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We show the possibility to discover the neutrino nature by measuring the Majorana CP phase at the
DUNE experiment. This phase is turned on by a decoherence environment, possibly originated by physics
at the Planck scale. A sizable distortion in the measurement of the Dirac CP violation phase δCP is observed
at DUNE when compared with T2HK measurement due to decoherence and the non-null Majorana phase.
Being that, when the measurement of the Majorana phase is performed at DUNE, it reaches a precision
of 23ð21Þ% for a decoherence parameter Γ ¼ 4.5ð5.5Þ × 10−24 GeV and a Majorana phase equal to 1.5π.
The latter precision is similar to the one obtained at the T2K experiment at its current Dirac CP violation
phase measurement.
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I. INTRODUCTION

The origin of neutrino masses is one of the most relevant
questions of modern elementary particle physics [1,2]. The
Standard Model (SM) Higgs mechanism could generate the
neutrino masses if they were Dirac particles. However, this
SM alternative does not explain why the neutrino masses are
less than one-millionth of the electron’s mass, the smallest
charged lepton. The general belief is that the latter is resolved
through the seesaw mechanism, being the most inexpensive
case when neutrinos are Majorana particles [3–15]. The
Majorana neutrinos, a fermion that is its own antiparticles,
imply the total lepton charge violation, a conserved number
within the SM processes [16,17]. Therefore, the quest for
elucidating the Majorana nature of neutrinos is one of our
best chances to learn about what is beyond the SM. The
usual way to look for Majorana neutrinos is using the
neutrinoless double beta decay, a lepton charge violating
process not allowed by the SM [18–21]. Until now, there is
no signal from the latter [22–25] or other ways of proposing
searches for Majorana neutrinos [26–29].
The standard oscillation neutrino (SO) probabilities

take the same form regardless of the neutrino nature. Only
the Dirac CP phase is observable while the two other CP
violation phases, when the neutrino is Majorana, are
absorbed [30]. However, if we suppose a new physics

(NP) phenomenon, subleading to the SO mechanism,
exists, the latter situation could be no longer valid.
Therefore, this NP could help the Majorana phases to
emerge in the oscillation probabilities. The NP phenom-
ena we focus on forecasts an interaction between the
neutrino system with the environment at the Planck scale
level, which is characterized by a foamy space-time [31].
The loss of quantum coherence (decoherence) in the
neutrino system is the interaction’s main signature. The
foamy space-time is predicted in the context of strings and
branes [32–34], and quantum gravity [35]. This quantum
decoherence phenomena in the neutrino system have been
vastly studied in the literature [36–41] wherein most of the
cases contain only the damping effects. Nevertheless, the
phenomenology of the interaction between neutrino and a
quantum decoherence environment goes beyond the
damping effects, being that this might add new contribu-
tions to the violation of CP or CPT [42–44]. Through
these kinds of contributions in the neutrino oscillation
formula, we can reveal the neutrino’s Majorana nature.
The observability of the Majorana nature using neutrino
oscillation is a rather novel approach.
At this point it is worth mentioning that our work’s

cornerstone hypothesis is that the Dirac CP violation
phase measured at T2K experiment represents its real
value since it is unaffected by quantum decoherence in
neutrino oscillations. Thus, considering that the effects
of a quantum decoherence environment, coupled with a
nonzero Majorana phase, are sizable in the DUNE data,
our strategy is divided into two steps. The first step is to
assess how much a measurement at the DUNE experiment
[45] of the Dirac CP violation phase can deviate from the
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true one. For this purpose, and taking the pure SO as a
theoretical hypothesis in the fitting, the CP violation
phase obtained at DUNE is compared with the projected
one at the T2HK experiment [46]. The T2HK projected
measurement comes to be an upgrade in the precision of
the CP violation measurement at T2K. The second step,
and final goal in this paper, is to go beyond testing the
DUNE accuracy for determining a Majorana CP phase
simultaneously with the decoherence parameter.

