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1Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma and INFN,
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We present a calculation of the net baryon number density as a function of imaginary baryon number
chemical potential, obtained with highly improved staggered quarks at temporal lattice extent of Nτ ¼ 4, 6.
We construct various rational function approximations of the lattice data and discuss how poles in the
complex plane can be determined from them. We compare our results of the singularities in the chemical
potential plane to the theoretically expected positions of the Lee-Yang edge singularity in the vicinity of the
Roberge-Weiss and chiral phase transitions. We find a temperature scaling that is in accordance with the
expected power law behavior.
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
belongs to the most pressing open issues in high energy
physics. With large scale experimental programs at RHIC
and LHC, the phase diagram is scanned for hints of a
critical point or a first order phase transition. In addition,
many ab initio calculations of lattice QCD are performed to
infer on the QCD phase diagram.
Unfortunately, the notorious sign problem hampers

numerical studies of the QCD phase diagram. At vanishing
baryon chemical potential (μB ≡ 0), lattice QCD calcula-
tions rely onMonte Carlo methods for an efficient sampling
of the QCD partition sum. At nonvanishing baryon chemi-
cal potentials (μB > 0), standard Monte Carlo methods
cease working as the fermion determinant becomes genu-
inely complex. Hence, the kernel of the QCD partition sum
is strongly oscillating with increasing lattice volumes.
Over the last decades, manymethods have been developed

which potentially circumvent or solve theQCDsign problem.
These methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemical
potentials [6,7], canonical partition functions [8,9], strong
coupling/dual methods [10–13], the density of states method
[14–16], and complex Langevin dynamics [17–20]. Related

to the latter is also the Lefschetz thimble method [21–23],
which is based on a deformation of the integration manifold
into complex field space. Recent developments are reviewed,
e.g., in [24–26]. However, all these methods face severe
limitations that restrict their applicability toward the thermo-
dynamic and/or continuum limits.
With this study, we systematically investigate singularities

of the grand canonical potential in the complex chemical
potential plane, which we identify from an (analytically
continued) rational approximation of lattice data obtained at
purely imaginary chemical potentials. The rational approxi-
mation of the net baryon number density is done in
consistency with the second, third, and fourth order cumu-
lants of the baryon number density. In this sense, our method
could be seen as a combination of the Taylor expansion
approach and the imaginary chemical potential method. The
position of those singularities provides very valuable infor-
mation on the QCD phase diagram. We find that they are in
agreement with the critical scaling of the Lee-Yang edge
singularities in the vicinity of the Roberge-Weiss transition
and the chiral transition. We also discuss the scaling of the
Lee-Yang edge singularity in the vicinity of a hypothetical
critical end point. Finally, we point out that the position of the
singularities can be used to estimate the radius of conver-
gence of any analytic expansion and to extract nonuniversal
parameters that map QCD to the universal scaling function.
Among the latter might also be the position of the QCD
critical end point, which was demonstrated recently in the
case of the Gross-Neveu model [27]. Genuine Lee-Yang
zeros have been recently also studied in other works [28,29].
This paper is organized as follows. In Sec. II, we

introduce the scaling theory of the Lee-Yang edge
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singularities and apply them to the cases of the Roberge-
Weiss transition and the chiral transition of QCD. We also
discuss the case of the QCD critical end point. In Sec. III,
we provide details of our lattice QCD calculations, and in
Sec. IV, we discuss our strategy for determining rational
approximations to our lattice data. We present our findings
of the extracted singularities in Sec. V. We summarize and
conclude in Sec. VI. In order to consolidate our findings,
we compiled a number of the Appendixes (B–F), where we
discuss numerical issues related to our rational approx-
imations, which are based on a multipoint Padé method.

II. EXPECTED SINGULARITIES

The grand canonical partition function in lattice QCD,
ZGC ¼ ZðV; T; μBÞ has the form of a (high dimensional)
polynomial at any finite volume V and is positive for real
values of the temperature T and baryon chemical potential
μB. However, following Lee, Yang [30,31], and Fischer
[32], we point out that ZGC exhibits many zeros in the
complex chemical potential plane, which can be used to
extract valuable information on the phase transitions that
may occur in the system. A physical phase transition in the
thermodynamic limit can be identified when for V → ∞
one of the complex zeros approaches a point with real
parameters T; μB.
The grand canonical potential logðZGCÞ diverges when

one approaches a zero of ZGC. Singularities of the grand
canonical potential and its derivatives will limit any
analytic expansion performed at zero or purely imaginary
chemical potentials. The positions of the zeros of ZGC can
thus also be used to estimate the radius of convergence of
the Taylor expansion method.
In different ðT; μBÞ regions, the QCD partition function

can be approximately described by effective theories. At
high temperatures, far above the QCD transition, we might
be able to use a free Fermi gas to describe the thermody-
namic behavior of the quarks. Below the QCD crossover
temperature Tpc, the Hadron resonance gas is known to
describe the bulk thermodynamics of QCD matter quite
well [33–35]. However, we can also consider universal
behavior in the vicinity of the Roberge-Weiss, the chiral
transition, or even in the vicinity of the QCD critical end
point (if existing). In particular, we can predict the positions
of singularities in the complex μB plane, by applying
suitable mappings from the parameter space of QCD to
the relevant scaling fields in the vicinity of a critical point.
In the following, we make extensive use of the fact that the
scaling function of the order parameter fGðzÞ exhibits a
branch cut singularity at z ¼ zc, where the scaling variable
z is expressed in terms of the reduced temperature t and
symmetry breaking field h as z ¼ t=jhj1=βδ. The universal
position zc of the universal singularity, known as the Lee-
Yang edge singularity, has been recently determined for
different universality classes [36]. The three distinct scaling
approaches are visualized in Fig. 1. At this point not all of

the nonuniversal normalization constants that fix the above
mentioned mappings are known. We thus vary some of the
parameters to give an impression of the functional depend-
ence, which is discussed in more detail below. Also shown
are identified Lee-Yang-edge singularities from our lattice
QCD calculations on Nτ ¼ 4, 6 lattices. The determination
of the data points is discussed in Sec. V.

A. Singularities in the vicinity of the
Roberge-Weiss (RW) transition

The RW critical point (μB=T ¼ iπ) is a remnant of the
Zð3Þ symmetry in the quenched ðmq → ∞Þ limit of QCD,
where mq specifies the quark masses, and the QCD
partition function has a reflection symmetry around
μB=T ¼ iπ [37]. The nature of the RW end point could
be either a first order triple point or a second order Zð2Þ
critical point depending on the value of the quark masses
[38]. In (2þ 1)-flavor QCD with a physical value of the
light quark masses with improved lattice discretization,
which is discussed here, one finds a second order Zð2Þ
critical point [39–41]. The order parameter in the vicinity of
a second order transition can be written as the sum of a
universal and a regular part,

M ¼ h1=δfGðzÞ þMreg; z≡ t=jhj1=βδ; ð1Þ

where t, h are scaling fields, and β, δ are critical exponents.
Also, fG is the universal scaling function for the order
parameter, whereasMreg accounts for regular contributions.

FIG. 1. Overview of the expected scaling behavior of the Lee-
Yang edge singularities in the complex plane of the baryon
chemical potential (μB=T). Universal scaling in the vicinity of the
Roberge-Weiss transition, the chiral transition, and the critical
end point is shown in yellow, green, and red, respectively. The
width of the bands indicate uncertainties in the nonuniversal
parameters. See the text for a detailed discussion. Data points
depict identified Lee-Yang edge singularities (method II) at
different temperatures, from lattice QCD calculations on lattices
with temporal extent Nτ ¼ 4, 6.
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The relevant scaling fields for a Zð2Þ-symmetric second
order RW transition can be defined as

t ¼ t−10

�
TRW − T
TRW

�
; ð2Þ

h ¼ h−10

�
μ̂B − iπ

iπ

�
; ð3Þ

where μ̂B ¼ μB=T and t0, h0, and TRW are nonuniversal
parameters. TRW is the RW transition temperature, which is
known for our particular lattice setup [41]. We now can
solve t=h1=βδ ≡ zc ¼ jzcjei

π
2βδ for μ̂B to obtain

μ̂RLY ¼ �π

�
z0
jzcj

�
βδ
�
TRW − T
TRW

�
βδ

; ð4Þ

μ̂ILY ¼ �π; ð5Þ

where the normalization constant z0 is defined as z0 ¼
h1=βδ0 =t0. Equations (4) and (5) thus define the temperature
scaling of the Lee-Yang edge singularity, associated with
the Roberge-Weiss critical point.

