0.18–0.26Þ
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parameters at χ2min. In the literature, the χ
2 value for a set of

neutrino-parameter values is usually calculated as

χ2 ¼
X
i

�
Oi − Ōi

σi

�
2

; ð25Þ

where the sum is over three mixing angles, two neutrino
mass squared differences and δ, and Oi, Ōi, and σi
respectively denote their predicted values, best-fit values
and 1σ errors. But this formula has not taken account of
the correlations among different parameters. For com-
pleteness, in obtaining the results in Table IV we have
made use of the χ2 tables given in [24] which contain
such information.
As for the IO case, the right panel of Fig. 1 shows the

values of y versus x that can be phenomenologically
viable within the 3σ level. It turns out that x and y are
not allowed to take the considered particular values
simultaneously.

B. Consequences for leptogenesis

Let us proceed to study the consequences of the above
phenomenologically-viable particular ðx; y;ϕÞ combina-
tions for leptogenesis. As is known, the seesaw model
via the leptogenesis mechanism offers an appealing explan-
ation for the baryon asymmetry of the Universe [25]

YB ≡ nB − nB̄
s

¼ ð8.67� 0.15Þ × 10−11; ð26Þ

with nB (nB̄) being the baryon (antibaryon) number density
and s the entropy density. This mechanism proceeds in a
way as follows [26,27]; a lepton asymmetry YL ≡ ðnL −
nL̄Þ=s is first generated during the decays of the right-
handed neutrinos,2 and then partially converted into the
baryon asymmetry through the sphaleron process [29].
According to the temperature where leptogenesis takes

place (approximately the mass of the right-handed neutrino
responsible for leptogenesis), there are three distinct lepto-
genesis regimes [30]:
(1) Unflavored regime: in the temperature range above

1012 GeV, the charged-lepton Yukawa yα inter-
actions have not yet entered thermal equilibrium,
so three lepton flavors are indistinguishable and thus
should be treated in a universal way.

(2) Two-flavor regime: in the temperature range
109–1012 GeV, the yτ-related interactions are in
thermal equilibrium, making the τ flavor distinguish-
able from the other two flavors which remain
indistinguishable. In this regime, the τ flavor and
a superposition of the e and μ flavors should be
treated separately.

(3) Three-flavor regime: in the temperature range below
109 GeVwhere the yμ-related interactions are also in
thermal equilibrium, all the three flavors are dis-
tinguishable and should be treated separately. It is
well known that the requirement for leptogenesis to
be viable places a lower bound ∼109 GeV for the
right-handed neutrino masses [31], unless they are
nearly degenerate [32]—a possibility beyond the
scope of the current paper. Hence we just need to
consider the unflavored and two-flavor regimes in
the following discussions.

Generally speaking, the final baryon asymmetry is
mainly owing to the lightest right-handed neutrino, because
the lepton asymmetries generated in the decays of heavier
right-handed neutrinos are prone to be erased by the lepton-
number-violating interactions of lighter right-handed neu-
trinos. In the unflavored regime, the baryon asymmetry
contributed by NI is given by

YIB ¼ crεIκðm̃IÞ; ð27Þ

where c ¼ −28=79 quantifies the conversion efficiency
from the lepton asymmetry to the baryon asymmetry
through the sphaleron process [33], and r ≃ 3.9 × 10−3

is the ratio of the equilibrium number density of NI to the
entropy density at the temperature above MI . εI is the total
CP asymmetry for the decays of NI

εI ¼
1

8πðM†
DMDÞIIv2

X
J≠I

Im½ðM†
DMDÞ2IJ�F

�
M2

J

M2
I

�
; ð28Þ

TABLE IV. In the NO case with the TM1 mixing, the predictions of the phenomenologically-viable particular ðx; y;ϕÞ combinations
for the neutrino parameters at χ2min. The units ofm1, Δm2

21, jΔm2
31j, and jðMνÞeej are eV, 10−5 eV2, 10−3 eV2, and 10−3 eV, respectively.

x y ϕ=π χ2min m1 Δm2
21 jΔm2

31j s212 s213 s223 δ=π ρ=π σ=π jðMνÞeej
−1=2 0 1=3 4.0 0.001 7.44 2.52 0.318 0.02283 0.486 1.48 0.73 0.80 3.4
0 1=2 1=3 2.3 0.001 7.41 2.51 0.318 0.02279 0.514 1.52 0.93 0.20 2.4

2Note that in the flavor-symmetry models the decays of the
flavons may also contribute to the generation of the baryon
asymmetry [28]. (This is beyond the scope of the present article.)
The energy scale where the flavor-symmetry physics (i.e., the
flavons) resides can be much higher than the right-handed
neutrino mass scale where leptogenesis takes place. In this case,
the flavons will be decoupled from leptogenesis.
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which is a sum of the flavored CP asymmetries [26,34]

εIα ≡ ½ΓðNI → Lα þHÞ − ΓðNI → Lα þ H̄Þ�P
α½ΓðNI → Lα þHÞ þ ΓðNI → Lα þ H̄Þ�

¼ 1

8πðM†
DMDÞIIv2

X
J≠I

�
Im½ðM�

DÞαIðMDÞαJðM†
DMDÞIJ�F

�
M2

J

M2
I

�
þ Im½ðM�

DÞαIðMDÞαJðM†
DMDÞ�IJ�G

�
M2

J

M2
I

��
; ð29Þ

with v ¼ 174 GeV being the Higgs vacuum expectation
value, F ðxÞ¼ ffiffiffi

x
p fð2−xÞ=ð1−xÞþð1þxÞ ln½x=ð1þxÞ�g,

and GðxÞ ¼ 1=ð1 − xÞ. Finally, κðm̃IÞ is the efficiency
factor accounting for the washout effects due to the
inverse-decay and lepton-number-violating scattering proc-
esses [35]. Its value is determined by the washout mass
parameter m̃I, which is a sum of the flavored washout mass
parameters

m̃Iα ¼
jðMDÞαIj2

MI
: ð30Þ

In the two-flavor regime, the baryon asymmetry receives
two contributions from εIτ and εIγ ¼ εIe þ εIμ which are
subject to different washout effects controlled by m̃Iτ and
m̃Iγ ¼ m̃Ie þ m̃Iμ [30]