II. GENERAL THEORETICAL FORMALISM

The treatment for a neutrino subsystem embodied in an
infinity unknown reservoir or environment, with which the
former interacts weakly, can be obtained by the Lindblad
master equation [31]:

∂ρðtÞ
∂t ¼ −i½H; ρðtÞ� þD½ρðtÞ�; ð1Þ

where ρðtÞ is the reduced (neutrino) density matrix, obtained
after trace over the degrees of freedom of the environment,
H is the Hamiltonian of the neutrino subsystem and D½ρðtÞ�
is the dissipative term which encloses the decoherence
phenomena. The aforementioned factor can be written as
D½ρðtÞ� ¼ 1

2

P
j ð½Aj; ρðtÞA†

j � þ ½AjρðtÞ; A†
j �Þ. Thus, if we

work in a three-level system the operators ρ, H, and Aj

can be written as follows: ρ ¼ P
ρμtμ, H ¼ P

hμtμ, and

Aj ¼
P

ajμtμ where μ is running from 0 to 8, t0 is the
identity matrix and tk the Gell-Mann matrices (k ¼ 1;…; 8)
that satisfy ½ta; tb� ¼ i

P
c fabctc, where fabc are the struc-

ture constants of SUð3Þ. The Hermiticity of Âj, which is
secured demanding a time-increase Von Neumman entropy,
allow us to write a symmetric D≡Dkj dissipative/
decoherence matrix as:Dkj ¼ 1

2

P
l;m;nðanlÞfknmfmlj, where

anl ¼ a⃗n:a⃗l with components Dμ0 ¼ D0μ ¼ 0, and
a⃗r ¼ fa1r ; a2r ;…; a8rg. The matrix A≡ anl should be pos-
itive [31] in order to fulfill the complete positivity condition
which states that the eigenvalues of the mixing matrix ρðtÞ
should be positive at any time. Besides, given their inner
product structure, theDkj must satisfy the Cauchy-Schwartz
inequalities. Adding the conservation of the probability to
the aforementioned conditions we get the following evolu-
tion equation for ρðtÞ:

_ρ0 ¼ 0; _ρk ¼ ðHkj þDkjÞρj ¼ Mkjρj; ð2Þ

where Hkj ¼
P

i hifijk. The matrix form of the solution of
Eq. (2) is

ϱðtÞ ¼ eMtϱð0Þ; ð3Þ

where ϱ is an eight column vector compose by the ρk
and M≡Mkj. Hence, the neutrino oscillation probability
να → νβ is given by:

Pνα→νβ ¼
1

3
þ 1

2
ðϱβð0ÞÞTϱαðtÞ; ð4Þ

or written in terms of the coefficients ραj ð0Þ:

Pνα→νβ ¼
1

3
þ 1

2

X
i;j

ρβi ð0Þραj ð0Þ½eMt�ij; ð5Þ

where β; α ¼ e, μ, τ and i; j ¼ 1;…; 8.
The coefficients ραj ð0Þ and ρβj ð0Þ encloses the elements

of the neutrino mixing matrix [47]:

ρα0 ¼
ffiffiffiffiffiffiffiffi
2=3

p
ρα1 ¼ 2ReðU�

α1Uα2Þ
ρα2 ¼ −2ImðU�

α1Uα2Þ
ρα3 ¼ jUα1j2 − jUα2j2
ρα4 ¼ 2ReðU�

α1Uα3Þ
ρα5 ¼ −2ImðU�

α1Uα3Þ
ρα6 ¼ 2ReðU�

α2Uα3Þ
ρα7 ¼ −2ImðU�

α2Uα3Þ

ρα3 ¼
1ffiffiffi
3

p ðjUα1j2 þ jUα2j2 − 2jUα3j2Þ ð6Þ

where the Uαj are the matrix elements of the PMNS matrix
(UPMNS) [48] without taking into account the Majorana
phases. Thus, in order to include the latter, it is enough to
make the replacement:

UMajorana ¼ UPMNS:diagð1; e−iϕ1 ; e−iϕ2Þ ð7Þ

where ϕ1 and ϕ2 are the well-known Majorana phases.
Therefore, the coefficients takes the following form:

ρα1 → ρα1 cosϕ1 − ρα2 sinϕ1

ρα2 → ρα2 cosϕ1 þ ρα1 sinϕ1

ρα3 → ρα3

ρα4 → ρα4 cosϕ2 − ρα5 sinϕ2

ρα5 → ρα5 cosϕ2 þ ρα4 sinϕ2

ρα6 → ρα6 cosΔϕ − ρα7 sinΔϕ

ρα7 → ρα7 cosΔϕþ ρα6 sinΔϕ

ρα8 → ρα8; ð8Þ

where ραj are the coefficients defined in Eq. (6), which
considers only the UPMNS mixing elements. For other
Majorana neutrino mixing matrix parametrizations, the
value of the Majorana phases in the above equations can
be reinterpreted, see the Appendix A.

