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We investigate the potential for discovering new physics through the low-energy scattering processes
e−p → e−ðμ−ÞΛc, which could be accessible in the forthcoming ep scattering experiments once adapted to
our proposed setups. In the framework of a general low-energy effective Lagrangian, we demonstrate that,
compared with the conventional flavor-changing neutral-current weak decays of charmed hadrons and the
dilepton productions at high-energy colliders, the low-energy scattering processes can provide more
competitive potentials for hunting the underlying new physics. In some specific leptoquark models, we also
show that promising event rates can be expected for both the scattering processes, and point out a possible
way to distinguish the experimental signals due to the scalar leptoquarks from those of the vector ones.
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I. INTRODUCTION

The absence of flavor-changing neutral current (FCNC)
at tree level in the Standard Model (SM) makes these
processes very sensitive to new physics (NP) beyond the
SM. The FCNC processes in the beauty sector are known to
be an ideal ground for NP searches due to their good
exposure to the short-distance effects [1,2]. However,
similar processes in the charm sector are generally hindered
by the pollution of long-distance hadronic contributions,
which obscures the short-distance NP contributions.
Therefore, to access the short-distance physics in the charm
sector, e.g., in the semileptonic decays of charmed hadrons,
one usually selects particular kinematic phase spaces, in
which the NP-induced rates are much larger than those due
to the hadronic resonance background [3–5].
For a more thorough analysis, however, one may prefer to

look at all the kinematically available regions in these rare
decays, and thus a special treatment of the long-distance
hadronic contributions becomes necessary. This can be
achieved by using, e.g., a Breit-Wigner shape to model
the resonance effect and then shifting it to the short-distance

Wilson coefficients [4–8].1 Similar treatments of the had-
ronic resonance contributions in other charm decays can be
found in Ref. [4]. Nevertheless, it is known that such
treatments leave the nuisance parameters introduced to
describe the resonance effects undetermined, due to the lack
of experimental data [4–8].
Crossing symmetry offers a way to avoid the long-

distance pollution without invoking the kinematic cuts. To
this end, instead of the conventional charmed-hadron weak
decays mediated by the partonic-level c → ul−lþ tran-
sitions, we consider the low-energy scattering process
induced by the transition lu → lc, whose amplitude is
unambiguously connected to that of the former because of
the crossing symmetry. Furthermore, due to its different
kinematics relative to the rare FCNC decays, such a process
is free from the long-distance pollution. To be more
specific, let us consider the process of a low-energy
electron scattered from a proton target and producing a
Λc baryon, i.e., e−p → e−Λc, which can be considered as
the FCNC production of the baryon Λc, analogous to, e.g.,
the electroproduction of the baryon Δð1236Þ through ep
scattering [11]. It is also noted that the high-precision data
of the Hadron-Electron Ring Accelerator have been
recently used to constrain the NP contributions to the
eeqq contact interactions [12]. The underlying processes
involved are essentially the partonic-level eq → eq
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1For an alternative approach to this problem, see, e.g.,
Refs. [9,10], where the hadronic resonance contributions are
obtained through a dispersion relation, modeling the spectral
functions as towers of Regge-like resonance in each channel and
imposing the partonic behavior in the deep Euclidean.
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scatterings at high energy. However, only the interactions
with the same quark flavors have been considered [12].
Recently, thanks to the high luminosity accumulated at the

Large Hadron Collider (LHC), competitive constraints on
the short-distance NP effects in the charm sector can also be
set by recasting resonant searches in the high-pT invariant
mass tails of dilepton in the processes pp → l−lþ [13].
Being essentially the qq̄ → l−lþ scatterings realized in the
high-energy regions, these processes are free from the long-
distance pollution as well. As demonstrated in Ref. [13],
there exhibits an interesting and pronounced complemen-
tarity between the constraints from pp → l−lþ high-pT
invariant mass tails and those from the rare charm decays.
In this paper, we will show that, benefiting from the

development of electron beams, particularly those designed
for light dark-matter searches through electron fixed-target
experiments [14–17], the FCNC scattering process
e−p → e−Λc, once measured with a proper experimental
setup, could be competitive with the conventional charmed-
hadron weak decays and the high-pT invariant mass tails, in
constraining the short-distance NP effects in the charm
sector.
Presumably, the simplest way to access the short-

distance NP effects while without worrying about the
long-distance pollution in charmed-hadron weak decays
is to consider the null test observables, i.e., the observables
that are very small in the SM due to approximate sym-
metries and/or parametric suppression [7,18–20]. In this
respect, the lepton flavor-violating (LFV) FCNC process is
a sound candidate, since it contains practically no SM
contribution due to the smallness of neutrino masses. This
kind of process has been extensively studied in rare
charmed-meson weak decays [6,18–24]. Searches for the
rare FCNC decays of charmed baryons, such as Λc and Σc,
have also been conducted experimentally [22,25,26], while
the corresponding detailed theoretical studies are still
developing [27]. The LFV FCNC processes have also been
explored by analyzing the high-pT dilepton invariant mass
tails in the processes pp → ll0 [28]. Similar to the lepton
flavor-conserving (LFC) case discussed above, the high-pT
invariant mass tails are generally found to offer better
insights into the short-distance NP effects. However, to
have a deep understanding of the whole picture, they must
also be complemented with the rare charm decays [28].
In this paper, we will also consider the process of a low-

energy electron scattered from a proton target and producing
a Λc baryon and a muon, i.e., e−p → μ−Λc. Interestingly
enough, such a LFV scattering process, together with the
LFC one discussed above, can be simultaneously accessible
with one experimental setup. Based on the setup, we will
show that our proposal of the low-energy LFV ep scattering
experiment can yield at least comparable constraints with
respect to those obtained at the high-energy collider [28].
Among the possible new degrees of freedom that can

mediate both the LFC and LFV scattering processes at tree

level, we will focus on the leptoquark (LQ) mediators, which
are expected to exist in several extensions of the SM, such as
in the Pati-Salam model [29] and in the grand unification
theories [30,31]. These hypothetical particles can convert a
quark into a lepton and vice versa and, due to such a
distinctive character, have very rich phenomenology in
precision experiments and at particle colliders [32,33].
Particularly, several anomalies observed recently in charged-
and neutral-current B-meson weak decays have attracted
extensive studies of the LQ interactions, due to their
potentials for explaining the anomalies simultaneously
(see, e.g., Refs. [34–50]). While most of these analyses
have been focusing on the LQ couplings to down-type
quarks, we will concentrate on the LQ interactions involving
the light leptons and up-type quarks. For completeness, we
consider both scalar and vector LQs, even though the vector
ones are more sensitive to the ultraviolet complete models,
which may in turn render the obtained limits on vector LQ
couplings less robust [51]. With the selected experimental
setup, together with the constraints from high-pT invariant
mass tails and the rare charm decays, we will show that the
observation of both the LFC and LFV scattering processes
mediated by the LQs can be expected.
The paper is organized as follows. In Sec. II, we start with

a recapitulation of the generic LQ-fermion interactions that
respect the SM gauge symmetry. To avoid the stringent
constraints set by the null results of experimental searches
for proton decays, we exclude the LQs that can induce tree-
level proton decays. We then present the general effective
Lagrangian that can mediate the two scattering processes. In
the established theoretical framework, we firstly consider in
Sec. III the LFC e−p → e−Λc and then in Sec. IV the LFV
e−p → μ−Λc scattering process, including both the kin-
ematics involved and the proper experimental setups. After
revisiting the currently existing experimental constraints, we
evaluate the prospect for discovering the potential LQ effects
through the low-energy scattering processes in various
aspects. Our conclusions are finally made in Sec. V. For
convenience, the helicity-based definitions for Λc → p form
factors as well as the cross section and kinematics of the LFC
(LFV) scattering process are given in Appendixes A and B,
respectively.