YIB ¼ cr

�
εIτκ

�
390

589
m̃Iτ

�
þ εIγκ

�
417

589
m̃Iγ

��
: ð31Þ

Because of the special form of MD in Eq. (16), which
leads to ðM†

DMDÞ12 ¼ ðM†
DMDÞ13 ¼ 0, the CP asymme-

tries for the decays of N1 (i.e., ε1 and ε1α) are vanishing.
Hence the final baryon asymmetry can only be owing to N2

or N3, even when N1 is the lightest one [36]. But it should
be noted that the lepton asymmetry generated in the decays
of N2 or N3 would be subject to the washout effects from
the lepton-number-violating interactions of N1 if it is
lighter. Taking account of the interplay between the
right-handed neutrino mass spectrum and the flavor effects,
there are the following possible scenarios for leptogenesis.
For M2 < M1;M3, the final baryon asymmetry is mainly
owing to N2 and the washout effects from N1 are
decoupled. Depending on the comparison between M2

with 1012 GeV (i.e., the boundary between the unflavored
and two-flavor regimes), there are the following two
possible scenarios:
Scenario ð1aÞ: For M2 > 1012 GeV, the final baryon

asymmetry Y2B can be calculated according to Eq. (27)
with

ε2 ¼
M3n2ð2þ 3xyÞ2
8πv2ð2þ 3x2Þ F

�
M2

3

M2
2

�
sin 2ϕ;

m̃2 ¼ m2ð2þ 3x2Þ: ð32Þ

Apparently, as mentioned in the above, ϕ has a period of π
in determining the CP asymmetries for leptogenesis, and
ϕ ¼ π=2 would prohibit a viable leptogenesis.
Scenario ð1bÞ: For M2 < 1012 GeV, Y2B can be calcu-

lated according to Eq. (31) with

ε2τ ¼
M3n2ð1 − xÞð1 − yÞð2þ 3xyÞ

8πv2ð2þ 3x2Þ F
�
M2

3

M2
2

�
sin 2ϕ;

m̃2τ ¼ m2ð1 − xÞ2; ð33Þ

and ε2γ ¼ ε2 − ε2τ and m̃2γ ¼ m̃2 − m̃2τ.
For M1 < M2 < M3, the final baryon asymmetry is also

mainly owing to N2, but the washout effects from N1 may
become non-negligible. Depending on the comparison
betweenM1 andM2 with 1012 GeV, there are the following
three possible scenarios:
Scenario ð2aÞ: For 1012 GeV < M1 < M2, the washout

effects from N1 are along the jL1i direction in the lepton-
flavor space while the lepton asymmetry generated in the
decays of N2 is along the jL2i direction, where jLIi are the
coherent superpositions of jLαi that couple with NI,

jLIi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM†
DMDÞII

q X
α

ðMDÞ�αIjLαi: ð34Þ

Since jL1i is orthogonal to jL2i (i.e., hL1jL2i ¼ 0),
the washout effects from N1 have no effect on the
lepton asymmetry generated in the decays of N2.
Therefore, the results in the present scenario are same as
in Scenario ð1aÞ.
Scenario ð2bÞ: For M1 < 1012 GeV < M2, the wash-

out effects from N1 are along the jLτi and jL1γi directions
with jLIγi being defined as

jLIγi¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðMDÞeIj2þjðMDÞμIj2
q ½ðMDÞ�eIjLeiþðMDÞ�μIjLμi�;

ð35Þ

while the lepton asymmetry generated in the decays of N2

remains to be along the jL2i direction. Consequently, Y2B
can be calculated as
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Y2B ¼
�
p2τ exp

�
−
3πm̃1τ

8m�

�
þ p21γ exp

�
−
3πm̃1γ

8m�

�

þ 1 − p2τ − p21γ

�
½crε2κðm̃2Þ�; ð36Þ

with m� ≃ 1.1 × 10−3 eV and

p2τ ¼ jhLτjL2ij2 ¼
jðMDÞτ2j2
ðM†

DMDÞ22
;

p21γ ¼ jhL1γjL2ij2 ¼
jðMDÞe1ðMDÞ�e2 þ ðMDÞμ1ðMDÞ�μ2j2
ðM†

DMDÞ22½jðMDÞe1j2 þ jðMDÞμ1j2�
:

ð37Þ

For the form of MD in Eq. (16), one arrives at

p2τ ¼
ð1 − xÞ2
2þ 3x2

; p21γ ¼
ð1 − xÞ2

5ð2þ 3x2Þ ;

m̃1τ ¼
1

6
m1; m̃1γ ¼

5

6
m1: ð38Þ

Scenario ð2cÞ: ForM1 < M2 < 1012 GeV, the washout
effects from N1 are along the jLτi and jL1γi directions
while the lepton asymmetries generated in the decays of N2

are along the jLτi and jL2γi directions. Accordingly, Y2B

can be calculated as

Y2B ¼ cr
�
ε2τκ

�
390

589
m̃2τ

�
exp

�
−
3πm̃1τ

8m�

�
þ ε2γκ

�
417

589
m̃2γ

�

×

�
ð1−p2γ1γÞþp2γ1γ exp

�
−
3πm̃1γ

8m�

���
; ð39Þ

with

p2γ1γ≡ jhL1γjL2γij2

¼ jðMDÞe1ðMDÞ�e2þðMDÞμ1ðMDÞ�μ2j2
½jðMDÞe1j2þjðMDÞμ1j2�½jðMDÞe2j2þjðMDÞμ2j2�

:

ð40Þ

For the form of MD in Eq. (16), one arrives at

p2γ1γ ¼
ð1 − xÞ2

5ð1þ 2xþ 2x2Þ : ð41Þ

For Scenario ð2bÞ and ð2cÞ, if m1 is so small that m̃1τ

and m̃1γ are much smaller thanm�, then the washout effects
from N1 would be very weak. Even if m̃1τ and m̃1γ are
much larger than m�, a considerable part of the lepton
asymmetry generated in the decays of N2 can survive the
washout effects from N1 provided that 1 − p2τ − p21γ and
1 − p2γ1γ are not too small (e.g., one has 1 − p2τ − p21γ ∼ 1

and 1 − p2γ1γ for x ∼ 1).
There are also some scenarios where the roles of N2 and