B. Chiral singularities

In the chiral limit of (2þ 1)-flavor QCD, we expect a
second order transition in the universality class of the 3d O
(4)-symmetric spin model [42]. In recent lattice QCD
simulations by the HotQCD Collaboration [43,44], con-
sistency with this expected universal behavior could be
demonstrated, even though a first order transition at very
small pion mass (mπ ≲ 55 MeV) cannot be excluded with
the accuracy of the present data. For simulations with
staggered fermions on coarse lattices, away from the
continuum limit, the universal scaling is expected to be
in the universality class of the 3d O(2) model, as staggered
fermions preserve only a subgroup of the original chiral
symmetry. The full chiral symmetry is expected to be
restored in the continuum limit. In the vicinity of the chiral
transition, the scaling fields can be expressed as

t ¼ 1

t0

�
T − Tc

Tc
þ κB2

�
μB
T

�
2
�
; ð6Þ

h ¼ 1

h0

ml

mphys
s

: ð7Þ

Here, the light quark mass ml in units of the physical
strange quark mass mphys

s takes the role of the symmetry
breaking field ðml=m

phys
s ∝ hÞ. In addition, this relation

involves three nonuniversal parameters z0; Tc; κB2 . The
latter two are prominent numbers that quantify the QCD
phase diagram and have been determined to quite some
precision [44–47]. The normalization constant z0 is known

with less precision but it can, in principle, be inferred from
scaling fits of QCD observables to the magnetic equation
of state.
The solution for z ¼ zc now reads

μ̂LY ¼
�
1

κB2

�
zc
z0

�
ml

mphys
s

�
1=βδ

−
T − Tc

Tc

��
1=2

; ð8Þ

where z0 ¼ h1=βδ0 =t0. This solution has also been used in
[48] to derive an estimate of the radius of convergence.
Equation (8) is visualized in Fig. 1 as green band, where we
chose ml=m

phys
s ¼ 1=27 (physical mass ratio) and Tc ¼

147 MeVwhich is our best estimate for the chiral transition
temperature for Nτ ¼ 6. It is however obvious that Tc does
not alter the line of constant z ¼ zc much; it mainly alters
the normalization of the temperature behavior. The curva-
ture κB2 is chosen as κB2 ¼ 0.012. We vary z0 from 1.5 to 2.5
which generates the width of the green band. Our best
estimate for Nτ ¼ 6 is z0 ¼ 2.35, which stems from scaling
fits to the magnetic equation of state.

C. The QCD critical point

The same kind of scaling is expected to hold close to the
QCD critical point. Unfortunately, the mapping to the
universal theory with Zð2Þ symmetry is unknown.
A frequently used Ansatz for the scaling fields is based
on a linear mapping,

t ¼ αtðT − TcepÞ þ βtðμB − μBcepÞ; ð9Þ

h ¼ αhðT − TcepÞ þ βhðμB − μBcepÞ; ð10Þ

where the critical point is located at (Tcep, μcep). This Ansatz
leads to [49]

μLY ¼ μcep − c1ðT − TcepÞ þ ic2jzcj−βδðT − TcepÞβδ; ð11Þ

where c1 is given by the slope of the transition line at the
critical point, and c2 is related to the angle between the
(t ¼ 0) and (h ¼ 0) lines. For the red band in Fig. 1,
we chose c1 ¼ −2κB2 ¼ −0.024, assuming that the tran-
sition line is a quadratic function all the way down to the
critical point. We vary μcep from 500 to 630 MeV, which
generates the width of the red band. For Tcep, we chose in
accordance with the Ansatz for the transition line: Tcep ¼
Tcð1 − κB2 ðμcep=TcÞ2Þ, with Tc ¼ 156.5 MeV. The prefac-
tor c2jzcj−βδ was chosen to be 0.5. In principle, we need at
least four data points in the scaling region of the critical
point to determine all the unknown nonuniversal param-
eters, including the location of the QCD critical point Tcep,
μcep. For the Gross-Neveu model, it has been recently
shown that Tcep; μcep; c1; c2 can be determined from a fit to
the above Ansatz [27]. It will be very interesting to apply
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such scaling fits also to lattice QCD data, which is however
currently beyond the scope of this exploratory study.

D. Thermal singularities

The Lee-Yang edge singularities are not the only singu-
larities in the complexμB=T plane.At temperatures above the
QCD crossover (T > Tpc), we expect that quasifree quarks
are the relevant degrees of freedom in the system. Quarks are
distributed according to the Fermi-Dirac distribution
fpðT; μÞ ¼ 1=ðexp ðεp − μÞ=T þ 1Þ. The singularities of
this function are located at �iπT � εp. In particular, the
singularities which are closest to the origin are located at
�iπT � ϵ0, where ε0 ¼ m is the restmass of the particle. The
thermal singularities of quasifree quarks are modified by
residual interactions as long as we are not considering the
Stefan-Boltzmann limit (T → ∞). We expect that to leading
order these modifications are expressed through a substan-
tially larger thermal mass m̃ðTÞ ≫ m.
The analytic structure of the Fermi-Dirac distribution

function interferes with the scaling of the Lee-Yang edge
singularity of the Roberge-Weiss transition, as given in
Eqs. (4) and (5). It is a priori not clear which type of
singularities are closer to the origin/imaginary axis and can
thus be found by a Padé/rational approximation of the data.
As a result of this study, we find that the leading singularities
at Im½μB=T� ¼ �π follow the RW scaling, see Sec. VA.

III. LATTICE SETUP AND OBSERVABLES

The partition function of a (2þ 1)-flavor of highly
improved staggered quarks (HISQ) [50] with imaginary
chemical potential can be written as

Z ¼
Z

DU det½Mðml; iμIlÞ�2=4

× det½Mðms; iμIsÞ�1=4e−SGðUÞ; ð12Þ

where Mðm; iμIÞ represents the fermion matrix of a HISQ
flavor with mass m and chemical potential μ ¼ iμI . The
first determinant represents the two degenerate light flavors
(up and down quarks). For the gauge part SGðUÞ, we are
using the Symanzik improved Wilson action, which is
correct to Oða2Þ in the lattice spacing. For the gauge field
generation, we were using the SIMULATeQCD package
[51] with and implementation of the rational hybrid
Monte Carlo algorithm (RHMC) [52]. The lattice bare
parameters are used from various publications of HotQCD.
The lattice bare quark masses are varied with the lattice
coupling such that for each coupling physical meson
masses are obtained; i.e., we stay on the line of constant
physics (LCP). Here, we make use of the parametrization of
the LCP (for the physical value of the pion mass,
ml=m

phys
s ¼ 1=27) obtained and refined in previous works

[53–55]. The same holds true for the scale setting, where

we used the parametrization of the β function based on the
kaon decay constant. For simplicity, we fix the ratio of the
explored chemical potential in this study to μl=μs ¼ 1.
The observables we calculate are the cumulants of the net

baryon number density, given as

χBn ðT;V;μBÞ¼
� ∂
∂μ̂B

�
n lnZðT;V;μl;μsÞ

VT3

¼
�
1

3

∂
∂μ̂lþ

1

3

∂
∂μ̂s

�
n lnZðT;V;μl;μsÞ

VT3
; ð13Þ

with μ̂X ¼ μX=T, X ¼ B, l, s. Note that the normalization is
done with appropriate powers of the temperature, such that
the observables are dimensionless. The derivatives generate
traces of the type Tr½ðM−1∂M=∂μXÞn�, which we evaluate
with the random noise method, using Oð500Þ random
vectors. For more details on the required traces and the
method of evaluation, see, e.g., [3].
For obvious reasons (sign problem), we perform our

calculations at purely imaginary baryon chemical potential
iμ̂IB, with μ̂IB ∈ R. Exploiting all symmetries, we restrict
values for μ̂IB to half the period, i.e., μ̂IB ∈ ½0; π�. The
symmetries of the partition function generate specific
properties of the observables χBn . At imaginary chemical
potential, they are imaginary and odd functions of μ̂IB for
odd n and real and even functions of μ̂IB for even n. These
properties have been verified by us and can be seen from
Fig. 2, where we show results for the first three cumulants.

