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We investigate the finite-temperature and -density chiral Gross-Neveu model with an axial UAð1Þ
symmetry in 1þ 1 dimensions on the lattice. In the limit where the number of flavors Nf tends to infinity
the continuum model has been solved analytically and shows two phases: a symmetric high-temperature
phase with a vanishing condensate and a low-temperature phase in which the complex condensate forms a
chiral spiral which breaks translation invariance. In the lattice simulations we employ chiral SLAC
fermions with exact axial symmetry. Similarly to Nf → ∞, we find for eight flavors, where quantum and
thermal fluctuations are suppressed, two distinct regimes in the ðT; μÞ phase diagram, characterized by
qualitatively different behavior of the two-point functions of the condensate fields. More surprisingly, at
Nf ¼ 2, where fluctuations are no longer suppressed, the model still behaves similarly to the Nf → ∞
model and we conclude that the chiral spiral leaves its footprints even on systems with a small number of
flavors. For example, at low temperature the two-point functions are still dominated by chiral spirals with
pitches proportional to the inverse chemical potential, although in contrast to large Nf their amplitudes
decrease with distance. We argue that these results should not be interpreted as the spontaneous breaking of
a continuous symmetry, which is forbidden in two dimensions. Finally, using Dyson-Schwinger equations
we calculate the decay of theUAð1Þ-invariant fermion four-point function in search for a BKT phase at zero
temperature.

DOI: 10.1103/PhysRevD.105.034512

I. INTRODUCTION

A surprising amount of physical phenomena in particle-
and condensed-matter physics are well described by four-
Fermi theories. For instance, they are employed to model
low-energy chiral properties of quantum chromodynamics
(QCD). The effective four-Fermi theory describing the
dynamics of nucleons and mesons goes back to Nambu and
Jona-Lasinio (NJL) [1] and is built upon interacting Dirac
fermions with chiral symmetry, paralleling the construction
of Cooper pairs from electrons in the BCS theory of
superconductivity.
In fact, most of our knowledge about QCD at inter-

mediate baryon densities stems from the study of NJL-type
effective theories, since in this regime one needs non-
perturbative methods but cannot use lattice field theory
techniques due to the complex-action problem. In a similar
spirit, a four-Fermi current-current interaction among

leptons (and quarks) was proven to give an accurate
phenomenological description of the weak interaction at
low energy p2 ≪ m2

W. In the pioneering work by Fermi the
currents are made up from the proton, neutron, electron and
neutrino fields [2]. In four spacetime dimensions interact-
ing Fermi theories, such as the NJL model or Fermi theory,
are nonrenormalizable and thus can only serve as effective
(low-energy) approximations which need to be UV com-
pleted. For the two examples given, these completions are
of course known.
The dynamical creation of a condensate from strong

fermion interactions as seen in NJL-type models inspired
many theories of the breaking of electroweak symmetry,
such as technicolor (see the review [3]) and the top-quark
condensate [4].
Four-Fermi theories in two spacetime dimensions are

renormalizable and asymptotically free (some are inte-
grable or even soluble) and share certain features with their
cousins in four dimensions. The most prominent examples
are the Thirring model with a current-current interaction
[5], which is S dual to the sine-Gordon model, and the
Gross-Neveu (GN) model with a scalar-scalar interaction
[6], which serves as a toy model for the theory of strong
interactions.
With the discovery of novel materials (like Dirac and

Weyl semimetals in two and three spatial dimensions) and
the development of experimental techniques (for example
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optical lattices to trap atoms) we have witnessed a steadily
increasing interest in models describing interacting fer-
mions. Such models in lower dimensions describe one-
dimensional and planar systems, such as polymers [7–11],
graphene [12,13] or high-Tc superconductors [14,15], to
name some prominent examples.
InteractingFermi theories at finite temperature anddensity

were mainly investigated in the limit of a large number of
fermion flavors Nf . For Nf → ∞ the saddle-point approxi-
mation becomes exact and one can solve the corresponding
gap equation analytically on the set of homogeneous con-
densates. But, for the (1þ 1)-dimensional GN model at low
temperature and large chemical potential the relevant sol-
utions of the gap equation are actually inhomogeneous in
space. They have been constructed in [16] for the GNmodel
with discrete and in [17,18] for the chiral GN model with
continuous chiral symmetry. These remarkable analytic
results for Nf → ∞ prove the existence of inhomogeneous
phases, which are regions in parameter spacewhere the chiral
condensate acquires a spatial dependence, indicating the
spontaneous breakdown of not only chiral symmetry alone
but in a combinationwith spacetime symmetries (see [19] for
a review).
Are these inhomogeneous phases at large densities an

artifact of the large-Nf limit as suggested by various no-go
theorems in two spacetime dimensions? To address this
question, a better understanding of interacting Fermi systems
at finite Nf with regards to inhomogeneous phases is
required. But, the spontaneous breaking of translation
invariance is not merely of academic interest: Systemswhere
an inhomogeneous state develops spontaneously have been
extensively discussed in the condensed-matter literature. A
prominent example is the inhomogeneous pairing inside a
superconductor in a magnetic field, predicted by Larkin,
Ovchinnikov, Fulde and Ferrell (LOFF phase) [20,21].
Similar types of pairings can occur in many other physical
systems, ranging from supersolids to ultracold atomic gases
(see the reviews [22,23]). The UV cutoff which is inherent in
all condensed-matter systems inhibits a direct translation of
these findings to quantum field theory and particle physics
where one removes the cutoff during the process of
renormalization.
A first attempt to investigate the fate of inhomogeneous

phases at finite Nf has been made in recent lattice studies
[24,25], where the existence of spatially varying chiral
condensates in the (1þ 1)-dimensional GN model with 2,
8, and 16 flavors was confirmed. The present work serves
as a follow-up, providing a similar analysis of the chiral
Gross-Neveu (cGN) model with a continuous axial sym-
metry, characterized by the Lagrangian

L ¼ ψ̄ i=∂ψ þ g2

2Nf
ððψ̄ψÞ2 þ ðψ̄ iγ�ψÞ2Þ; ð1Þ

where g2 denotes a dimensionless coupling constant and
the two-dimensional matrix γ� ¼ iγ0γ1 is the analog of γ5 in

two spacetime dimensions. The summation over Nf flavors
of fermions is implied in the fermion bilinears enter-
ing Eq. (1).
Below we shall see that the results of our simulations

with chiral SLAC fermions resemble the analytical findings
of the large-Nf limit [17,18]. The analysis of the GN model
in [24] has already given clear evidence that the chiral and
doubler-free SLAC fermions and naive fermions yield
comparable results in the continuum limit, with the former
converging considerably faster.1 Using SLAC fermions has
the additional advantages that the lattice cGN model is
invariant under axial UAð1Þ transformations and that we
can study the system with Nf ¼ 2 without encountering a
sign problem. With naive fermions the GN and cGN
models have no sign problems only for Nf a multiple of
8. In the present work, however, we want to investigate how
much the models at finite flavor number differ from the
analytic solutions at infinite Nf , for which Nf ¼ 8might be
too large; see [24]. We do not use Wilson fermions since we
are mainly interested in the chiral properties of cGN
models. Staggered fermions, on the other hand, may lead
to wrong results for interacting Fermi systems, as has been
demonstrated in [28–30].
Our work is organized as follows. In Sec. II. we

summarize relevant facts about the finite-temperature and
-density cGN model with Lagrangian (1) in the continuum,
which will be used in the subsequent sections. In Sec. III
the lattice cGN model with chiral SLAC fermions is
presented, relevant observables are introduced and the
lattice setup is discussed. Section IV contains our simu-
lation results on the inhomogeneous condensation of the
scalar and pseudoscalar bilinears and their interrelation. We
calculate the phase diagram in the ðT; μÞ plane for various
lattice sizes and lattice constants in order to study the
thermodynamic and continuum limits. We shall see that
even for the smallest accessible value Nf ¼ 2 the results
resemble those for the exact solution of the system with
Nf → ∞. Towards the end we exploit Dyson-Schwinger
equations to study the UAð1Þ-invariant fermion four-point
function in the infrared.

II. ANALYTICAL CONSIDERATIONS

A. Symmetries and reformulations

The chiral GN model with Lagrangian (1) most promi-
nently features a global axial UAð1Þ symmetry,

ψðxÞ → eiαγ�ψðxÞ; ψ̄ðxÞ → ψ̄ðxÞeiαγ� ; ð2Þ

with a continuous parameter α ∈ R. In this work we denote
spacetime coordinates by bold letters, for example

1The same observation applies to supersymmetric Yukawa
models [26,27].
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x ¼
�
t

x

�
: ð3Þ

The continuous axial symmetry is to be compared with the
discrete Z2 symmetry of the model considered in [24,25].
Further symmetries of the model include a flavor-vector
symmetry that ensures the factorization of the fermion
determinant, parity and charge conjugation symmetry
responsible for the absence of the sign problem for even
Nf (see [24] for details) and, of course, Euclidean space-
time symmetry.
As is usually done we introduce the complex auxiliary

fieldΔ in order to bring the Lagrangian (1) to the equivalent
form

L ¼ iψ̄ð=∂ þ PþΔþ P−Δ�Þψ þ Nf

2g2
jΔj2; ð4Þ

where P� ¼ 1
2
ð1� γ�Þ are the chiral projectors. This

Lagrangian is invariant under the axial transformations
(2) supplemented by

ΔðxÞ ↦ e−2iαΔðxÞ: ð5Þ

One can show the equivalence of Lagrangians (4) and (1)
by using the equations of motion for the auxiliary field Δ.
This equivalence persists on the quantum level because the
Δ integration in the path integral is Gaussian and can be
done analytically, leading back to Eq. (1). It is no more
difficult to obtain the following Dyson-Schwinger (DS)
equations relating the expectation values of the auxiliary
fields to the symmetry-breaking chiral condensates2:

hψ̄Pþψi ¼
iNf

2g2
hΔ�i; hψ̄P−ψi ¼

iNf

2g2
hΔi: ð6Þ

For later use we introduce two further parametrizations of
Δ in terms of its real and imaginary parts σ and π and in
terms of its absolute value ρ and phase θ:

