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We study the tagging of Higgs exotic decay signals using different types of deep neural networks
(DNNs) while focusing on the W�h associated production channel followed by Higgs decaying into n b
quarks with n ¼ 4, 6, and 8. All the Higgs decay products are collected into a fat jet, to which we apply
further selection using the DNNs. Three kinds of DNNs are considered—namely, the convolutional neural
network, the recursive neural network, and the particle flow network (PFN). The PFN can achieve the best
performance because its structure allows one to enfold more information in addition to the four-momenta of
the jet constituents, such as the particle identifier, and tracks the parameters. Using the PFN as an example,
we verify that it can serve as an efficient tagger even though it is trained on a different event topology with
different b multiplicity from the actual signal. The projected sensitivity to the branching ratio of Higgs
decaying into n b quarks at the HL-LHC are 10%, 3%, and 1%, for n ¼ 4, 6, and 8, respectively.
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I. INTRODUCTION

Higgs exotic decay is a promising window for probing
new physics. The Higgs portal can provide the most
relevant coupling between the Higgs boson and new
physics, while its narrow Standard Model width enhances
the sensitivity to exotic decay modes. Information on the
exotic decay extracted from measurements of Higgs prop-
erties [1–3], while useful, is less sensitive. At the same
time, exclusive searches targeting specific channels are less
efficient in casting a wide net. It would be useful to develop
strategies that can bridge these two extremes.
As a benchmark scenario, we consider a dark sector

consisting of multiple dark scalars [4–15]. Owing to their
mixing with the Higgs boson, the final decay products
would be heavy fermions, such as b jets. At the same time,
there could be cascade decays among the dark scalars,
resulting in a variety of final states with different b
multiplicities. As such, this furnishes a good example in

which a more universal “tagger” (rather than focusing on a
particular final state) could be beneficial.
It is challenging to develop such a strategy. Searches

based on simple cuts run the risk of being too tailored to a
specific feature or being too inclusive (and hence less
sensitive). It is a place where some of the machine learning
techniques can shine. In this paper, we test several deep
neural networks (DNNs) with the benchmark signal. These
include the convolutional neural network (CNN) [16–22],
the recursive neural network (RecNN) [23–25], and the
particle flow network (PFN) [26]. See Refs. [27,28] and the
references therein for reviews of the DNN applications in
LHC physics. In addition to comparing their performance
on an individual channel, we also consider the universal
applicability by testing them in the channels that they are
not trained on.
The rest of this paper is organized as follows. Section II

describes the details of the benchmarks as well as the
preparation of machine learning data. Various DNNs are
built and trained to distinguish the signals from back-
grounds, as described in Sec. III. Their performances are
then compared in Sec. IV, where the current bound and
projected reach of the exotic decay branching ratios are also
given. We conclude in Sec. V.

II. THE BENCHMARK PROCESSES

We consider the following Higgs exotic decay scenarios:
(1) The 4b channel: h → a0a0, a0 → bb̄.
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(2) The 6b channel: h → a0a0, with one of the a0 → bb̄
and the other a0 → a1a1, followed by a1 → bb̄.

(3) The 8b channel: h → a0a0, with both a0 → a1a1,
followed by a1 → bb̄.

Here a0 and a1 are the new light neutral scalars, whose
masses are chosen as M0 ¼ 30 GeV and M1 ¼ 12 GeV,
respectively, as benchmarks. For the production mecha-
nism, we consider theW�h process with the leptonic decay
W� → l�ν. The main background is the Standard Model
(SM) W� þ jets with W� → l�ν, and the tt̄ with semi-
lepton decay. We consider the case in which all of the Higgs
decay products are clustered into a fat jet [29].
We write the model file of Higgs exotic decay with the

FeynRules package [30]. The parton-level events of signal
and backgrounds at the 14 TeV LHC are simulated using
the MadGraph5_aMC@NLO [31] package. The events are
matched to þ1 jet final states and then interfaced to
PYTHIA8 [32] for parton shower and hadronization, and
to DELPHES3 [33] for fast detector simulation. We use the
CMS detector configurations as the detector setup.1 We
modify the b-tagging efficiency (and mistag rates for c-jet,
light-flavor jets) to 0.77 (and 1=6, 1=134) according
to Ref. [34].
To suppress the background, we require the final state to

have exactly one charged lepton with

pl
T > 25 GeV; jηlj < 2.5;

plþ=ET
T > 200 GeV; MT < 100 GeV; ð1Þ

where the transverse mass is defined as

MT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pl

T=ETð1 − cosΔϕÞ
q

; ð2Þ

with Δϕ being the azimuthal angle difference between l�
and =ET . We also demand at least one fat jet reconstructed by
the anti-kt algorithm with ΔR ¼ 1.5 and