FIG. 2. Cumulants of the net baryon number fluctuations as a
function of a purely imaginary chemical potential, for three
different temperatures, obtained on 243 × 4 lattices. Shown are
Im[χB1 ] (top), Re½χB2 � (middle), and Im[χB3 ]. Data points are
connected by dashed lines to guide the eye.
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Preliminary results were presented in [56]. The data are
tabulated in Appendix A.
Since this is an exploratory study, we leave the con-

tinuum extrapolation for later publications and perform the
calculations on rather course lattices, 243 × 4 and 363 × 6.
We note however that we have deliberately chosen rather
large spatial volumes (we have aspect ratio Nσ=Nτ ¼ 6) in
order to minimize finite size effects which are expected to
become large in the vicinity of a phase transition.

IV. RATIONAL FUNCTION APPROXIMATION
OF THE LATTICE DATA

A. Padé approximants

Padé approximants [57] are a popular subject in approxi-
mation theory. The main idea is to approximate a given
function fðxÞ with a rational function whose derivatives
agree with those of fðxÞ up to a given order. This can be
easily rephrased in terms of power series. To set up our
notations, we first consider a so-called single-point [m/n]
Padé. Suppose the Taylor expansion of fðxÞ about a single
point (in what follows, it is useful to take this point as
x ¼ 0) is known up to a certain order (say L),

fðxÞ ¼
XL
i¼0

cixi þOðxLþ1Þ: ð14Þ

We denote Rm
n ðxÞ the ½m=n� Padé approximant we are

looking for,

Rm
n ðxÞ ¼

PmðxÞ
Q̃nðxÞ

¼ PmðxÞ
1þQnðxÞ

¼
P

m
i¼0 aix

i

1þP
n
j¼1 bjx

j ; ð15Þ

which is the ratio of two polynomials (Pm and Q̃n) of order
m and n, respectively. By discarding a nontrivial b0 and
writing Q̃nðxÞ ¼ 1þQnðxÞ, in Eq. (15) we have made a
definite choice for the coefficients fai; bjg our approximant
essentially depends on. Given our knowledge of the Taylor
expansion for fðxÞ, in principle, our choice can be for any
order ½m=n� such that mþ nþ 1 ¼ Lþ 1. Strictly speak-
ing, not all such ½m=n� approximants exist.
Rational functions are not the only viable solutions in

approximation theory; polynomial approximants are very
popular as well. We stress from the very beginning a main
virtue of rational functionswe are interested in; they provide a
natural handle to probing the singularities structure of fðxÞ.
Quite trivially, the singularities ofRm

n ðxÞ are coming from the
zeros of 1þQnðxÞ. To make the latter statement more
precise, we need to more precisely state what we mean by
a ½m=n� approximant. Our attitude is quite pragmatic; we
consider aRm

n ðxÞ for a given choice of ½m=n� and solve for the
fai; bjg coefficients given that the power series of fðxÞ is
known to a given order L such thatmþnþ1¼Lþ1. Given
our input, we are not guaranteed that Pm and 1þQnðxÞ are
coprime polynomials [58]. If this is not the case (i.e., there is a

nontrivial greatest common divisor), singularities of Rm
n ðxÞ

are coming from those zeros of 1þQnðxÞ which either are
not zeros ofPmðxÞ or are zeros of 1þQnðxÞ of a higher order
than they are of PmðxÞ. While trivial, this very last statement
will be of some relevance in the following. We are also quite
concerned with yet another property of Rm

n ðxÞ. Poles are the
only singularitieswe can find in a rational function; still, there
are signatures of other singularities of fðxÞ (e.g., branch cuts)
which we can recognize inRm

n ðxÞ once the coefficients of the
latter have been determined to reconstruct the power series of
fðxÞ.Wediscuss this topic (which indeed is relevant in the our
analysis) in Appendix E.
The most direct way of solving for the unknown

coefficients is by approximation through order; we match
coefficients of different powers of x between the (unknown)
rational function and the (known) Taylor series by demand-
ing functional independence (up to order xL). That means
we rewrite

Xm
i¼0

aixi ¼ PmðxÞ ¼ fðxÞð1þQnðxÞÞ

¼
�XL

i¼0

cixi
��

1þ
Xn
j¼1

bjxj
�
;

and match

a0 ¼ c0;

a1 ¼ c1 þ b1c0;

a2 ¼ c2 þ b1c1 þ b2c0;

� � � : ð16Þ
Equation (16) defines a set of simultaneous, linear equa-
tions, which can be solved by a convenient linear solver.
We stress that most often the linear system is not singular
but ill-conditioned, which is a warning that determining the
solution can be hard. Most importantly, we should keep in
mind that our knowledge of the derivatives of fðxÞ is
coming from stochastic evaluation via Monte Carlo sim-
ulations. Despite this, we see that we can manage to find the
information we are aiming at.
Approximation through order somehow hides that the

information we are making use of is coming from deriv-
atives of fðxÞ. The solution encoded in Eq. (16) can of
course also be obtained by evaluating in x ¼ 0 the tower of
relationships

PmðxÞ − fðxÞQnðxÞ ¼ fðxÞ;
P0
mðxÞ − f0ðxÞQnðxÞ − fðxÞQ0

nðxÞ ¼ f0ðxÞ;
P00
mðxÞ − f00ðxÞQnðxÞ − fðxÞQ00

nðxÞ
−2f0ðxÞQ0

nðxÞ ¼ f00ðxÞ;
� � � : ð17Þ
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Yet another way of obtaining the unknown ai, bj is to solve

the set of equations dk

dxk
Rm
n ðxÞ ¼ fðkÞðxÞ, i.e., [59]

a0 ¼ fð0Þ;
a1 − a0b1 ¼ f0ð0Þ;

2a2 − 2a1b1 þ a0ð2b21 − 2b2Þ ¼ f00ð0Þ;
� � � : ð18Þ

While Eqs. (16), (17), and (18) are equivalent, the
latter is somehow less convenient, not being linear and
typically requires the use of computer algebra tools like
Mathematica. In our particular problem, we explicitly
showed that the three return the same results (to a very
good approximation); Eq. (17) has been to a large extent
our preferred choice.
There exists a significant amount of literature on single-

point Padé approximants (about existence, uniqueness, and
convergence). This is not true for the so-called multipoint
Padé to the same extent. The construction of a multipoint
Padé can be extremely useful in situations when Taylor
coefficients for a function about a single point are not
known to higher orders, but instead either the function
values are known or a few Taylor coefficients are known
about (possibly) many points. Since this is precisely the
situation we face in our lattice studies of QCD at finite
chemical potential, it is useful to understand how to build
rational approximations from these multipoints.
Extending what we saw above to multipoints is straight-

forward; in particular, we extend the formalism encoded in
Eq. (17). A few Taylor coefficients (i.e., derivatives) of a
function fðxÞ known at a collection of points fxiji ¼
1…Ng are consistent with the approximation to f provided
by Eq. (15) if they satisfy the set of equations

Pmðx1Þ − fðx1ÞQnðx1Þ ¼ fðx1Þ;
P0
mðx1Þ − f0ðx1ÞQnðx1Þ − fðx1ÞQ0

nðx1Þ ¼ f0ðx1Þ;
� � � ;

Pmðx2Þ − fðx2ÞQnðx2Þ ¼ fðx2Þ;
P0
mðx2Þ − f0ðx2ÞQnðx2Þ − fðx2ÞQ0

nðx2Þ ¼ f0ðx2Þ;
� � � ;

PmðxNÞ − fðxNÞQnðxNÞ ¼ fðxNÞ;
P0
mðxNÞ − f0ðxNÞQnðxNÞ − fðxNÞQ0

nðxNÞ ¼ f0ðxNÞ;
� � � ; ð19Þ

which is once again a linear system in nþmþ 1

unknowns where now nþmþ 1 ¼ P
N
i¼1ðLi þ 1Þ. In the

previous formula, the highest order of derivative which we
know (i.e., Li) can be different for different points.
Multipoints Padé will be our choice for the analysis of
this work. We now proceed to discuss a few technical

details of our implementation, referring the reader to
Appendixes B–F for extra remarks and comments.