Δ ¼ σ þ iπ ¼ ρeiθ: ð7Þ

In order to study finite baryon densities we also introduce a
chemical potential μ for the fermion number density ψ̄γ0ψ,
such that the Lagrangian takes the form

L ¼ ψ̄ iDψ þ Nf

2g2
ρ2; ð8Þ

where the Dirac operator D is defined as

D ¼ =∂ þ μγ0 þ ρeiγ�θ: ð9Þ

It is understood that this operator acts on all flavors in the
same way, such that in the multiflavor case we may use the
same symbol as for one flavor.
While there is no gauge invariance in this model, one can

still trade the compact field θ for an imaginary vector
potential

Aμ ¼
i
2
εμν∂νθ ðε01 ¼ 1Þ ð10Þ

in the following sense:

D ¼ eiγ�θ=2ði=Dþ ρÞeiγ�θ=2; ð11Þ

where the covariant derivative Dμ is defined as

Dμ ¼ ∂μ − iAμ þ μδμ0: ð12Þ

Since the main focus in our work is on homogeneous and
inhomogeneous phases of the finite-temperature and finite-
density cGN model we impose that ψ , ψ̄ are antiperiodic
and Δ, Δ� are periodic in Euclidean time with period β,
where β is the inverse temperature. We furthermore impose
that all fields are periodic in the spatial direction with
period L.
Integrating out the fermions in the partition function

yields an effective bosonic theory in which the auxiliary
bosons become dynamical via fermion loops,

Z ¼
Z

DΔe−NfSeff ½Δ�; ð13Þ

with the effective action

Seff ½Δ� ¼ − ln detDþ 1

2g2

Z
d2xρ2ðxÞ: ð14Þ

We used that the fermion determinant of the multiflavor
model is ðdetDÞNf with the one-flavor operator D appear-
ing in Eq. (14). A convenient (and widely adopted) way
of renormalizing this formal expression is a choice of
the bare coupling g2 such that Seff for T ¼ 0 and μ ¼ 0
takes its global minimum at some prescribed positive
value ρðt; xÞ ¼ ρ0. The corresponding gap equation in
the thermodynamic limit,

1

g2
¼ 1

2π

Z
Λ

0

p dp
p2 þ ρ20

; ð15Þ

yields the cutoff dependence of the bare coupling.

2In 1þ 1 dimensions the condensates vanish for finite Nf .
Later we shall study DS equations for bilinears of the condensate
fields.
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B. Large-Nf results

In the large-Nf limit the saddle-point approximation to
the path integral (13) becomes exact and the grand
potential Ω proportional to the minimum of the effective
action (14) on the space of auxiliary fields,

LΩðT; μ; LÞ ¼ −
1

Nf
logZ ⟶

Nf→∞
min
Δ

Seff ½Δ�: ð16Þ

This means that in the large-Nf limit the path integral is
localized at the minimizing configuration Δmin. It follows,
for example, that the expectation value of Δ is equal
to Δmin.
The condition of a (local) minimum, maximum or saddle

point is expressed by the gap equation

0 ¼ δSeff
δΔ� ; ð17Þ

which has been extensively studied in the literature. A
constant solution Δ of this equation can be mapped into the
constant real solution jΔj by an axial rotation. But, for real
Δ the effective action of the cGNmodel simplifies to that of
the GN model. Hence, if ρ0 solves the GN gap equation
then ρ0eiθ with constant θ solves the cGN gap equation.
On can show that for temperatures above the critical

temperature

Tc

ρ0
¼ eγ

π
≈ 0.567; ð18Þ

and for all μ the cGN model (in the large-Nf limit) is in a
symmetric phase with a vanishing condensate field [31].
Here γ is the Euler-Mascheroni constant. More surprising is
the fact that below Tc and for all μ ≠ 0 there are no
homogeneous solutions of the gap equation which mini-
mize Seff . Instead, the minimizing configurations are
helixes with pitch π=μ,

ΔðxÞ ¼ ΔðxÞ ¼ ρ̄ðTÞe2ikðμÞx; ð19Þ

so-called chiral spirals, with a temperature-dependent
amplitude ρ̄ðTÞ and kðμÞ ¼ −μ in the large-Nf limit. For
vanishing chemical potential the chiral spiral degenerates to
a homogeneous configuration, which relates to the large-Nf
solution of theZ2 GNmodel at μ ¼ 0. We conclude that the
profile function ρ̄ðTÞ is just the condensate of the GN
model at μ ¼ 0, which decreases monotonically in T until it
vanishes at Tc. The large-Nf phase diagram in the ðT; μÞ
plane is depicted in Fig. 1.

C. Spontaneous symmetry breaking in low dimensions

Under rather natural assumptions the existence of
perfect long-range order (as opposed to quasi-long-range
order) in lower dimensions is excluded by the celebrated

Coleman-Hohenberg-Mermin-Wagner theorem [32–35].
This theorem states that continuous symmetries cannot
be spontaneously broken at finite T in low-dimensional
systems with short-range interactions. In particular, for
zero-temperature systems the theorem says: The continuous
symmetries cannot be spontaneously broken in (1þ 1)-
dimensional quantum systems. If a continuous symmetry
were spontaneously broken, then the system would contain
Goldstone bosons, which is impossible in two spacetime
dimensions because massless scalar fields have an IR-
divergent behavior [35]. Discrete symmetries, on the other
hand, can still be spontaneously broken in two dimensions.
There is a domain-wall proof of the theorem, of which

the basic intuition is to rotate the field or, in a spin-model
language, the values of spins in a finite region with an
arbitrarily small energy cost. This is achieved by creating a
domain wall of finite thickness interpolating between the
regions with rotated and unrotated spins. If the symmetry
group were discrete, there would be no smooth interpola-
tion and hence a finite cost for creating domain walls.
The increasing strength of fluctuations (thermal and

quantum) in the IR with decreasing dimension d is known
from the (Euclidean) free scalar field with propagators

hϕðxÞϕð0Þi ¼m→0

8>><
>>:

− 1
2
jxj d ¼ 1;

− 1
2π log jxj d ¼ 2;
1

4πjxj d ¼ 3:

ð20Þ

The interpretation of the IR divergence in d ¼ 1 and 2 is
that the field fluctuations cannot stay centered around a
mean. It implies that far away from a given spacetime point

FIG. 1. The phase diagram of the cGN model in the large-Nf
limit (see [18]). One critical temperature Tc for all μ marks the
transition from chiral spirals at T < Tc to the symmetric phase at
T > Tc. Units are set by the condensate ρ0 at zero temperature
and zero chemical potential.
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the field takes completely different values than at the given
point. This happens in one and two dimensions where the
fluctuations move the field arbitrarily far from an initial
value such that it has no well-defined average.
This reasoning should apply to translation invariance as

well: If the distance between two neighboring particles on a
wire fluctuates by δx, then the nth particle’s separation
fluctuates as

ffiffiffi
n

p
δx and thus diverges for large n. These

large fluctuations destroy any long-range order in the
position of the particles and Peierls concluded that a
one-dimensional equally spaced chain with one electron
per ion is unstable [36]. In higher dimensions (d ≥ 3) the
fluctuation-induced correlations fall off at large distances
and are not strong enough to destroy long-range order.
Furthermore, based on the powerful energy-entropy

argument it has been argued that any spontaneous sym-
metry breaking (SSB) should be disallowed in 1þ 1
dimensions at finite temperature [32]. In the argument
one considers a small numberN of local perturbations of an
ordered state (e.g., aligned spins in the Ising model). The
entropic contribution of these perturbations to the free
energy is ∝ N lnN while the energy penalty is only ∝ N.
Thus, the entropic contribution can overcome the energy
barrier and destroy the order. This perspective is directly
applied to the discrete GN model in [37].
Hence, the breaking of translation invariance in the

(1þ 1)-dimensional GN model seems to be excluded on
general grounds. On the other hand, the no-go theorems do
not apply in the large-Nf limit where the analytical solution
shows that the finite-temperature and finite-density equi-
librium state is not translation invariant. What may happen
at finite Nf is a subtle issue and has been discussed
(including the underlying assumptions of certain no-go
theorems) in [24].
Besides the questions raised in [24] there are more points

to be clarified with regards to the applicability of the no-go
theorems: It is not obvious whether the effective action
Seff ½Δ� containing the nonlocal fermion determinant is short
ranged enough to ensure the convergence of certain integrals,
which is assumed in [33]. Although [34] treats fermions as
well, the result is based on sufficient convergence (in form of
f sum rules) and gives itself an example of violation.
We emphasize that the no-go theorems allow for a

Berezinsky-Kosterlitz-Thouless (BKT) phase with quasi-
long-range order expressed by slowly decaying correla-
tions ∝ 1=jxjα and a BKT transition to a massive phase
with short-range correlations ∝ e−mjxj [38,39]. There is no
symmetry breaking and no order parameter involved in
the strict sense, but the slowly decaying correlations of a
BKT phase allow for large regions of one distinguished
local state.