N3 are interchanged, which are correspondingly labelled as
ð1a0Þ, ð1b0Þ, ð2a0Þ, ð2b0Þ, and ð2c0Þ. For example, in
Scenario ð1a0Þ ne has 1012 GeV < M3 < M1;M2. In
these scenarios, the final baryon asymmetry can be
obtained by making the replacements 2 → 3, x ↔ y,
M2 ↔ M3, and ϕ → −ϕ in the above expressions.
For the phenomenologically-viable particular ðx; y;ϕÞ

combinations listed in Table IV, the values of M2 in
Scenario ð1aÞ=ð2aÞ, ð1bÞ, ð2bÞ, and ð2cÞ and M3 in
Scenario ð1a0Þ=ð2a0Þ, ð1b0Þ, ð2b0Þ, and ð2c0Þ for lepto-
genesis to be viable are calculated and listed in Table V. The
results show that leptogenesis has chance to work success-
fully only for M2 < M3. Furthermore, even when N1 is the
lightest right-handed neutrino, leptogenesis still has chance
to work successfully.

IV. SIMPLIFIED TEXTURES OF MD
FOR THE TM2 MIXING

In this section we perform a parallel study for the TM2
mixing. Namely, we examine if the parameters of the
generic texture of MD that can naturally yield the TM2
mixing can be further reduced, giving more simplified
textures of it, and study the consequences of the phenom-
enologically-viable simplified textures for the neutrino
parameters and leptogenesis. As will be seen, the results
for the TM2mixing have a lot in common with those for the
TM1 mixing.

A. Phenomenologically-viable simplified textures

For a consideration similar to that given at the beginning
of Sec. III, the first and second columns ofMD are taken to
be real while the third-column elements share a common
phase. Accordingly, for convenience of the following

TABLE V. In the NO case with the TM1mixing, for the phenomenologically-viable particular ðx; y;ϕÞ combinations, the values ofM2

in Scenario ð1aÞ=ð2aÞ, ð1bÞ, ð2bÞ, and ð2cÞ andM3 in Scenario ð1a0Þ=ð2a0Þ, ð1b0Þ, ð2b0Þ, and ð2c0Þ for leptogenesis to be viable. The
units of M2 and M3 are 1011 GeV.

x y ϕ=π ð1aÞ=ð2aÞ ð1bÞ ð2bÞ ð2cÞ ð1a0Þ=ð2a0Þ ð1b0Þ ð2b0Þ ð2c0Þ
−1=2 0 1=3 – 0.23 – 0.38 – – – –
0 1=2 1=3 – 0.94 – 1.1 – – – –
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discussions, the texture of MD that can naturally yield the
TM2 mixing is reexpressed as

MD ¼

0
B@

2lx
ffiffiffiffiffiffiffi
M1

p
m

ffiffiffiffiffiffiffi
M2

p
2neiϕy

ffiffiffiffiffiffiffi
M3

p

lð1 − xÞ ffiffiffiffiffiffiffi
M1

p
m

ffiffiffiffiffiffiffi
M2

p
neiϕð1 − yÞ ffiffiffiffiffiffiffi

M3

p

lð1þ xÞ ffiffiffiffiffiffiffi
M1

p
−m

ffiffiffiffiffiffiffi
M2

p
neiϕð1þ yÞ ffiffiffiffiffiffiffi

M3

p

1
CA;

ð42Þ

with now l, m, n, x, and y being real parameters and ϕ the
only phase parameter. From the simplicity viewpoint, the
particular values of x and y that are phenomenologically
appealing include −1, −1=2, 0, 1=2, and 1. The column
patterns corresponding to them are listed in Table VI. From
the symmetry viewpoint, it is found that ð−1; 1; 0ÞT ,
ð−1; 2; 1ÞT , ð0; 1; 1ÞT , ð1; 1; 2ÞT , and ð1; 0; 1ÞT respectively,
keep invariant under the e4, f3, d1, e1, and f1 elements of
the S4 group in the 3 representation [see Eq. (17) for the
matrix forms of e4, d1 and f1]

f3 ¼

0
B@

0 0 −1
0 1 0

−1 0 0

1
CA; e1 ¼

0
B@

0 1 0

1 0 0

0 0 1

1
CA; ð43Þ

while ð−1; 1; 0ÞT , ð0; 1; 1ÞT , and ð1; 0; 1ÞT respectively,
keep invariant under the e1, d2, and f3 elements of the S4
group in the 30 representation

e1 ¼

0
B@

0 −1 0

−1 0 0

0 0 −1

1
CA; d2 ¼

0
B@

−1 0 0

0 0 1

0 1 0

1
CA;

f3 ¼

0
B@

0 0 1

0 −1 0

1 0 0

1
CA: ð44Þ

ForMD in Eq. (42), the resulting neutrino mixing matrix
can be decomposed as UTM2 ¼ UTBMU13 [see Eq. (5)].
Here U13 is the unitary matrix for diagonalizing the
following matrix

M0
ν ¼

0
B@

6l2x2 þ 6n2y2e2iϕ 0 2
ffiffiffi
3

p
l2xþ 2

ffiffiffi
3

p
n2ye2iϕ

0 3m2 0

2
ffiffiffi
3

p
l2xþ 2

ffiffiffi
3

p
n2ye2iϕ 0 2l2 þ 2n2e2iϕ

1
CA: ð45Þ

Its parameters θ and φ can be calculated as

tan 2θ ¼ 2jM0�
11M

0
13 þM0�

13M
0
33j

jM0
33j2 − jM0

11j2
;

φ ¼ arg ðM0�
11M

0
13 þM0�

13M
0
33Þ: ð46Þ

Then, the three mixing angles and δ can be extracted from
UTM2 according to the formulas in Eqs. (6) and (7). On the
other hand, the resulting neutrino mass eigenvalues are
given by

m1e2iα ¼ M0
11 cos

2 θ þM0
33 sin

2 θe−2iφ −M0
13 sin 2θe

−iφ;

m2e2iβ ¼ M0
22 ¼ 3m2;

m3e2iγ ¼ M0
33 cos

2 θ þM0
11 sin

2 θe2iφ þM0
13 sin 2θe

iφ;

ð47Þ
from which ρ and σ can also be calculated as in Eq. (22).