CARRASCO-MARTÍNEZ, DÍAZ, and GAGO PHYS. REV. D 105, 035010 (2022)

035010-2



III. TRANSITION PROBABILITY—
PERTURBATIVE APPROACH

Our selected texture of decoherence matrixD in the mass
vacuum basis (MVB), can be seen as composed by two
matrices: one is a diagonal one with its all element equals
Dd ¼ −Γ × I. The other one, Dnd, is composed by its off-
diagonal part, having as non-null only a unique ½Dnd�ij ¼
−Γijð¼ −ΓjiÞ elements (the diagonal is zero). Since in our
case, the neutrinos are going to be propagating in matter,
and in order to solve the Eq. (2), we need to rotate the
decoherence matrix D to the mass matter basis (MMB). In
the MMB the decoherence matrix Dm is defined as:

Dm ¼ Dd
m þDnd

m ; ð9Þ

where Dd
m ¼ −Γ × I is purely diagonal, Dd is unaltered by

the rotation, while Dnd
m is the rotated matrix of the non-

diagonal matrix Dnd in the MVB.
Considering, that the transition probability when neu-

trinos travel through matter is

Pνα→νβ ¼
1

3
þ 1

2
ðϱβmð0ÞÞTϱαmðtÞ; ð10Þ

where ϱαmðtÞ ¼ eMtϱαmð0Þ, with M ¼ Hm þ Dm. Being Hm

the Hamiltonian is written in the MMB. Since Dd
m is

proportional to the identity matrix, this commutes withHm,
then we have:

ϱαmðtÞ ¼ e−ΓteðHmþDnd
m Þtϱαmð0Þ ¼ e−Γtϱ0αmðtÞ: ð11Þ

Given that ϱαmð0Þ ¼ ϱ0αmð0Þ we can rewrite the probability in
the following way:

Pνα→νβ ¼
1

3
þ 1

2
e−Γtðϱ0βmð0ÞÞTϱ0αmðtÞ: ð12Þ

The solution of ϱ0αmðtÞ, which is based on a power series
solution expanded in θ13, αΔ ¼ Δm2

12=Δm2
13 and a single

Γ̄ij ¼ Γijt, is shown in the Appendix B. It follows the
procedure given in [39].
After assessing the magnitude of the CP-odd terms in

the transition probability per each one of the off-diagonal
elements Γij (those who activate the Majorana phases),
fixed at their maximum absolute allowed values, we
conclude that Γ28 ¼ −Γ=

ffiffiffi
3

p
gives us the most significant

deviation from the standard oscillation formulas. The
maximum absolute allowed values of Γij are obtained,
individually, through applying the complete positivity
conditions [44]. Since all the diagonal elements are equal
to −Γ, the aforementioned maximum values can be written
in terms of this singular parameter. In the Appendix C is
displayed the correspondence between each off-diagonal
elements, Γij, its ability to turn on CP-odd or CPT-odd
terms and its connection to either ϕ1, ϕ2, or Δϕ ¼ ϕ1 − ϕ2.
Therefore, taking the off-diagonal part of the decoherence

matrix Dnd formed only with non-null −Γ28, the following
semianalytical perturbative νμ → νe transition probability
formula for SO plus decoherence (DE) is obtained:

PSO⊕DE
νμ→νe ¼ ð1 − e−Γ̄Þ

3
þ PSO

νμ→νee
−Γ̄ −

Γ̄28ffiffiffi
3

p sin 2θ12sin2θ23 sinϕ1e−Γ̄

þ Γ̄28θ13
sin 2θ23

2
ffiffiffi
3

p ðA − 1ÞAΔ ððð1 − A2Þ cos δþ A2 cos ðδ − ΔÞ − cos ðδ − AΔÞÞ cosϕ1 þ ðð1 − A2Þ sin δ