D. Perturbations of chiral spirals

How are the inhomogeneous phases of the GN and cGN
models in the large-Nf limit compatible with the no-go

theorems discussed above? In a way the large parameter Nf
takes over the role of an extra spatial dimension. For
example, in the domain-wall argument given above the
energy penalty is multiplied by the large number Nf and in
the limit Nf → ∞ may overcome the entropy gain.
This and further heuristic arguments can be substantiated

by a systematic expansion in the small parameter 1=Nf,
whereby one assumes that for finite Nf the continuous
UAð1Þ axial symmetry is not spontaneously broken. Under
an axial rotation the radial field ρ is left invariant and θ is
shifted by a constant. This means that an invariant effective
action is a functional of the form [40]

Seff ¼ Seff ½ρ; ∂μθ�: ð21Þ

This effective action is used to calculate expectation values
of functions of Δ ¼ ρeiθ and its complex conjugate field
Δ�. However, in the continuum model a condensate hΔi
cannot form (it would break the axial symmetry) and with
chiral SLAC fermions and the ergodic rational Hybrid
Monte Carlo (rHMC) algorithm it averages out in lattice
simulations; see Sec. III B. Thus, following our previous
studies [24,25], the correlator

CðxÞ ¼ hΔ�ðt; xÞΔðt; 0Þi ð22Þ

will be of particular interest to us.
For Nf → ∞ the path integral is localized at the chiral

spiral (19) and we find

CðxÞ ¼ ρ̄2e−2ikx: ð23Þ

Clearly, for finite Nf we must admit small deviations from
the chiral spiral,

ΔðxÞ ¼ ðρ̄þ δρðxÞÞe2ikxþiδθðxÞ; ð24Þ

and expand the effective action in powers of the fluctuation
fields δρ and δθ. An explicit calculation at zero temperature
and in an infinite volume shows that the term linear in the
fluctuation fields vanishes if the bare GN coupling depends
on ρ̄ according to

1

g2
¼ 1

2π
log

Λ2 þ ρ̄2

ρ̄2
and kþ μ ¼ 0: ð25Þ

The first relation is recognized as the gap equation of theZ2

GN model. For large volumes the wave number k becomes
continuous and the second relation can be fulfilled for all μ.
Since the effective action only depends on k via kþ μ, this
relation implies that Seff is independent of both k and μ. In a
finite box with quantized k, however, the background field
ρ̄ and the effective action will generically depend on kþ μ.
The contribution quadratic in the fluctuation fields is

rather lengthy and has divergent terms which all cancel
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when one uses the gap equation (25). If in addition the wave
number of the chiral spiral obeys kþ μ ¼ 0, then one
obtains

Seff ¼ VUeffðρ̄Þþ
1

2π

Z
δρKΔasinh

� ffiffiffiffiffiffiffi
−Δ

p

2ρ̄

�
δρ

þ 1

2π

Z
δθ

�
ρ̄2

KΔ
asinh

� ffiffiffiffiffiffiffi
−Δ

p

2ρ̄

�
þΔ

8

�
δθþ� � � ; ð26Þ

where the dots indicate higher-order terms, the integrals
extend over the spacetime volume and we introduced the
(nonlocal) operator KΔ containing the Laplace operator,

KΔ ¼
�
1 −

4ρ̄2

Δ

�
1=2

: ð27Þ

In a low-energy approximation we may perform the
gradient expansion, which yields the simple expression

Seff ¼ VUeffðρ̄Þ

þ 1

2π

Z �
δρ2þð∇δρÞ2

12ρ̄2
−
ðΔδρÞ2
120ρ̄4

þ� � �
�

þ 1

16π

Z �
ð∇δθÞ2− 1

3ρ̄2
ðΔδθÞ2þ �� �

�
þ� � � ; ð28Þ

containing the standard kinetic terms plus higher derivative
terms. The first term under the first integral is just the
second-order term in the expansion of Ueffðρ̄þ δρÞ in
powers of δρ. Thus, up to second order the effective action
for ρ ¼ ρ̄þ δρ and δθ at low energies has the form

Seff ¼
1

4π

Z
d2xρ2

�
log

ρ2

ρ̄2
− 1

�

þ 1

24π

Z
d2x

�ð∇ρÞ2
ρ̄2

−
ðΔρÞ2
10ρ̄4

�

þ 1

16π

Z
d2x

�
ð∇δθÞ2 − 1

3ρ̄2
ðΔδθÞ2

�
þ � � � ; ð29Þ

where we inserted the explicit form of the effective
potential at zero temperature and the dots indicate cubic
and higher-order terms and higher derivative terms. We see
explicitly that ρ describes a massive field and δθ a massless
would-be Nambu-Goldstone mode. At large Nf the latter
decouples from the system while at finite Nf it destroys
perfect long-range order.
To study long-range correlations we can safely neglect

contributions from the massive field and obtain, for large
but finite Nf , the valid approximation

CðxÞ ≈ ρ̄2e−2ikxheiδθðt;0Þ−iδθðt;xÞi: ð30Þ

It holds information about the dominant wave numbers
of typical configurations in an ensemble. Due to the

logarithmic divergence in the correlator of the massless
scalar field one finds for x → ∞

heiδθðt;0Þ−iδθðt;xÞi →
�
x−

1
Nf T ¼ 0;

e−x=ξβ T > 0;
ð31Þ

such that in a BKT phase with quasi-long-range order the
amplitude of the oscillating correlator decays fairly slowly,
following a power law. At finite temperature the correlation
length, given by

ξβ ¼
2Nf

πT
α; α ¼ 1þ 2

X
n≥1

ð−1Þnðnβρ̄ÞK1ðnβρ̄Þ; ð32Þ

where K1 denotes a modified Bessel function of the second
kind, is finite. The coefficient α increases monotonically
with the inverse temperature β from α ¼ 0 to α ¼ 1. This
means that the correlation length diverges in the large-Nf
limit or for T → 0.

III. LATTICE FIELD THEORY APPROACH

A. Objectives and observables

The previous discussion makes clear that we should not
expect to see SSB in the cGN model withUAð1Þ symmetry.
Indeed, there are stronger arguments against perfect long-
range order in this model than in the GN model with Z2

symmetry. However, the difference between a spontane-
ously broken and a BKT phase at zero temperature most
likely appears on exponentially large length scales that
cannot be reached in our lattice simulations; see, for
instance, [41]. It could very well happen that on phy-
sically relevant length scales one can hardly distinguish
between quasi-long-range and perfect long-range order.
Furthermore, we shall see that even the distinction between
a massive symmetric phase and a BKT phase at low
temperatures is nontrivial if one allows for contributions
of the first excited state.
Either way we will find striking similarities between the

cGN model with only two flavors and the model with
Nf → ∞, which, for μ ≠ 0, shows SSB of translation
invariance. If similar observations apply to more realistic
models in higher dimensions then this could be relevant for
the physics of compact neutron stars, heavy-ion collisions
or condensed matter in small systems.
We shall see that for eight flavors the correlation function

CðxÞ in (22) has the form (30) predicted by the effective
low-energy Lagrangian and can be hardly distinguished
from the large-Nf result (23). For example, at low temper-
ature its discrete Fourier transform F ½C�ðkÞ is peaked at the
dominant wave number

kmax ¼
1

2
argmax

k
jF ½C�ðkÞj; ð33Þ
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which for large Nf is given by the chemical potential,

kmax ⟶
Nf→∞

μ; ð34Þ

while for Nf ¼ 2 we find kmax < μ. Notice that we have
included a factor of 1=2 in Eq. (33), in line with the
introduction of k in Eq. (19) as half the wave number. We
will use this convention for k and kmax in the remainder of
this work.
The spatial correlation function CðxÞ also encodes the

distinction between the massive symmetric and BKT
phases in its decay properties,

jCðxÞj ⟶x→∞

8>><
>>:

e−x=ξβ massive symmetric;

x−
1
Nf BKT;

const: symmetry-broken:

ð35Þ

For a comparison we included the asymptotic behavior in a
symmetry-broken phase. The temperature-dependent cor-
relation length ξβ was defined in Eq. (32).

B. Lattice setup

We discretize two-dimensional Euclidean spacetime to a
finite lattice with Ns and Nt lattice sites in the spatial and
temporal directions respectively, such that L ¼ Nsa is the

spatial extent, T ¼ 1=Nta is the temperature and a denotes
the lattice constant.
In our simulations we employ chiral SLAC fermions

[42,43], which discretize the dispersion relation in
momentum space, leading to a nonlocal kinetic term in
position space. They have proven advantageous over other
fermion discretizations for low-dimensional fermionic
theories; see e.g., [24]. The use of SLAC fermions restricts
Ns to be odd and Nt to be even. For further details we refer
to sections 2.1 and 4.1 of [26]. Note that our lattice setup
is the same as in [24], with the only difference that besides
a scalar field σ we now have an additional pseudoscalar
field π and both fields enter the complex condensate field
Δ via Eq. (7).
For an easy comparison with the analytic results we

express physical quantities in units of the expectation value
hρi at T ¼ μ ¼ 0, denoted by ρ0. This is analogous to the
scale σ0 in our previous studies [24,25]. One should stress
that this neither assumes any form of symmetry breaking nor
is in conflict with any no-go theorem because a nonvanishing
expectationvalue of ρ does not break any symmetry. Figure 2
shows histograms of

P
xΔðxÞ in the complex plane for

μ ¼ 0 and 12different temperatures. For these histogramswe
used ensembleswithOð104Þ configurations each.We clearly
observe that the distribution of Δ is angle independent or
UAð1Þ invariant. At low temperature it is ring shaped with its
maximum at ρ > 0, while at high temperature it turns into a

FIG. 2. Distributions of 1
ρ0NsNt

P
t;x Δðt; xÞ in the complex plane for two flavors, Ns ¼ 63, a ≈ 0.46 and μ ¼ 0 at various temperatures.

