PHYSICAL REVIEW D 105, 035010 (2022)

Uncovering the Majorana nature through a precision measurement
of the CP phase

J.C. Carrasco-Maurtinez,l’2 F.N. Diaz ,1 and A. M. Gago !
'Seccion Fisica, Departamento de Ciencias, Pontificia Universidad Catélica del Pert,
Apartado 1761, Lima, Perii
2Department of Physics, University of California, Berkeley, California 94720, USA

® (Received 20 November 2020; accepted 20 January 2022; published 9 February 2022)

We show the possibility to discover the neutrino nature by measuring the Majorana CP phase at the
DUNE experiment. This phase is turned on by a decoherence environment, possibly originated by physics
at the Planck scale. A sizable distortion in the measurement of the Dirac CP violation phase §p is observed
at DUNE when compared with T2ZHK measurement due to decoherence and the non-null Majorana phase.
Being that, when the measurement of the Majorana phase is performed at DUNE, it reaches a precision
of 23(21)% for a decoherence parameter I' = 4.5(5.5) x 1072* GeV and a Majorana phase equal to 1.57.
The latter precision is similar to the one obtained at the T2K experiment at its current Dirac CP violation

phase measurement.
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I. INTRODUCTION

The origin of neutrino masses is one of the most relevant
questions of modern elementary particle physics [1,2]. The
Standard Model (SM) Higgs mechanism could generate the
neutrino masses if they were Dirac particles. However, this
SM alternative does not explain why the neutrino masses are
less than one-millionth of the electron’s mass, the smallest
charged lepton. The general belief is that the latter is resolved
through the seesaw mechanism, being the most inexpensive
case when neutrinos are Majorana particles [3—15]. The
Majorana neutrinos, a fermion that is its own antiparticles,
imply the total lepton charge violation, a conserved number
within the SM processes [16,17]. Therefore, the quest for
elucidating the Majorana nature of neutrinos is one of our
best chances to learn about what is beyond the SM. The
usual way to look for Majorana neutrinos is using the
neutrinoless double beta decay, a lepton charge violating
process not allowed by the SM [18-21]. Until now, there is
no signal from the latter [22-25] or other ways of proposing
searches for Majorana neutrinos [26-29].

The standard oscillation neutrino (SO) probabilities
take the same form regardless of the neutrino nature. Only
the Dirac CP phase is observable while the two other CP
violation phases, when the neutrino is Majorana, are
absorbed [30]. However, if we suppose a new physics
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(NP) phenomenon, subleading to the SO mechanism,
exists, the latter situation could be no longer valid.
Therefore, this NP could help the Majorana phases to
emerge in the oscillation probabilities. The NP phenom-
ena we focus on forecasts an interaction between the
neutrino system with the environment at the Planck scale
level, which is characterized by a foamy space-time [31].
The loss of quantum coherence (decoherence) in the
neutrino system is the interaction’s main signature. The
foamy space-time is predicted in the context of strings and
branes [32-34], and quantum gravity [35]. This quantum
decoherence phenomena in the neutrino system have been
vastly studied in the literature [36—41] wherein most of the
cases contain only the damping effects. Nevertheless, the
phenomenology of the interaction between neutrino and a
quantum decoherence environment goes beyond the
damping effects, being that this might add new contribu-
tions to the violation of CP or CPT [42-44]. Through
these kinds of contributions in the neutrino oscillation
formula, we can reveal the neutrino’s Majorana nature.
The observability of the Majorana nature using neutrino
oscillation is a rather novel approach.

At this point it is worth mentioning that our work’s
cornerstone hypothesis is that the Dirac CP violation
phase measured at T2K experiment represents its real
value since it is unaffected by quantum decoherence in
neutrino oscillations. Thus, considering that the effects
of a quantum decoherence environment, coupled with a
nonzero Majorana phase, are sizable in the DUNE data,
our strategy is divided into two steps. The first step is to
assess how much a measurement at the DUNE experiment
[45] of the Dirac CP violation phase can deviate from the
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true one. For this purpose, and taking the pure SO as a
theoretical hypothesis in the fitting, the CP violation
phase obtained at DUNE is compared with the projected
one at the T2HK experiment [46]. The T2HK projected
measurement comes to be an upgrade in the precision of
the CP violation measurement at T2K. The second step,
and final goal in this paper, is to go beyond testing the
DUNE accuracy for determining a Majorana CP phase
simultaneously with the decoherence parameter.