It is analogously deduced that the results of ðx; yÞ ¼
ðy0; x0Þ can be obtained from those of ðx; yÞ ¼ ðx0; y0Þ by
making the replacements ϕ → −ϕ and σ → σ þ ϕ, so we
will just consider the x < y cases. Furthermore, the results
of ðx; yÞ ¼ ð−y0;−x0Þ can be obtained from those of
ðx; yÞ ¼ ðx0; y0Þ by making the replacements ρ → −ρ,
σ → −ðσ þ ϕÞ, δ → π − δ, and Δs223 → −Δs223.
Now let us consider the possibility that both x and y take

some particular values. Figure 3 shows the values of y
versus x that can be phenomenologically viable within the
3σ level in the NO (left) and IO (right) cases. The results are
obtained in the same way as for the TM1 mixing, except
that now the values of l, m, and n are determined by virtue
of the following relations for M0

ν in Eq. (45)

m1m2m3 ¼ jDetðM0
νÞj; m2

1 þm2
2 þm2

3 ¼ TrðM0†
ν M0

νÞ;
m2 ¼ 3m2: ð48Þ

TABLE VI. For the TM2 mixing, the particular values of x (y) and the corresponding column patterns.

x (y) −1 −1=3 0 1=3 1

Pattern ð−1; 1; 0ÞT ð−1; 2; 1ÞT ð0; 1; 1ÞT ð1; 1; 2ÞT ð1; 0; 1ÞT
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In the NO case, ðx; yÞ ¼ ð−1;−1=3Þ, ð−1; 0Þ, ð−1=3; 0Þ,
ð0; 1=3Þ, (0,1) and ð1=3; 1Þ can be phenomenologically
viable within the 3σ level. Note that the latter three cases are
the x ↔ −y counterparts of the former three cases, so their
results can be related by the aforementioned replacement
rules. For the former (latter) three cases, Fig. 4 (Fig. 5)
shows the parameter spaces of ϕ and the predictions for jδj,
ρ, and σ as functions of m1. These results are tabulated in
Table VII. Some remarks are given as follows:

(1) The allowed ranges of these parameters are signifi-
cantly larger than those for the TM1 mixing. This
can be attributed to the results below Eq. (6).

(2) None of these cases can be phenomenologically
viable for a negligibly small m1 and thus accom-
modated in the minimal seesaw framework.

(3) Note that for ðx; yÞ ¼ ð−1;−1=3Þ and ð1=3; 1Þ,
although ϕ is not allowed to exactly take π=2, we
have also listed their results in Table VII, which

–2 –1 0 1 2
–2

–1

0

1

2

x

y

–2 –1 0 1 2
–2

–1

0

1

x

y

FIG. 3. For the TM2 mixing, the values of y versus x that can be phenomenologically viable within the 3σ level in the NO (left) and IO
(right) cases.

FIG. 4. In the NO case with the TM2 mixing, the parameter spaces of ϕ versus m1 for ðx; yÞ ¼ ð−1;−1=3Þ, ð−1; 0Þ, and ð−1=3; 0Þ to
be phenomenologically viable within the 3σ level, and the predictions for jδj, ρ, and σ.
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might be instructive for the model-building exer-
cises. It is obvious that ϕ ¼ π=2 would renderM0

ν in
Eq. (45) real, which in turn leads to trivial δ, ρ, and
σ. Nevertheless, for the present two cases, ϕ ≃ π=2
leads to jδj ≃ π=2. A careful analysis reveals that this
is because there occurs a large accidental cancella-
tion for the real part of M0

13, making its imaginary
part (which is controlled by the small deviation of ϕ
from π=2 and should have been subdominant)
dominant, which subsequently leads to a nearly
maximal jφj and thus jδj. As for the IO case, only
ðx; yÞ ¼ ð−1;−1=3Þ and ð1=3; 1Þ can be phenom-
enologically viable within the 3σ level.

Then, we further examine if ϕ can also take some
particular value, on the basis of particular ðx; yÞ

combinations. Table VIII lists the phenomenologically-
viable particular ðx; y;ϕÞ combinations and their predic-
tions for the neutrino parameters at χ2min. Note that for
ðx; yÞ ¼ ð−1;−1=3Þ and ð1=3; 1Þ, ϕ is not allowed to
exactly take π=2 but is very close to it in both the NO
and IO cases.

B. Consequences for leptogenesis

Finally, we study the consequences of the phenomeno-
logically-viable particular ðx; y;ϕÞ combinations for lepto-
genesis. Because of the special form of MD in Eq. (42),
which leads to ðM†

DMDÞ12 ¼ ðM†
DMDÞ23 ¼ 0, the CP

asymmetries for the decays of N2 are vanishing. Hence,
the final baryon asymmetry can only be owing to N1 or N3,

FIG. 5. In the NO case with the TM2 mixing, the parameter spaces of ϕ versus m1 for ðx; yÞ ¼ ð0; 1=3Þ, (0,1), and ð1=3; 1Þ to be
phenomenologically viable within the 3σ level, and the predictions for jδj, ρ, and σ.