II. THEORETICAL FRAMEWORK

A. Leptoquarks

We start with a brief summary of the LQ interactions with
the SM fermions. Based on their different representations
under the SM gauge group SUð3ÞC × SUð2ÞL × Uð1ÞY ,
both scalar and vector LQs can be classified into five
different categories. Following the notation used commonly
for the LQs in the literature [32,33], we present schemati-
cally in Table I their interactions with the SM fermions,
where the left-handed lepton (quark) doublets are denoted as
Li
L ¼ ðνiL;li

LÞT (Qi
L ¼ ðuiL; diLÞT), while the right-handed
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up-(down-)type quark and lepton singlets as uiR (diR) and e
i
R,

respectively. Note that, for simplicity, neither the coupling
constants nor the Hermitian conjugation are explic-
itly shown.
It is known that not all the LQs can be assigned definite

baryon (B) and lepton (L) numbers, because some of them
can also couple to two quarks, which would then mediate
proton decays at tree level [52–54]. Here, given the strong
constraints on proton stability (or generally the jΔBj ¼ 1
processes) [55], we will focus only on the LQs that cannot
mediate these processes at tree level. This reduces the
number of LQs significantly, and leaves us with only one
scalar R2 and three vector ðU1; U3; Ũ1Þ LQs. One can
further reduce the number to one by forbidding dimension-
five proton decays as well—only Ũ1 would survive in this
case [54]. However, since the dimension-five proton decay
operators can be conveniently eliminated by embedding the
vector LQs into UV complete models or by imposing some
additional symmetry (such as a gauged Uð1ÞB−L) for the
scalar case [52,54], we will keep the LQs that can induce
dimension-five proton decays.
Since the vector LQ U1 cannot mediate the scattering

processes e−p → e−ðμ−ÞΛc at tree level, we will concen-
trate only on the remaining three LQs ðR2; U3; Ũ1Þ, with
their relevant interactions fleshed out, respectively, as

LR2
⊃ R

5
3

2½ðλS2ÞijūiRejL þ ðλ0S2 ÞijūiLejR� þ H:c:; ð1Þ

LU3
⊃ U

5
3

3μðλV3 ÞijūiLγμejL þ H:c:; ð2Þ

LŨ1
⊃ Ũ

5
3

1μðλV1̃ ÞijūiRγμe
j
R þ H:c:; ð3Þ

where we have adopted the four-component spinors for
all the fermions such that, e.g., eR;L ¼ PR;Le, with
PR;L ¼ ð1� γ5Þ=2. Several necessary explanations are in
order. First, we have assigned in Eq. (1) two different
coupling constants ðλS2Þij and ðλ0S2 Þij, with i, j ¼ 1, 2, 3
denoting the generation indices, to characterize the two

different interactions of R2 with the SM fermions. Note that
there exists a minus sign difference between the couplings λS2
in Eq. (1) and yRL2 defined in Ref. [32]. In addition, for the
LQU3, our definition of the coupling λV3 in Eq. (2) differs by
a factor

ffiffiffi
2

p
from xLL3 introduced in Ref. [32]. Second, the

electric charges of the LQ components are characterized by
the rational superscript in each of the LQs, with the
convention Qem ¼ T3 þ Y. Finally, all the fermion fields
in Eqs. (1)–(3) have been given in their mass-eigenstate
basis, which, in our convention, coincides with the flavor
basis of the left-handed up-type quarks and charged leptons.
With such a convention, the left-handed down-type
quark and neutrino flavor states can be transformed into
their respective mass eigenstates through dL → VdL and
νL → UνL, where V and U denote the Cabibbo-Kobayashi-
Maskawa and the Pontecorvo-Maki-Nakagawa-Sakata
matrix, respectively.

B. Effective Lagrangian

The general effective Lagrangian responsible for the
process lu → lðl0Þc can be written as

Leff ¼ LSM
eff þ LLQ

eff ; ð4Þ

where LSM
eff and LLQ

eff represent the SM and the LQ con-
tribution, respectively. In contrast to the charmed-hadron
weak decays, to which both the short- and long-distance
effects from the SM can contribute, only the short-distance
ones play a part in the scattering processes. However, due to
the Glashow-Iliopoulos-Maiani mechanism, the SM short-
distance effects are strongly suppressed [4–7,19,56–61], and
thus we can safely neglect the contribution from LSM

eff , when
discussing the scattering processes.
The general effective Lagrangian LLQ

eff induced by tree-
level exchanges of LQs is given by [51]

LLQ
eff ¼

X
i;j;m;n

f½gLLV �ij;mnðl̄i
Lγμl

j
LÞðq̄mL γμqnLÞ

þ ½gLRV �ij;mnðl̄i
Lγμl

j
LÞðq̄mR γμqnRÞ

þ ½gRLV �ij;mnðl̄i
Rγμl

j
RÞðq̄mL γμqnLÞ

þ ½gRRV �ij;mnðl̄i
Rγμl

j
RÞðq̄mR γμqnRÞ

þ ½gLT �ij;mnðl̄i
Rσ

μνlj
LÞðq̄mRσμνqnLÞ

þ ½gRT �ij;mnðl̄i
Lσ

μνlj
RÞðq̄mLσμνqnRÞ

þ ½gLS �ij;mnðl̄i
Rl

j
LÞðq̄mRqnLÞ

þ ½gRS �ij;mnðl̄i
Ll

j
RÞðq̄mLqnRÞg; ð5Þ

where i, j and m, n represent the flavor indices of leptons
and quarks, respectively. The effective Wilson coefficients
(WCs) g resulting from different LQs will be explicitly

TABLE I. Scalar and vector LQ interactions with the SM
fermions, as well as their representations under the SM gauge
group SUð3ÞC × SUð2ÞL × Uð1ÞY . Our convention for the hyper-
charge Y is given by Qem ¼ T3 þ Y.

Scalar LQ SM representation Vector LQ SM representation

S1QLLL ð3̄; 1; 1=3Þ U1μQ̄Lγ
μLL ð3; 1; 2=3Þ

S1uReR U1μd̄RγμeR
R2ūRLL ð3; 2; 7=6Þ V2μdRγμLL ð3̄; 2; 5=6Þ
R2Q̄LeR V2μQLγ

μeR
S3QLLL ð3̄; 3; 1=3Þ U3μQ̄Lγ

μLL ð3; 3; 2=3Þ
S̃1dReR ð3̄; 1; 4=3Þ Ũ1μūRγμeR ð3; 1; 5=3Þ
R̃2d̄RLL ð3; 2; 1=6Þ Ṽ2μuRγμLL ð3̄; 2;−1=6Þ
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determined case by case, and only the nonvanishing ones
will be shown hereafter.
After integrating out the scalar LQ R2, together with

proper chiral Fierz transformations (see, e.g., Ref. [62]) of
the resulting four-fermion operators to the ones given by
Eq. (5), we get the following nonvanishing WCs:

½ĝLS �ij;mn ¼ 4½ĝLT �ij;mn ¼ −ðλ0S2Þ�inðλS2Þjm;
½ĝRS �ij;mn ¼ 4½ĝRT �ij;mn ¼ −ðλS2Þ�inðλ0S2Þjm;
½ĝLRV �ij;mn ¼ −ðλS2Þ�inðλS2Þjm;
½ĝRLV �ij;mn ¼ −ðλ0S2Þ�inðλ0S2Þjm; ð6Þ

where we have defined g≡ ωĝ with the common factor
ω≡ 1=ð2M2Þ. For simplicity, we will assume that all the
three LQs share the same mass M, which is of course not
necessary the case in nature. For tree-level exchanges of
the vector LQs U3 and Ũ1, on the other hand, only one
nonvanishing WC survives in each case. Following the
same procedure, we obtain

½ĝLLV �ij;mn ¼ −2ðλV3 Þ�inðλV3 Þjm; ð7Þ

½ĝRRV �ij;mn ¼ −2ðλV
1̃
Þ�inðλV1̃ Þjm; ð8Þ

for U3 and Ũ1, respectively.
The WCs and their relations given by Eqs. (6)–(8) hold at

the matching scale μ ¼ M. To connect the LQ coupling
constants λ (λ0) to the low-energy scattering processes, we
must use the renormalization group (RG) equation to evolve
them to the corresponding low-energy scale. Since large
mixings of the tensor operators into the scalar ones can arise
due to QED and electroweak (EW) one-loop effects [63,64],
we take account of both QCD and EW/QED effects. To be
specific, we firstly match at the NP scale μ ¼ M the general
effective Lagrangian given by Eq. (5) to that of the Standard
Model Effective Field Theory (SMEFT), in which the
four-fermion operators are defined in the Warsaw basis
(see Table 3 in Ref. [65]), and then perform the RG running
from μ ¼ M down to the EW scale (μ ¼ mZ). Here we take
M ¼ 1 TeV as the benchmark for the LQ mass, since direct
searches for the LQs at LHC have already pushed the lower
bounds to such an energy scale [66–69].2 Finally, we match
the four-fermion SMEFT operators to the low-energy ones
given at the EW scale, and continue the RG running down to
the characteristic scale μ ¼ 2 GeV. Taking into account both
the one-loop QCD and EW/QED effects [63,70], we obtain
numerically

gχSð2 GeVÞ ≈ 2.0gχSð1 TeVÞ − 0.5gχTð1 TeVÞ;
gχTð2 GeVÞ ≈ 0.8gχTð1 TeVÞ; ð9Þ

where χ ¼ L, R. We neglect the RG running effects of the
vector operators, since these operators do not get renor-
malized under QCD while their RG running effects under
EW/QED are only at the percent level. Note that our result
in Eq. (9) is slightly different from that in Eq. (6.4) of
Ref. [13], which results from the two- and three-loop
QCD effects [63] that have been neglected here.
Together with the result in Eq. (9), the scalar-tensor WC

relations, ĝχSð1 TeVÞ ¼ 4ĝχTð1 TeVÞ, in Eq. (6) would be
modified as

gχSð2 GeVÞ ≈ 9.4gχTð2 GeVÞ; ð10Þ

at the scale μ ¼ 2 GeV for R2, the only scalar LQ that can
generate nonvanishing tensor and scalar effective operators
considered in this work.
The general effective Lagrangian introduced in Eq. (5) is

often presented in another operator basis (see, e.g.,
Refs. [6,19]). For the LFC case, the conversion relations
between the WCs defined in these two bases are given by

C9;10 ¼
ffiffiffi
2

p
π

2GFαe
ðgRLV � gLLV Þ; CS;P ¼

ffiffiffi
2

p
π

2GFαe
gRS ;

C0
9;10 ¼

ffiffiffi
2

p
π

2GFαe
ðgRRV � gLRV Þ; C0

S;P ¼ �
ffiffiffi
2

p
π

2GFαe
gLS ;

CT;T5
¼

ffiffiffi
2

p
π

GFαe
ðgRT � gLTÞ; ð11Þ

where GF is the Fermi constant and the fine-structure
constant αe ≡ e2=4π. For the LFV case, the conversion
relations in Eq. (11) still hold and, to be distinguished from
the LFC case, all the Ci (C0

i) will be replaced by Ki (K0
i).