II. GENERAL THEORETICAL FORMALISM

The treatment for a neutrino subsystem embodied in an
infinity unknown reservoir or environment, with which the
former interacts weakly, can be obtained by the Lindblad
master equation [31]:

a’jT(;) = —i[H.p(1)] + Dlp(1)]. (1)

where p(t) is the reduced (neutrino) density matrix, obtained
after trace over the degrees of freedom of the environment,
H is the Hamiltonian of the neutrino subsystem and D[p(7)]
is the dissipative term which encloses the decoherence
phenomena. The aforementioned factor can be written as
Dlp()] =353, ([Aj,p(t)Aj-] + [Ajp(t),Aj-]). Thus, if we
work in a three-level system the operators p, H, and A;
can be written as follows: p = > p,t,, H=)_h,t,, and
Aj= Za{,tﬂ where p is running from O to 8, 7, is the
identity matrix and #; the Gell-Mann matrices (k = 1, ..., 8)
that satisty [t,,1,] = i)Y, fapete» Where f;. are the struc-
ture constants of SU(3). The Hermiticity of A j» which is
secured demanding a time-increase Von Neumman entropy,
allow us to writt a symmetric D= D,; dissipative/
decoherence matrix as: Dy; =137, (@) fumf mij» Where
a, = d,.a, with components D,y = Dy, =0, and
a,={al,a?,...,a%}. The matrix A = a,; should be pos-
itive [31] in order to fulfill the complete positivity condition
which states that the eigenvalues of the mixing matrix p(7)
should be positive at any time. Besides, given their inner
product structure, the Dy ; must satisfy the Cauchy-Schwartz
inequalities. Adding the conservation of the probability to
the aforementioned conditions we get the following evolu-
tion equation for p(7):

po =0, pr = (Hyj + Dij)p; = Mypj, — (2)
where Hy; = >, h;f;j;. The matrix form of the solution of
Eq. (2) is

e(t) = eM'0(0), (3)

where ¢ is an eight column vector compose by the p;
and M = M,;. Hence, the neutrino oscillation probability
Vg = Vg s given by:

1

Pvu—w/; = g + 5 (Qﬁ(o))TQa(t)7 (4)

—_—

or written in terms of the coefficients p¢(0):
1 1 a Mt
Pva—mﬂ :§+§szﬂ(0)p1<0)[6 ]ij’ (5)
i.j

where f,a =e, p, rand i,j=1,...,8.
The coefficients p%(0) and pf (0) encloses the elements
of the neutrino mixing matrix [47]:

Po=V'2/3
,07 = ZRC(U* Ua2>

al
p5 = —2Im(U; Uy)
Py = |Ua1|2 - |Ua2|2
P§ =2Re(Uy Ups)
p§ = =2Im(U;, Ugs)
ps =2Re(U,,Uy)
P57 = —2Im(U7,Ug3)
w1
P3 = %
where the U,,; are the matrix elements of the PMNS matrix
(Upmns) [48] without taking into account the Majorana

phases. Thus, in order to include the latter, it is enough to
make the replacement:

(|[J011|2 + |Ua2|2 - 2|Ua3‘2) (6)

UMajorana = UPMNS-diag(1 ’ e~ ’ e_i¢2) (7)

where ¢, and ¢, are the well-known Majorana phases.
Therefore, the coefficients takes the following form:

pi = picosgy —pssing,

p5 = p5cosy + pising,

ps = ps

P = P4 cosp,y — ps singy

ps = p5cos ¢, + py sin gy

P = pgcos Ag — pgsin A¢g

p5 = pgcos Ag + pg sin Ag

P = P§- (8)

where pf are the coefficients defined in Eq. (6), which

considers only the Upyyns mixing elements. For other
Majorana neutrino mixing matrix parametrizations, the
value of the Majorana phases in the above equations can
be reinterpreted, see the Appendix A.
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III. TRANSITION PROBABILITY—
PERTURBATIVE APPROACH

Our selected texture of decoherence matrix D in the mass
vacuum basis (MVB), can be seen as composed by two
matrices: one is a diagonal one with its all element equals
DY = —I" x I. The other one, D9, is composed by its off-
diagonal part, having as non-null only a unique [D"9], =
—T';;(= —=T'};) elements (the diagonal is zero). Since in our
case, the neutrinos are going to be propagating in matter,
and in order to solve the Eq. (2), we need to rotate the
decoherence matrix D to the mass matter basis (MMB). In
the MMB the decoherence matrix D,, is defined as:

D,, = Dy, + Dpl, 9)

where D, = —I" x I is purely diagonal, DY is unaltered by
the rotation, while D2 is the rotated matrix of the non-
diagonal matrix D" in the MVB.