B. Padé approximants for the QCD net baryon
number density from imaginary chemical potential

This is not the first time Padé approximants are applied
to the study of finite density (lattice) QCD [60–62].
A recent paper has, in particular, proposed to join Padé
analysis and Bayesian methods, with applications to the
study of the crossover line [63]. In a way that is close to the
spirit of this work, in recent times, Padé approximants have
been successfully used to probe the singularity structure of
simple theories in the context of the Lefschetz thimble
method [64]. To our knowledge, this work is in a sense the
first attempt at a systematic study of the QCD phase
diagram and, in particular, of Lee-Yang edge singularities,
building on Padé analysis. The function we want to
approximate by rational functions is the net baryon number
density χB1 ðT; V; μBÞ, with the cumulants χBn ðT; V; μBÞ
(n > 1) entering Eq. (19) as derivatives. Our main goal
is to get signatures of singularities of χB1 ðT; V; μBÞ in the
complex-μB (μB ¼ μIB þ iμRB) plane (at fixed values of T
and V). Ultimately we aim to understand the phase diagram
of the theory. In particular, we find clear evidence of the
Roberge-Weiss transition in the μIB − T plane. Most impor-
tantly, if at some point we could find evidence of singu-
larities eventually pinching the (real) μRB axis, then we
would be in the presence of a QCD critical point candidate.
We have already seen that Eq. (19) is not the only way to

solve for the coefficients entering the Padé approximants
(15). Not only, e.g., does the multipoints version of Eq. (18)
works as well, but also other formalisms could be (and
actually were) used in our analysis. In the construction of
these other formalisms, a key point is that the values of the
χBn , i.e., the function f and its derivatives in Eq. (19), are
known to a limited precision since they are evaluated by
Monte Carlo. Our Padé analysis was performed following
three different approaches, aiming at assessing their mutual
consistency.
(1) The solution of the linear system (19) has been

worked out in two different ways, namely,
(i) One can build the system by writing the most

general form for Rm
n ðxÞ, i.e., that of (15).

(ii) One can instead impose the form

Rm
n ðxÞ ¼

P
m0
i¼0 a2iþ1x2iþ1

1þPn=2
j¼1 b2jx

2j
;

ðm ¼ 2m0 þ 1; a1 ¼ χB2 ðT; V; 0ÞÞ; ð20Þ

with the coefficients faig and fbjg that turn out
to be real. This form ensures the following:
(a) The function χB1 ðT; V; μBÞ has the right
parity (it is an odd function). (b) As a conse-
quence of the coefficients being real valued, for
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imaginary μB ¼ μIB, the odd cumulants
χB2nþ1ðT; V; μIBÞ are imaginary valued, while
the even χB2nðT; V; μIBÞ are real valued, as it
must be. (c) When Eq. (20) is computed for real
μB ¼ μRB, the cumulants are real; i.e., the ana-
lytic continuation one is typically interested in
is guaranteed to be meaningful.

Notice that taking into account different functional
forms for Rm

n is not the end of the story. Another
alternative which can (and actually was) taken into
account is whether one
(i) performs the Padé analysis in the (original)

complex-μB plane or
(ii) goes through a conformal map μB ¼ ϕðνÞ and

performs the Padé analysis in the complex-ν
plane.

This is in the spirit of [27,65,66].
(2) Because of the cumulants being known to finite

precision, the minimization of a generalized χ2 is
an obvious alternative to the solution of (19).
Suppose we want Rm

n ðxÞ to be a Padé approximant
for the function fðxÞ whose values and derivatives
we know at given points fxjjj ¼ 1…Ng, i.e.,

cðkÞj ≡ ∂jf
∂xj ðxkÞ ≃ ∂jRm

n∂xj ðxkÞ, with the cðkÞj known with

errors ΔcðkÞj . Then, the coefficients fai; bjg the
Rm
n depends on can be fixed minimizing the

generalized χ2,

χ̃2 ¼
X
j;k

j ∂jRm
n∂xj ðxkÞ − cðkÞj j2
jΔcðkÞj j2

: ð21Þ

Of course, all the alternatives that we commented in
1 (namely, different functional forms for Rm

n , use of
conformal maps) can be also implemented in this
approach.

(3) Both 1 and 2 make use of the knowledge of fðxÞ
(and its derivatives) at given points; i.e., the only
information on fðxÞ we have is at a finite (possibly
small) number of points. One could instead compute
a smooth interpolation of fðxÞ before entering the
Padé analysis.

C. Results of Padé analysis of net baryon
number density

The focus of our analysis is on singularities of the net
baryon number density. Still, before proceeding to this, we
make a short digression on a feature which is worth
discussing. In investigating the phase diagram of QCD
in the (imaginary chemical potential–temperature) μIB − T
plane, and, in particular, in the study of the Roberge-Weiss
transition, a prominent role is played by the free energy as
a function of μ̂IB (at given values of the temperature T); a
cartoon for this quantity is often plotted. Since we have a

function Rm
n ðμ̂IBÞ approximating the net baryon density, we

can obtain the free energy Fðμ̂IBÞ by (numerical) integra-
tion. In Fig. 3, we display the free energy Fðμ̂IBÞ at three
different temperatures; the profile clearly gets closer to a
cusp as the temperature gets closer to T ¼ TRW (to the
extent that the transition can be detected on a finite
volume).
We now inspect how well our rational approximants

describe the data. On top of that, we are interested in the
analytic continuation of results from imaginary to real
values of the baryonic chemical potential (this is in the end
a key issue in any imaginary-μB study of finite density
lattice QCD). Finally, we present the relevant singularity
pattern which emerges from our analysis. In Fig. 4, we
display what we get both for imaginary and for real
baryonic chemical potential. For three of the temperatures
we probed on Nτ ¼ 4, we plot the results we got from the
solution of Eq. (19) for both functional forms (15) and (20).
For imaginary values of the baryonic chemical potential,
the two solutions are de facto indistinguishable. For real
values (analytic continuation), the real parts are quite close
to each other, a significant discrepancy between the two
different Ansätze being there only at T ¼ TRW and for
μ̂RB > π. As for imaginary parts, Eq. (20) is guaranteed to
return zero; it is interesting to notice that also the solution
we got for the Ansatz (15) has a quite tiny imaginary part (at
least up to μ̂RB ∼ π). All this can be taken as an indication of
reasonably tiny systematic effects as far as the dependence
on the precise form of the Padé approximants is concerned.
All in all, the indeterminations we have to live with when
we analytically continue our results to real baryonic
chemical potential seem to be competitive when we
compare to other methods. This is true despite the fact
that, inspecting Fig. 4, a few spikes are clearly visible; we

FIG. 3. The free energy as a function of μ̂IB at three different
temperatures.
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see in what sense they do not come as a surprise and are in
fact harmless.
In Fig. 5, we plot the singularity pattern we get at three of

the temperatures we probed on Nτ ¼ 4. We once again
present results we get for both functional forms (15) and
(20). A few remarks are in order, which we invite the reader
to consider taking into account the points that we make in
Appendixes C, E, and F.