þ A2 sin ðδ − ΔÞ − sin ðδ − AΔÞÞ cos 2θ12 sinϕ1Þe−Γ̄ þ Γ̄28αΔ
sin 2θ12ffiffiffi
3

p
A2Δ

�
2sin2

�
AΔ
2

�
cos 2θ23 cosϕ1

− cos 2θ12sin2θ23ðsinAΔ − AΔÞ sinϕ1

�
e−Γ̄ þ � � � ð13Þ

where PSO
νμ→νe is the SO probability in matter (t → L), Δ ¼

ðm2
3 −m2

1ÞL=ð2EÞ and A ¼ ffiffiffi
2

p
GFneL=Δ, where GF is the

Fermi constant, ne is the electron number density and L is
the source-detector distance. The validity of the transition
probability formula relies on having the parameter-
perturbative expansion Γ̄28, Γ̄28θ13 and Γ̄28αΔ of order:
10−2, 10−3, and 10−4, respectively. For instance, the latter
values can be attained for jΓ28j ¼ 2 × 10−24 GeV, and
at DUNE baseline L ¼ 1300 km. Furthermore, to get
the antineutrino transition probability is enough to:

ϕ1 → −ϕ1, δ → −δ and A → −A, meanwhile, the νμ
survival probability formula is not shown due to its
negligible decoherence effect. It is important to point out
that ϕ2 is not considered because it appears in higher-order
terms that have negligible contribution in the probability.
The νμ → νe transition probability displayed in Fig. 1

is numerically calculated at DUNE baseline and for the
maximum value of Γ28 ¼ −Γ=

ffiffiffi
3

p
, with Γ ¼ 2.5 ×

10−24 GeV and the following values for the SO parameters,
taken from [49]: θ12 ¼ 33.82°, θ13 ¼ 8.61°, θ23 ¼ 48.3°,
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Δm2
21 ¼ 7.39 × 10−5 eV2, and Δm2

31 ¼ 2.523 × 10−3 eV2

(normal hierarchy), that are going to be fixed in this paper.
The Dirac CP phase is taken as: δtrueCP =π ¼ 1.4 inspired in
the hint given by the T2K experiment [50]. From this figure
it is notorious the energy-independent increase of the
SO ⊕ DE probability respect to standard one, regardless
the value of ϕ1, a feature that has been already pointed out
in [39,40], for other shape of the decoherence matrix.
However, the intensity of this increment depends on ϕ1,
for example, in case of ϕ1=π ¼ 1.5 (ϕ1=π ¼ 0.5) the
SO ⊕ DE neutrino (antineutrino) probability grows much
less than its antineutrino (neutrino) counterpart. For
ϕ1=π ¼ 0 the gain is proportionally the same for both,
neutrinos or antineutrinos.
In order to quantify the CP violating effects from the

extra terms containing the Majorana phase given in our
perturbatives formulas, we use the CP violation asymmetry
ΔP ¼ Pνμ→νe − Pν̄μ→ν̄e :

ΔPSO⊕DE ≃ ΔPSOe−Γ̄ þ 2Γ̄
3
sin 2θ12sin2θ23 sinϕ1e−Γ̄ þ � � �

ð14Þ

here it is displayed only the leading term Γ̄28 ∼O (0.01)
taken Γ28 ¼ −Γ=

ffiffiffi
3

p
, which is its maximum allowed value.

The predictions from Eq. (14) are illustrated in Fig. 2 where
the νμ → νeðν̄μ → ν̄eÞ transition probability is numerically
calculated at DUNE baseline for Γ28 ¼ −Γ=

ffiffiffi
3

p
, with

Γ ¼ 2.5 × 10−24 GeV. In Fig. 2 we see how the overall
negative (positive) sign of the decoherence contribution for
ϕ1=π ¼ 1.5 (ϕ1=π ¼ 0.5) diminish (increases) the ΔP
amplitude, while for ϕ1=π ¼ 0.0 is, as expected, nearly
equal to the SO case.

IV. SIMULATION AND RESULTS

The DUNE and T2HK simulated data samples are
generated with GLoBES [51,52] and nuSQuIDS [53]
introducing the configuration and inputs, such as the

systematic uncertainties, from [45,46,54,55], and select-
ing the optimized fluxes for neutrino and antineutrino with
5 years of exposure time per each mode for DUNE with a
40-kt detector. While for T2HK, with 258-kt detector, we
consider 3 and 9 years for neutrino and antineutrino mode,
respectively. These simulated samples are created for non-
null values of Γtrue and ϕtrue