Considering, that the transition probability when neu-
trinos travel through matter is

P =

Va—Vp

(e (0)T ek (1), (10)

+

W =
N =

where 0% (1) = eM0%(0), with M = H,, + D,,. Being H,,,
the Hamiltonian is written in the MMB. Since D¢, is
proportional to the identity matrix, this commutes with H,,
then we have:

on(t) =e

reMntDiign (0) = e Topi(r). (1)

pSO@DE _ (1-eT)
I/ﬂ—ﬂj 3

V3

Sln2923
+ Pyl — 03
28 132\/—( —I)AA

+A%sin (6 — A) —sin (6§ — AA)) cos 20, sin ¢, )

— €08 26),sin03(sin AA — AA) sin ¢1> et

where P2, is the SO probability in matter (r — L), A =
(m} - ml)L/(2E) and A = /2Gpn,L/A, where G is the
Fermi constant, n, is the electron number density and L is
the source-detector distance. The validity of the transition
probability formula relies on having the parameter-
perturbative expansion Iy, 556,53 and [hga, of order:
1072, 1073, and 1074, respectively. For instance, the latter
values can be attained for || =2 x 107>* GeV, and
at DUNE baseline L = 1300 km. Furthermore, to get
the antineutrino transition probability is enough to:

-~ I
SO T 28 2 ; -T
+ P67 ——=sin 20,,sin°0,3 sin ¢ e

(((1 —A?)cos b+ A% cos (6 — A) — cos (6 — AA)) cos ¢,

- in 26 AA
e+ Tgan i P <2sin2 <7> c0s 20,3 cos ¢,

Given that 0% (0) = ¢/%(0) we can rewrite the probability in
the following way:

+ 57 (el (0)) ¢ (1). (12)

W | =
l\)l'—‘

Vg—lp

The solution of ¢%(¢), which is based on a power series
solution expanded in 6,3, ay = Am?,/Am?; and a single
I[;; =T;t, is shown in the Appendix B. It follows the
procedure given in [39].

After assessing the magnitude of the CP-odd terms in
the transition probability per each one of the off-diagonal
elements I';; (those who activate the Majorana phases),
fixed at their maximum absolute allowed values, we
conclude that I',g = —I'/+/3 gives us the most significant
deviation from the standard oscillation formulas. The
maximum absolute allowed values of I';; are obtained,
individually, through applying the complete positivity
conditions [44]. Since all the diagonal elements are equal
to —I, the aforementioned maximum values can be written
in terms of this singular parameter. In the Appendix C is
displayed the correspondence between each off-diagonal
elements, I';;, its ability to turn on CP-odd or CPT-odd
terms and its connection to either ¢, ¢,, or A¢p = ¢ — ps.

Therefore, taking the off-diagonal part of the decoherence
matrix D, 4 formed only with non-null —I"54, the following
semianalytical perturbative v, — v, transition probability
formula for SO plus decoherence (DE) is obtained:

+ ((1 — A?)sins

V3AZA
(13)
I
¢y > —¢1. 6> =6 and A — —A, meanwhile, the v,

survival probability formula is not shown due to its
negligible decoherence effect. It is important to point out
that ¢, is not considered because it appears in higher-order
terms that have negligible contribution in the probability.

The v, — v, transition probability displayed in Fig. 1
is numerically calculated at DUNE baseline and for the
maximum value of Iy =-I/v/3, with I'=25x
1072* GeV and the following values for the SO parameters,
taken from [49] 912 = 33.820, 913 = 8.610, 923 = 48.30,
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FIG. 1. Oscillation probability depending on the neutrino

energy for DUNE experiment. The figures (a) and (b) represent
the v, — v, and v, — 1, appearance channels respectively. The
off-diagonal decoherence parameter is I'»g = —I'/v/3. We con-
sider [yg = —'/V/3, 8cp/m = 1.4, and T’ = 2.5 x 1072* GeV.