200 GeV < pJ
T < 500 GeV; jηJj < 2.5: ð3Þ

The fat jets are trimmed by Rcut ¼ 0.3 and fcut ¼ 0.05 [35].
Next, the small-R jets are clustered using an anti-kt
algorithm with R ¼ 0.4, and b-tagged ones within

pb
T > 25 GeV; jηbj < 2.5; ð4Þ

are vetoed to suppress the tt̄ background. Finally, we
require the mass of the leading fat jet to be in the Higgs
mass window

100 GeV < mJ < 150 GeV ð5Þ

and treat this jet as the Higgs candidate. The cut flows for
signals and backgrounds based on the leading-order (LO)
cross sections are listed in Table I, where we also give the
cross sections for the SM W�h → l�νbb̄.2 In particular,
the composition of the data after preselection cuts in our
sample is W� þ jets: tt̄: W�h ¼ 0.9337∶0.0660∶0.0003.
Beyond LO, the next-to-leading-order K factor for the
high-pT W�h production is ∼1.5 [29,36,37]. While for the
main backgrounds, the K factors for the SMW� þ jets and
tt̄ backgrounds are ∼1.5 and ∼1.6, respectively, at next-to-
next-to-leading order [38–44]. Therefore, the LO-based
analysis is not affected too much by the higher-order
corrections.

III. BUILDING DIFFERENT DNNs

Around 30,000 events for each channel are generated,
with 80% and 20% of the sample devoted to the training
and validation/test datasets, respectively. We build DNNs
to classify a specific exotic decay signal W�h → l�νnb
(with n ¼ 4, 6, or 8) from the backgrounds. We focus
on the W� þ jets and tt̄ backgrounds for the study, and

TABLE I. The cut flow table for the preselection cuts before applying deep neutral networks. For the signals, the cross sections are
given under the assumption of 100% branching ratios, e.g., for the l�ν4b channel we assume Brðh → 4bÞ ¼ 100%. For the SM W�h,
we have used the branching ratio Brðh → bb̄Þ ¼ 58% [45].

Higgs exotic decay SM

Cross section (fb) l�ν4b l�ν6b l�ν8b W� þ jets tt̄ W�h

Boosted l� 8.21 7.66 7.04 2.53 × 105 6.21 × 103 5.48
Fat jet 7.01 6.56 6.03 2.01 × 105 4.95 × 103 4.66
b veto 6.17 5.80 5.35 1.96 × 105 2.17 × 103 4.07
Mass window 3.34 3.19 2.99 5.66 × 103 400 2.08
Efficiency 1.37% 1.36% 1.34% 0.96% 0.25% 1.31%

1We change the isolationΔR parameters for electron and muon
to 0.2 and 0.3, respectively, for increasing the signal acceptance
with high multiplicity final states.

2To improve the event generation efficiency, without loss of
generality we require at least one final state (light) quark or gluon
with pT > 100 GeV and 50 GeV for the W� þ jets and tt̄
backgrounds at the event generator level, respectively. These
(light) quarks and gluons include both initial state radiation and
final state radiation, as well as decay products from SM particles
such as W and t.
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correspondingly the DNNs have three output neurons, one
for the signal and the other two for backgrounds. The input
features are basically the momenta of the constituents of
the Higgs-candidate jet, but the concrete representation
depends on the specific DNN that we choose. We use
three different types of DNNs—namely, CNN, RecNN,
and PFN—that are suitable for our purposes. These
DNN constructions are described one by one in the
following.