The red crosses mark the origin and are included for visual clarity.
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Gaussian-like distribution and the maximum moves
to ρ ¼ 0.
In the actual simulations, however, the quantity ρ0 is

surprisingly hard to determine. Appendix A sheds some
light on the details of this procedure. In summary, we used3

hρi ≈ 1

NsNMC

X
τ;x

���� 1Nt

X
t

ΔðτÞðt; xÞ
����; ð36Þ

with τ ¼ 1;…; NMC enumerating the Monte Carlo (MC)
configurations. This yields a good signal at low temper-
atures where hρi is required.
For most of our simulations, we used one of three

different spatial extents Ns ¼ 63, 127, 255 and lattice
constants aρ0 ≈ 0.46, 0.19, 0.08 in order to study both
the continuum limit and the infinite-volume limit. We vary
the temperature by changing the number of lattice points
in the temporal direction, Nt, at fixed a and we vary a by
changing the coupling 1=g2 in Eq. (8). For these lattices we
map out phase diagrams in the ðT; μÞ plane. More details as
well as a table summarizing all parameter settings are given
in Appendix D.
Experience with interacting fermion models teaches us

[24] that systems exhibiting (quasi-)long-range inhomo-
geneous structures can have rather long thermalization
times when running simulations with randomly generated
initial configurations, e.g., using a Gaussian distribution.
As a way to counteract this problem, we employ a different
approach for the majority of results presented in this work
and perform a systematic “freezing out” in the following
way: Starting at high temperatures with Nt ≪ Ns, where
thermalization times are not an issue, we generate at least
1000 configurations to ensure proper thermalization. We
then map the last of these configurations to a lower-
temperature lattice with N0

t > Nt by simply repeating the
data in the temporal direction and use it as a seed
configuration on the larger lattice. This reduces the ther-
malization period (where no measurements are performed)
if the temperature step is small. In our simulations we
systematically approach lower and lower temperatures
using this “freeze-out” procedure. This way we experi-
enced significantly less “getting stuck” in some far from
typical configurations, although it could still not be
completely prevented from happening.
A cross-check with thermalized results using standard

Gaussian-distributed initial configurations yields equiva-
lent results, with the “freezing” method having noticeably
better thermalization properties and thus overall smoother
results. As an additional cross-check we also performed
the inverse procedure, i.e., a “heating,” for a handful of

parameters in order to exclude any hysteresis effects caused
by the freezing method.
As can be seen from Fig. 3, where we show the Fourier

transform ofCσσðxÞ [to be defined in Eq. (37)] computed via
each of the threemethods, the frozen and heated results agree
very well, indicating that hysteresis effects are negligible.
The fact that the “independent” results, i.e., the ones obtained
by using Gaussian-distributed initial configurations, show
some deviation is likely to be attributed to their lower
statistics and worse thermalization properties.
The vertical lines in Fig. 3 show the peak positions,

which were estimated with the freezing method, for the
lowest temperature considered. We see that for the highest
density (μ=ρ0 ≈ 1.31 in the figure) the peak positions of the
two lowest temperatures differ. This dependence on tem-
perature is not seen in the large-Nf limit and is caused by
bosonic fluctuations.
For small μ on our smallest lattice, where homogeneous

configurations dominate, we furthermore compared with
a “cold start,” which amounts to starting the simulation
from Δð0Þðt; xÞ ¼ 1þ i. Again we found matching results
except for the lowest temperatures where the cold start is
expected to suffer from severe autocorrelation problems.
A detailed analysis of autocorrelation effects can be found
in Appendix B.

C. Lattice estimators

We have argued that spatial correlation functions are
useful tools to probe for inhomogeneous phases since they
avoid the destructive interference one would encounter
when directly calculating chiral condensates on the lattice.
We consider the two spatial correlators

FIG. 3. The Fourier transform of CσσðxÞ as a function of k for
the three different methods mentioned in the main text on a 48 ×
127 lattice for aρ0 ≈ 0.46 and different μ. The temperature is the
second lowest considered, i.e., we compare several freezing steps
with a single heating step. The vertical lines indicate the maxima
of the “frozen” results at the lowest temperature.

3Notice that this is not identical to taking the absolute values
and MC averages of the distributions shown in Fig. 2. For a more
detailed discussion about the order of taking absolute values and
averages, see Appendix A.
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CσσðxÞ ¼
1

NtNs

X
t;y

hσðt; yþ xÞσðt; yÞi;

ð37Þ
CσπðxÞ ¼

1

NtNs

X
t;y

hσðt; yþ xÞπðt; yÞi;

where the sums extend over all lattice sites and h·i denotes
the Monte Carlo average. If these correlators show an
oscillating behavior, one can infer the existence of inho-
mogeneities. The unbroken UAð1Þ symmetry (5) implies
that for any temperature and chemical potential

CσσðxÞ ¼ CππðxÞ and CσπðxÞ ¼ −CπσðxÞ: ð38Þ

Also note that the fermion determinant is invariant when
σ and μ both change their signs, such that

hσðxÞπðyÞiμ ¼ −hσðxÞπðyÞi−μ; ð39Þ

from which we conclude that

CσπðxÞ ¼ CπσðxÞ ¼ 0 for μ ¼ 0: ð40Þ

We see that additional correlators that arise from inter-
changing σ ↔ π in Eq. (37) are not independent and we
refrain from using them in subsequent equations to save
some space. In the measurements, however, we do not
implement the symmetries (38) and instead use all four
correlators Cσσ, Cσπ , Cπσ and Cππ in order to reduce
statistical correlations. From Eq. (22) one obtains

CðxÞ ¼ 2ðCσσðxÞ þ iCσπðxÞÞ; ð41Þ

and the property (40) means that C is real for vanishing μ.
In [24] we introduced the minimal value

Cmin ¼ min
x
CσσðxÞ

8<
:

> 0 homogeneous

≈ 0 symmetric

< 0 inhomogeneous

ð42Þ

to map out the entire phase diagram of the (discrete) GN
model. This parameter is negative if there is (quasi-) long-
range order with oscillating CσσðxÞ and is also useful for
discussing the physics of the chiral GN model. For the
chiral model the choice of Cσσ might seem arbitrary but
because of (38) any quadratic correlator of a linear
combination of σ and π would serve the same purpose.
It is important to note that taking the minimum is a global

operation that disqualifies this quantity as a local observ-
able. Furthermore, this minimum might (and actually
commonly will) be taken for small spatial separations x.
In such cases, Cmin does not probe the long-range behavior
of the system.

We estimate the dominant wave number kmax as given by
Eq. (33), but calculated from Cσσ instead of C. Sometimes
we quote results in terms of the integer-valued dominant
winding number νmax, related to kmax via

νmax ¼
L
π
kmax: ð43Þ

From analytical studies [40,44] it is expected that the
UAð1Þ-invariant fermionic four-point function of the GN
model,

C4Fðx; yÞ ¼ hψ̄ð1þ γ�ÞψðxÞψ̄ð1 − γ�ÞψðyÞi; ð44Þ

at zero temperature and zero fermion density should have a
power-law behavior in the limit of large separations,

C4Fðx; yÞ ∼ cjx − yj− 1
Nf ; ð45Þ

where c is some constant. Similarly to the spatial corre-
lation functions (37) for the condensate fields we introduce
the spatial correlation function for the Nf fermionic lattice
fields,

C4FðxÞ ¼
1

NtNs

X
t;y

C4Fðt; yþ x; t; yÞ: ð46Þ

The asymptotic form (45) would imply a power-law decay:

C4FðxÞ ∼ cx−
1
Nf for x ≫ 1: ð47Þ

Dyson-Schwinger equations (see Appendix C) relate
C4FðxÞ to the spatial correlation functions of the condensate
fields,

C4FðxÞ ¼ −2
�
Nf

g2

�
2

ðCσσðxÞ þ iCσπðxÞÞ; ð48Þ

since the contact term in Eq. (C5) does not contribute for
large x. Since Cσσ and Cσπ are easily accessible in lattice
simulations we shall use this relation to study the infrared
properties of C4F. For μ ¼ 0 the latter is real; see (40).
From the effective low-energy approximation outlined

in Sec. II D we expect that the phase of the complex
condensate field, θ ¼ argðΔÞ, holds important information
about the existence of inhomogeneous structures. We thus
studied the space dependence of its expectation value,
defined in the following way:

hθðxÞi ¼ argðhΔ̄ðxÞiÞ; ð49Þ

where the bar indicates time averaging, i.e.,

Δ̄ðxÞ ¼ 1

Nt

X
t

Δðt; xÞ: ð50Þ
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We chose this (unusual) order of time- andMC averaging to
suppress statistical uncertainties. Although the two aver-
ages in (49) do not commute, the given prescription is
justified since the configurations are essentially constant in
time direction; see Fig. 4 for an example configuration of
the σ field.

IV. NUMERICAL RESULTS

In previous studies of the discrete GN model [24,25], 2,
8, and 16 flavors have been investigated with the focus on
Nf ¼ 8 in order to compare different types of chiral
fermions4 and their suitability to investigate inhomo-
geneous phases. But, Nf ¼ 8 is still close to Nf ¼ ∞ in
the sense that on an intermediate scale quantum fluctua-
tions away from the chiral spiral are suppressed. To be more
precise, if the BKT scenario were correct, then, for
instance, in order to obtain a decay to half the amplitude
a crude estimate using CðxÞ ∼ jxj−1=8 yields

Cðx0Þ
CðxÞ ¼ 1

2
⇒ jx0j ¼ 256jxj ð51Þ

at the very least. Thus, in order to make any meaningful
statements about such an amplitude decay we would
require around Oð103Þ lattice points at sufficiently small
temperature (large temporal extent). This does not take into
account severe autocorrelation problems, finite-size effects
and contributions from excited states that might all spoil the
signal. This crude estimate motivated us to study the long-
range behavior for Nf ¼ 2 in [24], for which the same
estimate yields feasible 40 lattice points.