(i) Thermal singularities are expected to show up at
μ̂IB ¼ π and indeed to a very good accuracy they do.

(ii) The signature for a branch cut is clearly visible at
T ¼ TRW ¼ 201.4 MeV, for both Ansätze (15) (see
upper row) and (20) (lower row). Notice that the
latter is by construction sensitive to all the four
replicas of the same singularity, as expected for
symmetry reasons: if we find a singularity in z, then

also −z and −z̄ must be singular points. This is a
general feature, which is clear at all temperatures;
(15) instead only captures singularities in the upper
half plane (i.e., we see one of the two symmetries).

(iii) At T ¼ 186.3 MeV (this is the next to highest
temperature that we probed), plots apparently allude
to a branch cut as well, while at T ¼ 167.4 MeV the
singularity shows up as a simple pole. Much the
same happens at the remaining temperatures (i.e.,
T ¼ 176.6 MeV and T ¼ 160.4 MeV are consistent
with the appearance of simple poles).

(iv) While the pattern of the relevant pieces of informa-
tion (i.e., true poles and zeros) is the same for
different functional forms, the pattern of other zeros
and poles depends on the functional form. Notice
that the mechanism of zero-pole cancellations is
manifest; these cancellations are due to numerical
noise. In a sense, we see fake information, which
would not be there for exact data, but since noise is
not that much, this fake information is close to
disappearing.

(v) While the zero-pole cancellations seem almost
perfect in Fig. 5, Fig. 4 is warning us that this is
not really the case, and this is the reason for the
spikes which we see there. We encourage the reader
to spot which singular points are responsible for the
spikes. Again, the almost perfect cancellations in
Fig. 5 reveal that these spikes are harmless.

(vi) As should be clear, the big spike at μ̂B ¼ iπ for
T ¼ TRW is a different story: this is indeed the
Roberge-Weiss transition showing up.

We repeated our analysis hunting for singular points in the
complex-fugacity plane; after mapping our measurements
to this plane, we performed Padé analysis in the z ¼ eμ̂B
variable. There are at least two reasons for such an
(additional) analysis. First of all, we want to make sure
that the information which we get is stable and does not
disappear once we change the variable. Also, the linear
systems which we have to solve are typically ill-condi-
tioned. Due to the nature of the conformal map, this feature
disappears (in a sense, we can trust results to a higher level
of confidence). In Fig. 6, we present the singularity pattern
in the complex-fugacity plane.

(i) Since our original data are taken on the imaginary
axis (μB ¼ iμIB), in the complex fugacity plane, we
end up on the unit circle jzj ¼ 1. In view of the
observations that we make in Appendix D, notice
that this is a very convenient location with respect to
the location of the singularities that we detect.

(ii) Since singularities are expected at μ̂IB ¼ π, in the
fugacity plane, they should show up on the real axis,
and indeed, they do. Due to the relative positions
with respect to the input data (jzj ¼ 1), we are not
sensitive to any (symmetry) replica (that is, one
single singularity shows up).

FIG. 4. Top: the net baryon number density as a function of μ̂IB
at three different temperatures; for each, (15) and (20) fall on top
of each other. Bottom: the analytic continuation of the baryon
number density for three different temperatures. Again, we plot
both (15) and (20); for the latter, the imaginary part is guaranteed
to be zero.
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(iii) All the other features (e.g., zero-pole cancellations)
show up much the same as they do in the original
μB plane.

In Table I, we collect all the findings that we discussed so
far. In particular, for each temperature that we probed at
Nτ ¼ 4, we list the nearest singularities as obtained (a) from
the solution of the linear system (19) in the μB=T plane
(method I), (b) from the minimization of the generalized χ2

(21) (method II), and (c) from the solution of the linear
system (19) in fugacity plane, both mapping back results in
the original plane and inspecting them in the fugacity plane
(methods III* and III). The errors are computed out of a
bootstrap procedure in which we repeat our Padé analysis

letting the input data (i.e., the results of our Monte Carlo
measurements) vary within errors. As one can see, results
are well consistent.
The singularities which we have been discussing so far

(and that are listed in Table I) are not the only ones on
display in Fig. 1. Results obtained on Nτ ¼ 6 at T ¼
145 MeV apparently point at a singular point that could be
consistent with a chiral singularity. While this result is
intriguing, in this case extra care is in order.

(i) In this case, we have a (far) enhanced dependence
on the interval our Padé analysis takes into account.
In particular, this singularity shows up if we limit our
analysis to μ̂IB ∈ ½0; π�.

FIG. 5. Singularity structure in the μ̂B plane for three different temperatures (from left to right T ¼ 201.4, 186.3, 167.4). Upper row:
Ansatz (15); lower row: Ansatz (20).

FIG. 6. Singularity structure in the fugacity (z ¼ e
μB
T ) plane for three different temperatures (from left to right T ¼ 201.4, 186.3,

167.4).
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(ii) The result which is shown in Fig. 1 comes from the
minimization of the generalized χ2 (21) taking (15)
as an Ansatz, with m ¼ n ¼ 4. This choice returns
the best χ̃2 value.

(iii) A consistent result for the singularity is found from
other methods if we limit the analysis to the same
interval (μ̂IB ∈ ½0; π�) (even changing a bit the de-
gree, which thing is easier in this approach). This
singularity is not that stable under the variation of
the interval. While this is not a priori that surprising
(our multipoint Padé analysis is interval sensitive,
see Appendix D), at the same time, it makes the
result less solid than what we get on Nτ ¼ 4 at
higher temperatures.

In Fig. 7 we display the net baryon number density as
obtained on Nτ ¼ 6 at T ¼ 145 MeV (notice that the signal
is substantially tinier than at higher temperatures). Here, we
have 2 × 2 options displayed: data are compared to rational
approximants obtained (a) either from thegeneralized χ2 (21)
or from the solution of Eq. (19) for the basic functional form
(15) and (b) taking into account data either for μ̂IB ∈ ½0; π� or
for μ̂IB ∈ ½0; 2π�. As one can see, the rational approximants
we get from the two methods are (always) substantially
equivalent; indeed, there is a difference when it comes to
taking into account a larger or smaller μ̂IB interval. Notice,
however, that for μ̂IB ∈ ½0; π� every solution is de facto
indistinguishable from any other. We also show analytical

TABLE I. Method I: Linear Solver. Method II: χ2 fit approach. Method III: Linear solver in fugacity plane.

Method I Method II Method IIIa Method III

T (MeV) μ̂RLY μ̂ILY μ̂RLY μ̂ILY μ̂RLY μ̂ILY zR zI

201.4 0.11(11) 3.142(10) 0.077(45) 3.133(15) 0.0541(15) 3.1294(63) –0.9472(14) –0.0116(60)
186.3 0.48(14) 3.118(54) 0.53(13) 3.112(66) 0.397(51) 3.127(34) –0.672(34) 0.010(21)
176.6 1.03(10) 3.112(72) 1.022(80) 3.18(12) 1.040(94) 3.115(65) –0.353(33) –0.010(20)
167.4 1.82(11) 3.125(79) 1.79(13) 3.164(95) 1.694(55) 3.12(13) –0.184(12) 0.004(22)
160.4 2.097(90) 3.147(11) 2.14(12) 3.150(70) 2.07(76) 3.14(24) –0.126(70) 0.000(14)

aMapped back values from fugacity plane. We are picking the value in first quadrant given the symmetries of the partition function.