A. CNN and jet images

We expand the constituents of the Higgs candidate in the
η-ϕ plane to form a 35 × 35 pixel jet image with the
granularity of 0.1 × 0.1. The intensity Ii of a pixel i is
defined as the pT sum of all constituents inside it. We
further normalize the intensities under the L2-norm scheme
so that

P
i I

2
i ¼ 1 [17]. To boost the learning efficiency, a

series of preprocessing procedures are applied to the jet
images: (i) shifting the image so that the pixel with the
highest intensity is in the center, (ii) rotating the image so
that the pixel with the second highest intensity is exactly
below the center of the image, and (iii) reflecting the image
so that the pixel with the third highest intensity always lies
in the right side. An individual jet image is rather sparse in
that only a few pixels are activated. To manifest the pattern
of the images, in Fig. 1 we average 10,000 images for each
channel. One can read from the figure that higher b
multiplicity gives more complex images for the exotic
decay signals.
A CNN is built using the KERAS [46] package (with

TENSORFLOW [47] as the back end) to classify the jet
images. The two-dimensional information of an input
image is first transformed into a one-dimensional vector
by a set of convolutional modules (denoted as CLs, whose
content is a few Conv2D, MaxPooling, and DROPOUT layers)
and then passed through the fully connected layers

(denoted as FLs, which consist of a few DENSE and
DROPOUT layers) to the output layer. The activation
functions are ReLU except for the output layer, where the
SOFTMAX function is used so that the three neuron outputs
r0;1;2 satisfy

0 < r0;1;2 < 1; r0 þ r1 þ r2 ¼ 1; ð6Þ

and hence can be interpreted as the probabilities of the
signal and the two backgrounds, respectively. For a well-
trained CNN, the output of signal events should form a
peak at around r0 ¼ 1.
We train one CNN for each signal channel. The ADAM

optimization is adopted, and the batch size is set at 1000.
The POOL_SIZE of MaxPooling is chosen as (2, 2), the step size
of filtering is 1, and the parameter padding is valid, which
means that the size of the image will reduce as the
convolution applies. To choose the best configuration,
we tune the hyperparameters as follows.
(1) For the CL module, we use two Conv2D layers,

with the filter numbers 32 or 64 per layer. The filter
sizes are chosen as [11, 11], [13, 13], [15, 15],
[11, 7], or [15, 13].

(2) For the FL part, we try the structures of [256, 128],
[256, 128, 64], or [512, 256, 128].

(3) Different initial learning rates (0.0001, 0.0005,
0.001, 0.005, or 0.01) and dropout rates (0.1, 0.3,
or 0.5) are also tested.

The training is stopped early if the accuracy of the
validation data does not increase for ten epochs. This early
stopping can efficiently avoid overfitting.

B. RecNN and natural languages

The application of RecNN in classifying particle physics
data is inspired by natural language processing. In this
paradigm, the momenta are analogous to words, while
clustering the constituents to reconstruct a jet is analogous
to parsing a sentence [23]. The jet clustering history is a full
binary tree whose root is the reconstructed jet, while the
leaves are the jet constituents.
The jet binary tree can be embedded in a vector as

follows [23]: First, for each node k we attach a q-dimen-
sional state vector uk by

uk ¼ σðWuvk þ buÞ; ð7Þ

where vk is the node’s kinetic information (which we
choose as the seven observables p, η, θϕ, E, pT , and E=EJ),
Wu is a q × 7 weight matrix, bu is a q × 1 bias vector,
and σ is the ReLU activation function. Second, for each
node we further define a q-dimensional embedding
vector hk recursively from the leaves to the root of the
binary tree

FIG. 1. The average of 10,000 jet images for CNN. From blue
to red, the color represents the increasing intensities of the pixels.
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hk ¼

8>>>><
>>>>:

uk; if k is a leaf;

σ

0
B@Wh

2
64
hkL

hkR

uk

3
75þ bh

1
CA otherwise;

ð8Þ

where Wh and bh are q × 3q weight matrix and q × 1 bias
vector, respectively, while hkL and hkR , respectively, denote
the embedded vector of the left and right children of node k
(where we require the left child is more energetic by data
preprocessing). Finally, we denote the embedding of the
root as hjet and interface it to a fully connected module with
two layers and q hidden neurons per layer to classify the
signal and backgrounds. The activation of the output layer
is again SOFTMAX for the purpose of a probability inter-
pretation. Through this procedure, we have built up a
RecNNwith event-dependent tree structures; however, they
share the sameweight matricesWu,Wh and bias vectors bu,
bh, which will be optimized automatically when the
RecNN are trained. On the other hand, the embedding
dimension q is the hyperparameter that needs to be chosen
before training.
As suggested by Ref. [23], we apply the kt algorithm to

the constituents of the Higgs candidate for a second step
reconstruction and get the clustering history. The illustra-
tions of signals and backgrounds are shown in Fig. 2. The
RecNN is built and implemented using the PYTHON codes
provided in Ref. [23]. To obtain the best configuration, we
vary the embedding dimension q in 40, 80, the initial
learning rate in 0.001, 0.01, and batch size in 100, 1000 and
compare the learning accuracies. As the training of RecNN
is rather time consuming, we stop the training when the
accuracy of the validation data does not increase for three
epochs.