A. Overview for Nf = 8

Although our focus is on two flavors we performed one
parameter scan in ðT; μÞ for Nf ¼ 8; Ns ¼ 63 and aρ0 ≈
0.41 in order to compare with results for the discrete GN
model. Some of our results are depicted in Fig. 5. Figure 5(a)

shows the phase diagram extracted from Cmin [see Eq. (42)],
which is to be comparedwith Fig. 1 for infinite flavor number
and is also the equivalent of Fig. 7 in [24]. We see that the
phase diagram agrees well with the large-Nf prediction for
small chemical potential (μ < 0.5ρ0) and at least shows the
predicted structure at larger μ.
At vanishing chemical potential Cmin is positive for small

temperatures, indicating predominantly homogeneous con-
figurations with nonvanishing amplitudes. They relate to
the homogeneously symmetry-broken phase at large Nf .
In Fig. 5(b) we see that in this regime CσσðxÞ is a positive
and monotonically decaying function (blue curve) and
CσπðxÞ ≈ 0 in agreement with (40). Raising the temperature
we find a small temperature regime around T ∼ 0.3ρ0
where we observe a sudden drop of the amplitude such
that the μ ¼ 0 data mimic a second-order phase transition.
In the high-temperature regime the nonzero correlator Cσσ

falls off even more rapidly. This (would-be) transition
temperature at μ ¼ 0 is approximately equal to the one
found in the discrete GN model in [24]. This was to be
expected since in the large-Nf limit the GN and cGN
models at vanishing chemical potential have the same
critical temperature. It is also not surprising that for Nf ¼ 8
the transition temperature is significantly lower than in the
large-Nf limit [cf. Eq. (18)], where quantum fluctuations
are suppressed. The symmetric high-temperature regime at
μ ¼ 0 extends to nonvanishing chemical potential [orange
curve in Fig. 5(b)].
At low temperature and nonvanishing fermion density we

can clearly confirm that the dominant contributions to the
path integral come from chiral–spiral-like configurations.
An example of this is shown in Fig. 5(b) (green curve).
Such configurations are the cause of the large region
of negative values in Fig. 5(a). The transition line to the
regionwhere oscillations are no longer dominant is roughly a
line of constant temperature for small chemical potential
(μ < 0.5ρ0), as expected from the large-Nf solution. For
large chemical potential it tilts upwards unexpectedly,
thereby enlarging the regime where inhomogeneities are
found. This effect was also observed in [24] forNf ¼ 2 in the
discrete GN model and is related to short- and intermediate-
range phenomena that will be discussed later. Nevertheless,
the fact that we encounter it already for Nf ¼ 8 strengthens
the point that quantum fluctuations are much stronger in the
chiral model compared to the discrete one.
For Nf ¼ 8 the winding numbers (43) of the inhomo-

geneous configurations match the large-Nf expectation
very well if one accounts for the discretization of the wave
number due to the finite box size, as can be seen in Fig. 5(c)
(note that νmax is integer valued by definition). As in [25]
there is a tendency for the lattice data to lie slightly below
the Nf ¼ ∞ expectation. The linear fit through the origin
yields a slope of roughly 7.91, which is lower than the
large-Nf value L=π ≈ 8.27, but well within the expected
accuracy of the large-Nf expansion Oð1=NfÞ ∼ 10%.

FIG. 4. Typical configuration of σðxÞ on a 72 × 127 lattice for
μ=ρ0 ≈ 0.44 and aρ0 ≈ 0.46.

4Nf ¼ 8 is the smallest number of flavors where naive
fermions have no sign problem.
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We remark that autocorrelations appear to be under
control. However, due to limited statistics we cannot rule
out the existence of another, larger, autocorrelation scale at
low temperatures; see Appendix B for details.

B. Deviations of Nf = 2 from the large-Nf limit

After discussing the results for Nf ¼ 8, which in many
ways confirm the large-Nf expectations, we now study the
two-flavor cGN model for which we expect sizable devia-
tions from the large-Nf solution.
To monitor the fluctuations in the system at finite

temperature and density, we measure the dominant wave
number (33) of the equilibrium ensemble. It characterizes
important configurations for the given set of control
parameters and tells us which chiral spiral is favored in
the rough landscape defined by the effective action with its
many local minima. This analysis presupposes that chiral
spirals are the dominant configurations even for Nf ¼ 2
or that the nondominant winding numbers are suppressed.
We shall see that this is a valid assumption at small
temperatures.
Figure 6 shows such histograms for three values of T and

three values of μ. As expected, the data show three distinct
peaks, one for each value of μ. At the lowest temperature
and μ ≠ 0 the peaks are pronounced with over 80% of the
configurations sharing the same dominant wave number.
Increasing the temperature then broadens the peaks.
Concerning the question of spontaneous symmetry break-
ing, one should stress three features:
(1) While the peaks flatten significantly for rising

temperature, they do not vanish completely. At
temperatures as high as ∼0.5ρ0 we could still make
out small bumps (not shown in Fig. 6). Thus, even at
these high temperatures the system knows about the
inhomogeneity arising from its finite density.

(2) There is no qualitative (or even sudden) change
in these distributions that could characterize a

second-order phase transition. Instead the flattening
of the peaks is a rather smooth process.

(3) Even at low temperatures (e.g., T ≈ 0.05ρ0), well
inside the would-be symmetry-broken regime, the
contributions from concurrent frequencies are sig-
nificant (around 10–20% in the example). The
interference of these contributions is the mechanism
which, crucially, prevents a breaking of symmetry.

The features 1 and 2 discussed above are clearly visible
in the spatial correlators depicted in Fig. 7. At low T and
nonvanishing μ we clearly observe remnants of a chiral
spiral; see Fig. 7(a). From Fig. 7(b) we see that both
correlators are oscillating with a phase shift of π=2. This is
the parameter region where there are sharp peaks in Fig. 6.
At higher temperature the peaks flatten and the correlators
show damped oscillations as shown in Fig. 7(c). Notice,
however, that even in this regimewe still findCmin < 0, i.e.,
this is classified as a region of spatial inhomogeneities
according to our definition. Here we observe a clear

FIG. 5. Collection of results for Nf ¼ 8, Ns ¼ 63, aρ0 ≈ 0.41.

FIG. 6. Histograms of kmax for Nf ¼ 2, Ns ¼ 63, aρ0 ≈ 0.46
and various values of temperature and chemical potential.
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deviation from the large-Nf solution. Since the oscillations
in Fig. 7(c) are only seen on short scales we must be
cautious when interpreting a negative Cmin as a signal for
inhomogeneities. As already stressed before, a negative
Cmin ensures that there are oscillations on some length scale
but this scale can be—and certainly is for large parts of the
blue region of the phase diagram—a short or intermediate
one. Finally, at even higher temperatures one again finds
correlation functions with Cmin ≈ 0, indicating a symmetric
region.
Similarly to Nf ¼ 8 we determined the dependence of

the dominant winding number in Eq. (43) on the chemical
potential and we present the results in Fig. 8. As expected,
the (dominant) winding numbers for Nf ¼ 2 deviate con-
siderably from those in the large-Nf limit and those for
Nf ¼ 8; cf. Fig. 5(c). One might conjecture that the
winding numbers decrease with decreasing Nf .

C. Phase diagram for Nf = 2

One could expect a qualitatively different “phase dia-
gram” for the cGN model with two flavors as compared to

the large-Nf diagram depicted in Fig. 1. In order to test this
expectation we calculated Cmin defined in Eq. (42) on a grid
in the space of control parameters μ and T on lattices with
Ns ¼ 63, 127 and 255 lattice points in the spatial direction.
We studied both an infinite-volume extrapolation at (approx-
imately) fixed lattice constant aρ0 ≈ 0.46 and a continuum
extrapolation at (approximately) fixed physical volume.
The diagrams for systems with constant lattice spacing in

Figs. 9 and 10 show that the infinite-volume limit signifi-
cantly shrinks the red (Cmin > 0, i.e., predominant homo-
geneous contributions) region without affecting the blue
and green region of predominant inhomogeneous and
symmetric configurations, respectively. There are three
rather different phenomena at work here:
(1) The simplest one is just geometrical: When we

enlarge the spatial volume, we can fit larger wave-
lengths into the finite box. For small μ the pitch of
the chiral spiral would exceed the box size, which
means that the chiral spiral does not fit into the box.
Such a suppression of chiral spirals with large
pitches disappears for larger volumes. Hence, the
region of predominant homogeneous configurations
must shrink in the direction of nonvanishing μ.

(2) Finding a shrinking of the Cmin > 0 region in the
temperature direction is clear evidence against
spontaneous symmetry breaking. In fact, the (quali-
tative) behavior of the apparent transition temper-
ature and the condensate is well understood by a
comparison of the analytically known correlation
length Eq. (32) with the box size. We can thereby
clearly identify the remnant condensates that were
measured as finite-size effects.

(3) The transition from the blue (Cmin < 0, i.e., predomi-
nant inhomogeneities) to the green (Cmin ≈ 0, i.e.,
predominantly symmetric) regime can be easily
understood as the following short-range effect: At
finite temperature there are two length scales in
the system (besides the finite box size), i.e., the
temperature-induced finite correlation length ξβ from

FIG. 7. Correlators Cσσ and Cσπ [from Eq. (37)] for Nf ¼ 2, Ns ¼ 63, μ=ρ0 ≈ 1.14 and aρ0 ≈ 0.46. (a) Three-dimensional plot of the
correlators at T=ρ0 ≈ 0.030 showing the chiral spiral. (b): The same data as in (a) but in 2D. (c) Two-dimensional plot of the correlators
at higher temperature.

FIG. 8. νmax as a function of μ for Nf ¼ 2, Ns ¼ 63, aρ0 ≈ 0.46
and T=ρ0 ≈ 0.030. The linear fit has a slope of 6.82� 0.17.
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Eq. (32) and the predominant wavelength inversely
proportional to μ (up to discretization due to the finite
box size). Obviously, for Cmin to be negative, the
amplitude, which decays due to ξβ, must not have
dropped to (almost) vanishing values at separations
where the first minimum of the oscillations occurs.
Since the latter is given by μ (up to a constant factor),
the transition line from blue to green signals that the
temperature scale takes over as the shortest relevant
scale from the chemical potential. This is not really a
qualitative change. As this is independent of themuch
larger box size, it is not affected by the infinite-
volume limit.