Am3, =7.39 x 1075 eV2, and Am3; = 2.523 x 1073 eV?
(normal hierarchy), that are going to be fixed in this paper.
The Dirac CP phase is taken as: ¢y /7 = 1.4 inspired in
the hint given by the T2K experiment [50]. From this figure
it is notorious the energy-independent increase of the
SO @ DE probability respect to standard one, regardless
the value of ¢, a feature that has been already pointed out
in [39,40], for other shape of the decoherence matrix.
However, the intensity of this increment depends on ¢,
for example, in case of ¢;/7x=1.5 (¢/x =0.5) the
SO & DE neutrino (antineutrino) probability grows much
less than its antineutrino (neutrino) counterpart. For
¢ /7 =0 the gain is proportionally the same for both,
neutrinos or antineutrinos.

In order to quantify the CP violating effects from the
extra terms containing the Majorana phase given in our
perturbatives formulas, we use the CP violation asymmetry
AP = Pvu—wf - Pl_/#—n_/(,:

o _
APSO®DE [ APSOE_F + ?Sin 2012Si1’12623 sin ¢1€_F + -
(14)

here it is displayed only the leading term T',g ~ O (0.01)
taken ',y = —I'/ /3, which is its maximum allowed value.
The predictions from Eq. (14) are illustrated in Fig. 2 where
the v, = v,(0, — 7,) transition probability is numerically
calculated at DUNE baseline for I'yg = —I'/ \/§ with
I'=25x10"2* GeV. In Fig. 2 we see how the overall
negative (positive) sign of the decoherence contribution for
¢ /r=1.5 (¢;/x =0.5) diminish (increases) the AP
amplitude, while for ¢,/z = 0.0 is, as expected, nearly
equal to the SO case.

IV. SIMULATION AND RESULTS

The DUNE and T2HK simulated data samples are
generated with GLoBES [51,52] and nuSQuIDS [53]
introducing the configuration and inputs, such as the

T T 17 T T T T T 171
¢1/m € [0:2]
——— ¢1/m=0.5
~ O0.1F
[N
1
S
a9
|
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X
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FIG. 2. CP asymmetry depending on the neutrino energy. The

off-diagonal decoherence parameter is I',g = —I'/+/3. We con-
sider S¢cp/m =14, and T' = 2.5 x 1072* GeV.

systematic uncertainties, from [45,46,54,55], and select-
ing the optimized fluxes for neutrino and antineutrino with
5 years of exposure time per each mode for DUNE with a
40-kt detector. While for T2HK, with 258-kt detector, we
consider 3 and 9 years for neutrino and antineutrino mode,
respectively. These simulated samples are created for non-
null values of I'™¢ and ¢{"¢ and for a value of the Dirac
CP violation phase set on the measurement performed by
the T2K experiment: 2% /7 = 1.4 [50]. At this point it
is important to mention that due to the small statistics
and the large size of the uncertainties, we disregard the
measurement of the Dirac CP violation claimed by the
NOvVA experiment, which is 6cp/7 ~0.82 [56]. In this
analysis, the T2K measurement is considered as the true
value of the Dirac CP violation phase since it should be
unaltered by any quantum decoherence effects. This is
because of the small size of the higher decoherence
contributions that would be T ~ ©(0.001), a consequence
of combining the source-detector distance of the T2K
experiment with the I" elected for this study. It should be
expected, that the T2HK experiment, with the same
source-detector distance, would be also unaffected by
the quantum decoherence effects. Within our analysis, the
T2HK Dirac CP violation phase simulated measurement,
which is an upgrade in the precision of the one performed
at T2K, will be used as a reference point with the
expectations at DUNE. The y? analysis for DUNE and
T2HK relies on the comparison between the SO phenom-
ena, adopted as theoretical hypothesis, and simulated data
that incorporates the quantum decoherence effects, where
the prescription given in [40,57] is followed. The calcu-
lation of the Ay? is described by:

2 __ ,2(ptest stest. ptrue Strue ytrue ptrue
Ay* = (015", 6¢p: 015°, 6¢p . T, @)

~ K O3 61003, 555 T ) (15)
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FIG. 3. Ay? contours (2 dof) considering the effects of

decoherence with Majorana phases on the standard oscillation
fits. The solid and dashed lines are decoherence with '3 =
-/ /3 for the DUNE and T2HK experiments, respectively. The
left column is I' = 2.5 x 107> GeV and the right column is
I =3.5x1072* GeV. We consider §%% /7 = 1.4.