1 and for a value of the Dirac
CP violation phase set on the measurement performed by
the T2K experiment: δtrueCP =π ¼ 1.4 [50]. At this point it
is important to mention that due to the small statistics
and the large size of the uncertainties, we disregard the
measurement of the Dirac CP violation claimed by the
NOvA experiment, which is δCP=π ∼ 0.82 [56]. In this
analysis, the T2K measurement is considered as the true
value of the Dirac CP violation phase since it should be
unaltered by any quantum decoherence effects. This is
because of the small size of the higher decoherence
contributions that would be Γ̄ ∼Oð0.001Þ, a consequence
of combining the source-detector distance of the T2K
experiment with the Γ elected for this study. It should be
expected, that the T2HK experiment, with the same
source-detector distance, would be also unaffected by
the quantum decoherence effects. Within our analysis, the
T2HK Dirac CP violation phase simulated measurement,
which is an upgrade in the precision of the one performed
at T2K, will be used as a reference point with the
expectations at DUNE. The χ2 analysis for DUNE and
T2HK relies on the comparison between the SO phenom-
ena, adopted as theoretical hypothesis, and simulated data
that incorporates the quantum decoherence effects, where
the prescription given in [40,57] is followed. The calcu-
lation of the Δχ2 is described by:

Δχ2 ¼ χ2ðθtest13 ; δ
test
CP ; θ

true
13 ; δtrueCP ;Γtrue;ϕtrue

1 Þ
− χ2minðθfit13; δfitCP; θtrue13 ; δtrueCP ;Γtrue;ϕtrue

1 Þ ð15Þ

FIG. 2. CP asymmetry depending on the neutrino energy. The
off-diagonal decoherence parameter is Γ28 ¼ −Γ=

ffiffiffi
3

p
. We con-

sider δCP=π ¼ 1.4, and Γ ¼ 2.5 × 10−24 GeV.

(a) (b)

FIG. 1. Oscillation probability depending on the neutrino
energy for DUNE experiment. The figures (a) and (b) represent
the νμ → νe and ν̄μ → ν̄e appearance channels respectively. The
off-diagonal decoherence parameter is Γ28 ¼ −Γ=

ffiffiffi
3

p
. We con-

sider Γ28 ¼ −Γ=
ffiffiffi
3

p
, δCP=π ¼ 1.4, and Γ ¼ 2.5 × 10−24 GeV.
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where θfit13 and δfitCP are the best-fit points which minimizes
the χ2, considering priors at 3σ for the rest of the oscillation
parameters but δCP. The DUNE and T2HK Δχ2 contours,
projected into sin2 θ13 vs δCP planes and obtained after
marginalizing over the rest of SO parameters, are presented
in Fig. 3. As expected, for T2HK, the sin2 θfit13 and δfitCP are
similar to the true ones being unmodified by the parameters
chosen for decoherence. Meanwhile, for DUNE there is a
slight increase of sin2 θfit13, respect to the sin2θtrue13 ð¼0.0224Þ,
explicitly shown in Table I. This increment is the conse-
quence of trying to adjust the theoretical hypothesis, SO,
with the energy-independent increase of the SO ⊕ DE
probability amplitude embodied in the data, and modulated
by the intensity of Γ [see the third term of Eq. (13)].
The δfitCP for DUNE, when ϕ1=π ¼ 1.5, is moving away

from δtrueCP=πð¼1.4Þ toward ∼π, minimizing the magnitude of
the CP violation asymmetry. For ϕ1=π ¼ 0.5 the δfitCP takes
almost exactly the value of the true one going in the direction
to maximize the CP violation asymmetry. Both features,

expressed numerically in Table I, can be explained from the
need to accommodate the reduction (increase) of ΔP, when
ϕ1=π ¼ 1.5ð0.5Þ, seen in Fig. 2. The quantified dislocation,
in terms of σ, from sin2 θfit13 and δfitCP (for DUNE) to the
corresponding true ones (for T2HK), for Γ ¼ f2.5; 3.5g ×
10−24 GeV and ϕ1=π ¼ f0.0; 0.5; 1.5g, is depicted in
Table I. The aforementioned dislocations are estimated by
identifying the vertical and horizontal projection of the best-
fit point of DUNE on the axes, which center is the T2HK
best-fit point (our true point). The vertical corresponds to the
sin2 θfit13 dislocation and the horizontal to the δ