An interesting, but unfortunately hard to quantify obser-
vation is the following. While on smaller lattices (e.g.,
Ns ¼ 63) the data tend to fluctuate around only one
background configuration, like a chiral spiral with a fixed
winding number, larger lattices admit changing the winding
number more often as opposed to less often. An example is
depicted in Fig. 11, which shows a time series of the
modulus ρðτÞ of the spacetime average of Δ̄ðτÞ defined in
Eq. (A2) of Appendix A. Even for vanishing chemical
potential and low temperature, the regime in the phase
diagram where we set the scale and where the dominant
configurations are homogeneous, we still find several

occasions on which there are dominant inhomogeneous
contributions.
For most of the MC time ρðτÞ fluctuates about a constant

value. During this time the real partCσσ ofC defined in (22)
is almost constant and the imaginary part Cσπ is small
(recall that hCσπi ¼ 0). But, at several MC times, e.g.,
τ ≈ 1100 or 3860, the field ρðτÞ drops and the real and

FIG. 9. Infinite-volume extrapolation: phase diagrams for fixed lattice spacing and Ns ¼ 63, 127 and 255.

FIG. 10. Continuum extrapolation: phase diagrams for decreasing lattice constant. The color coding is different from Fig. 9.

FIG. 11. Monte Carlo time series of ρðτÞ defined in (A2) (top)
with the Δ�

xΔ0 correlator at τ ¼ 2604 (bottom, left) and τ ¼ 3856

(bottom, right) for Nt ¼ 72, Ns ¼ 255, g−2 ¼ 1.0540 and μ ¼ 0.

INHOMOGENEITIES IN THE TWO-FLAVOR CHIRAL GROSS- … PHYS. REV. D 105, 034512 (2022)

034512-13



imaginary parts of CðxÞ show the profiles typical for a
chiral spiral. While the lower left plot in Fig. 11 is
representative for most of the configurations, the sudden
drops in the time series are strongly correlated with the
appearance of inhomogeneous configurations as seen in
the lower right panel. That this is only seen on large lattices
is counterintuitive at first since autocorrelation times
usually increase with the system size and it is also
the opposite of what was observed for the Z2 GN model
during the work on [24,25]. However, the fact that con-
siderable phase fluctuations on large scales are allowed
is the analytically predicted mechanism for avoiding
spontaneous symmetry breaking; see Sec. II. From that
perspective, it supports the analytical claims. Obviously,
Fig. 11 showcases a large autocorrelation time τ, which,
however, is under control due to good statistics of the
order of ≳20τ.
The phase diagrams for systems with approximately

constant physical volume and successively smaller lattice
spacing are shown in Fig. 10. As can be seen, we find
inhomogeneities5 for all our lattice spacings and the results
are consistent with their existence in the continuum limit.
Unfortunately, setting the scale in a partially conformal
system is a very subtle issue as the dominant fluctuations
have no scale at all (at zero temperature). Since the details
of this scale setting procedure are highly nontrivial (see
Appendix A), we must leave a more detailed analysis to a
future publication.
As is discussed in detail in Appendix B, our simulations

suffer from large autocorrelations. For a large region in
parameter space on all geometries these autocorrelations
are under control due to sufficient statistics. However, close
to the critical line at T ¼ 0 autocorrelation times diverge
and the shown data should only be regarded as qualitative
in the sense that they surely capture the important phenom-
ena found in large but finite regions of space but might be
off quantitatively due to autocorrelation-related suppres-
sion of subdominant local minima. However, the discussion
of Appendix B makes it clear that these will not affect our
conclusions.
We conclude that we observe inhomogeneous structures

in the cGNmodel with only two flavors—similarly as in the
large-Nf model. The notable difference is that—in accor-
dance with pertinent no-go theorems—these are incoherent
on sufficiently large scales thereby hindering spontaneous
symmetry breaking. A comparable study of the Z2 GN
model with eight flavors in [24] led to a similar conclusion:
inhomogeneous structures persist in the infinite volume
limit. We cannot say for certain whether this remarkable
feature survives the continuum limit of the cGN lattice
models.

D. Decay properties of C4F

We analyzed the decay properties of C4FðxÞ as given by
Eq. (48) on a 72 × 63 lattice with aρ0 ≈ 0.46, i.e., at a
temperature T ≈ 0.03ρ0. In order to study its infrared
behavior we computed the connected correlation function.
Motivated by the asymptotic forms (31) predicted by the
low-energy effective action we fit the data points via a
(symmetrized) algebraic function:

C4FðxÞ ¼
α

xβ
þ α

ðL − xÞβ ; ð52Þ

as well as a double-cosh Ansatz,

C4FðxÞ ¼
X2
i¼1

γi cosh
�
mi

�
x −

L
2

��
; ð53Þ

and show the results in Fig. 12.
The fit parameters for a power-law decay are

α

ρ20
¼ 6.52� 0.02; β ¼ 0.521� 0.001; ð54Þ

and for an exponential decay we find

γ1
ρ20

¼ 3.2515� 4 × 10−4;
m1

ρ0
¼ ð5.76� 0.03Þ × 10−2;

γ2
ρ20

¼ ð4.4� 0.3Þ × 10−3;
m2

ρ0
¼ 0.531� 0.006: ð55Þ

These results confirm similar findings obtained for the
Z2 GN model, namely that it is very difficult to distinguish
between power-law and exponential decays on the lattices
with Ns ¼ 63, which was also to be expected following the
previous discussion and [41]. However, from the perspec-
tive of our analytical discussion, where we predicted a
massive phase for any T > 0 with the mass vanishing in the

FIG. 12. Modulus of the connected four-point function C4F
[from Eq. (48)] with algebraic and exponential fits whose fit
parameters are given in (54) and (55).

5As discussed previously, these are probably all short- and
intermediate ranged, although their range does exceed the finite
box size at low temperatures.
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limit T → 0, there is a very well-motivated explanation.
Equation (32) predicts

m1 ¼ 1=ξβ ≈ 2 × 10−2ρ0; ð56Þ

which is reasonably close to the fitted value [remember that
we expanded in Oð1=NfÞ ∼ 50% for Nf ¼ 2] and explains
its seemingly unnaturally small magnitude.
On the other hand, we find that the value β ≈ 0.52 is only

marginally larger than the theoretical zero-temperature
prediction of β ¼ 0.5 for two flavors in Eq. (35). This
result—although not precisely a proof—is in astonishing
agreement with the analytical prediction coming from
an expansion around Nf ¼ ∞ ≫ 2 and furthermore beau-
tifully reveals how the massive phase more and more
approximates the conformal behavior at zero temperature
by the unexpectedly large mass ratio m2=m1 ≈ 10.

E. The phase field θ

In this section we analyze hθðxÞi. This discussion should
be regarded as complementary to the previous analysis of
the correlators in the sense that we now use a quantity
directly related to the fields. It will further substantiate our
previous findings.
We show the x dependence of the average hθðxÞi, as

defined in Eq. (49), on a 72 × 63 lattice for aρ0 ≈ 0.46 and
for three values of the chemical potential in Fig. 13. For
vanishing μ the argument of the averaged complex con-
densate field Δ is constant, which means that the latter does
not wind. For the intermediate value μ ≈ 0.88ρ0 the average
angle is an almost linear function of x and the complex
condensate winds six times when one moves along the
spatial direction. When one further increases the chemical
potential to μ ≈ 1.31ρ0, the slope of the (almost) linear
mapping x ↦ hθðxÞi increases and the condensate winds
nine times.

We see that the winding number of the chiral spiral
around the spatial direction increases with increasing μ. In
fact, the winding number extracted from the averaged field
hθðxÞi perfectly agrees with the dominant winding number
defined in Eq. (43) and depicted in Fig. 8. To summarize: at
low temperature hθðxÞi calculated from (49) is almost a
linear function of x with a slope proportional to μ. In
agreement with the analysis based on the dominant wave
number we detect a chiral spiral with a winding number
proportional to μ.

V. CONCLUSIONS

In the present work we studied the (1þ 1)-dimensional
chiral Gross-Neveu model with chiral SLAC fermions and
exact axial UAð1Þ symmetry on the lattice. Our two main
results are summarized in the following.
First, we have strong and multiple evidence that the

analytical prediction from an expansion in 1=Nf well
describes the qualitative features of the cGN model with
two flavors. As expected we see no spontaneous symmetry
breaking with long-range order in the strict sense, and
our results suggest that at T ¼ 0 there is a BKT phase with
quasi-long-range order. For example, the low-temperature
regime, where we have signals of (in)homogeneous
ordering over the whole lattice, is well explained by the
analytically predicted correlation length exceeding the
finite box size and it shrinks consistently in the thermo-
dynamic limit. Additionally, the decay properties of perti-
nent correlation functions are well fitted by the analytically
predicted Ansätze with reasonable parameter values.
The latter suggests that for T ¼ 0 fluctuations of the

phase field θ on all scales exist and are responsible for the
restoration of the axial symmetry. We demonstrated that θ
is uniformly distributed on unit circles in complex field
space and that large system sizes allow for long-range
phase fluctuations strong enough to change the winding
number. This behavior is predicted by the effective low-
energy theory for θ which has been taken from [44] and
extended to μ ≠ 0.
Despite this, our second finding is that, rather unexpect-

edly, our simulations at finite temperature and density
reveal that the cGN model with only Nf ¼ 2 flavors
resembles the analytic large-Nf solution in many ways.
The chiral spirals are still seen in the dominant configu-
rations and their winding numbers increase linearly with
the chemical potential. The only qualitative difference at
low temperatures is that these structures are only coherent
in finite but—depending on the temperature—potentially
very large regions of space. Instead of a temperature-driven
phase transition at intermediate temperatures, we found a
competition of the two important scales in the system, viz.
the temperature-induced finite correlation length and the
density-induced wavelength. So, the question whether or
not oscillating behavior was observed (on potentially short
scales) can be answered only from comparison of the