TABLE VII. For the TM2 mixing, the parameter spaces of ϕ for the phenomenologically-viable particular ðx; yÞ combinations, and the
predictions for ml, δ, ρ, and σ.

x y ϕ=π ml (eV) δ=π ρ=π σ=π

NO −1 −1=3 �ð0.484–0.499Þ >0.022 ∓ð0.54–0.99Þ ∓ð0.484–0.499Þ ∓ð0.486–0.499Þ
−1 0 �ð0.00–0.41Þ 0.011–0.024 ∓ð0.31–0.99Þ ∓ð0.00–0.38Þ ∓ð0.00–0.40Þ
−1=3 0 �ð0.01–0.40Þ 0.003–0.008 ∓ð0.31–0.99Þ ∓ð0.00–0.32Þ ∓ð0.00–0.36Þ
0 1=3 �ð0.21–0.50Þ 0.004–0.009 ∓ð0.31–0.99Þ �ð0.12–0.50Þ ∓ð0.00–0.05Þ
0 1 �ð0.20–0.50Þ 0.013–0.034 ∓ð0.31–0.99Þ �ð0.17–0.50Þ ∓ð0.00–0.02Þ

1=3 1 �ð0.486–0.496Þ >0.040 ∓ð0.31–0.46Þ �ð0.486–0.496Þ �ð0.000–0.002Þ
IO −1 −1=3 �ð0.486–0.496Þ >0.040 �ð0.31–0.46Þ ∓ð0.486–0.496Þ ∓ð0.487–0.497Þ

1=3 1 �ð0.484–0.499Þ >0.022 �ð0.54–0.99Þ �ð0.484–0.499Þ �ð0.000–0.002Þ
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even when N2 is the lightest one. But the lepton asymmetry
generated in the decays of N1 or N3 would be subject to the
washout effects from N2 if it is lighter. Taking account of
the interplay between the right-handed neutrino mass
spectrum and the flavor effects, there are the following
possible scenarios for leptogenesis. For M1 < M2;M3, the
final baryon asymmetry is mainly owing to N1 and the
washout effects from N2 are decoupled. Depending on
the comparison between M1 with 1012 GeV, there are the
following two possible scenarios.
Scenario ð1aÞ: For M1 > 1012 GeV, the final baryon

asymmetry Y1B can be calculated according to Eq. (27)
with

ε1¼
M3n2ð1þ3xyÞ2
8πv2ð1þ3x2Þ F

�
M2

3

M2
1

�
sin2ϕ; m̃1 ¼ 2l2ð1þ3x2Þ:

ð49Þ

Scenario ð1bÞ: For M1 < 1012 GeV, Y1B can be calcu-
lated according to Eq. (31) with

ε1τ ¼
M3n2ð1þ xÞð1þ yÞð1þ 3xyÞ

8πv2ð1þ 3x2Þ F
�
M2

3

M2
1

�
sin 2ϕ;

m̃1τ ¼ l2ð1þ xÞ2; ð50Þ

and ε1γ ¼ ε1 − ε1τ and m̃1γ ¼ m̃1 − m̃1τ.
For M2 < M1 < M3, the final baryon asymmetry is also

mainly owing to N1, but the washout effects from N2 may
become non-negligible. Depending on the comparison
betweenM1 andM2 with 1012 GeV, there are the following
three possible scenarios.
Scenario ð2aÞ: For 1012 GeV < M2 < M1, the washout

effects fromN2 are along the jL2i direction while the lepton
asymmetry generated in the decays of N1 is along the jL1i
direction. Since jL1i is orthogonal to jL2i, the washout

effects from N2 have no effect on the lepton asymmetry
generated in the decays of N1. Therefore, the results in the
present scenario are same as in Scenario ð1aÞ.
Scenario ð2bÞ: For M2 < 1012 GeV < M1, the wash-

out effects from N2 are along the jLτi and jL2γi directions,
while the lepton asymmetry generated in the decays of N1

remains to be along the jL1i direction. The final baryon
asymmetry can be calculated as in Eqs. (36), (37) but with
the interchange 1 ↔ 2 for the subscripts. For the form of
MD in Eq. (42), one arrives at

p1τ ¼
ð1þ xÞ2

2ð1þ 3x2Þ ; p12γ ¼
ð1þ xÞ2
4ð1þ 3x2Þ ;

m̃2τ ¼
1

3
m2; m̃2γ ¼

2

3
m2: ð51Þ

Scenario ð2cÞ: ForM2 < M1 < 1012 GeV, the washout
effects from N2 are along the jLτi and jL2γi directions
while the lepton asymmetries generated in the decays of N1

are along the jLτi and jL1γi directions. The final baryon
asymmetry can be calculated as in Eqs. (39), (40) but also
with the interchange 1 ↔ 2 for the subscripts. For the form
of MD in Eq. (42), one has

p1γ2γ ¼
ð1þ xÞ2

2ð1 − 2xþ 5x2Þ : ð52Þ

For Scenario ð2bÞ and ð2cÞ, since m2 is much larger than
m�, the washout effects from N2 are strong. Only when
1 − p2τ − p21γ and 1 − p2γ1γ are not too small, can a
considerable part of the lepton asymmetry generated in
the decays of N1 survive the washout effects from N2.
There are also some scenarios where the roles of N1 and

N3 are interchanged, which are correspondingly labelled as
ð1a0Þ, ð1b0Þ, ð2a0Þ, ð2b0Þ, and ð2c0Þ. In these scenarios, the
final baryon asymmetry can be obtained by making the

TABLE VIII. For the TM2 mixing, the predictions of the phenomenologically-viable particular ðx; y;ϕÞ combinations for the neutrino
parameters at χ2min. The units of ml, Δm2

21, jΔm2
31j, and jðMνÞeej are eV, 10−5 eV2, 10−3 eV2, and 10−3 eV, respectively.

x y ϕ=π χ2min m1 Δm2
21 Δm2

31 s212 s213 s223 δ=π ρ=π σ=π jðMνÞeej
NO −1 −1=3 0.491 3.1 0.056 7.50 2.53 0.341 0.02163 0.539 1.38 0.51 0.51 56.5

−1 0 1=6 9.6 0.012 7.50 2.55 0.341 0.02166 0.574 1.25 0.86 0.84 13.9
−1 0 1=4 2.9 0.014 7.50 2.51 0.341 0.02234 0.538 1.39 0.78 0.76 15.2
−1 0 1=3 5.9 0.017 7.50 2.51 0.341 0.02247 0.490 1.53 0.70 0.68 17.6