where i and 6, are the best-fit points which minimizes
the y?, considering priors at 3¢ for the rest of the oscillation
parameters but §-p. The DUNE and T2HK Ay? contours,
projected into sin?@;5 vs Scp planes and obtained after
marginalizing over the rest of SO parameters, are presented
in Fig. 3. As expected, for T2HK, the sin® 0% and &t, are
similar to the true ones being unmodified by the parameters
chosen for decoherence. Meanwhile, for DUNE there is a
slight increase of sin” @11t respect to the sin’673¢(=0.0224),
explicitly shown in Table I. This increment is the conse-
quence of trying to adjust the theoretical hypothesis, SO,
with the energy-independent increase of the SO @ DE
probability amplitude embodied in the data, and modulated
by the intensity of I' [see the third term of Eq. (13)].

The 6, for DUNE, when ¢, /7 = 1.5, is moving away
from 685 /n(=1.4) toward ~z, minimizing the magnitude of
the CP violation asymmetry. For ¢, /7 = 0.5 the 5, takes
almost exactly the value of the true one going in the direction
to maximize the CP violation asymmetry. Both features,

TABLE 1. Fitted values for sin?#,3, 6cp and their respective
shifts in terms of ¢ units. We consider §&5 /7 = 1.4.

r=25x10%GeV ¢ /x=05 ¢/x=10 ¢/a=15

sin’ @114 0.0241 0.0242 0.0247
N, 0310 0.340 0.55¢
St /n 1.43 1.33 1.13
N, 0.080 1.19¢ 4340
r=35x10%*GeV ¢ /x=05 ¢/x=10 ¢ /a=15
sin’ @114 0.0247 0.0250 0.0256
N, 0.540 0.61lc 0.870
S, /n 1.44 1.28 1.06

N 0.140 2.37¢c 5470

(22

expressed numerically in Table I, can be explained from the
need to accommodate the reduction (increase) of AP, when
¢, /m = 1.5(0.5), seen in Fig. 2. The quantified dislocation,
in terms of o, from sin? 6% and 6%, (for DUNE) to the
corresponding true ones (for T2HK), for I' = {2.5,3.5} x
107* GeV and ¢,/z = {0.0,0.5,1.5}, is depicted in
Table 1. The aforementioned dislocations are estimated by
identifying the vertical and horizontal projection of the best-
fit point of DUNE on the axes, which center is the T2HK
best-fit point (our true point). The vertical corresponds to the
sin? A1 dislocation and the horizontal to the 5%, dislocation,
as shown in the Fig. 3. For ' = 3.5(2.5) x 107 GeV the
most prominent shift is found for ¢,/z = 1.5 with
0.87(0.55)0 and 5.47(4.34)c for sin® Ot and &1, respec-
tively. While, for I" = 3.5(2.5) x 1072* GeV, the dislocation
of 8, reaches 36(20) and 56(30) when ¢, /7 takes values
below 1.01 (1.03) and 1.30 (1.10), respectively, the sin® 9?% is
clearly stable in front of changes along the ¢b; interval. The
less significant distortion is for ¢, /7 = 0.5 with 0.54(0.31)c
and 0.14(0.08)c for sin? @t and &, respectively. Our
approach has been to assess, separately, the distortion of
S, and sin? O with respect to the 6% and sin’@'%e,
respectively. Through this framework, we can make evident
a very sizable distortion on S¢p. It is clear that if we use an
analysis like the PG-test [58], which measures the compat-
ibility between data sets, the global discrepancy is going to be
lower than the isolated one for J.p. In fact, we obtain
3.40 of discrepancy between DUNE and T2HK for I' =
3.5 x 107%* GeV and ¢, /7 = 1.5.