C. PFN and tracks information

Denoting the observables of a jet constituent as a
d-dimensional vector p ¼ fξ1; ξ2;…; ξdg, then most high-
level jet observables (such as jet mass, multiplicity, track
mass, momentum dispersion, etc.) can be written in the form

O ¼ F

�X
i

ΦðpiÞ
�
; ð9Þ

whereΦðpÞ and FðxÞ, respectively, areRd → Rl andRl →
R functions determined by the observable O, while the
summation index i runs over all constituents of the jet. For
example, for the jet mass mJ, we have ΦðpÞ≡ pμ ≡
ðE; px; py; pzÞ and FðxÞ ¼ xμxμ. More examples can be
found in Ref. [26]. Inspired by this, Komiske et al. [26]
proposed the PFN, which is based on Eq. (9) but treated the
ΦðpÞ and FðxÞ as unknown functions to be constructed
through the machine learning training process. More spe-
cifically, ΦðpÞ [FðxÞ] is represented by a set of fully

connected layers with NΦ (NF) hidden layers and neuron
number nΦ (nF) per layer. We generally use the ReLU

function as the activation, except for the output layer of
FðxÞ, where we use SOFTMAX.
The “primary” setup for a PFN is to use the momenta of

the jet constituents as input observables, i.e., ðpT; η;ϕÞ, and
hence d ¼ 3 for a single particle. However, the advantage
of PFN is that it can enfold extra information besides the
four-momentum. For example, a jet constituent’s particle
identifier (PID) can also be added as a component of p, and
then d ¼ 4. Technically, we use the so-called float PID
function mapping the PID onto a real number between 0.1
and 1.1 [26].3 Such a PFN is denoted as PFN_PID. Since
the final state of the signal contains multiple b jets, the track
information could help distinguish them from the back-
grounds. Therefore, we build an extended PFN (denoted as
“PFN_tracks”) with the track impact parameters d0 and z0

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2. Illustrations of the jet clustering histories from signals
and backgrounds for RecNN. (a) The clustering history of fat jets
from SM W� þ jets. (b) The clustering history of fat jets from
SM tt̄. (c) The clustering history of fat jets from SMW�h. (d) The
clustering history of fat jets from l�ν4b. (e) The clustering
history of fat jets from l�ν6b. (f) The clustering history of fat jets
from l�ν8b.

3We use different numbers only to label charged particles such
as electrons, muons, protons, pions, and kaons. The identification
of charged particles can be done well, especially for electrons,
muons, and charged pions. We did not model the difference
between neutral hadrons such as K0

L and neutrons.
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as two additional p components, and hence d ¼ 6. As
shown in Fig. 3, the impact parameter distributions have a
longer tail for the events with higher b multiplicities. The
smearing effect is important for the impact parameter
reconstruction, and we use the smearing procedure sug-
gested by Wildauer [48].
The PFN classifiers are built using the PyTorch package

[49]. For simplicity, we fix

NΦ ¼ 2; NF ¼ 3; nΦ ¼ nF ¼ 100 ð10Þ

as a benchmark and vary the single-particle embedding
dimension l in 32, 64, 128, and the batch size in 100, 200
to find the best configurations. During training, if there are
three continuous epochs in which the accuracy of the
validation data does not increase, we stop the training to
prevent overfitting.

IV. DNN RESULTS

A. Performance of different DNNs

After training, we apply the DNNs to the test data and get
the neuron output distributions. Owing to the SOFTMAX

function of the output layer, the zeroth output neuron
r0 peaks at around 1 for the signal process and peaks at
around 0 for the two backgrounds. Adding a cut of r0 > rc
helps to enhance the signal significance. By varying the cut
threshold rc from 0 to 1, we can get the signal efficiency
versus background-rejection curves. While the signal
efficiency is defined as

