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We provide numerical evidence that the thermal QCD crossover turns into a first order transition in the
presence of large enough magnetic background fields. The critical end point is found to be located between
eB ¼ 4 GeV2 [where the pseudocritical temperature is Tc ¼ ð98� 3Þ MeV] and eB ¼ 9 GeV2 [where the
critical temperature is Tc ¼ ð63� 5Þ MeV]. Results are based on the analysis of quark condensates and
number susceptibilities, determined by lattice simulations of Nf ¼ 2þ 1 QCD at the physical point,
discretized via rooted stout staggered fermions and a Symanzik tree level improved pure gauge action,
adopting two different lattice spacings, a ¼ 0.114 and 0.086 fm, for eB ¼ 9 GeV2 and three, a ¼ 0.114,
0.086, and 0.057 fm, for eB ¼ 4 GeV2. We also present preliminary results regarding the confining
properties of the thermal theory, suggesting that they could change drastically going across the phase
transition.
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I. INTRODUCTION

The investigation of QCD properties in a magnetic
background field has been the subject of various studies
in the last few years, see, e.g., Refs. [1–3] for recent
reviews. Part of the interest is directly related to phenom-
enology: strong background fields are expected in non-
central heavy ion collisions [4–9], in astrophysical objects
like magnetars [10], and might have been produced during
the cosmological electroweak phase transition [11,12], thus
influencing the subsequent evolution of the Universe,
including the cosmological QCD transition. Lattice QCD
simulations have been essential to advance knowledge in
this field, given also the fact that, unlike the case of a
baryon chemical potential, no technical problem hinders
the application of standard Monte Carlo techniques for the

computation of the QCD path-integral in a magnetic
background.
One of the most relevant aspects regards the influence of

the magnetic field on the QCD phase diagram. Early lattice
studies of Nf ¼ 2 QCD, adopting standard staggered
fermions and heavier-than-physical quark masses, showed
a slightly increasing behavior of the crossover temperature
Tc as a function of the magnetic field B [13,14]. That was
however not confirmed by an investigation of Nf ¼ 2þ 1

QCD at the physical point discretized via improved
staggered fermion, showing instead an appreciable
decrease of Tc, of the order of 10–20%, for magnetic
fields going up to eB ∼ 1 GeV2 [15], a behavior confirmed
also by later lattice studies [16]. The reason for the
discrepancy of early results has been clarified by later
studies: it should be ascribed to lattice artifacts [17], while
the decreasing behavior of Tc as a function of B is observed
also for larger than physical pion masses [18,19].
One important aspect, generally confirmed by lattice

simulations, is the strengthening of the QCD crossover as
the magnetic field is increased, which points to the
possibility that it could turn into a real phase transition
for large enough B. Available predictions, based on the
extrapolation of lattice results and on the numerical study of
effective models, suggest that this could happen for eB of
the order of 10 GeV2 [20]. That could have significant
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implications for the physics of the early Universe, regard-
ing in particular the consequences of a first order cosmo-
logical QCD transition [21,22]. As a matter of fact, a direct
observation of this phenomenon has been reported only for
discretizations adopting unimproved staggered quarks [17],
for which however one also observes that Tc increases
(instead of decreasing) with B.
The main purpose of the present study is to push forward

our knowledge on this topic, by exploring finite temper-
ature Nf ¼ 2þ 1 QCD with physical quark masses at
unprecedented values of the magnetic field, trying also to
keep control on UV cutoff effects. In order to do that, we
will consider a stout improved staggered discretization of
the theory and two different values of the magnetic field,
eB ≃ 4 and 9 GeV2, trying to keep control on discretization
effects by exploring two different lattice spacings,
a ¼ 0.057 and 0.086 fm, for eB ¼ 9 GeV2, and three,
a ¼ 0.057, 0.086, and 0.114 fm, for eB ¼ 4 GeV2.
Anticipating part of the final results, we will provide
evidence that the QCD transition is first order for eB ¼
9 GeV2 and that the critical temperature, for that value of
the magnetic field, goes down to values below 70 MeV. We
will also present a preliminary investigation of the confin-
ing properties of the theory, suggesting that they could
change drastically going across the phase transition.
Even if our investigation is not affected by any technical