FIG. 7. Top: the net baryon number density as a function of μ̂IB on Nτ ¼ 6 at T ¼ 145 MeV and the rational approximants obtained by
both solving the linear system (left) and minimizing the generalized χ2 (right); in both approaches, we performed the analysis on both the
restricted interval μ̂IB ∈ ½0; π� and the extended one μ̂IB ∈ ½0; 2π�. Bottom: the analytic continuation of the baryon number density for the
four different options.
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continuations; taking into account data from an extended μ̂IB
interval results in an imaginary part staying very close to zero
in a wider interval of real chemical potential. In Fig. 8, we
display the analytic structure we get from the different 2 × 2
options. As one can see, results are again very much
consistent whatever method we choose for computing the
rational approximants. As anticipated, the singularities we
found are indeed different for different input μ̂IB interval.
When we take input from the extended μ̂IB ∈ ½0; 2π� interval,
we apparently get what one would regard as a thermal
singularity. The outcome is pretty different when input is
taken from the restricted μ̂IB ∈ ½0; π� interval. We see that
what we get in this case is a chiral singularity candidate. We
stress that this ambiguity shows up only in this case (i.e., for
this lowest temperature, which is only probed on Nτ ¼ 6).
We stress once again that our multipoint Padé analysis is
interval sensitive, and it could well be that in different
intervals we have access to different pieces of information.
The fact that this is possibly the only piece of information
related to chiral symmetry breaking makes all this intriguing
and definitely deserving further investigation. Indeed we are
working on this, in particular, repeating our Padé analysis for
the chiral condensate, which is the relevant order parameter
for chiral symmetry breaking.

V. SCALING ANALYSIS

A. The Roberge-Weiss critical region

The nearest singularities which we identified in the
temperature range 201 MeV < T < 160 MeV from our
Padè approximations presented in the last section and which

appeared to be stable are listed in Table I. Despite the fact that
we could not observe indications for a branch cut connected
to all these singularities, we now demonstrate that they can
indeed be identified with Lee-Yang edge singularities of the
Roberge-Weiss critical point, i.e., that they scale in accor-
dance with our expectations presented in Sec. II A. In
particular, it is obvious that we obtain for the imaginary
part μ̂ILY ¼ Im½μBT � ¼ π within errors for all temperatures and
methods as demanded by Eq. (5). In order to show that the
real part scales in accordancewith Eq. (4), we perform fits to
the data listed in Table I with the Ansatz

μ̂RLY ¼ a

�
TRW − T
TRW

�
βδ

þ b; ð22Þ

with fit-parameter a, b. For the Roberge-Weiss critical
temperature, we set TRW ¼ 201.4 MeV in accordance with
[40]. We fixed the critical exponents to that of the Ising
universality class; i.e., we have βδ ≈ 1.5635. The parameter
b is added to capture the leading order finite size effects.
Since our calculations are done in a finite volume, we expect
that the Lee-Yang edge singularities will not reach the real h
axis, which is here the μ̂IB axis. Or with other words, there is
no phase transition in a finite volume. Amore elaborate finite
size analysis will be left for future publications.
The fits work quite well [67] and are shown in Fig. 9.

Results for the fit parameter and reduced χ2 values are
given in Table II.
Besides the demonstration for scaling, we can relate our

results for the fit parameter a to the nonuniversal constant
z0. From Eq. (4), we obtain

z0 ¼ jzcj
�
a
π

� 1
βδ

: ð23Þ

Using the value jzcj ¼ 2.452 for the 3d-Ising universality
class [36], we obtain z0 ≈ 9.2–9.5. The specific values for
our three data sets are given in Table II. To our knowledge,
that is the first determination of z0 for the Roberge-Weiss
transition. Note, however, that the value is obtained on
course lattices (Nτ ¼ 4) with no proper continuum extrapo-
lation yet.
In principle, z0 could also be determined from a fit to the

magnetic equation of state (EoS). Here, we anticipate more
severe corrections from the finite size, as well as large
contributions from regular terms. In particular, more data
close to the RW transition are needed to obtain a reliable fit.
A determination of z0 from a fit to the magnetic EoS is thus
beyond the scope of this work.

B. The chiral critical region

We have probed one additional temperature below the
pseudocritical phase transition temperature of (2þ 1)-flavor
QCD, namely, T ¼ 145 MeV. For this low temperature, the
calculations have been done on 363 × 6 lattices. To put the
temperature value into perspective, we recall the continuum

FIG. 8. Singularity structure in the μ̂B plane on Nτ ¼ 6 at
T ¼ 145 MeV. As in Fig. 7, the method for obtaining the rational
approximants can be the solution of the linear system (left) or the
minimization of the generalized χ2 (right); the input interval for
the analysis can be μ̂IB ∈ ½0; π� (top) or μ̂IB ∈ ½0; 2π� (bottom).
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extrapolated numbers for the pseudocritical temperature
Tpc ¼ ð156.5� 1.5Þ MeV [45] and the chiral critical tem-
perature Tc ¼ 132þ3

−6 MeV [44]. We also note that the
corresponding Nτ ¼ 6 results are 10–15 MeV higher. In
conclusion, the probed temperature of T ¼ 145 MeV is
compatible with the chiral critical temperature, and we thus
expected it to be sensitive to chiral scaling.
We now compare the position of the singularity we find

for this temperature with the expected position of the Lee-
Yang edge singularity, governed by Oð2Þ critical behavior
[70]. Hence, we fix the critical exponents to βδ ¼ 1.6682.
The chiral transition has been subject to various lattice
QCD studies in the past; the nonuniversal parameters that
appear in Eq. (8) are known to some extent, as discussed
already in Sec. II B. In Fig. 10, we calculate the 68% and
95% confidence areas of the expected Lee-Yang edge
singularity when we vary the nonuniversal parameter under
the assumption of Gaussian distributed errors. In particular,
we chose for the Nτ ¼ 6 specific values and errors [71],

Tc ¼ ð147� 6Þ MeV;

z0 ¼ 2.35� 0.2;

κB2 ¼ 0.012� 0.002; ð24Þ
and in addition, we take jzcj ¼ 2.032 [36]. As can be seen
from Fig. 10, the results from the rational approximation to
our data (method II), ðμ̂RB; μ̂IBÞ ¼ ð3.03ð28Þ; 1.61ð10ÞÞ, lie
within the 68% confidence area of this prediction.

VI. SUMMARY AND CONCLUSIONS

We computed cumulants of the net baryon number
density as a function of the imaginary baryon number
chemical potential in lattice QCD, the fermionic regulari-
zation being that of highly improved staggered quarks
(HISQ). The results were the input for a multipoint Padé
analysis by which rational approximations were calculated,
with various choices of both the functional forms of the
latter and of the methods by which the approximants were
determined. The results have been shown to be stable, in
particular, also if we repeat our analysis in the fugacity
plane (i.e., after a conformal map). Our rational approx-
imations not only describe very well the data but appear to
be quite well under control when we analytically continue
them to real values of the baryonic chemical potential.
The main focus of our analysis has been on the singularity

structure that we can infer from the complex poles of our
rational approximations. By comparing the latter with the
theoretically expected Lee-Yang edge singularities in the
vicinity of the Roberge-Weiss phase transition, we found a
quitegoodagreement. Inparticular, the temperature scalingof
the singularities is consistent with the expected power law
behavior. We also found a preliminary evidence of a singular

FIG. 9. Scaling fit to the Lee-Yang edge singularities in the
vicinity of the Roberge-Weiss transition to the Ansatz (22).
Shown are three distinct data sets for the real parts of the μ̂B
(imaginary parts of h) as a function of the reduced temperature
ðTRW − TÞ=TRW, as obtained from methods I–III.

TABLE II. Fit parameters a, b, obtained from a scaling fit to the
Lee-Yang edge singularities in the vicinity of the Roberge-Weiss
transition. Also given are the reduced χ2 and the deduced values
for the nonuniversal constant z0 for the data sets obtained from
methods I–III, respectively.