Note that, for convenience, we will denote the gð2 GeVÞ
simply by g hereafter.

C. Initial- and final-state hadronic effects

Before diving into explicit analyses of the two scattering
processes e−p → e−Λc and e−p → μ−Λc, we now discuss
how to characterize the initial- and final-state hadronic
effects. Since the energy scale of the two processes is in a
few GeV region, it is unnecessary to invoke the parton
distribution functions, while the form-factor description is
sufficient. In fact, similar approaches have been adopted in
the asymmetrical electroproduction of the baryon Δð1236Þ
by polarized ep scattering [11,71], in parametrizing the
parity violation in electron-nucleon scattering (see, e.g.,
Ref. [72]), and recently in evaluating the cross section of
inverse beta decay [73,74].

2Note that the lower mass bounds for vector LQs have been
pushed roughly up to 1.8 TeV [69]. Nonetheless, we choose here
1 TeV for both scalar and vector LQs as a simple demonstration.
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We will adopt the helicity-based definition of the Λc → p
form factors [59,75]. For details, we refer the readers to
Appendix A. The form factors can be calculated in quark
models [76–79], by QCD light-cone sum rules [80], or
through Lattice QCD (LQCD) [59]. We will follow the
following two criteria to select the proper methods: (i) the
form-factor parametrization must be analytic in the complex
q2 plane, with cut along the real axis for q2 ≥ tþ with
tþ ¼ ðmΛc

þmpÞ2; (ii) an error estimation for the form
factors can be provided. The first criterion is crucial, because
the kinematic range of a decay process is different from that
of a scattering process. For example, the kinematic range
of the semileptonic decay Λc → pl−lþ is given by
0 ≤ q2 ≤ t− with t− ¼ ðmΛc

−mpÞ2, whereas that of the
low-energy scattering process e−p → e−Λc is restricted
to q2 < 0. Consequently, to warrant the application of
form-factor descriptions that are conventional for the
charmed-hadron weak decays to the low-energy scattering
processes, the form-factor parametrization must possess
analyticity in the proper q2 range. Remarkably, such a
parametrization scheme already exists. It was initially
proposed to parametrize the B → π vector form factor in
Ref. [81], and has been recently utilized in the LQCD
calculation of the Λc → N (nucleon) form factors in
Ref. [59]. Given the LQCD calculation can also provide
an error estimation, we will thus adopt their latest results
[59] in this work.

III. LFC FCNC PROCESS e − p → e−Λc

In this section, we evaluate the prospect for discovering
the LFC process e−p → e−Λc mediated by the survived
LQs through low-energy scattering experiments. In this
context, based on the general effective Lagrangian given by
Eq. (5) at μ ¼ 2 GeV, we briefly discuss its kinematics and
cross section. The benefit of working in the framework of
low-energy Leff here is twofold. First, the connection of the
low-energy scattering process to the high-energy LQ
models can always be established through the relations
in Eqs. (6)–(8). Second, the low-energy result can be easily
generalized to other ultraviolet models. After building a
suitable experiment setup, we will show that, compared
with the charmed-hadron weak decays and the high-pT
dilepton invariant mass tails, the low-energy scattering
process can provide a competitive insight into the NP
effects in charm sector. Finally, taking into account the
constraints from charmed-hadron weak decays and high-pT
dilepton invariant mass tails, we provide an event-rate
estimation for the LFC scattering experiment in the
survived LQ models.

A. Cross section and kinematics

The differential cross section of the scattering process
e−ðkÞ þ pðPÞ → e−ðk0Þ þ ΛcðP0Þ, with P ¼ ðmp; 0Þ,
P0 ¼ ðEΛc

; p0Þ, k ¼ ðE; kÞ, and k0 ¼ ðE0; k0Þ, is given by

dσ ¼ 1

4½ðP · kÞ2 −m2
em2

p�1=2
d3k0

ð2πÞ3
1

2E0
d3p0

ð2πÞ3
1

2EΛc

× jMj2ð2πÞ4δ4ðPþ k − P0 − k0Þ; ð12Þ

where the amplitude squared jMj2 is obtained by averaging
over the initial- and summing up the final-state spins, with
more details elaborated in Appendix B. Contrary to the
semileptonic charmed-hadron decays, the kinematics of the
scattering process is now bounded by

2Eðm2
Λc

−m2
p − 2mpEÞ

mp þ 2E
≤ q2 ≤ 0; ð13Þ

which indicates that the electron beam energy E must
satisfy condition

E ≥ ðm2
Λc

−m2
pÞ=ð2mpÞ: ð14Þ

B. Relevant experimental constraints

We here revisit briefly the most relevant and stringent
constraints on the effective coefficients ½g�ee;cu from the
charmed-hadron weak decays and the high-pT dilepton
invariant mass tails.

(i) Constraint from D0 → eþe−
The expression of the branching ratio of D0 → lþl−

decay can be found, e.g., in Refs. [6,19], where it is usually
formulated in terms of C and C0. Using the experimental
limit on the branching fraction of D0 → eþe−, BðD0 →
eþe−Þ < 7.9 × 10−8 at 90% confidence level (CL) [82],
and neglecting the SM contributions as in Refs. [6,19], we
obtain

jCS − C0
Sj2 þ jCP − C0

Pj2 ≲ 0.062; ð15Þ

where terms proportional to C10 and C0
10 have been

neglected due to the tiny mass ratio memc=m2
D. Using

the relations in Eq. (11), we can rewrite the constraint as

π2

G2
Fα

2
e
ðjgRS j2 þ jgLS j2Þ ≲ 0.062: ð16Þ

(ii) Constraints from Dþ → πþeþe− and Λc → peþe−
The differential decay distribution of D → Plþl− with

P standing for a pseudoscalar meson has been discussed,
e.g., in Refs. [6,19].3 Using the latest lattice result of
the D → π form factors [83,84], we update the constraint
on the WCs Ci and C0

i set by the measurement of

3Note that the tensor matrix element in Ref. [19] is normalized
bymD þmP, rather than bymD as in Ref. [6]. Here, we adopt the
convention used in Ref. [19].
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Dþ → πþeþe− decay. Currently, the best limit on the
branching fraction of Dþ→πþeþe− is BðDþ→πþeþe−Þ<
1.1×10−6 in the full q2 regions, i.e.,

ffiffiffiffiffi
q2

p
∈ ½0.2;0.95�GeV

and
ffiffiffiffiffi
q2

p
> 1.05 GeV, at 90% CL [22], which yields the

constraint

0.07jC9 þC0
9j2 þ 0.07jC10 þC0

10j2 þ 0.16jCS þC0
Sj2

þ 0.16jCP þC0
Pj2 þ 0.02jCT j2 þ 0.02jCT5j2 ≲ 1: ð17Þ

This translates into the following constraint on g:

π2

G2
Fα

2
e
½0.16ðjgLS j2 þ jgRS j2Þ þ 0.08ðjgLT j2 þ jgRT j2Þ

þ 0.07ðjgRLV j2 þ jgLRV j2 þ jgRRV j2 þ jgLLV j2
þ 2.0Re½gRLV gRR�V þ gLLV gLR�V �Þ� ≲ 1: ð18Þ

In comparison with the D-meson weak decays, studies
on the rare FCNC decays of Λc baryon are much fewer.
Currently, the only existing experimental constraint on
BðΛc → peþe−Þ is set by the BABAR Collaboration
[22]. Theoretical studies of Λc → peþe− exist as well
[27,60,61]. However, no direct constraints on the NP WCs
have been set—the same observation also holds for the
LFV charmed-hadron decays. Therefore, we will concen-
trate on the constraint from Dþ → πþeþe−.
(iii) Constraint from high-pT dilepton mass tails
Due to the high luminosity accumulated at the LHC,

constraining NP through the analysis of the invariant mass
tails of the dilepton in ppðqq̄Þ → eþe− processes at high
pT becomes feasible. Recently, the analysis from the CMS
Collaboration with 140 fb−1 of 13-TeV data [85] has been
recast into the following constraints on g at μ ¼ 2 GeV and
at 90% CL [13]:

jgiV j≲1.9
GFαe
π

; jgL;RS j≲4.7
GFαe
π

; jgL;RT j≲0.76
GFαe
π

;

ð19Þ

where i ¼ LL;RR; LR;RL. Note that, due to the negligible
fermion masses involved in these processes, contributions
from the interference terms, such as gRLV gRR�V and gLSg

R�
T ,

have been neglected [13,28].
We summarize in Table II the aforementioned constraints.