ϵS ≡ Nðr0>rcÞ
S

NðtotalÞ
S

; ð11Þ

the background efficiency is defined as the weighted sum of
the two backgrounds,

ϵB ≡ σB1N
ðr0>rcÞ
B1 þ σB2N

ðr0>rcÞ
B2

σB1N
ðtotalÞ
B1 þ σB2N

ðtotalÞ
B2

; ð12Þ

where B1 and B2 represent the W� þ jets and tt̄ back-
grounds, respectively. We have checked to ensure that

adding SM W�h as an extra neuron output to the DNNs
results in almost no change to ϵB.
The left panel of Fig. 4 shows the ϵS − ð1 − ϵBÞ curves,

which are known as the receiver operating characteristic
curves. The area under curves (AUCs) is also shown in the
figure. Another representation of the curves, i.e., the signal
efficiency ϵS versus background rejection 1=ϵB, is shown in
the right panel of Fig. 4. For the l�ν6b and l�8b channels
in the PFN_tracks case, when the cut on r0 is very close to
1, we might reach a background-free region caused by
limited statistics. In this case, we take a conservative
estimate by replacing the background-free region with a
fixed sample event number Nmin

B ¼ 0.1.
From Fig. 4, we can conclude that CNN, RecNN, and

PFN_primary (i.e., with only four-momentum information
for the jet constituents) can all serve as effective signal-
selection and background-rejection taggers. Moreover,
they have quite similar performances. For example, in the
4b channel, for a signal efficiency ϵS ∼ 0.6, we can have a
rejection ∼10. Since all DNNs with only constituent
four-momentum inputs have similar performances, it is

FIG. 3. The impact parameter distributions d0 and z0 for the
signals and backgrounds for PFN tracks.

FIG. 4. The signal efficiencies versus background rejections for
the three signal benchmarks.
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indicative of the fact that all the four-momentum informa-
tion can be effectively and faithfully extracted by each of
them. For all the DNNs, the performance is better for higher
bmultiplicities. For example, for the l�ν8b sample, we can
have a rejection of 40=50 for a signal efficiency ϵS ∼ 0.6.
This is expected since the signal with higher bmultiplicities
differs more from the major background from (sub)jet
multiplicities and distributions.
Adding more information about the signal indeed leads

to better performances. As discussed in Sec. III C, we can
incorporate the particle ID and track information into the
PFN. The results are also shown in Fig. 4. A gain of about a
factor of 10 is achievable by adding the particle ID. As one
would expect, the displacement from the bmesons imprints
on the track impact parameters and can help improve the
PFN performance. The improvement with additional track
information depends on the multiplicity of b jets, with
much better rejection for higher multiplicities (similar to
the observation we made for other DNNs).
In reality, Higgs exotic decay signals would be a

combination of different processes and b multiplicities.
Without our knowing the composition of the signal, this
represents a more inclusive tagger for a class of final states.
Motivated by this, we should aim for a tagger which can
be applied efficiently even without being trained on
precisely the “right” signal sample. To this end, we further
test the universality of the DNNs by applying a DNN
trained on a specific signal channel to a mixed 4bþ 6bþ
8b sample with an equal amount of event numbers for each
channel. To be concrete, we use PFN_track for this test.
The result of the signal efficiency on the mixed sample is
shown in Fig. 5. The DNNs trained on an exclusive sample
still have a good performance on the mixed sample. For
example, with ϵS ∼ 0.6, they have a rejection 1=ϵB ∼ 500.
The performance is better than that on the exclusive l�ν4b
sample while worse than that on the l�ν8b sample. This
result is expected due to the general improvement of the
performance with the b multiplicity observed earlier. We
also observe here the improvement associated with b
multiplicity for the DNNs trained on the “wrong” sample.

Moreover, DNNs trained with different exclusive samples
have similar performances on the mixed sample.
In Table II, we show the classification accuracies of

DNNs trained on an exclusive sample and applied to
different samples, both exclusive and mixed.4 It is interest-
ing to note that the DNNs trained on lower b-multiplicity
samples perform better when they are applied to higher
multiplicity samples. For example, the DNN trained on
l�ν4b sample (with an accuracy of 73.1%) has an accuracy
of 79.4% on the 8b sample. Again, this observation implies
the DNN trained in 4b samples relies on the b (sub)jet
information. Note that the DNNs also tag the SM h → bb̄
events with 55%=61% efficiency, implying that the b jets
and Higgs masses played important roles in the signal and
background separation. When conducting a search for the
exotic decays, one can apply other well-trained and
optimized taggers for the h → bb̄ process, and hence we
do not take this SM Higgs process as background when
deriving the limits in the next subsection.