Method a b χ2 z0

I 24.77 (2.68) 0.1192(80) 1.14 9.18(99)
II 25.54 (79) 0.0806(9) 0.49 9.37(29)
III 26.08 (63) 0.0541(1) 0.96 9.49(23)

FIG. 10. Comparison of the expected Lee-Yang edge singu-
larity at T ¼ 145 MeV (Nτ ¼ 6) from previously estimated
nonuniversal parameters (68% and 95% confidence areas), with
the singularity obtained from our multipoint Padé analysis (data
point). The dashed line indicates the predicted temperature
dependence of the Lee-Yang edge singularity.
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point consistentwith the phase transitionwhich is expected in
the chiral limit of (2þ 1)-flavor QCD in a staggered regu-
larization. All our findings (and, in particular, the last that we
mentioned) deserve further investigation by getting more
precisemeasurements andprobing less coarse lattices, a target
thatwe are aiming at in the near future.An interesting task that
is also in front of us is that of comparing ourmethodology and
results with other recent approaches to the study of the
analytical structure of finite density QCD, e.g., that of
[29,72]. All data from our calculations, presented in the
figures of this papers can be found in [73].
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APPENDIX A: LATTICE DATA OF NET
BARYON NUBER CUMULANTS

The gauge fields have been generated with a rational
hybridMonte Carlo algorithm (RHMC). In Tables III and IV,
we list results from calculation on the 243×4 and 363 × 6

TABLE III. Mean values and statistical errors of net baryon number cumulants from 243 × 4 lattices. Also indicated is the number of
measured configurations.

μ̂IB Im½ χB1 � Re½ χB2 � Im½ χB3 �
Number of

configurations μ̂IB Im½ χB1 � Re½ χB2 � Im½ χB3 �
Number of

configurations

T ¼ 201.4 [MeV] T ¼ 176.6 [MeV]

0.000 −0.00002ð18Þ 0.26421(52) 0.0009(21) 4800 0.000 0.00062(28) 0.2288(10) −0.0018ð43Þ 1600
0.393 0.10319(17) 0.26066(46) 0.0155(27) 4800 0.209 0.04840(25) 0.22800(83) 0.01876(43) 1600
0.785 0.20388(21) 0.25134(72) 0.0367(30) 4800 0.419 0.09556(42) 0.22487(11) 0.0279(52) 1600
1.178 0.29940(27) 0.2344(11) 0.0478(47) 4800 0.628 0.14253(36) 0.2178(10) 0.0305(74) 1600
1.571 0.38637(20) 0.2107(11) 0.0762(68) 4800 0.838 0.18703(38) 0.2084(15) 0.0420(93) 1600
1.963 0.46004(44) 0.1675(22) 0.132(15) 5400 1.047 0.22836(50) 0.1951(18) 0.0706(87) 1600
2.356 0.51602(51) 0.1049(28) 0.224(22) 5400 1.257 0.26744(63) 0.1761(23) 0.092(14) 1600
2.749 0.53076(91) −0.0589ð73Þ 0.72(13) 5400 1.466 030325(65) 0.1599(29) 0096(20) 1600
2.880 0.52279(99) −0.1291ð79Þ 1.00(11) 10800 1.676 0.33369(37) 0.1253(17) 0.201(16) 1600
3.011 0.4851(21) −0.516ð34Þ 5.39(79) 10800 1.885 0.35465(57) 0.0961(35) 0.175(18) 1600
3.105 0.3859(78) −2.92ð54Þ 141(48) 11000 2.094 0.36401(57) 0.0147(62) 0.360(72) 1600

T ¼ 186.3 [MeV] 2.304 0.3594(11) −0.086ð13Þ 0.73(12) 1600
0.000 0.00025(12) 0.24537(35) 0.0021(20) 4100 2.513 0.32881(51) −0.235ð18Þ 1.06(42) 1600
0.286 0.06986(20) 0.24361(51) 0.0062(17) 4100 2.723 0.2608(24) −0.482ð17Þ 1.40(44) 1600
0.571 0.13876(20) 0.23687(52) 0.0127(23) 4100 2.932 0.1454(32) −0.567ð29Þ 0.31(55) 1600
0.857 0.20486(26) 0.22681(75) 0.0181(29) 4100 3.142 0.0055(30) −0.626ð33Þ −0.58ð53Þ 1600
1.142 0.26792(27) 0.21248(91) 0.0271(46) 4100 T ¼ 167.4 [MeV]
1.428 0.32485(30) 0.1850(16) 0.0796(97) 4100 0.000 −0.00029ð23Þ 0.21093(75) −0.0070ð53Þ 6000
1.714 0.37469(41) 0.1588(15) 0.068(12) 4100 0.393 0.08176(27) 0.2059(13) 0.0283(67) 6000
1.999 0.41448(59) 0.1088(38) 0.140(22) 4100 0.785 0.15952(31) 0.1860(12) 0.0668(70) 6000
2.285 0.43543(90) 0.0350(73) 0.271(48) 4100 1.178 0.22720(45) 0.1551(21) 0.1017(85) 6000
2.570 0.4213(15) −0.145ð11Þ 0.88(15) 4100 1.571 0.27782(81) 0.0982(36) 0.181(33) 6000
2.713 0.3918(24) −0.349ð25Þ 2.21(49) 4000 1.963 0.29885(84) −0.0083ð59Þ 0.372(68) 6000
2.856 0.3262(34) −0.757ð61Þ 5.3(1.2) 4100 2.356 0.2630(16) −0.179ð15Þ 0.57(12) 12000
2.999 0.2020(41) −1.061ð54Þ 2.9(1.6) 4000 2.749 0.1554(16) −0.343ð19Þ 0.23(25) 12000
3.142 −0.0069ð61Þ −1.40ð12Þ −0.0ð3.2Þ 4100 3.142 −0.0015ð16Þ −0.421ð13Þ 0.07(27) 12000

T ¼ 160.4 [MeV] T ¼ 160.4 [MeV]
0.000 −0.00027ð25Þ 0.1919(12) −0.0000ð82Þ 5550 1.571 0.23653(81) 0.0584(60) 0.190(39) 5550
0.393 0.07427(36) 0.1865(14) 0.0287(84) 5550 1.963 0.2391(13) −0.0476ð83Þ 0.262(89) 5550
0.785 0.14273(32) 0.1637(18) 0.071(14) 5550 2.356 0.1990(16) −0.1580ð88Þ 0.16(16) 5550
1.178 0.20104(40) 0.1262(27) 0.109(17) 5550 2.749 0.1061(13) −0.271ð17Þ 0.13(23) 5550
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lattices, respectively. Also listed are the number of configu-
rations on which we have measured the observables and
which are separated by 10 RHMC trajectories of length
0.5–1.0.

APPENDIX B: MULTIPOINT
VS SINGLE-POINT PADÉ

As mentioned before, most of the literature that exists on
existence, uniqueness, and convergence [57,74] of Padé
sequences exists mainly for single-point Padé expansions
wherein the rational approximation is constructed from a
single Taylor expansion with arbitrarily many Taylor coef-
ficients [75]. On the other hand, we may be presented with a
situation in which we have low-order Taylor data but at
arbitrarily many points. This is known in the literature as
multipoint Padé, but most commonly only values at other
points are used. In our work, we also use higher Taylor
coefficients at other points. Since not a lot of literature on
multipoint Padé exists, we validate our findings with numeri-
cal experiments conducted on a number of test functions.
Basedonour numerical experiments, it is also shown that there
are situations in which a multipoint Padé does better while
there are other situations inwhich a single point may be better.
Most of our numerical experiments are based on the 1D

Thirring model (a model that was studied in [64]). This
model is chosen because its partition function has a known
analytical solution. For the purposes of these experiments,
we simulate the number density of the 1D Thirring model,

N¼ I1ðβÞL sinhðLμÞ
I1ðβÞL coshðLμÞþ I0ðβÞL coshðLsinh−1ðmÞÞ ; ðB1Þ

where because we know the exact location of poles of the
number density, it is easy to validate/invalidate our
approximation. Shown in Fig. 11 are the approximations
and singularity structure of the number density simulated at
β ¼ 1, L ¼ 8, and m ¼ 2 (same parameters used in all
figures depicting the 1D Thirring model).

TABLE IV. Mean values and statistical errors of net baryon number cumulants from 363 × 6 lattices. Also indicated is the number of
measured configurations.