fit
CP dislocation,

as shown in the Fig. 3. For Γ ¼ 3.5ð2.5Þ × 10−24 GeV the
most prominent shift is found for ϕ1=π ¼ 1.5 with
0.87ð0.55Þσ and 5.47ð4.34Þσ for sin2 θfit13 and δfitCP, respec-
tively. While, for Γ ¼ 3.5ð2.5Þ × 10−24 GeV, the dislocation
of δfitCP reaches 3σð2σÞ and 5σð3σÞ when ϕ1=π takes values
below 1.01 (1.03) and 1.30 (1.10), respectively, the sin2 θfit13 is
clearly stable in front of changes along the ϕ1 interval. The
less significant distortion is for ϕ1=π ¼ 0.5with 0.54ð0.31Þσ
and 0.14ð0.08Þσ for sin2 θfit13 and δfitCP, respectively. Our
approach has been to assess, separately, the distortion of
δfitCP and sin2 θfit13 with respect to the δtrueCP and sin2θtrue13 ,
respectively. Through this framework, we can make evident
a very sizable distortion on δCP. It is clear that if we use an
analysis like the PG-test [58], which measures the compat-
ibility between data sets, the global discrepancy is going to be
lower than the isolated one for δCP. In fact, we obtain
3.4σ of discrepancy between DUNE and T2HK for Γ ¼
3.5 × 10−24 GeV and ϕ1=π ¼ 1.5.
On the other hand, a way to discriminate between different

values of ϕ1 is through the ratio (R) of the number of σ
deviation for sin2 θfit13 to the corresponding ones for δfitCP.
In fact, a sort of discernment is achieved, for instance,
for Γ¼3.5ð2.5Þ×10−24GeV, R ∼ 0.16ð0.13Þ–0.26ð0.29Þ
for the interval ϕ1=π ¼ 1.0, 1.5 reaching values up to
∼3.86ð3.88Þ for ϕ1=π ¼ 0.5. A plus that reinforces the
utility of R it is its low variations against changes of Γ.

FIG. 3. Δχ2 contours (2 dof) considering the effects of
decoherence with Majorana phases on the standard oscillation
fits. The solid and dashed lines are decoherence with Γ28 ¼
−Γ=

ffiffiffi
3

p
for the DUNE and T2HK experiments, respectively. The

left column is Γ ¼ 2.5 × 10−24 GeV and the right column is
Γ ¼ 3.5 × 10−24 GeV. We consider δtrueCP =π ¼ 1.4.

TABLE I. Fitted values for sin2 θ13, δCP and their respective
shifts in terms of σ units. We consider δtrueCP =π ¼ 1.4.

Γ ¼ 2.5 × 10−24 GeV ϕ1=π ¼ 0.5 ϕ1=π ¼ 1.0 ϕ1=π ¼ 1.5

sin2 θfit13 0.0241 0.0242 0.0247
Nσ 0.31σ 0.34σ 0.55σ

δfitCP=π 1.43 1.33 1.13
Nσ 0.08σ 1.19σ 4.34σ

Γ ¼ 3.5 × 10−24 GeV ϕ1=π ¼ 0.5 ϕ1=π ¼ 1.0 ϕ1=π ¼ 1.5
sin2 θfit13 0.0247 0.0250 0.0256
Nσ 0.54σ 0.61σ 0.87σ

δfitCP=π 1.44 1.28 1.06
Nσ 0.14σ 2.37σ 5.47σ
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The aforementioned analysis had the purpose of searching
for distortions in sin2 θfit13 and δfitCP, considering pure SO
as a theoretical hypothesis. Now, the aim is to go one step
further and to explore the capacity of DUNE for measuring
the Majorana phase, and also Γ, under the (SO) plus
decoherence (DE) as theoretical hypothesis, for
ϕ1=π ¼ 0.5, 1 and 1.5. We use for Γ=10−24 GeV ¼ 2.5,
3.5, 4.5, and 5.5. In Fig. 4 the different allowed regions are
displayed considering 68% and 90% C.L. for 2 dof. For
Γ=10−24 GeV ¼ 2.5 and 3.5 is not possible to clearly
disentangle the value of ϕ1=π ¼ 1.0 at 90% of C.L. from
ϕ1=π ¼ 0.5 and 1.5. Meanwhile, for slightly increased
values of Γ=10−24 GeV ¼ 4.5 and 5.5, the value of ϕ1=π ¼
1.0 is excluded at 90% either for ϕ1=π ¼ 0.5 and 1.5, being
able to separate between the chosen values of the Majorana
phases ϕ1. Thus, it is seen that DUNE is able to measure
ϕ1=π ¼ 1.50� 0.35ð0.32Þ and ϕ1=π ¼ 0.50� 0.35ð0.32Þ
and Γ ¼ 4.50� 1.38ð5.50� 1.42Þ × 10−24 GeV. While
for ϕ1=π ¼ 1.0� 0.19ð0.15Þ a Γ ¼ 4.50� 1.42ð5.50�
1.46Þ × 10−24 GeV is obtained.
All the values of Γ used in our analysis are below the

decoherence limits for handmade sources [41] and cannot
be compared with the limits imposed by Ice Cube [59]
since we are considering a nondiagonal scenario for the
decoherence matrix.