On the other hand, a way to discriminate between different
values of ¢; is through the ratio (R) of the number of ¢
deviation for sin® @ to the corresponding ones for 5.
In fact, a sort of discernment is achieved, for instance,
for '=3.5(2.5) x107#GeV, R ~0.16(0.13)-0.26(0.29)
for the interval ¢;/z = 1.0, 1.5 reaching values up to
~3.86(3.88) for ¢/x =0.5. A plus that reinforces the
utility of R it is its low variations against changes of I'.
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FIG. 4. DUNE’s ability to constrain the decoherence parameter
and the Majorana phase. The figures (a), (b), (c) and (d) show
e /1074 GeV =2.5,3.5,4.5and5.5, accordingly. The dashed
and solid lines represent the 68% C.L. and 90% C.L. for 2 dof,
while the red, green, and blue lines represent ¢"™¢/z=0.5,1.0,1.5,
respectively.

The aforementioned analysis had the purpose of searching
for distortions in sin? 0 and S, considering pure SO
as a theoretical hypothesis. Now, the aim is to go one step
further and to explore the capacity of DUNE for measuring
the Majorana phase, and also I', under the (SO) plus
decoherence (DE) as theoretical hypothesis, for
¢/m=0.5, 1 and 1.5. We use for I'/107>* GeV = 2.5,
3.5, 4.5, and 5.5. In Fig. 4 the different allowed regions are
displayed considering 68% and 90% C.L. for 2 dof. For
I'/1072* GeV = 2.5 and 3.5 is not possible to clearly
disentangle the value of ¢,/7z = 1.0 at 90% of C.L. from
¢/m=0.5 and 1.5. Meanwhile, for slightly increased
values of '/1072* GeV = 4.5 and 5.5, the value of ¢, /7 =
1.0 is excluded at 90% either for ¢, /= = 0.5 and 1.5, being
able to separate between the chosen values of the Majorana
phases ¢;. Thus, it is seen that DUNE is able to measure
¢ /7 = 1.50£0.35(0.32) and ¢, /7 = 0.50 £ 0.35(0.32)
and T =4.50 4 1.38(5.50 £ 1.42) x 107>* GeV. While
for ¢/7=1.0+0.19(0.15) a T =4.50 £+ 1.42(5.50 £+
1.46) x 1072* GeV is obtained.

All the values of I" used in our analysis are below the
decoherence limits for handmade sources [41] and cannot
be compared with the limits imposed by Ice Cube [59]
since we are considering a nondiagonal scenario for the
decoherence matrix.

V. SUMMARY AND CONCLUSIONS

Assuming the existence of the decoherence environment,
probably caused by Planck scale physics, we demonstrated

the possibility of uncovering the Majorana nature of neu-
trinos in the DUNE experiment. Our approach is at first to
show the strong displacement that it would be exhibited
by the measured value of 6-p at DUNE, in comparison with
the one measured at T2HK, which would be unaffected
by the decoherence effects. For a decoherence parameter
I'=3.5x107* GeV, the aforementioned displacement
can be as large as 5.47¢ for a Majorana phase ¢, /7 = 1.5.
Next, we assessed the power of DUNE experiment in
constraining the Majorana phase achieving, for instance,
a precision of 23% (21%) for ¢,/m =15 with T'=
4.5(5.5) x 1072* GeV. These values of precision are com-
patible with the current results on the Dirac CP phase
reached by the T2K experiment [50]. Finally, we can
conclude that, if decoherence exists in the manner is
predicted here, there would be an interesting chance for
DUNE to perform a first time a measurement of the
Majorana CP phase, with some reasonable uncertainties.
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APPENDIX A: OTHER PARAMETRIZATIONS OF
THE MAJORANA NEUTRINO MIXING MATRIX

1. Symmetrical parametrization of the mixing matrix
The elements of symmetric parametrization of the

mixing matrix, given in Eq. (5) in [60], assuming the
relation 6 = ¢p;3 — ¢ — ¢h3, can be written as follows:

Uel - Uel

UeZ - Ue2e_i¢12

U, — U€3e—i(¢23+¢12)

Uﬂl - Uﬂleid"z

Uﬂz - Uﬂz

Ugs— Uﬂ3e"'¢23

U, — Urlei(¢23+¢]2>

U‘rZ - U72ei¢23

U‘L’3 - U‘r3 (Al)

where ¢3, ¢, and ¢,3 are the CP phases used in [60].
The corresponding pf are described by the following
relations:
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TABLE II. Parametrizations comparison.