−1=3 0 1=6 11 0.004 7.50 2.56 0.341 0.02172 0.579 1.23 0.91 0.87 6.5
−1=3 0 1=4 2.9 0.005 7.50 2.52 0.341 0.02228 0.543 1.37 0.85 0.80 6.7
−1=3 0 1=3 6.1 0.006 7.50 2.51 0.341 0.02239 0.488 1.54 0.76 0.72 7.1
0 1=3 1=4 7.6 0.005 7.50 2.53 0.341 0.02213 0.457 1.63 0.15 0.95 4.8
0 1=3 1=3 4.4 0.006 7.50 2.51 0.341 0.02260 0.512 1.46 0.24 0.95 3.6
0 1 1=4 7.1 0.014 7.50 2.53 0.341 0.02258 0.461 1.61 0.22 0.98 11.2
0 1 1=3 4.3 0.017 7.50 2.51 0.341 0.02259 0.510 1.47 0.30 0.98 9.7

1=3 1 0.496 6.5 0.100 7.50 2.51 0.341 0.02228 0.484 1.55 0.50 0.00 32.4
IO −1 −1=3 0.509 9.0 0.057 7.50 2.43 0.341 0.02302 0.463 1.61 0.49 0.49 74.9

1=3 1 0.515 5.9 0.033 7.50 2.43 0.341 0.02257 0.574 1.26 0.51 0.10 18.7
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replacements 1 → 3, x ↔ y,M2 ↔ M3 and ϕ → −ϕ in the
above expressions.
For the phenomenologically-viable particular ðx; y;ϕÞ

combinations listed in Table VIII, the values of M1 in
Scenario ð1aÞ=ð2aÞ, ð1bÞ, ð2bÞ, and ð2cÞ and M3 in
Scenario ð1a0Þ=ð2a0Þ, ð1b0Þ, ð2b0Þ, and ð2c0Þ for lepto-
genesis to be viable are calculated and listed in Table IX. It
is also found that leptogenesis has chance to work success-
fully only for M1 < M3 in the NO case but only for M3 <
M1 in the IO case. And leptogenesis still has chance to
work successfully even when N2 is the lightest right-
handed neutrino.

V. A CONCRETE FLAVOR-SYMMETRY MODEL

In this section we give a concrete S4-flavor-symmetry
model that can realize one representation of the simplified
textures ofMD obtained in the above; the simplified texture
of MD in Eq. (42) obtained by taking x ¼ 1 and y ¼ 0

MD ¼

0
B@

l m 0

0 m neiϕ

l −m neiϕ

1
CA; ð53Þ

while the other ones can be realized analogously. The
model employs S4 × Z2 × Z3 as the flavor symmetries. And

Table X gives the transformation properties of the related
fields under them. Here the auxiliary Z2 symmetry is used
to distinguish the flavon fields associated with the charged-
lepton and neutrino sectors. And the auxiliary Z3 symmetry
is introduced to further distinguish the flavon fields
associated with different flavors in the same sector.
Furthermore, as will be seen soon, it can also help us
achieve ϕ ¼ −π=3. Finally, in order to justify the flavon
VEV alignments in Eq. (55) by means of the F-term
alignment mechanism [19], which invokes the R symmetry
(by which the superpotential terms are required to carry an
R charge of 2) of supersymmetric theories, the model is
embedded in the supersymmetry (SUSY) framework.
Under the above setup, the superpotential terms relevant
for the lepton masses are given by

W¼ y1
Λ
HuðL ·ϕ1ÞNc

1þ
y2
Λ
HuðL ·ϕ2ÞNc

2þ
y3
Λ
HuðL ·ϕ2ÞNc

2

þM1Nc
1N

c
1þM2Nc

2N
c
2þξNc

3N
c
3

þye
Λ
HdðL ·ϕeÞecþ

yμ
Λ
HdðL ·ϕμÞμcþ

yτ
Λ
HdðL ·ϕτÞτc;

ð54Þ
where ðα · βÞ ¼ α1β1 þ α2β2 þ α3β3 denotes the contrac-
tion of two triplets into a singlet, yi and yα are dimension-
less coefficients, and Λ is the typical energy scale where the

TABLE X. The transformation properties of the lepton, Higgs and flavon superfields under the S4 × Z2 × Z3 symmetries and
their R charges.

ec μc τc ϕe ϕμ ϕτ Hd L Hu ϕ1 ϕ2 ϕ3 Nc
1 Nc

2 Nc
3 ξ

S4 1 1 1 3 3 3 1 3 1 30 3 3 10 1 1 1
Z2 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 1
Z3 ω ω2 1 ω2 ω 1 1 1 1 1 1 ω2 1 1 ω ω
R 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0

TABLE IX. In the TM2 mixing scenario, for the phenomenologically-viable particular ðx; y;ϕÞ combinations, the values of M1 in
Scenario ð1aÞ=ð2aÞ, ð1bÞ, ð2bÞ and ð2cÞ and M3 in Scenario ð1a0Þ=ð2a0Þ, ð1b0Þ, ð2b0Þ and ð2c0Þ for leptogenesis to be viable. The
units of M1 and M3 are 1011 GeV.

x y ϕ=π ð1aÞ=ð2aÞ ð1bÞ ð2bÞ ð2cÞ ð1a0Þ=ð2a0Þ ð1b0Þ ð2b0Þ ð2c0Þ
NO −1 −1=3 0.491 26 – – – – – – –

−1 0 1=6 – 1.1 – – – – – –
−1 0 1=4 – 0.99 – – – – – –
−1 0 1=3 – 1.3 – – – – – –

−1=3 0 1=6 – 0.16 – 0.61 – – – –
−1=3 0 1=4 – 0.13 – 0.48 – – – –
−1=3 0 1=3 – 0.13 – 0.51 – – – –
0 1=3 1=4 – 0.94 12 5.3 – – – –
0 1=3 1=3 – 1.2 17 7.1 – – – –
0 1 1=4 – 3.2 46 – – – – –
0 1 1=3 – 3.5 50 – – – – –

1=3 1 0.496 81 – – – – – – –
IO −1 −1=3 0.509 – – – – 27 – 36 –

1=3 1 0.515 – – – – – 6.8 95 –

SIMPLIFIED TEXTURES OF THE SEESAW MODEL FOR … PHYS. REV. D 105, 035011 (2022)