V. SUMMARY AND CONCLUSIONS

Assuming the existence of the decoherence environment,
probably caused by Planck scale physics, we demonstrated

the possibility of uncovering the Majorana nature of neu-
trinos in the DUNE experiment. Our approach is at first to
show the strong displacement that it would be exhibited
by the measured value of δCP at DUNE, in comparison with
the one measured at T2HK, which would be unaffected
by the decoherence effects. For a decoherence parameter
Γ ¼ 3.5 × 10−24 GeV, the aforementioned displacement
can be as large as 5.47σ for a Majorana phase ϕ1=π ¼ 1.5.
Next, we assessed the power of DUNE experiment in
constraining the Majorana phase achieving, for instance,
a precision of 23% (21%) for ϕ1=π ¼ 1.5 with Γ ¼
4.5ð5.5Þ × 10−24 GeV. These values of precision are com-
patible with the current results on the Dirac CP phase
reached by the T2K experiment [50]. Finally, we can
conclude that, if decoherence exists in the manner is
predicted here, there would be an interesting chance for
DUNE to perform a first time a measurement of the
Majorana CP phase, with some reasonable uncertainties.
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APPENDIX A: OTHER PARAMETRIZATIONS OF
THE MAJORANA NEUTRINO MIXING MATRIX

1. Symmetrical parametrization of the mixing matrix

The elements of symmetric parametrization of the
mixing matrix, given in Eq. (5) in [60], assuming the
relation δ ¼ ϕ13 − ϕ12 − ϕ23, can be written as follows:

Ue1 → Ue1

Ue2 → Ue2e−iϕ12

Ue3 → Ue3e−iðϕ23þϕ12Þ

Uμ1 → Uμ1eiϕ12

Uμ2 → Uμ2

Uμ3 → Uμ3e−iϕ23

Uτ1 → Uτ1eiðϕ23þϕ12Þ

Uτ2 → Uτ2eiϕ23

Uτ3 → Uτ3 ðA1Þ

where ϕ13, ϕ12, and ϕ23 are the CP phases used in [60].
The corresponding ραj are described by the following

relations:

(a) (b)

(c) (d)

FIG. 4. DUNE’s ability to constrain the decoherence parameter
and the Majorana phase. The figures (a), (b), (c) and (d) show
Γtrue=10−24GeV¼2.5;3.5;4.5 and5.5 , accordingly. The dashed
and solid lines represent the 68% C.L. and 90% C.L. for 2 dof,
while the red, green, and blue lines represent ϕtrue=π¼0.5;1.0;1.5,
respectively.
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ρα1 → ρα1 cosϕ12 − ρα2 sinϕ12

ρα2 ¼ ρα2 cosϕ12 þ ρα1 sinϕ12

ρα3 → ρα3

ρα4 → ρα4 cos ðϕ12 þ ϕ23Þ − ρα5 sin ðϕ12 þ ϕ23Þ
ρα5 → ρα5 cos ðϕ12 þ ϕ23Þ þ ρα4 sin ðϕ12 þ ϕ23Þ
ρα6 → ρα6 cosϕ23 − ρα7 sinϕ23

ρα7 → ρα7 cosϕ23 þ ρα7 sinϕ23

ρα8 → ρα8; ðA2Þ

where ραj are given in Eq. (6)

2. Particle data group parametrization type I: PDG I

Here we analyze the mixing matrix parametrization
given in [61], which includes the Majorana phases ϕ1

and ϕ2:

UMajorana ¼ UPMNS:diagðexp iϕ1; exp iϕ2; 1Þ ðA3Þ

The corresponding ραj are described by the following
equations:

ρα1 → ρα1 cosΔϕþ ρα2 sinΔϕ

ρα2 → ρα2 cosΔϕ − ρα1 sinΔϕ

ρα3 → ρα3

ρα4 → ρα4 cosϕ1 − ρα5 sinϕ1

ρα5 → ρα5 cosϕ1 þ ρα4 sinϕ1

ρα6 → ρα6 cosϕ2 − ρα7 sinϕ2

ρα7 → ρα7 cosϕ2 þ ρα6 sinϕ2

ρα8 → ρα8; ðA4Þ

Below, we present in Table II a summary of the
equivalences between the different parametrizations.
where Δϕ ¼ ϕ1 − ϕ2.