FIG. 13. Angle of the averaged scalar field, hθi ¼ argðhΔ̄iÞ,
calculated from time-averaged fields σ̄ and π̄, as a function of the
spatial coordinate for different μ at Nt ¼ 72.
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wavelength with the correlation length. Or, put differently,
it is very likely that oscillating behavior can be found for
any temperature and nonvanishing chemical potential as
long as the wavelength is shorter than the correlation length
of the system. This is qualitatively different from the large-
Nf behavior where there is a strict critical temperature
above which no oscillation can be observed.
We have verified these results mainly via the correlator C

in (22) and by analyzing the phase of the averaged field Δ,
defined in (49). We generated many ensembles for the
control parameters T and μ on grids with up to 192 points.
To quantify finite-size and discretization effects the sim-
ulations were repeated on lattices with 63, 127 and 255
points in the spatial direction. While we have good signals
for the behavior in the thermodynamic limit, whether the
inhomogeneities remain after the continuum limit has been
taken is less clear. With the chosen scale setting, which is a
subtle issue in a theory with quasi-long-range order, we
observe that inhomogeneities remain in the limit aρ0 → 0.
We hope to gain a more thorough understanding of this
limit in the future.
Although we found strong evidence that consistently

supports the analytical predictions, our method of MC
simulations will never be able to prove this in a rigorous
sense. Therefore, it would be interesting to compare our
findings with results from other methods, for example the
functional renormalization group. It would be valuable to
continue the study of the (1þ 1)-dimensional Gross-
Neveu-Yukawa model in [45] to related systems in finite
volumes and inhomogeneous background fields.
The mechanism of how the cGN-model realizes the

UAð1Þ symmetry is similar to the flattening of the constraint
effective potential for a spacetime-averaged order param-
eter Δ̄ [46]. For example, in the Ising model at low
temperature, if we impose that the spatially averaged spin
vanishes in the sum over spin configurations, then in a
typical configuration we observe large regions with spin up
and large regions with spin down. Despite the surface
energy stored in the walls separating the “up” and “down”
regions, this is the energetically preferred way of fulfilling
the external constraint.
Models with a continuous symmetry react differently to

the constraints. For example, in the three-dimensionalOð2Þ
model with a Mexican hat potential for a complex scalar
field Δ the constraint jΔ̄j < hjΔji is met by inhomogeneous
spin-wave-like configurations with jΔðxÞj ≈ hjΔji [47].
These configurations resemble the chiral spiral in the
cGN model, for which the modulus of Δ̄ can be much
smaller than hjΔji. In the two-dimensional cGN model the
constraint Δ̄ ≈ 0 is not imposed by hand but by general
theorems which ensure that hΔ̄i ¼ 0. In a typical configu-
ration the modulus of ΔðxÞ is near the minimum ρ̄ of the
effective potential—in order to minimize the bulk energy—
but the real and imaginary parts σ and π have vanishing
expectation values caused by large phase fluctuations about

the relevant chiral spiral. The main difference between the
three-dimensional Oð2Þ model and the two-dimensional
cGN model is that in the former model the wavelength of
the inhomogeneity is given by the box size [47] and in the
latter by the inverse chemical potential.
In [48] it has been emphasized that the occurrence of

correlation functions exhibiting damped oscillations in the
spatial directions is directly related to particular features of
the dispersion relations. The associated quantum spin liquid
behavior, which we also spotted in the two-flavor cGN
model, may thus be observed in a larger class of field
theories.
After publishing the initial draft of our manuscript a

similar study of the (1þ 1)-dimensional cGN model using
the naive fermion discretization was published in [49]. Its
results are in qualitative agreement with ours.
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APPENDIX A: DETAILS OF SCALE SETTING

For an easy comparison of our results with the analytic
large-Nf solution we use ρ0 ¼ hρiT¼μ¼0 to set the scale.
Unfortunately, it is difficult to obtain an accurate estimate
for hρi in our simulations. In this appendix, we first explain
the (statistical) problems with direct approaches to measure
hρi and afterwards present our solution.
From a field theory perspective, the direct lattice esti-

mator for hρiwould be ρt;x for any (fixed) point ðt; xÞ on the
lattice. Now, ρt;x should be homogeneous up to fluctuations
and, hence, one can improve the statistics by combining the
data from all estimators ρt;x for all lattice points. Example
data for this estimator can be seen in Fig. 14(a).
The final estimate for hρi would then read

hρi ≈ ðmeanτ ∘meanx ∘meant ∘ absÞΔðτÞ
t;x ; ðA1Þ

where τ is the MC time, ΔðτÞ
t;x the field value at site ðt; xÞ of

the τth configuration and mean# means averaging with
respect to the respective subscript. In order to actually
show the distribution from which the final estimates are

LENZ, MANDL, and WIPF PHYS. REV. D 105, 034512 (2022)

034512-16



calculated, we present (here and in the following) the
histograms one obtains by stripping the means after the
absolute values have been taken.
The histogram of the straightforward estimator shown in

Fig. 14(a) is dominated by its broad variance (as is expected
for a local estimator). More importantly, since the field θ is
quasi-long-range, it requires many sweeps through the
lattice to obtain a θ-independent distribution of Δ like
the ones depicted in Fig. 2. In fact, a typical configuration
in the simulations is not distributed symmetrically around
the origin but rather around some finite value Δ0. The
center of the configurations moves slowly (in Monte Carlo
time) around the origin in field space. For this reason,
taking the modulus right in the beginning leads to a
significant bias towards larger values in the estimator (A1).
The broad variance mentioned above is a known stat-

istical phenomenon in MC simulations and is usually cured
by averaging over the spacetime lattice before taking the
absolute value, schematically

hρi ≈ ðmeanτ ∘ abs ∘meanx ∘meantÞΔðτÞ
t;x : ðA2Þ

This sharpens the distribution but is less well motivated
from a field theory perspective. The choice (A2) can be
justified if there is spontaneous symmetry breaking and a
small trigger is sufficient to align the values of the field on
the lattice sites. In this case the absolute value does not
change the result if we take the limits in the correct order,
i.e., the spatial volume to infinity before removing the
trigger. In the symmetric phase, on the other hand, already
the spatial average should vanish in the thermodynamic
limit and again taking the absolute value does not make a
difference. Example distributions of this estimator are
shown in Fig. 14(c). Note the different scales on the x axes.
It may come as a surprise that there is a second peak

visible that distorts the mean of this distribution. This is
due to the fact that at any nonzero temperature there are
contributions from inhomogeneous configurations, which

average out over the lattice to a very good approximation;
see also Fig. 11. While for these data the distortion might be
mild, we are not willing to take the risk of severely
underestimating the observable for scale setting.
In the present work, what is even more problematic is

that long-range (quasiperiodic) inhomogeneities must not
be averaged over the spatial direction before taking
absolute values. But, since we have to improve statistics
as much as possible we will compromise by using

hρi ≈ ðmeanτ ∘meanx ∘ abs ∘meantÞΔðτÞ
t;x ; ðA3Þ

where we, similarly as in the spatial correlation functions
(37), first average over time.
As Fig. 14(b) indicates, this yields acceptable statistics

while only using the assumption of temporal homogeneity
which is a feature of all large-Nf results we know of and
was checked to be valid in our MC data; see, for example,
Fig. 4. One should note that this procedure does not work in
the high-temperature regime as the distribution in this case
approaches that of Eq. (A1).
In future works other scale settings could be used and

the corresponding results should be compared with those
obtained in the present work. For example, the mass of the
field ρðt; xÞ may serve as an energy scale. The drawback of
choosing a scale different from the minimum of the
effective potential UeffðρÞ (at zero temperature and density)
is that it is less straightforward to relate to the analytic
results for large Nf . In the large-Nf limit the field ρ
becomes infinitely heavy.

APPENDIX B: AUTOCORRELATION ANALYSIS

During our simulations, we had to tackle severe auto-
correlations similar to those described in [25]. In this
appendix we summarize our extensive analysis of auto-
correlation functions (ACFs) of various lattice estimators
and provide details on how we arrive at the conclusion

FIG. 14. Histogram data of various estimators of hρi for Ns ¼ 255, Nt ¼ 72, μ ¼ 0 and g−2 ¼ 1.0540. The vertical axes show the
relative number of hits per bin, with 200 bins used for each histogram. Note that all values of ρ shown here are raw numerical data not in
physical units.
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that our qualitative statements are robust despite large
autocorrelations for certain parameter regions.

1. Identifying autocorrelation scales in an example

To facilitate such a discussion it is useful to visualize
the topography of the effective action of the theory. In the
infinite volume and—less important for this argument—
continuum case, [31] found the general form of the saddle
points of the effective action. The spatial profiles of
the order parameter Δ are given as a continuous family
with four parameters related to overall scale, amplitude
and phase variations, and a phase offset which is tightly
related to translations. The finite volume we work in
subjects these self-consistent solutions to the imposed
boundary conditions such that for some of these parameters
only a discrete subset of allowed solutions yields saddle
points in finite volume. This entails a ragged landscape of
valleys with local minima of the effective action that are
separated by ridges stemming from the finite-volume
effects and melting in the infinite-volume limit. From the
analytical results, we expect chiral–spiral-like local minima
(including the degenerate one, i.e., the constant order
parameter) to be most important and our simulations
confirm this expectation.
The above discussion immediately suggests that there

are three qualitatively different kinds of autocorrelations:
Sampled configurations will typically tend to fluctuate
around one local minimum correlated within this valley on
a (MC-time) scale τfluct. During this process the reference
chiral spiral will rotate the overall phase offset on a
timescale τUð1Þ which, for nondegenerate chiral spirals, is
equivalent to translating this spiral. Eventually, the algo-
rithm will climb (or tunnel through) a ridge and arrive in
another valley on a timescale τkmax

.
From these three timescales, τUð1Þ is of minor importance

to us because we carefully crafted all of our observables to
respect the Uð1Þ (and closely related translational) sym-
metry. From the notable exceptions Fig. 2 and Fig. 13,
however, we learned that it is quite sizable but clearly under
control as the almost-perfect circles of Fig. 2 illustrate.
The other autocorrelation scales can be clearly distin-

guished in Fig. 15. For one exemplary parameter set, the
figure shows ACFs of CσσðxÞ for some randomly chosen
lattice points x as well as the average and the (local in MC-
time separation) maximal autocorrelations obtained over all
lattice points. The latter rather unconventional quantity can
be considered as a worst-case scenario for autocorrelations
in Cσσ.
All of these are well described by an Ansatz,

A½Cσσ�ðtÞ ¼ be−t=τ1 þ ð1 − bÞe−t=τ2 ;

where b, τ1 and τ2 are free parameters. While the detailed
numbers obviously depend on the dataset chosen for fitting,
the orders of magnitudes are consistent (cf. Table I).