Sym < PDGI Sym <> Our Work ~ PDGI <> Our Work
b2+ b < & b2 < & $1 < Ag

¢ < ¢ PR ) b < ¢

$n < AP P23 < —AP Ap < -

P = P cos iz — p§ sin b
p3 = p5cos iy + pising,
P5 = ps

Py = p§cos (fia + ¢a3) — pSsin (h1a + ¢a3)
ps = p5cos (o + ¢oz) + pf sin (h1a + do3)
P = P COS oz — p7 sinys
p7 = P7 €08 o3 + p7 sin ¢h;
Pg = P (A2)
where p§ are given in Eq. (6)

2. Particle data group parametrization type I: PDG I

Here we analyze the mixing matrix parametrization
given in [61], which includes the Majorana phases ¢,
and ¢,:

Utsjorana = Upnins-diag(exp iy, exp ighy, 1) (A3)

The corresponding p% are described by the following
equations:

Pl = pfcosAg + pf sin Ag
p3 = p3 cos Ag — pisin Ag
P5 =P

P = pqcosgy — pssing,
ps — pscos gy + pg sin g,
Pg = Pg COS hy — p7 sin ¢y
p7 = p7€0s ¢y + pg sin ¢y
P = P§- (A4)

Below, we present in Table II a summary of the
equivalences between the different parametrizations.

where A¢ = ¢ — ¢ps.
APPENDIX B: PROBABILITY CALCULATION

For solving ¢/%(¢) we must start with the next differential
equation:

0% = (Hy, + D2)ols, (B1)

which is similar to Eq. (2) presented in our letter. Before
continue, we must point out that the following procedure
is similar to the one given in [39]. The Eq. (B1) can be
simplified using this change of variable:

& (1) = eMmig%(1), (B2)
then, the Eq. (B1):
Mn'” + H,,eMn'p* = (H,, + Dad)etn'p*  (B3)
thus we get:
¢" = e Dl (B4)

the matrix e Hn/D2de~Hn’ can be expanded perturbatively

in power series of the small parameters 65, and o, which
turns out to be

e Huipnd o-Hyr — [‘ij<ﬁ(0) + 0,3D5) 4 g D) 4 .. )
(B5)

we can factor out the decoherence parameter I';; since it is a
common factor of all the elements in the decoherence
matrix D24 in the MMB (a consequence of its definition in
the mass vacuum basis that is an off-diagonal matrix with
only non-null terms in a given the —I';; element). Replacing
Eq. (BS) into Eq. (B4):

0 = Fij(D<O) +0,3D5) 4 g, D) 4 .. 9% (B6)
the above equation can be solved perturbatively treating ¢*
as a power series in 63, @y and I';;:

0% = @(0) + 913@(9> + aA@(“A) + aA913@(aA913) + ..

+ Fl.j@(rif) + Fl.j913@(rif013) + rl.jaA@(rijaA) +--- (B7)
Then substituing Eq. (B7) into Eq. (B6) we produce a
sequence of first order differential equations each of
them collecting equal power terms. The I';;-independent

terms of the g% expansion: 3 4 6,309 + a,o\®) +
ap0,30'%%3) + ... corresponds to the initial condition
0%(0), which is constant in time and coincides with the
initial condition for the standard oscillation case, since at
that instant the environment is decoupled (not interacting)
with the neutrino system. Considering all the latter plus
the condition that ¢/¢(0) = ¢%(0), we can rewrite Eq. (B2)
as follows:

() = eM(i(0) + Iyj(...))-, (B8)
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with T; ; = I';jt. The second term on the right-hand side of
the equation above contains the explicit solution of the
power series of @“.

APPENDIX C: CP-ODD, CPT-ODD TERMS AND
MAJORANA PHASES

In Table III we present a classification of the correspon-
dence between each one of the off-diagonal elements T';
and ¢, ¢,, or A¢, also pointing out its connection with
CP-odd, CPT-odd terms or both in the oscillation prob-
abilities which incorporates quantum decoherence.

TABLE 1II. Violation of symmetries by nondiagonal
decoherence elements and their dependence on the Majorana
phases.

Non-null Majorana

CPV CPTV phase
i3, T3, Tig, Tog, Tip Tz, Tog, o o
D34, T35, Tyg, T'sg, Tys I35, T'sg, Tys 3
[39, 36, Tegs Te7: I T'37, Iy, Iy Ag
iy Doy, Tis, Tps [og, Tys 1,92
6, Ty, Tag, Ty [z, Tyg 1, AP
Ty, U7, T'sg, T'sy [y7, Tsg ¢y, A
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