It can be seen that the most stringent constraint on gS results
from the measurement of D0 → eþe−, which unfortunately
sheds no light on gV and gT . Such a deficiency can be
remedied by the measurement of Dþ → πþeþe− decay and
the analysis of high-pT dilepton invariant mass tails in
ppðqq̄Þ → eþe−. Clearly, the latter can provide better
constraints than do the semileptonic D-meson decay.
Nonetheless, a complementarity between the D-meson
decays and the high-pT dilepton invariant mass tails can
indeed be established [13].

The model-independent constraints obtained thus far can
be translated into the LQ cases. To this end, we must take
into account the RG running effects (see Eq. (9)). For the
scalar LQ R2, we obtain

jgRL;LRV j2 ≲ 3.6

�
G2

Fα
2
e

π2

�
;

jgL;RS j2 ≃ 88jgL;RT j2 ≲ 0.062

�
G2

Fα
2
e

π2

�
; ð20Þ

where the first one comes from ppðqq̄Þ → eþe− and the
other one from D0 → eþe−. It can be seen that both
the scalar and tensor operators are severely constrained.
For the vector LQ U3 (Ũ1), on the other hand, we get

jgLLðRRÞV j2 ≲ 3.6

�
G2

Fα
2
e

π2

�
: ð21Þ

C. Experimental setup

We consider the fixed-target scattering experiments,
whose event rate dN=dt is defined by

dN
dt

¼ Lσ ¼ ϕρTLσ; ð22Þ

where the luminosity L is given in units of cm−2 s−1, and
the incoming beam is characterized by the flux ϕ (i.e., the
number of electrons per second), which is connected to
the intensity I through the relation ϕ ¼ I=jej, with the
electron charge e ¼ −jej. The target number density and
length are denoted by ρT and L, respectively.4

As demonstrated in Eq. (13), the electron beam energy E
determines the maximal Q2 (Q2 ¼ −q2) of the scattering
process, which, in turn, implies that constraints on Q2

max
restrict the E selection. As an explicit example, we have used
the condition Q2

max ¼ Q2
min ¼ 0 to obtain the minimal

TABLE II. Constraints on the WCs g at 90% CL from the LFC
(semi)leptonic D-meson decays, the high-pT dilepton invariant
mass tails, and the e−p → e−Λc scattering process in the
framework of a general low-energy effective Lagrangian speci-
fied by Eq. (5). Note that we have factored out the common factor
G2

Fα
2
e=π2. The entries with “n”mean that the processes in the first

column put no constraints on the corresponding WCs.

Processes jgLL;RRV j2 jgLR;RLV j2 jgL;RS j2 jgL;RT j2
D0 → eþe− [82] n n 0.062 n
Dþ → πþeþe− [22] 14 14 6.3 13
ppðqq̄Þ → eþe− [85] 3.6 3.6 22 0.57
e−p → e−Λc 0.035 0.083 0.17 0.0056

4Note that ρT ¼ ρ=mp, where ρ is the density of the proton
target.
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requirement for E of the scattering process (see Eq. (14)).
This condition is also visualized in Fig. 1 by noting the
intersection point of the E axis and the red line that
represents the E −Q2

max relation. Besides the kinematic
constraint on Q2

max, a limit from the theoretical point of
view must be taken into account as well. As mentioned
before, our analysis is carried out in the framework of Leff
given by Eq. (5) at the scale μ ¼ 2 GeV; to ensure the
validity of our results presented below, we must requireQ2

max

not to exceed Q2 ¼ 4 GeV2. Such a requirement, depicted
by the blue line in Fig. 1, indicates an upper bound
E≲ 4.65 GeV, provided that the observables one is inter-
ested in, such as the total cross section, involve Q2

max.
Otherwise, E is not bounded as above—one can always
focus on the lower Q2 region, even though a high Q2

max is
available due to a high E. In what follows, we will consider a
benchmark scenario withQ2

max ≤ 1 GeV2, which leads to an
upper boundary E≲ 3 GeV, since only the total cross
section will be involved in both estimating the event rate
and constraining the Wilson coefficients. Eventually, we find
a proper beam with an intensity up to 150 μA and a beam
energy ranging from 1.1 to 4.5 GeV, which has been used in
the APEX experiment at Jefferson Laboratory (JLab) for
hunting sub-GeV dark vector bosons [14,15]. To maximize
the event rate of the scattering process in our benchmark
scenario, we will set the beam energy at 3 GeVand keep the
beam intensity at 150 μA. Nevertheless, it is important to
point out that an electron beam with higher beam energy and
intensity, as will be shown in Fig. 3, is certainly favored, but
the analyses have to be conducted within the proper Q2

range established above.
For the proton targets, we favor a liquid hydrogen

target with density ρ ¼ 71.3 × 10−3 g=cm3 at 20 K and

207–228 kPa. Such a target has been utilized in the
Qweak experiment at JLab with an electron beam of
E ¼ 1.16 GeV and I ¼ 180 μA [17]. It is well known that
the liquid target length is limited due to the heating
problem and, to break the limit, a cooling system is
necessary. Given that the energy (or heat) H stored in the
target as an electron beam passes through is given by
H ¼ LρdE=dL [55], where dE=dL represents the mean
rate of the electron energy loss in units of MeV g−1 cm2,
and the cooling power P is defined as P ¼ HI, with a
3-kW cooling system, the Qweak experiment sets the
length of its liquid hydrogen target to be around
35 cm [17].
Assuming that the same cooling system can be applied to

our case, we find that the maximal length of the liquid
hydrogen target is about 40 cm. It should be noted that
more ambitious targets for future experiments have been
proposed. For example, the P2 target at Mainz will be
60 cm long and able to absorb 4-kW heat for a 150-μA
electron intensity [86], and the 150-cm-long JLab Møller
target will be capable of absorbing 5 kW at 85 μA [87].
Finally, based on the aforementioned setup, we summarize
in Table III our preferred experimental parameters.

D. Competitive and complementary

Based on the experimental setup in Table III and for a
running time of 1 year (yr), the sensitivity to the effective
WCs of the low-energy Leff is given by

1.4π2

G2
Fα

2
e
f20ðjgLLV j2 þ jgRRV j2Þ þ 8.4ðjgRLV j2 þ jgLRV j2Þ

þ 0.30Re½gRLV gRR�V þ gLLV gLR�V �
þ 4.2ðjgRS j2 þ jgLS j2Þ þ 124ðjgRT j2 þ jgLT j2Þ
− 26Re½gRSgR�T þ gLSg

L�
T �g

≲
�
N events
1 event

��
1 yr
t

��
2.1 × 1022 cm−3

ρT

��
40 cm
L

�

×

�
9.4 × 1014 s−1

ϕ

��
100%

ϵΛc

��
100%

ϵe

�
; ð23Þ

where ϵΛc
and ϵe denote the detecting efficiency of the

generated Λc and the scattered electron, respectively.5 As
done in Sec. III B, once the interference terms are neglected,
we can obtain constraints on jgV j2, jgSj2, and jgT j2 from
Eq. (23), which are also collected in Table II. It can be seen
that, compared with other processes except the leptonic
D-meson decay, significant improvements in constraining
the effective WCs can be made through the low-energy
scattering process. Meanwhile, this indicates that the scatter-
ing process can provide a further complementarity to the

0 1 2 3 4 5
0

1

2

3

4

5

FIG. 1. Criteria for selecting the electron beam energy E, where
the red line denotes the E −Q2

max relation given by Eq. (13), the
blue line represents the condition Q2 ≤ 4 GeV2 required by our
theoretical framework, while the green line corresponds to our
benchmark scenario with Q2 ¼ 1 GeV2. The yellow region
indicates the eligible E with its corresponding ½Q2

min; Q
2
max�.

5Note that it might be unnecessary to detect both the produced
Λc and the scattered electron.
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charmed-hadron weak decays and the high-pT dilepton
invariant mass tails.
It should be mentioned that our results can be weakened

by the non-100% detecting efficiency of the produced
particles. Especially for the Λc baryon, it is hard to keep
track of all its decay products. In practice, one may focus
only on one of its decay channels, such as Λc → pK−πþ
with its decay fraction of about 6.28% [55]. However, even
so, the scattering process can still provide competitive
results than from the semileptonic D-meson decay and the
high-pT dilepton invariant mass tails.