B. Branching ratio upper limits for the exotic decay

As an application of the techniques studied here, we
derive a projection for the sensitivity to the Higgs exotic
decays at the LHC and other future hadron colliders.
The projections are obtained as follows. Given a cut

threshold rc, we collect the event numbers of the signal and
background samples that pass the cut, i.e., Nðr0>rcÞ

S and
Nðr0>rcÞ

B1 þ Nðr0>rcÞ
B2 . They can be interpreted as the cross

sections σS and σB after the cut. Therefore, given an
integrated luminosity L at the LHC, the corresponding
expected signal and background event numbers are5

FIG. 5. The universality of the PFN_tracks. The notation
“A → B” in the figure means “trained on process A but tested
on process B.”

TABLE II. Testing the universality of the PFN with track
information.

Classification
accuracies SM

M0 ¼ 30 GeV
M1 ¼ 12 GeV

Trained on

Tested on h→ bb̄ l�ν4b l�ν6b l�ν8b

SM h → bb̄ 67.1% 61.4% 58.1% 56.5%
M0 ¼ 30GeV
M1 ¼ 12GeV

l�ν4b 69.3% 73.1% 69.7% 68.1%
l�ν6b 72.3% 77.0% 76.5% 74.9%
l�ν8b 74.4% 79.4% 79.9% 79.4%

4bþ6bþ8b � � � 76.4% 74.7% 73.6%

4The classification accuracy is defined as the ratio of “correct
predictions” to the length of the test dataset, where the “pre-
diction” for a given event is defined as the neuron with maximal
output. For instance, we count this event’s classification as a
signal if the neurons have outputs with r0 ¼ 0.5, r1 ¼ 0.1, and
r2 ¼ 0.3. By this definition, the accuracy of a random prediction
is 33.3% for a three-neuron output DNN.

5To avoid confusion, we always use NS;B to denote the number
of events in the training and validation/test samples, while we use S,
B to denote the events normalized to a given integrated luminosity.
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S ¼ σS × Br × L; B ¼ σB × L; ð13Þ

with Br being the branching ratio of the exotic decay
channel. If no excess is obtained at the LHC, then the signal
event number upper limit Smax is determined by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
Smax − B ln

�
1þ Smax

B

��s
¼ 2 ð14Þ

at 95% confidence level. Combining Eqs. (13) and (14)
gives the branching ratio upper limit that can be achieved at
a specific luminosity. The results for PFN_tracks at differ-
ent luminosities are shown in Fig. 6. For the l�ν4b
channel, the ATLAS Collaboration has a search on the
nonboosted region at 36.1 fb−1 [50],6 which is also shown
in the figure; our reach is comparable to that of ATLAS. We
can observe the maximal performance working point of
signal efficiency around 0.2=0.3 for 4b and 6b samples, and
around 0.45 for the 8b samples.
In Fig. 7, we have also shown the projection for a couple

of proposed options of future hadron colliders, based on a
simple rescaling by requiring the same signal events as in
the HL-LHC. We can see that our semi-inclusive DNN
taggers can help probe up to 10−4 of the Higgs exotic
decays into multiple b jets, which is comparable to what

one can achieve at future lepton collider Higgs factories
or lepton-hadron colliders with a much lower back-
ground [51,52].

V. CONCLUSION

In this article we study the possibility of probing the
Higgs exotic decays via deep learning methods. We focus
on the W�h associated production with Higgs decaying to
4b, 6b, or 8b final states. Such decays can go through a
cascade of some intermediate scalars the intermediate
light scalars. As a benchmark, we consider two such scalars
a0;1, for which the decay a0 → a1a1 is possible. The decay
products of the Higgs are collected into a fat jet whose
kinetic information is fed to the DNNs for machine
learning.
Comparing the results from CNN, RecNN, and

PFN_primary, we find that although different DNNs use
different representations to enfold the kinetic information,
they yield very similar performances as long as the input
observables include only the four-momentum of the jet
constituents. This implies that each DNN has efficiently
extracted such information. In addition, by adding particle
ID and track information as input observables, the
PFN_PID and PFN_tracks can achieve better perfor-
mances. In addition, for a given type of DNN, signals
with higher b multiplicity have better performances. We
also test the universality of the DNNs by applying a
PFN_tracks model trained on a given signal channel
(e.g., l�4b) to another signal sample (e.g., l�6b or a
mixed sample 4bþ 6bþ 8b). Similar performances are
found, implying that a well-trained tagger for a specific

FIG. 6. Branching ratio upper limits for the exotic decays at
different luminosities, derived by the PFN_tracks trained on the
corresponding channel. For the l�ν4b channel, the ATLAS result
[50] is also plotted as a reference.