In order to associate the two numerical values τ1 and τ2
with the mechanisms described above, we consider repre-
sentative time evolutions on each timescale in Fig. 16.
Figure 16(a) shows the Fourier spectrum of Cσσ over
20 × τ1 MC configurations where we conservatively use
τ1 ≈ 1. It is clearly seen that there is a constant peak at
νmax ¼ 3, while the MC evolution produces small fluctua-
tions around this reference configuration. We conclude that
the small timescale for this parameter set is generated from
fluctuations around one local minimum, i.e., τfluct ¼ τ1.
To probe the larger timescale, we show a MC-time

window of 20 × τ2 configurations in Fig. 16(b), where we
conservatively estimated τ2 ≈ 126. For visual clarity, we
averaged blocks of τ2 MC configurations which should be
thought of as a coarse graining integrating out the high
frequencies similar to an RG transformation. On this scale,
the correlator spectra are smooth (due to the coarse
graining) and sharp peaks, and the MC evolution produces
jumps in the dominant frequency kmax. This finding relates
the long timescale to τkmax

that was suggestively named after
its effect of jumping between valleys changing kmax. One
should also stress that it is a nontrivial statement that 126
configurations tend to be rather coherent—again strength-
ening the association of τ2 with τkmax

.

FIG. 15. Autocorrelation functions for CσσðxÞ for three differ-
ent x, a maximum over all x and an average over all x for Nf ¼ 2,
Ns ¼ 63, T=ρ0 ≈ 0.09, μ=ρ0 ≈ 0.61, aρ0 ≈ 0.46.

TABLE I. Fit parameters b, τ1 and τ2 for the autocorrelation
function of CσσðxÞ for some values of x as well as an average and
a maximum over all x (cf. Fig. 15).

b τ1 τ2

x=a ¼ 5 0.65 0.3 111.5
x=a ¼ 19 0.86 0.8 101.5
x=a ¼ 27 0.94 0.5 32.8
Avg 0.79 0.6 87.0
Max 0.66 0.9 125.5
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2. Analysis and reasoning about
the rest of parameter space

The previous example indicates two important facts:
Firstly, our choice of algorithmic parameters rendered τfluct
negligible while τkmax

is of considerable size. Secondly,
besides τkmax

being large it is still under control in the sense
that we have a statistically significant number of indepen-
dent configurations NMC=τkmax

≈ 380 even in the worst case
discussed above. As the chosen parameter set is well inside
the region of intermediate-scale inhomogeneous order we
conclude from a statistically robust ensemble that our
claims of intermediate-scale inhomogeneities without
spontaneous symmetry breaking of any kind are robust
with respect to autocorrelation effects. We checked for
similar examples on all lattice sizes and lattice spacings.
However, the above example was taken from a moderate

temperature region. As we confirmed in this study, at the
T ¼ 0 line the system is critical, which implies diverging
correlation lengths—also in the MC-time evolution as is
well known around practitioners [50]. We therefore
expected and a posteriori verified huge autocorrelations
for temperatures close to zero. One should stress that this is
a physical effect; it can likely be circumvented by an
appropriately adapted algorithm but still bares physically
relevant information. Still, for a small region of very low
temperatures τkmax

can easily exceed our greatest efforts of
up to 8 × 104 configurations generated for some parameter
sets. We therefore suggest to view the very-low-temper-
ature results with a grain of salt quantitatively: They surely
give a good impression of what phenomena to expect in the
exceedingly large regions of space that are correlated for
these temperatures but they might be quantitatively off due
to autocorrelations suppressing the interference from sub-
dominant local minima.

We remark that τkmax
has a clear tendency to decrease in

the infinite-volume limit. This is the opposite behavior of
what is typically found in symmetry-breaking systems and
considered further evidence in support of the existence of a
BKT phase and against spontaneous symmetry breaking, as
was also mentioned in the main text.
The effect of larger flavor numbers is to reduce quantum

fluctuations or, in the pictorial language from above, to
deepen the valleys and grow the ridges. This effect is
responsible for ultimately obtaining actual spontaneous
symmetry breaking in the limit of infinite number of
flavors. It also greatly enhances autocorrelations, particu-
larly in suppressing jumps between different valleys. For
Nf ¼ 8 the temperatures necessary to clearly observe
inhomogeneities on average and jumps in the dominant
wave number during the MC evolution occur concurrently
are higher than in the two-flavor case. This strengthens our
finding in this and previous papers [24,25] that the
convergence to mean-field behavior is quite rapid with
the number of flavors. While technically this casts some
doubt on the quantitative accuracy of the Nf ¼ 8 data, we
want to point out again that this is driven by physical
properties of the system more than technical difficulties.
Finally, we want to share some thoughts on how to

improve on the situation: Due to extensive analytical results
about the effective action, we were able to obtain a clear
picture of the cause of autocorrelations in this model. One
can easily imagine algorithmic improvements leveraging
this knowledge. As the local minima can be enumerated by
their dominant wave number kmax, local updates in Fourier
space might suffice, e.g., local Metropolis-like updates or
swapping of Fourier components. As the current updating
scheme is very efficient to reduce some part of the
autocorrelations, it would probably be advantageous to
combine both kinds of updates into a single update step.

FIG. 16. MC timelines of the Fourier spectra of Cσσ for the same parameters as Fig. 15.
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Similar ideas are already used, e.g., [51]. Another approach
could be to constrain the simulations to a single sector and
a posteriori combining the results into a weighted sum.
However, these approaches would be very specific and

hardly generalizable to related problems, e.g., topological
freezing in lattice QCD [52]. A modern approach that is
agnostic of analytical knowledge, which is usually not as
easily employed in more realistic theories, could be
independence samplers from generative models, i.e., inde-
pendently drawing the configurations from an efficient
approximation of the probability distribution. Promising
results in this direction were presented in [53], where
they overcame topological freezing in 1þ 1D Uð1Þ gauge
theory.

APPENDIX C: ON FERMIONIC FOUR-POINT
FUNCTIONS

We aim at relating the UAð1Þ-invariant fermion four-
point function (44) to the spatial correlation functions Cσσ

and Cσπ defined in Eq. (37). To find such a relation we
exploit the following Dyson-Schwinger equations, which
can be derived in analogy to Eq. (6):

hψ̄ψðxÞψ̄ψðyÞi ¼ −κ2hσðxÞσðyÞi þ κδ2ðx − yÞ;
hψ̄ψðxÞψ̄γ�ψðyÞi ¼ iκ2hσðxÞπðyÞi;
hψ̄γ�ψðxÞψ̄ψðyÞi ¼ iκ2hπðxÞσðyÞi;

hψ̄γ�ψðxÞψ̄γ�ψðyÞi ¼ κ2hπðxÞπðyÞi − κδ2ðx − yÞ; ðC1Þ
wherein we used the abbreviation

κ ¼ Nf

g2
: ðC2Þ

Recalling that Δ ¼ σ þ iπ we can write the invariant four-
point function as

C4Fðx; yÞ ¼ −κ2hΔ�ðxÞΔðyÞi þ 2κδ2ðxÞ; ðC3Þ

and the axial UAð1Þ symmetry implies [cf. Eq. (38)]

hΔ�ðxÞΔðyÞi ¼ 2hσðxÞσðyÞi þ 2ihσðxÞπðyÞi: ðC4Þ

In analogy to the spatial correlation functions (37) for
the condensate fields we introduced the spatial corre-
lation function for the Nf Fermi fields on the lattice in

Eq. (46). Inserting (C4) into (C3) we can relate (46) to (37)
as follows:

C4FðxÞ ¼ −2κ2ðCσσðxÞ þ iCσπðxÞÞ þ 2κδðxÞ; ðC5Þ

where on the lattice the spatial δ distribution on the right-
hand side turns into the Kronecker symbol δx;0.

APPENDIX D: PARAMETERS

In order to calculate the various phase diagrams we
generated many ensembles characterized by the control
parameters ðNf ; T; L; μÞ or ðNf ; Nt; Ns; ρ0μÞ, plus the four-
Fermi coupling g2 tuned to the required lattice spacing
measured in units of ρ0 ¼ hρiT¼μ¼0. We summarize the
lattice spacings corresponding to the different values of Nf ,
Ns and g2 in Table II.
As explained in the main text, we used different initial

conditions for the fields to deal with thermalization
problems: We performed scans with Gaussian-distributed
seeds with mean zero, a freeze-out from high temperatures
to reduce thermalization times and a heat-up procedure
from the lowest temperature to exclude any hysteresis
effects from the freeze-out. We also used a homogeneous
cold start, in the sense of setting the initial configuration to
ΔðxÞ ¼ 1þ i for all x, at small μ, where inhomogeneous
configurations are suppressed. In Table III we collect the
control parameters Nt and μ for which we generated
ensembles in equilibrium for each of these methods.
Notice that we use the same lattice spacings as in
Table II, which were determined via the freeze-out pro-
cedure, irrespective of the initial conditions.

TABLE II. Lattice spacings for each set of ðNf ; Ns; g2Þ. The
right column contains the values of Nt at which the scale setting
was performed and the asterisk on one value of aρ0 indicates that
the given uncertainty was estimated by hand to be larger than the
computed jackknife uncertainty due to small statistics.

Nf Ns ¼ L=a 1=g2 aρ0 Nt

2 63 1.0540 0.45655� 0.00061 72
2 127 1.0540 0.45844� 0.00095 72
2 255 1.0540 0.4573� 0.0012 72
2 127 1.3895 0.1904� 0.0027 240
2 255 1.8254 0.08� 0.01� 648
8 63 5.1013 0.41235� 0.00023 80
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