035011-15



flavor-symmetry physics resides. In the literature, the ratios
of the flavon VEVs to Λ are usually assumed to be small so
that the contributions of higher-dimension terms are sup-
pressed. If the flavon fields possess the following VEV
alignments

hϕ1i¼v1

0
B@
1

0

1

1
CA; hϕ2i¼v2

0
B@

1

1

−1

1
CA; hϕ3i¼v3

0
B@
0

1

1

1
CA;

hϕei¼ve

0
B@
1

0

0

1
CA; hϕμi¼vμ

0
B@
0

1

0

1
CA; hϕτi¼vτ

0
B@
0

0

1

1
CA; ð55Þ

and hξi ¼ M3, then one arrives at a diagonal charge-lepton
mass matrix and MR and an MD of the form in Eq. (53).
Then, following the idea of Ref. [14], we justify the

flavon VEValignments in Eq. (55) by means of the F-term
alignment mechanism [19]. For this purpose, some driving
fields A are introduced, which carry an R charge of two and
couple with the flavon fields linearly to form certain
superpotential terms. In this way the minimization require-
ment of the potential energy VðϕÞ ¼ P j∂W=∂Aj2 leads to
the constraint ∂W=∂A ¼ 0 for the flavon VEVs. We note
that the VEValignments of ϕα, ϕ2 and ϕ3 in Eq. (55) are the
same as in Ref. [14] [see Eqs. (13.2) and (13.3) there], so
they can be achieved in the same way as there. Hence one
just needs to demonstrate that the VEV alignment of ϕ1 in
Eq. (55) can be naturally achieved. Since the VEV align-
ments of ϕ1 and ϕ3 only differ by a permutation of the first
and second components, the former can be achieved in a
way similar to the latter; on the one hand, the superpotential
term A12ðϕ1 · ϕ2Þ where A12 is a driving field with the
transformation properties ð10; 1; 1Þ under S4 × Z2 × Z3 will
lead to the orthogonality

∂W=∂A12¼ 0¼ðhϕ1i · hϕ2iÞ
¼ hϕ1i1hϕ2i1þhϕ1i2hϕ2i2þhϕ1i3hϕ2i3; ð56Þ

of the VEValignments of ϕ1 and ϕ2. On the other hand, the
superpotential terms A1ðg1ϕ1ϕ1 þ g01ξ1ϕμÞ where A1 is a
driving field with the transformation property (3,1,1) under
S4 × Z3 × Z3 and ξ1 has the transformation property
ð1;−1;ω2Þ will lead to the following constraint on the
VEV alignment of ϕ1:

2g1

0
B@

hϕ1i2hϕ1i3
hϕ1i3hϕ1i1
hϕ1i1hϕ1i2

1
CAþ g01hξ1i

0
B@

hϕμi1
hϕμi2
hϕμi3

1
CA ¼

0
B@

0

0

0

1
CA: ð57Þ

Taking account of the VEV alignments of ϕ2 and ϕμ in
Eq. (55), the combination of Eqs. (56) and (57) then
yields hϕ1i ∝ ð1; 0; 1ÞT .
To justify the particular value of ϕ, one needs to impose

the CP symmetry (so that the coefficients are constrained to
be real) and then break it in a particular way (so that a
nontrivial CP phase can arise) [13,37]. In the present
model, as mentioned in the above, the Z3 symmetry can
help us fulfill this purpose; the superpotential term
Aξðξ3=Λ −M2Þ where Aξ is a singlet driving field and
M is a real (as constrained by the CP symmetry) mass
parameter will lead to the constraint hξi3=Λ −M2 ¼ 0 on
the VEVof ξ, which can give M3 ¼ hξi ¼ ei2π=3M. After a
phase redefinition of the N3 field, M3 can be made to be
real again but the third column of MD will receive a
common phase (i.e., ϕ) of −π=3. A simple generalization of
such an exercise can help us achieve ϕ ¼ −π=n (with n
being an integer) with the help of a Zn symmetry.
Finally, we emphasize that the particular VEV align-

ments in Eq. (55) are associated with the S4 symmetry
itself, but not necessarily associated with the F-term
alignment mechanism which works in the SUSY frame-
work where the reheating temperature above ∼109 GeV
might lead to the problem of gravitino overproduction [38].
The latter is just a tool that is commonly used in the
literature to show the desired VEV alignments can be
naturally realized. Alternatively, one can employ the D-
term alignment mechanism [39] to fulfill such a purpose,
which is also applicable in the non-SUSY context where
there would not be a gravitino problem.

VI. IMPACTS OF THE RENORMALIZATION
GROUP RUNNING EFFECTS

Finally, in consideration of the huge gap between
the seesaw scale where the texture of MD forms and
leptogenesis takes place and the electroweak scale where
the neutrino parameters are measured, we give some
discussions about the impacts of the renormalization
group running effects on the texture of MD [40] and
leptogenesis [35].
In the SM framework, the Dirac neutrino mass matrix

MDðΛSSÞ at the seesaw scale is connected with its counter-
part MDðΛEWÞ at the electroweak scale through a relation
as [41]

MDðΛSSÞ ¼ I0

0
B@

1 − Δe

1 − Δμ

1 − Δτ

1
CAMDðΛEWÞ;

ð58Þ

where
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I0 ¼ exp

�
1

32π2

Z
lnðΛSS=ΛEWÞ

0

½λðtÞ − 3g22ðtÞ þ 6y2t ðtÞ�dt
�
;

Δα ¼
3

32π2

Z
lnðΛSS=ΛEWÞ

0

y2αðtÞdt; ð59Þ

with λðtÞ, g2ðtÞ, ytðtÞ, and yαðtÞ standing respectively for
the energy-scale-dependent Higgs quartic coupling,
SUð2ÞL gauge coupling, top-quark Yukawa coupling and
charged-lepton Yukawa couplings. Qualitatively, I0 is just
an overall rescaling factor forMD (i.e., only relevant for its
overall scale but does not modify its texture), while Δα are
potentially capable of modifying its texture.
Quantitatively, due to the smallness of yα, Δα are

negligibly small; Δτ is merely Oð10−5Þ, and Δe and Δμ

are much smaller. Even in the Minimal Supersymmetric
Standard Model (MSSM) where y2τ ¼ ð1þ tan2 βÞm2