FIG. 7. Branching ratio upper limits for the exotic decays at
different colliders driven by a naive rescaling of the 14 TeV
results in PFN_tracks.

6M. Aaboud et al. [50] studied both the W�h and Zh
associated productions. For a proper comparison, here we extract
only the single-lepton channel results.
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channel can also efficiently probe other exotic decay
channels.
The training results from PFN_tracks are used to derive

the projected reach for the Higgs exotic decay branching
ratios. We find that for the 4b channel, the reach is
comparable to the existing ATLAS searches in the resolved
(i.e., nonboosted) kinetic region. At the HL-LHC, Brðh →
4bÞ can be probed up to ∼10%. For the 6b and 8b channels,
the expected reach at the HL-LHC is ∼3% and ∼1%,
respectively. By a simple rescaling, we also obtain the
probe limits at future colliders such as the 27 TeV HE-LHC
and 100 TeV SppC/FCC-hh.
In order for our results to be as independent of the

production channel as possible, we require the Higgs boson
to have large boost, pT > 200 GeV, so that the decay
products of the Higgs boson are relatively far away from
other objects in the event. Hence, we expect the perfor-
mance to be similar in other production channels. As an
example, we also try the Zh production with Z → lþl−

and νν̄ and obtain similar classification accuracies. Future
work is needed to derive the precise performance in the
other channels.
Our study shows that a semi-inclusive Higgs exotic

decay DNN can be constructed with good performance.
One can further explore such semi-inclusive BSM DNNs
for other processes and decay modes. For instance, Higgs
exotic decays into multiple scalars can also provide an
admixture of b jets and light jets (or kaons [53]), and it
would be useful to extend the search in this direction.
Moreover, such a semi-inclusive approach particularly
balances the broadness of the signal space and the use
of kinematics to suppress the background, which will
complement the traditional exclusive searches and possible
more model-agnostic searches. This strategy can be fol-
lowed in many different channels, such asW=Z=h decay to
multiple sterile neutrinos [54], a continuum dark sector
[55–57], and generally hidden strong dynamics. It is also

useful to extend the study of off-shell heavy Standard
Model particle decays, as well as the search of beyond the
Standard Model particle decays such as W0, Z0, top
partners, and heavy Higgs.
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APPENDIX: PERFORMANCE OF THE PFN ON
DIFFERENT MASS BENCHMARKS

To test the universality of our tagger for different mass
choices, we set up another benchmark with M0 ¼ 50 GeV
and M1 ¼ 20 GeV and investigate the performance of
PFN_tracks. The results are shown in Table III. We can
see that the DNN works well on this benchmark; moreover,
the accuracies decrease only slightly when training on one
mass benchmark and testing on another one. Therefore, a
universal tagger with a weak dependence on the unknown
masses of light scalars is plausible. One can explore this
direction further.

TABLE III. The classification accuracies for two different mass benchmarks, extending Table II.

Classification
accuracies SM

M0 ¼ 30 GeV
M1 ¼ 12 GeV

M0 ¼ 50 GeV
M1 ¼ 20 GeV

Trained on

Tested on h → bb̄ l�ν4b l�ν6b l�ν8b l�ν4b l�ν6b l�ν8b

SM h → bb̄ 67.1% 61.4% 58.1% 56.5% 56.3% 55.8% 52.3%
M0 ¼ 30 GeV
M1 ¼ 12 GeV

l�ν4b 69.3% 73.1% 69.7% 68.1% 67.4% 66.6% 62.0%
l�ν6b 72.3% 77.0% 76.5% 74.9% 72.6% 73.1% 70.8%
l�ν8b 74.4% 79.4% 79.9% 79.4% 76.1% 77.6% 77.0%

M0 ¼ 50 GeV
M1 ¼ 20 GeV

l�ν4b 62.4% 69.7% 67.1% 67.0% 72.9% 73.9% 70.7%
l�ν6b 64.6% 73.9% 73.1% 73.1% 76.8% 77.3% 76.6%
l�ν8b 66.5% 77.2% 76.6% 77.5% 79.4% 80.2% 80.1%
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