E. e − p → e −Λc in the survived LQ models

Nowwe are ready to perform an event-rate estimation for
the scattering process in the survived LQ models. The total
cross section in the scalar R2 model is given by

σR2
¼ ½8.4ðjgRLV j2 þ jgLRV j2Þ þ 2.8ðjgRS j2 þ jgLS j2Þ�
× 10−4 GeV2; ð24Þ

where the RG running effects in Eq. (10) have been taken
into account. Following the same procedure, we have also
computed the total cross section in the vector U3 (Ũ1)
model, with the final result given by

σU3ðŨ1Þ ¼ 20jgLLðRRÞV j2 × 10−4 GeV2: ð25Þ

We will assume that only one nonvanishing WC con-
tributes to the process at a time, and take the upper limits in
Eqs. (20) and (21) for each LQ. Then, supposing a running
time of 1 yr, we evaluate the expected event rates in units of
number per year (N=yr) in different LQ models. The final
results are given in Table IV. It can be seen that, if the
contributions from scalar and tensor operators dominate, it

would be less promising to observe the LFC scattering
process, mainly because of the stringent constraints on
these operators from the leptonic D-meson decay. In
addition, the vector LQ models are expected to generate
more events than the scalar one.
Rather than the total cross section, one may be more

interested in how the differential cross sections vary in the
available kinematic region for the three different LQ
models. As shown in Fig. 2, after factoring out jgj2, the
differential cross section remains roughly constant in the
U3 and Ũ1 models, whereas it decreases rapidly as Q2

approaches Q2
max in the R2 model. This is because the

operators jLVJ
L
V , j

R
VJ

R
V and jRVJ

L
V , j

L
VJ

R
V (see their definitions

in Appendix B) contribute differently to the differential
cross section. As can also be inferred from Eqs. (16),
(18), (19), and (23), such a distinct phenomenon is the
unique feature of low-energy scattering process. This
suggests that, in contrast to the vector LQs U3 and Ũ1,
searching for the scalar LQ R2 is preferred to be con-
ducted in the low-Q2 region. Furthermore, one may
exploit the unique feature to distinguish the scalar LQ
from the vector ones in future low-energy scattering
experiments. For example, if indisputable signals are
observed in both Dþ → πþeþe− decay and e−p → e−Λc
scattering, an analysis of dΓðDþ → πþeþe−Þ=dσðe−p →
e−ΛcÞ in their “common” kinematic region, say
Q2 ∈ ½0.04; 0.9� GeV2, would indicate the presence of a
scalar or a vector LQ.

TABLE III. Summary of the experimental parameters for the low-energy scattering experiments.

Electron beam Liquid hydrogen target

Luminosity (cm−2 s−1)Energy (GeV) Intensity (μA) Length (cm) Density (g=cm3)

3 150 40 71.3 × 10−3 1.6 × 1039

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

FIG. 2. Differential cross section dσ0=ðdQ2jgj2Þ, with
σ0 ¼ ð256πm2

pE2Þσ, in the R2 (red curve) and U3 (Ũ1) (blue
curve) models. Note that we have neglected the scalar and tensor
contributions in the R2 model, because of the stringent constraints
from the leptonic D-meson decay (see Table II).

TABLE IV. Summary of the event-rate estimations for e−p →
e−Λc in the three survived LQ models, where i ¼ LR; RL and
LL (RR) for R2 and U3 (Ũ1), respectively. Note that only one
nonvanishing WC is assumed to saturate the process at a time,
and the event rate is given in units of N=yr. The entries with “n”
mean that no estimations are available due to the absence of the
corresponding WCs in the LQ models.

Models giV gL;RS

R2 43 0.25
U3 103 n
Ũ1 103 n
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We now explore the dependence of the differential cross
section on the electron beam energy E. Here we take the
LQ model U3 as an example. As shown in Fig. 3, along
with the increase of E, the available kinematic region of
Q2 expands considerably. Meanwhile, due to the enlarged
Q2 region, it becomes clear that the differential cross
section that remains constant in the E ¼ 3 GeV case falls
gradually—but still not as dramatically as in the R2 model.
Such a trend becomes more prominent for a higher E.
Finally, it can be seen that a high beam energy clearly
favors a high event rate.
Before concluding this section, let us make the follow-

ing interesting comment. Given that, besides the vector
operators jLVJ

R
V and jRVJ

L
V , both the scalar (jLSJ

L
S and jRSJ

R
S )

as well as the tensor (jLTJ
L
T and jRTJ

R
T ) operators can

also contribute to the scattering process in the R2 model,
it is tempting to ask if their contributions can be dis-
tinguished from those of the vector interaction through the
analysis of the differential cross section discussed above.
Unfortunately, this cannot be achieved at the moment,
because, on the one hand, it is difficult to separate these
contributions via the differential cross section and, on the
other hand, the scalar contribution is severely constrained
by the leptonic decay D0 → eþe−. However, if the con-
straints on both the vector and scalar (tensor) contribu-
tions can reach a similar level in the future—so that both
contributions can equally matter—it would be possible to
fully distinguish the contributions from the operators
jLVJ

R
V , jRVJ

L
V , jLSJ

L
S (jLTJ

L
T), and jRSJ

R
S (jRTJ

R
T ) present in

the R2 model through the low-energy polarized scattering
process e−p → e−Λc [88].

IV. LFV FCNC process e − p → μ−Λc

We now turn to discuss the LFV FCNC scattering
process e−p → μ−Λc.

A. Kinematics and beam energy selection

The total cross section of the scattering process e−ðkÞ þ
pðPÞ → μ−ðk0Þ þ ΛcðP0Þ can be calculated in the same
way as for the LFC case. But, its spin-averaged amplitude
squared jMj2 contains some additional terms induced by
the non-negligible muon mass mμ.
Due to the presence of mμ, the kinematics and the lower

bound on the electron beam energy E of the LFV scattering
process are also changed. We find that the variable q2 must
now satisfy the condition

α − E
ffiffiffiffiffi
λμ

p
mp þ 2E

≤ q2 ≤
αþ E

ffiffiffiffiffi
λμ

p
mp þ 2E

; ð26Þ

with

α≡Eðm2
Λc
−m2

pþm2
μ−2mpEÞþmpm2

μ;

λμ≡m4
Λc
þðm2

pþ2mpE−m2
μÞ2−2m2

Λc
ðm2

pþ2mpEþm2
μÞ:

This in turn indicates the beam energy condition

E ≥
ðmΛc

þmμÞ2 −m2
p

2mp
: ð27Þ

Compared with Eq. (14), Eq. (27) produces a slightly higher
Emin, rendering a tiny difference ofQ2

max in the low-E region.
However, due to the small ratios mμ=mΛc

and mμ=E, such a
difference can be safely neglected. For our benchmark
scenario with Q2

max ≤ 1 GeV2, we find that the 3-GeV
electron beam selected in the LFC case is also suitable
for the LFV scattering process. Thus, interestingly, one can
explore both the LFC and LFV scattering processes at the
same time with the same experimental setup.

B. Relevant experimental constraints

We give a brief survey of the best relevant constraints on
½g�μe;cu from the LFV charmed-hadron weak decays and the
high-pT dilepton mass tails in ppðqq̄Þ → e�μ∓.

(i) Constraint from D0 → e−μþ
We start with the LFV leptonic decay of the neutral D

meson. The branching fraction ofD0 → e−μþ decay can be
found, e.g., in Refs. [6,19]. Using the experimental limit
on the branching fraction, BðD0 → e−μþÞ < 1.3 × 10−8 at
90% CL [21], we obtain

jKS − K0
S − 0.04ðK9 − K0

9Þj2
þ jKP − K0

P þ 0.04ðK10 − K0
10Þj2 ≲ 0.01; ð28Þ

which is consistent with the latest result presented in
Ref. [19]. With the relations defined in Eq. (11), we can
rewrite the constraint as

0 1 2 3 4
0

1

2

3

4

FIG. 3. Differential cross section dσ̄=ðdQ2jgLLV j2Þ in the LQ
model U3, with different electron beam energies, where σ̄ is
defined as σ̄ ¼ ð256πm2

pÞσ ¼ σ0=E2.
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π2

G2
Fα

2
e
f0.08Re½gLS ðgRLV − gRRV Þ� − gRS ðgRRV − gLRV Þ��

þ jgRS j2 þ jgLS j2g≲ 0.01; ð29Þ

where we have neglected the vector-vector interference
terms, due to the tiny coefficients associated with them.
(ii) Constraint from Dþ → πþe−μþ
Theoretical studies of the LFV semileptonic Dþ →

πþe−μþ decay have been conducted in Refs. [6,19].
Considering the experimental limit, BðDþ → πþe−μþÞ <
3.6 × 10−6 at 90% CL [22], we obtain the constraint

2.5ðjK9 þ K0
9j2 þ jK10 þ K0

10j2Þ þ 5.2ðjKS þ K0
Sj2

þjKP þ K0
Pj2Þ þ 0.72ðjKT j2 þ jKT5j2Þ

þ 0.63Re½ðK9 þ K0
9ÞK�

T − ðK10 þ K0
10ÞK�

T5�
þ 1.0Re½ðK10 þ K0

10ÞðK�
P þ K0�

P Þ
−ðK9 þ K0

9ÞðK�
S þ K0�

S Þ�≲ 100; ð30Þ

which is consistent with the corrected result presented in
Ref. [19]. Rewriting them in terms of g, we get

π2

G2
Fα

2
e
f5.2ðjgLS j2 þ jgRS j2Þ þ 2.9ðjgLT j2 þ jgRT j2Þ

þ 2.5ðjgRLV j2 þ jgLRV j2 þ jgRRV j2 þ jgLLV j2Þ
þ 2.0Re½gRLV gRR�V þ gLLV gLR�V �Þ − 1.0Re½gLLV gR�S �
þ 1.2Re½gRLV gL�T þ gLLV gR�T �g≲ 100: ð31Þ

(iii) Constraints from high-pT dilepton mass tails
Constraints on the effective WCs from the analyses of

high-pT dilepton invariant mass tails in ppðqq̄Þ → e�μ∓
have recently been worked out in Ref. [28]. They recast the
latest ATLAS analysis with 36.1 fb−1 of 13-TeV data [89],
and obtained the following bounds at 90% CL:

jgiV j≲1.1
GFαe
π

; jgL;RS j≲2.4
GFαe
π

; jgL;RT j≲0.44
GFαe
π

;

ð32Þ

where i ¼ LL;RR; LR;RL. Note that the RG running
effects neglected in Ref. [28] have been taken into account.
Being the same as observed in the ppðqq̄Þ → eþe− case,
no sensible constraints can be set on the interference terms
as well.