APPENDIX B: PROBABILITY CALCULATION

For solving ϱ0αmðtÞ we must start with the next differential
equation:

_ϱ0αm ¼ ðHm þ Dnd
m Þϱ0αm; ðB1Þ

which is similar to Eq. (2) presented in our letter. Before
continue, we must point out that the following procedure
is similar to the one given in [39]. The Eq. (B1) can be
simplified using this change of variable:

ϱαmðtÞ ¼ eHmtϱ̃αðtÞ; ðB2Þ

then, the Eq. (B1):

eHmt _̃ϱα þHmeHmtϱ̃α ¼ ðHm þ Dnd
m ÞeHmtϱ̃α ðB3Þ

thus we get:

_̃ϱα ¼ e−HmtDnd
m e−Hmtϱ̃α; ðB4Þ

the matrix e−HmtDnd
m e−Hmt can be expanded perturbatively

in power series of the small parameters θ13, and αΔ which
turns out to be

e−HmtDnd
m e−Hmt ¼ ΓijðD̃ð0Þ þ θ13D̃ðθ13Þ þ αΔD̃ðαΔÞ þ � � �Þ

ðB5Þ

we can factor out the decoherence parameter Γij since it is a
common factor of all the elements in the decoherence
matrix Dnd

m in the MMB (a consequence of its definition in
the mass vacuum basis that is an off-diagonal matrix with
only non-null terms in a given the −Γij element). Replacing
Eq. (B5) into Eq. (B4):

_̃ϱα ¼ ΓijðD̃ð0Þ þ θ13D̃ðθ13Þ þ αΔD̃ðαΔÞ þ � � �Þϱ̃α ðB6Þ

the above equation can be solved perturbatively treating ϱ̃α

as a power series in θ13, αΔ and Γij:

ϱ̃α ¼ ϱ̃ð0Þ þ θ13ϱ̃
ðθÞ þ αΔϱ̃

ðαΔÞ þ αΔθ13ϱ̃
ðαΔθ13Þ þ � � �

þΓijϱ̃
ðΓijÞ þΓijθ13ϱ̃

ðΓijθ13Þ þ ΓijαΔϱ̃
ðΓijαΔÞ þ � � � ðB7Þ

Then substituing Eq. (B7) into Eq. (B6) we produce a
sequence of first order differential equations each of
them collecting equal power terms. The Γij-independent
terms of the ϱ̃α expansion: ϱ̃ð0Þ þ θ13ϱ̃

ðθÞ þ αΔϱ̃
ðαΔÞ þ

αΔθ13ϱ̃
ðαΔθ13Þ þ � � � corresponds to the initial condition

ϱ̃αð0Þ, which is constant in time and coincides with the
initial condition for the standard oscillation case, since at
that instant the environment is decoupled (not interacting)
with the neutrino system. Considering all the latter plus
the condition that ϱ0αmð0Þ ¼ ϱ̃αð0Þ, we can rewrite Eq. (B2)
as follows:

ϱ0αmðtÞ ¼ eHmtðϱ0αmð0Þ þ Γ̄ijð…ÞÞ:; ðB8Þ

TABLE II. Parametrizations comparison.

Sym ↔ PDG I Sym ↔ OurWork PDG I ↔ OurWork

ϕ12 þ ϕ23 ↔ ϕ1 ϕ12 ↔ ϕ1 ϕ1 ↔ Δϕ
ϕ23 ↔ ϕ2 ϕ12 þ ϕ23 ↔ ϕ2 ϕ2 ↔ ϕ1

ϕ12 ↔ Δϕ ϕ23 ↔ −Δϕ Δϕ ↔ −ϕ2
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with Γ̄ij ¼ Γijt. The second term on the right-hand side of
the equation above contains the explicit solution of the
power series of ϱα.

APPENDIX C: CP-ODD, CPT-ODD TERMS AND
MAJORANA PHASES

In Table III we present a classification of the correspon-
dence between each one of the off-diagonal elements Γij
and ϕ1, ϕ2, or Δϕ, also pointing out its connection with
CP-odd, CPT-odd terms or both in the oscillation prob-
abilities which incorporates quantum decoherence.
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