μ̂IB Im½ χB1 � Re½ χB2 � Im½ χB3 �
Number of

configurations μ̂IB Im½ χB1 � Re½ χB2 � Im½ χB3 �
Number of

configurations

T ¼ 145.1 (MeV) T ¼ 145.1 (MeV)

0.000 0.00024(51) 0.0579(24) 0.001(20) 5280 1.963 0.05578(61) –0.0217(39) 0.074(36) 5280
0.393 0.02276(42) 0.0526(27) 0.026(24) 5280 2.356 0.04384(73) –0.0467(49) 0.099(46) 5280
0.785 0.04142(56) 0.0426(22) 0.057(19) 5280 2.749 0.02391(81) –0.0569(44) 0.024(37) 5280
1.178 0.05436(54) 0.0176(27) 0.055(27) 5280 2.945 0.01315(95) –0.0663(47) 0.008(46) 5280
1.571 0.05995(76) –0.0042(24) 0.075(25) 5280 3.142 0.00024(80) –0.0538(41) 0.071(39) 5280

FIG. 11. Thirring 1D. Top: comparison between the approxi-
mation of a [15/15] order single-point Padé about 0 and
a [10/10] order multipoint Padé constructed in the interval
[0,4] with only up to first derivatives. Middle, Bottom: depiction
of the poles as seen by the single-point and multipoint Padé,
respectively.
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APPENDIX C: MANIFESTATION
OF SPURIOUS POLES

As is shown below, “spurious” poles can enter our
analysis in two ways:
(1) First, we can (will) get spurious poles in noisy data;

we discuss this in the last section. But the important
message is that if our function has a genuine pole we
will find a quasistable pole from our approximation
even in noisy data, and the effect of decreasing
(increasing) noise will be that the pole becomes
more (less) stable, eventually converging to (diverg-
ing from) the correct value in the absence of noise.

(2) Second, even in the absence of noise, when we
simulate a test function with its clean data, we find
that after a certain (optimal) order, our Padé will start
spitting out spurious poles which will be exactly
canceled by corresponding zeroes. This is a clear
result of demanding a very high order of approxi-
mation. This happens both for single-point Padé and
multipoint Padé. This effect can be seen in Fig. 12.

A note on Froissart doublets [76]: these appear as zero-pole
doublets in a unit circle in a Padé approximation to a series
perturbed by noise. The separation between such pairs is
proportional to the scale of the noise present. Figure 13 is
an example of Froissart doublets in the case of simulating
pure noise.

APPENDIX D: INTERVAL DEPENDENCE
OF MULTIPOINT PADÉ

Based on our numerical experiments, it was observed
that the approximation obtained from the multipoint Padé
approach is sensitive to the interval sampled. By this,
we mean that for some functions the signature of the
singularity might be missed if the interval is not chosen
appropriately.
In Fig. 14, this sensitivity is demonstrated with the help

of the 1D Thirring model as our test case, since we know
the positions of its singularities. The singularities which we
detect from rational approximations obtained in different
intervals are shown and compared with the analytic (exact)
positions.

FIG. 12. The figure depicts zeroes and poles of the functionffiffiffiffiffiffiffiffi
2μþ1
μþ6

q
with increasing the order of the Padé approximation. The

message to be conveyed is the appearance of “spurious” poles and
zeroes exactly canceling each other on right half plane when we
go very high in the order.

FIG. 13. Froissart doublets for (top) Flat noise and (bottom)
Gaussian noise.

CONTRIBUTION TO UNDERSTANDING THE PHASE STRUCTURE … PHYS. REV. D 105, 034513 (2022)

034513-15



FIG. 14. 1D Thirring model: functional form of the rational approximation (left) and sensitivity to different sets of poles (right) when
sampled in different intervals: [0, 4] (top), [–4, 4] (middle), [–2, 2] (bottom).

FIG. 15. Left: interval used Im½μ� ∈ ½0; 3�; (top) approximation is good but (bottom) signature of branch cut missed. Right: interval
used Im½μ� ∈ ½−3; 3�; (top) approximation is good in the region considered and (choosing an interval which includes the branch cut
symmetrically ensures) that the (bottom) branch cut is properly obtained.
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Another example where the interval dependence of a
function is manifest is when the function has a branch cut.
We would ask the reader to keep in mind that range
dependence may not be apparent from the functional form
always, whereas it is can be manifested in the structure of
zeroes and poles. Figure 15 shows the example of such a

function
� ffiffiffiffiffiffiffiffi

2μþ1
μþ6

q �
.

APPENDIX E: MORE NUMERICAL
EXPERIMENTS

Some more numerical experiments were performed to
see how the Padé approximation treats different types of
singularities (poles, branch points, essential singularities,
etc.). While some literature exists on how the single-point
Padé treats these singularities with varying the order of the
approximation [77], not much exists on how multipoint
Padé treats these singular points. This is also a nice way to
test that the approximation works.
The reason we are focusing on a “cusplike” singularity is

motivated from the periodicity properties of the partition
function, which at and above the Roberge-Weiss temper-
ature behaves like a cusp at the RW point and multiples of
π. The free energy, by definition, also has this structure, and
hence, its first derivative becomes discontinuous.
The first of the examples of known functions shown

below mimics the above mentioned behavior (corner
function), while the second example is just to show how
the multipoint Padé handles a genuine cusp [78].

1. “Cusplike” function and its derivative

The exponent function with argument of negative abso-
lute values and its derivative showing a discontinuity
similar to our case are shown in Fig. 16.
Poles are strictly speaking the only singularity that a

Padé approximation can have. When we demand a rational
approximation of an irrational function, such as the square
root function above, the only way a rational function can
mimic the branch cut is by placing a sequence of zeroes and
poles alternately along the branch cut.

2. Function with a genuine cusp singularity

Just as an extra example, the Padé analysis of a genuine
cusp singularity is also presented below (Fig. 17):

APPENDIX F: EFFECT OF NOISE
ON POLE STABILITY

1. Statistical error

Since our data from the lattice simulations comes with
noise, it is important to study the effect of noise on functions
containing genuine singularities. It is already well known
that in the presence of noise poles move about around the
true singularity. Also, the mean distance from the true pole
increases with increasing themagnitude of error. This can be
seen (again) with the help of the Thirring model (but
the reader is free to choose their own test function).
Figures 18–20 are intended to mimic the lattice data at
least where statistical errors are concerned. For instance,
from our QCD data, we have around 1% error on the χB1 and
10% errors on χB2 . In the figures, we show the effect of
adding this combination of errors to the Thirringmodel. The
take away message is that even though the poles move
around the signature of the singularity is present and
consistent within errors with the true singularity.

2. Systematic error

We have already seen the interval dependence of poles.
Padé theory dictates that the true poles of a function remain
fixed when changing orders of the Padé. While it is very
clear in building single-point Padé approximations what

FIG. 16. Multipoint Padé for (top) a cusplike function and its
singularity structure and (bottom) the derivative of the above
function and its singularity structure.

FIG. 17. Multipoint Padé for a genuine cusp function and its
zeroes and poles.
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increasing or decreasing the order of a Padé means, it is not
the case for multipoint. We can change the order in at least
two distinct ways or a combination of them by either
increasing the number of points sampled or keeping the
points fixed and increasing the derivatives at those points.

The systematic errors that we want to highlight in this
section are those that cause the pole to move around even at
a fixed instance of statistical error while varying the order
of the approximant as mentioned above (see Figs. 21
and 22).

FIG. 18. Closest singularity with a [4, 4] Padé with (left) 1% and (right) 5% errors on values and (left) 10% and (right) 15% on first
derivatives, respectively.

FIG. 19. Closest singularity with a [5, 5] Padé with (left) 1% and (right) 5% errors on values and (left) 10% and (right) 15% on first
derivatives, respectively.

FIG. 20. Closest singularity with a [6, 6] Padé with (left) 1% and (right) 5% errors on values and (left) 10% and (right) 15% on first
derivatives, respectively.
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Padé even in the absence of noise.
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