We summarize in Table V the relevant constraints on
the WCs ½g�μe;cu. It can be seen that the most stringent
constraint on gS comes from the measurement of the
LFV leptonic D-meson decay, which clearly constrains
neither gV nor gT. Compared with the LFV semileptonic
D-meson decay, on the other hand, the analysis of the
high-pT dilepton invariant mass tails in ppðqq̄Þ → e∓μ�
processes can set more severe limits on gV and gT .
Constraints on ½g�μe;cu in specific LQ models can

be read out from Table V straightforwardly. For the
scalar R2 model, even with the RG running effects (see
Eq. (10)) taken into account, the constraint on gS is still
dictated by the LFV leptonicD-meson decay, whereas the
boundary of gV is determined by ppðqq̄Þ → e∓μ� proc-
esses. We thus obtain the following constraints for the R2

model:

jgRL;LRV j2 ≲ 1.2

�
G2

Fα
2
e

π2

�
;

jgL;RS j2 ≃ 88jgL;RT j2 ≲ 0.010

�
G2

Fα
2
e

π2

�
: ð33Þ

For the vector U3 (Ũ1) model, we find

jgLLðRRÞV j2 ≲ 1.2

�
G2

Fα
2
e

π2

�
: ð34Þ

C. Competitive and complementary

Utilizing the same experimental setup, we can set limits
on the WCs through the LFV scattering process. In the
context of low-energy Leff, we make the same assumptions
as in the LFC case, and obtain the sensitivity

TABLE V. Constraints on the WCs ½g�μe;cu at 90% CL from the
LFV (semi)leptonic D-meson decays, the high-pT dilepton
invariant mass tails, and the e−p → μ−Λc scattering process in
the framework of a general low-energy Leff specified by Eq. (5).
Note that the common factorG2

Fα
2
e=π2 has been factored out. The

entries with “n”mean that the processes in the first column put no
constraints on the corresponding WCs.

Processes jgLL;RRV j2 jgLR;RLV j2 jgL;RS j2 jgL;RT j2
D0 → e−μþ [21] n n 0.010 n
Dþ → πþe−μþ [22] 40 40 19 34
ppðqq̄Þ → e∓μ� [89] 1.2 1.2 5.8 0.19
e−p → μ−Λc 0.039 0.091 0.18 0.0063
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1.4π2

G2
Fα

2
e
f18ðjgLLV j2 þ jgRRV j2Þ þ 7.7ðjgRLV j2 þ jgLRV j2Þ

þ 0.28Re½gRLV gRR�V þ gLLV gLR�V � þ 3.9ðjgRS j2 þ jgLS j2Þ
þ 4.4Re½gRSgRR�V þ gLSg

LL�
V � þ 0.63Re½gRSgRL�V þ gLSg

LR�
V �

− 33Re½gRTgRR�V þ gLTg
LL�
V � þ 3.0Re½gRTgRL�V þ gLTg

LR�
V �

þ 112ðjgRT j2 þ jgLT j2Þ − 23Re½gRSgR�T þ gLSg
L�
T �g

≲
�
N events
1 event

��
2.1 × 1022 cm−3

ρT

��
40 cm
L

��
1 yr
t

�

×

�
9.4 × 1014 s−1

ϕ

��
100%

ϵΛc

��
100%

ϵμ

�
; ð35Þ

where ϵμ denotes the detecting efficiency of the muon
lepton generated in the LFV scattering process.
Focusing on the constraints on jgV j2, jgSj2, and jgT j2, we

compare in Table Vour results with those obtained from the
D-meson weak decays and the high-pT dilepton invariant
mass tails. It can be seen that appreciable improvement on
the constraints can be made through the LFV scattering
experiment. Even the obtained limit of jgSj2, though not as
stringent as that set by the LFV leptonic D-meson decay, is
still very competitive.
As in the LFC case, our constraints can be weakened

by the imperfect detecting efficiency of the Λc baryon,
ϵΛc

. However, even if the produced Λc is solely detected
via the decay Λc → pK−πþ, our results are still compa-
rable to those from the high-pT dilepton invariant
mass tails.
For both the LFC and LFV scattering experiments,

further improvement could be made by considering an
electron beam with a higher intensity, if available in the
future, and a hydrogen gas target working in more severe
conditions. Note that a gas target is free from the boiling
problem, and consequently its luminosity is not limited by
the cooling power. However, higher intensity or longer
target length would be preferred to compensate its rela-
tively lower number density.

D. e − p → μ−Λc in the survived LQ models

We now evaluate the total cross sections specifically in
the three LQ models. For the scalar R2 model, we obtain

σR2
¼ ½7.7ðjgRLV j2 þ jgLRV j2Þ þ 2.7ðjgRS j2 þ jgLS j2Þ
þ 0.95Re½gRSgRL�V þ gLSg

LR�
V �� × 10−4 GeV2; ð36Þ

where the RG running effects in Eq. (10) have been
considered. Note that the scalar-vector interference terms
emerge because of the nonvanishing mμ. Similarly, the

total cross section in the vector U3 (Ũ1) model is
computed to be

σU3ðŨ1Þ ¼ 18jgLLðRRÞV j2 × 10−4 GeV2: ð37Þ

Let us give a simple event-rate estimation for the
scattering experiment in the three different LQ models.
As done in the LFC case, we ignore the contributions from
the interference terms, take the upper limits given in
Eqs. (33) and (34) for each LQ model, and always assume
a running time of 1 yr. It can be seen from Table VI that, in
comparison with the LFC case, fewer events are now
expected for the LFV scattering process, mostly because of
the relatively more severe constraints on the vector
operators.
We have also looked into the differential cross sections in

the allowed kinematic region. As shown in Fig. 4, they
behave in the same way as in Fig. 2. This is not surprising,
since these two scattering processes are identical in respect
of kinematics, except the mass difference between the
electron and the muon. Although a nonzero mμ can indeed
induce nonvanishing interference terms, such as the last
term in Eq. (36) for the R2 model, as well as additional
noninterference contributions, they are too small to make a
numerical difference.

TABLE VI. Summary of the event-rate estimations for e−p →
μ−Λc in the three survived LQ models, where i ¼ LR; RL and
LL (RR) for R2 and U3 (Ũ1), respectively. The entries with “n”
mean that no estimations are available due to the absence of the
corresponding WCs in the LQ models.

Models giV gL;RS

R2 13 0.039
U3 31 n
Ũ1 31 n

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

FIG. 4. Differential cross section dσ0=ðdQ2jgj2Þ in the LFV
case. The other captions are the same as in Fig. 2.
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V. CONCLUSION

We have investigated the potential for discovering NP
in the charm sector through the low-energy scattering
processes e−p → e−Λc and e−p → μ−Λc. Focusing on the
fixed-target ep scattering experiments, we have studied
the kinematics of both scattering processes. It has been
shown that, even though the corresponding minimal beam
energies vary due to their different kinematics, they can
be simultaneously detected with the same experimental
setup. Taking account of all the constraints on the beam
energies, we have eventually proposed an electron beam
with energy of 3 GeV. Meanwhile, to maximize the
chance of observing their signals, we have chosen a
liquid hydrogen target with a powerful cooling system. It
is intriguing to note that both the beam and the target have
already been utilized in different experiments.
Based on the selected experimental setup, we have

demonstrated in a model-independent way that, com-
pared with the charmed-hadron weak decays and the
high-pT dilepton invariant mass tails, the low-energy
scattering processes can provide more competitive con-
straints and, at the same time, build a further comple-
mentarity with the charmed-hadron weak decays. On the
other hand, in the specific LQ models, we have shown
that promising event rates can be expected for both the
LFC and LFV scattering processes, with the most
stringent constraints on the corresponding WCs from
other processes taken as input.
We have also analyzed the differential cross sections in

the allowed kinematic region, and observed that they all
decrease gradually as Q2 approaches to its maximum
Q2

max. Interestingly, such a trend becomes more distinct
for a higher beam energy. Furthermore, we have found
that the decreasing rate in the scalar R2 model is always
more dramatic than those in the vector U3 and Ũ1 models,
which provides a potential way to distinguish the scalar
and vector LQs in future experiments.
Finally, we would like to remark that, since the majority

of our analyses are based on the general low-energy
effective Lagrangian, it is straightforward to generalize
them into other specific NP scenarios [88].
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APPENDIX A: DEFINITIONS AND
PARAMETRIZATION OF THE Λc → p FORM