τ=v2

can be greatly enhanced by large tan β values, one still has
Δτ ≲ 0.01 for a reasonable tan β value (e.g., ≲30). This
means that the impacts of the renormalization group
running effects on the texture of MD can be safely
neglected. Therefore, although in the above study we have
been confronting the considered textures ofMD against the
values of the neutrino parameters at the electroweak scale,
the conclusions we have reached will hold equally well at
the seesaw scale.
In comparison, one has I0 ∼ 1.15, which lifts the overall

scale ofMDðΛSSÞ by about 15% as compared toMDðΛEWÞ.
Such a result has the following two impacts on leptogenesis
which are in opposite directions; on the one hand, the CP
asymmetry for the decays of the right-handed neutrinos
gets enhanced by I20 ∼ 1.23 [see Eqs. (28) and (29)]. On the
other hand, the washout mass parameter also gets enhanced
by I20 [see Eq. (30)], making the washout effects more
efficient. As is known, the washout mass parameter
indicated by neutrino oscillations lies in the strong washout
regime where the efficiency factor is roughly inversely
proportional to it [27]. Consequently, the efficiency factor
roughly gets suppressed by I20. Altogether, for the final
baryon asymmetry, the suppression of the efficiency factor
offsets the enhancement of the CP asymmetry to a large
degree. This makes the impacts of the renormalization
group running effects on leptogenesis acceptably small
(within the 10 percent level).

VII. SUMMARY

In summary, due to their simple structure and phenom-
enologically-appealing consequences, the trimaximal mix-
ings have attracted a lot of attention. In this paper, in the
basis of MR being diagonal, we have explored the sim-
plified textures ofMD that can naturally yield these mixings
and their consequences for the neutrino parameters and
leptogenesis.
We have first formulated the generic textures of MD that

can naturally yield the trimaximal mixings [see Eq. (12)]
and discussed how to realize them by slightly modifying

the flavor-symmetry models for realizing the TBM mixing.
We have then examined if their parameters can be further
reduced, giving more simplified textures of them. Our
analysis has been restricted to the simple but instructive
scenario that three elements in the same column of MD
share a common phase. Furthermore, for the TM1 (TM2)
mixing, only the phase difference between the second and
third (first and third) columns is responsible for δ and
leptogenesis, while the phase of the first (second) column
only contributes to ρ (σ) additively. Therefore, without loss
of generality, our analysis has been further restricted to the
scenario that there is only one phase parameter ϕ (i.e., the
third-column phase), in which caseMD can be conveniently
reexpressed as in Eqs. (16) and (42).
It should be noted that the equality between x and y is

denied, which would otherwise lead to the unacceptable
δ ¼ 0. For the TM1 (TM2) mixing, the results of ðx; yÞ ¼
ðy0; x0Þ can be obtained from those of ðx; yÞ ¼ ðx0; y0Þ by
making the replacements ϕ → −ϕ and ρ → ρþ ϕ
(σ → σ þ ϕ). So we have just considered the x < y cases.
Furthermore, the results of ðx; yÞ ¼ ð−y0;−x0Þ can be
obtained from those of ðx; yÞ ¼ ðx0; y0Þ by making the
replacements ρ → −ðρþ ϕÞ (σ → −ðσ þ ϕÞ), σ → −σ
(ρ → −ρ), δ → π − δ, and Δs223 → −Δs223.
From the simplicity viewpoint, we aim to explore the

simplified textures of MD that can naturally yield the
trimaximalmixingswhere there are somevanishing or equal
elements. Such textures ofMD correspond to someparticular
values of x and y (see Tables II and VI). But our discussions
have been restricted to the textures of MD that can find a
simple symmetry justification. The phenomenologically-
viable particular ðx; yÞ combinations and the allowed ranges
ofml,ϕ,δ,ρ andσ are listed inTables III andVII.On thebasis
of these particular ðx; yÞ combinations, we have further
examined if ϕ can also take some particular value. The
phenomenologically-viable particular ðx; y;ϕÞ combina-
tions and their predictions for the neutrino parameters at
χ2min are listed in Tables IV and VIII. Finally, the conse-
quences of these particular ðx; y;ϕÞ combinations for lepto-
genesis have been studied. Because of the special form of
MD, for the TM1 (TM2)mixing, the final baryon asymmetry
can only be owing toN2 (N1) orN3. But the washout effects
from N1 (N2) may be non-negligible when it is the lightest
one. Taking account of the interplay between the right-
handed neutrino mass spectrum and the flavor effects, there
are several possible scenarios for leptogenesis. For these
different scenarios, the values of M2 (M1) or M3 for
leptogenesis to be viable are calculated and listed in
Tables V and IX.
Then, a concrete S4-flavor-symmetry model that

can realize one representation of the obtained simplified
textures of MD is given. And the F-term alignment
mechanism and CP symmetry are invoked to justify the
particular VEV alignments of the flavon fields and the
nontrivial value of the CP phase.
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Finally, the impacts of the renormalization group running
effects on the texture of MD and leptogenesis have also
been discussed. It is found that the impacts of the
renormalization group running effects on the texture of
MD can be safely neglected. And the impacts of the
renormalization group running effects on leptogenesis
are also acceptably small (within the 10 percent level).
In summary, our work, in the general seesaw framework,

provides a complete study of the simplest textures of MD
(which are motivated from the simplicity viewpoint and can
find a simple symmetry justification) that can naturally
yield the trimaximal (including both the TM1 and TM2)
mixings, and their consequences for the neutrino param-
eters and leptogenesis. Since they only contain four real

parameters [see, e.g., Eq. (53)], they are very restrictive and
highly predictive. Their predictions for the neutrino param-
eters can be tested or ruled out by future precision
measurements. Furthermore, since there is only one CP
phase, a direct link between the CP violating effects at low
energies and leptogenesis can be established.
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