FACTORS

The form factors for Λc → p transition can be conven-
iently parametrized in the helicity basis [59,75,90]. For the

vector and axial-vector currents, their hadronic matrix
elements are defined, respectively, by

hNþðp;sÞjūγμcjΛcðp0; s0Þi

¼ ūNðp;sÞ
�
f0ðq2ÞðmΛc

−mNÞ
qμ

q2

þfþðq2Þ
mΛc

þmN

sþ

�
p0μþpμ− ðm2

Λc
−m2

NÞ
qμ

q2

�

þf⊥ðq2Þ
�
γμ−

2mN

sþ
p0μ−

2mΛc

sþ
pμ

��
uΛc

ðp0; s0Þ; ðA1Þ

and

hNþðp;sÞjūγμγ5cjΛcðp0; s0Þi

¼ −ūNðp;sÞγ5
�
g0ðq2ÞðmΛc

þmNÞ
qμ

q2

þ gþðq2Þ
mΛc

−mN

s−

�
p0μ þpμ − ðm2

Λc
−m2

NÞ
qμ

q2

�

þ g⊥ðq2Þ
�
γμ þ 2mN

s−
p0μ −

2mΛc

s−
pμ

��
uΛc

ðp0; s0Þ; ðA2Þ

where q ¼ p0 − p and s� ¼ ðmΛc
�mNÞ2 − q2. Note that

we have denoted the proton by Nþ instead of p to avoid
possible confusion with the proton’s momentum. From
Eqs. (A1) and (A2), we can obtain the hadronic matrix
elements of the scalar and pseudoscalar currents through
the equation of motion,

hNþðp; sÞjūcjΛcðp0; s0Þi

¼ ðmΛc
−mNÞ

mc −mu
f0ðq2ÞūNðp; sÞuΛc

ðp0; s0Þ; ðA3Þ

hNþðp; sÞjūγ5cjΛcðp0; s0Þi

¼ ðmΛc
þmNÞ

mc þmu
g0ðq2ÞūNðp; sÞγ5uΛc

ðp0; s0Þ; ðA4Þ

where muðcÞ denotes the uðcÞ-quark running mass.
Finally, the hadronic matrix element for the tensor current
is given by
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hNþðp; sÞjūiσμνcjΛcðp0; s0Þi

¼ ūNðp; sÞ
�
2hþ

p0
μpν − p0

νpμ

sþ
þ h⊥

�
mΛc

þmN

q2

× ðqμγν − qνγμÞ − 2

�
1

q2
þ 1

sþ

�
ðp0

μpν − p0
νpμÞ

�

þ h̃þ

�
iσμν −

2

s−
½mΛc

ðpμγν − pνγμÞ

−mNðp0
μγν − p0

νγμÞ þ p0
μpν − p0

νpμ�
�

þ h̃⊥
mΛc

−mN

q2s−
ððm2

Λc
−m2

N − q2Þðγμp0
ν − γνp0

μÞ

− ðm2
Λc

−m2
N þ q2Þðγμpν − γνpμÞ

þ 2ðmΛc
−mNÞðp0

μpν − p0
νpμÞÞ

�
uΛc

ðp0; s0Þ; ðA5Þ

where σμν ¼ i½γμ; γν�=2. These form factors satisfy the
endpoint relations

fþð0Þ ¼ f0ð0Þ; gþð0Þ ¼ g0ð0Þ;
gþðq2maxÞ ¼ g⊥ðq2maxÞ; h̃þðq2maxÞ ¼ h̃⊥ðq2maxÞ; ðA6Þ

where q2max ¼ ðmΛc
−mNÞ2. As the latest LQCD deter-

minations [59] of these form factors satisfy the two
criteria mentioned in Sec. II, we will adopt the results
provided in Ref. [59] in this work. Explicitly, the para-
metrization of the form factors takes the form [59,81]

fðq2Þ ¼ 1

1 − q2=ðmf
poleÞ2

Xnmax

n¼0

afn½zðq2Þ�n; ðA7Þ

with the expansion variable defined as

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ; ðA8Þ

where tþ ¼ ðmD þmπÞ2 is set equal to the threshold of Dπ
two-particle states, and t0 ¼ q2max determines which value of
q2 gets mapped to z ¼ 0. In this way, one maps the complex
q2 plane, cut along the real axis for q2 ≥ tþ, onto the disk
jzj < 1. Furthermore, the lowest poles in Eq. (A7) have been
factored out before the z expansion. The quantum numbers
and masses of these poles in the different form factors, as
well as the values of the z-expansion parameters for both the
nominal (nmax ¼ 2) and higher-order (nmax ¼ 3) fits,
together with the full covariance matrices can be found
in Ref. [59].

APPENDIX B: CROSS SECTION AND
KINEMATICS OF THE LFC (LFV) SCATTERING

PROCESS

In Sec. II, we have established that the effective
Lagrangian Leff at low energy can mediate both the LFC
and LFV scattering processes. Given that each of the four-
fermion operators in Eq. (5) consists of one leptonic (j) and
one hadronic (J) current, for the benefit of later discussions,
we rewrite it as Leff ¼

P
gαβjαJβ, where

jR;LS ¼ l̄PR;Ll; JR;LS ¼ q̄PR;Lq;

ðjR;LV Þμ ¼ l̄γμPR;Ll; ðJR;LV Þμ ¼ q̄γμPR;Lq;

ðjR;LT Þμν ¼ l̄σμνPR;Ll; ðJR;LT Þμν ¼ q̄σμνPR;Lq: ðB1Þ

Obviously, for both the scalar and tensor interactions,
ðα; βÞ ¼ ðR;RÞ, ðL;LÞ, whereas for the vector operators,
ðα; βÞ ¼ ðR;RÞ, ðL;LÞ, ðL;RÞ, and ðR;LÞ.
The differential cross section of the LFC scattering

process e−ðkÞ þ pðPÞ → e−ðμ−Þðk0Þ þ ΛcðP0Þ is given by

dσ ¼ 1

F
d3k0

ð2πÞ3
1

2E0
d3p0

ð2πÞ3
1

2EΛc

jMj2ð2πÞ4δ4ðPþ k−P0 − k0Þ

¼ 1

F
d3k0

ð2πÞ2
1

2E0 jMj2δðP02 −m2
Λc
Þ; ðB2Þ

where the flux factor F ¼ 4½ðP · kÞ2 −m2
em2

p�1=2, and we
have performed the integration over p0 by using the δ
function in the second step above.
Since the electron massme is much smaller than those of

other particles and the beam energy E, it can be safely
neglected. Due to its relatively bigger mass mμ, the muon
remains, however, massive and its mass should be kept in
the LFV case. With the definition q≡ k − k0 ¼ P0 − P, the
leftover δ function in Eq. (B2) can be simplified as

δðP02 −m2
Λc
Þ ¼ δðcos θ − cos θ0Þ

2EE0 ; ðB3Þ

with

cos θ0 ¼
m2

Λc
−m2

p − 2mpðE − E0Þ þ 2EE0

2EE0 ; ðB4Þ

for the LFC scattering process, and

δðP02 −m2
Λc
Þ ¼ δðcos θ − cos θ0Þ

2Ejk0j ; ðB5Þ

with

cos θ0 ¼
m2

Λc
−m2

p −m2
μ − 2mpðE − E0Þ þ 2EE0

2Ejk0j ; ðB6Þ
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for the LFV scattering process, where θ is the scattering
angle between k0 and k. One can then use the remaining
δ functions (Eqs. (B3) and (B5)) to get rid of the
angular integration in Eq. (B2). Meanwhile, from the
relation P02 ¼ ðqþ PÞ2 ¼ m2

Λc
, it is easy to find that

dE0 ¼ dq2=2mp. Now the total cross sections for the
two scattering processes can be universally written as

σ ¼ 1

64πm2
pE2

Z
q2max

q2min

dq2jMj2: ðB7Þ

The kinematic range of q2 can be determined through
the condition j cos θ0j ≤ 1, from which the corresponding
½q2min; q

2
max� in both cases can be obtained (see Eqs. (13)

and (26)).
Finally, in terms of the low-energy effective Lagrangian

Leff ¼
P

gαβjαJβ, we can write the amplitudes M for the
two scattering processes as

M¼
X

gαβhlð 0Þðk0; r0Þjjαjlðk;rÞihΛcðP0; s0ÞjJβjpðP;sÞi;
ðB8Þ

where r and s (r0 and s0) denote the spins of the initial (final)
lepton and baryon, respectively, and the hadronic matrix
elements hΛcðP0; s0ÞjJβjpðP; sÞi are given by the complex

conjugate of hpðP; sÞjJ†βjΛcðP0; s0Þi, with the latter para-
metrized by the form factors defined in Appendix A. From

the previous discussions of the kinematics, it is clear that a
scattering process generally occupies a different kinematic
region from that of a decay. Thus, to extend the form factors
that are commonly convenient for the Λc weak decays to the
scattering processes, their parametrization must be analytic
in the proper q2 region, the first crucial criterion mentioned
in Sec. II.

APPENDIX C: THE AMPLITUDE SQUARED
OF THE LFV (LFC) SCATTERING PROCESS

For the convenience of interested readers and future
discussions, we provide here the explicit expression of the
amplitude squared jMj2 of the LFV scattering process
e−ðkÞ þ pðPÞ → μ−ðk0Þ þ ΛcðP0Þ mediated by the general
effective Lagrangian Leff (see Eq. (5)). To this end, we
present it in terms of the kinematic variable q2, the transition
form factors (all being functions of q2), the electron beam
energy E, and the masses of the baryons (mp and mΛc

) and
the muon lepton (mμ). For the LFC scattering process
e−ðkÞ þ pðPÞ → e−ðk0Þ þ ΛcðP0Þ, on the other hand, its
amplitude can be straightforwardly obtained from above by
setting mμ to zero, since the electron mass can be safely
ignored in this case.
With all the operators in Eq. (B1) taken into account, the

spin-averaged amplitude squared jMj2 of the LFV scattering
process e−ðkÞ þ pðPÞ → μ−ðk0Þ þ ΛcðP0Þ is given by

jMj2 ¼ ðjgLLV j2 þ jgRRV j2ÞjMj2VLL−VLL
þ ðjgLRV j2 þ jgRLV j2ÞjMj2VLR−VLR

þ ðjgLS j2 þ jgRS j2ÞjMj2SL−SL
þ ðjgLT j2 þ jgRT j2ÞjMj2TL−TL

þ 2Re½gLRV gLL�V þ gRLV gRR�V �jMj2VLR−VLL

þ 2Re½gLLV gL�S þ gRRV gR�S �jMj2VLL−SL þ 2Re½gLRV gL�S þ gRLV gR�S �jMj2VLR−SL

þ 2Re½gLLV gL�T þ gRRV gR�T �jMj2VLL−TL
þ 2Re½gLRV gL�T þ gRLV gR�T �jMj2VLR−TL

þ 2Re½gLSgL�T þ gRSg
R�
T �jMj2SL−TL

; ðC1Þ

where the various subscripts attached to the different jMj2
on the right-hand side represent the possible interferences
between two operators. For instance, the subscript VLR

corresponds to the operator jLVJ
R
V, while VLL to jLVJ

L
V . Then,

the reduced spin-averaged amplitude squared jMj2VLR−VLL

generated by the interference between the operators VLR
and VLL can be written as

jMj2VLR−VLL
¼ 1

4

X
spins

hμ−ðk0ÞΛcðP0ÞjjLVJLV je−ðkÞpðPÞi

× hμ−ðk0ÞΛcðP0ÞjjLVJRV je−ðkÞpðPÞi�: ðC2Þ

Note that, due to the chiral structures of the lepton and
quark currents involved, the reduced amplitudes squared
with different subscripts can be identical to each other, e.g.,
jMj2VLR−VLL

¼ jMj2VRL−VRR
; in this case, only one of them is

presented in Eq. (C1). The amplitudes associated with other
interference terms that are not shown in Eq. (C1) are all
zero, which can be straightforwardly checked according to
the chiral structures of the lepton currents involved. For
convenience, explicit expressions of the reduced spin-
averaged amplitudes squared on the right-hand side of
Eq. (C1) are given, respectively, as
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jMj2VLL−VLL
¼ m2

μðm2
μ − q2Þ
8q4

fðmΛc
−mpÞ2½ðmΛc

þmpÞ2 − q2�f20 þ ðmΛc
þmpÞ2½ðmΛc

−mpÞ2 − q2�g20g

þ
� ðmΛc

þmpÞ2
8½ðmΛc

þmpÞ2 − q2�q4 f
2þ þ ðmΛc

−mpÞ2
8½ðmΛc

−mpÞ2 − q2�q4 g
2þ

�

× f4mpq4ð2EþmpÞð2Emp þ q2Þ þm4
μðm2

p þ q2Þ2 þm4
Λc
m2

μðm2
μ − q2Þ

− 2m2
Λc
ðm2

μ − q2Þ½m2
μðm2

p þ q2Þ − 4Empq2� −m2
μq2½m4

p þ 6m2
pq2 þ q4

þ 8Empðm2
p þ q2Þ�g − 1

4

�
f2⊥

ðmΛc
þmpÞ2 − q2

þ g2⊥
ðmΛc

−mpÞ2 − q2

�

× f2m4
μm2

p þm4
Λc
ðq2 −m2

μÞ þ 2m2
Λc
ðm2

μ − q2Þð2Emp þm2
p þ q2Þ

−m2
μðm2

p þ q2Þð4Emp þm2
p þ q2Þ þ q2½8E2m2

p þm4
p þ q4 þ 4Empðm2

p þ q2Þ�g

−
m2

μðm2
Λc

−m2
pÞ

4q4
½m2

Λc
ðm2

μ − q2Þ −m2
μðm2

p þ q2Þ þ q2ð4Emp þm2
p þ q2Þ�

× ðf0fþ þ g0gþÞ −
1

2
½m2

Λc
ðm2

μ − q2Þ −m2
μðm2

p þ q2Þ þ q2ð4Emp þm2
p þ q2Þ�f⊥g⊥; ðC3Þ

jMj2VLR−VLR
¼ m2

μðm2
μ − q2Þ
8q4

fðmΛc
−mpÞ2½ðmΛc

þmpÞ2 − q2�f20 þ ðmΛc
þmpÞ2½ðmΛc

−mpÞ2 − q2�g20g

þ
� ðmΛc

þmpÞ2
8½ðmΛc

þmpÞ2 − q2�q4 f
2þ þ ðmΛc

−mpÞ2
8½ðmΛc

−mpÞ2 − q2�q4 g
2þ

�

× f4mpq4ð2EþmpÞð2Emp þ q2Þ þm4
μðm2

p þ q2Þ2 þm4
Λc
m2

μðm2
μ − q2Þ

− 2m2
Λc
ðm2

μ − q2Þ½m2
μðm2

p þ q2Þ − 4Empq2� −m2
μq2½m4

p þ 6m2
pq2 þ q4

þ 8Empðm2
p þ q2Þ�g − 1

4

�
f2⊥

ðmΛc
þmpÞ2 − q2

þ g2⊥
ðmΛc

−mpÞ2 − q2

�

× f2m4
μm2

p þm4
Λc
ðq2 −m2

μÞ þ 2m2
Λc
ðm2

μ − q2Þð2Emp þm2
p þ q2Þ

−m2
μðm2

p þ q2Þð4Emp þm2
p þ q2Þ þ q2½8E2m2

p þm4
p þ q4 þ 4Empðm2

p þ q2Þ�g

−
m2

μðm2
Λc

−m2
pÞ

4q4
½m2

Λc
ðm2

μ − q2Þ −m2
μðm2

p þ q2Þ þ q2ð4Emp þm2
p þ q2Þ�

× ðf0fþ þ g0gþÞ þ
1

2
½m2

Λc
ðm2

μ − q2Þ −m2
μðm2

p þ q2Þ þ q2ð4Emp þm2
p þ q2Þ�f⊥g⊥; ðC4Þ

jMj2SL−SL ¼ ðm2
μ − q2Þ
8m2

c
fðmΛc

−mpÞ2½ðmΛc
þmpÞ2 − q2�f20 þ ðmΛc

þmpÞ2½ðmΛc
−mpÞ2 − q2�g20g; ðC5Þ
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jMj2TL−TL
¼ −

�
2h2þ

ðmΛc
þmpÞ2 − q2

þ 2h̃2þ
ðmΛc

−mpÞ2 − q2

�
f4m4

μm2
p þm4

Λc
ð−m2

μ þ q2Þ

þ 2m2
Λc
ðm2

μ − q2Þð4Emp þm2
p þ q2Þ þ q2ð4Emp þm2

p þ q2Þ2
−m2

μ½m4
p þ 6m2

pq2 þ q4 þ 8Empðm2
p þ q2Þ�g

þ
�

4h2⊥ðmΛc
þmpÞ2

½ðmΛc
þmpÞ2 − q2�q4 þ

4h̃2⊥ðmΛc
−mpÞ2

½ðmΛc
−mpÞ2 − q2�q4

�
f2mpð2EþmpÞq4ð2Emp þ q2Þ

−m2
μq2ðm2

p þ q2Þð4Emp þm2
p þ q2Þ þm4

Λc
m2

μðm2
μ − q2Þ

þm4
μðm4

p þ q4Þ − 2m2
Λc
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