obstruction, such as a sign problem, it is anyway extremely
challenging from a numerical point of view. On one hand,
the need for large magnetic fields requires correspondingly
fine lattice spacings of the order or below 0.1 fm. On the
other hand, given the fact that the critical temperature keeps
its steady decrease with B, we require simulations with an
Euclidean time compactification length around 2 fm or
larger, meaning that, in order to reach lattice spacings
below 0.1 fm, we need to perform simulations on lattices
with a large number of sites in the temporal direction (a few
tens). That sets by itself a strong limitation to the explorable
lattices, in particular regarding the aspect ratios (ratio of the
spatial to the Euclidean time lattice extents), which are
reasonably affordable, given the available computational
resources.1 In particular regarding the approach to the
thermodynamical limit, our results should be considered
as exploratory, but nevertheless providing an already
consistent and clear picture, which claims for future
investigations and refinements.
The paper is organized as follows. In Sec. II we discuss

the lattice discretization of the theory and other technical
details regarding the implementation of the magnetic
background field and the physical observables explored
in our investigation. In Sec. III we present and discuss our

numerical results. Finally, in Sec. IV we draw our con-
clusions and discuss future perspectives.

II. NUMERICAL METHODS

As in Refs. [18,23], we consider a discretization of
Nf ¼ 2þ 1 QCD based on the tree-level improved
Symanzik pure gauge action [24,25] and on stout rooted
staggered fermions [26,27], i.e., on the following partition
function

Z ¼
Z

½DU�e−SYM
Y

f¼u;d;s

det ðMf
stÞ

1
4; ð1Þ

where ½DU� is the Haar measure for gauge links, f is the
flavor index, and the fermion matrix and the gauge action
are, respectively,

Mf
st ij ¼ m̂fδij þ

X4
ν¼1

ηi;ν
2

ðUð2Þ
i;ν δij−ν̂ −Uð2Þ†

i−ν̂;νδijþν̂Þ;

SYM ¼ −
β

3

X
i

μ≠ν

�
5

6
W1×1

i;μν −
1

12
W1×2

i;μν

�
; ð2Þ

with periodic (antiperiodic) boundary conditions in the
Euclidean temporal direction for bosonic (fermionic) fields,
in order to reproduce thermal conditions. There, i, j and μ,
ν are, respectively, lattice sites and directions, while β
is the inverse gauge coupling, a is the lattice spacing, and
m̂f ¼ amf are the dimensionless bare quark masses. The

ηi;ν are the staggered quark phases, Uð2Þ
i;ν is the two-times

stout smeared link (with isotropic smearing parameter
ρ ¼ 0.15), while W1×·

i;μν s are the real parts of the trace of
the link products along the 1 × 1 and 1 × 2 rectangular
closed path, respectively.
Bare quark masses and the gauge coupling values have

been tuned in order to move on a line of constant physics,
which reproduces experimental results for hadronic observ-
ables, based on the determinations reported in Refs. [28–
30]. In particular, as in Ref. [23], we have considered three
different lattice spacings, a ≃ 0.057, 0.086, and 0.114 fm;
for each lattice spacing the physical temperature of the
system, which is equal to the inverse of the Euclidean
temporal extension, T ¼ 1=ðNtaÞ, has been tuned by
changing the number of temporal lattice sites Nt at fixed
a. Such a fixed scale approach to thermodynamics has the
drawback of not allowing for a fine tuning of the physical
temperature; however, it has many advantages at the same
time, since it simplifies both the renormalization of
physical observable and the continuum extrapolation at
fixed physical values of the external background field, as
we discuss in the following.

1In particular, we were not able, with the available lattice sizes,
to provide results at the finest lattice spacing, a ¼ 0.057 fm, for
eB ¼ 9 GeV2.
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A. External magnetic field

In the lattice approach, the presence of an external
magnetic background field can be translated in the intro-
duction of additionalUð1Þ phases to the elementary parallel
transporters

Uð2Þ
i;μ → ufi;μU

ð2Þ
i;μ ; ð3Þ

which are kept constant, i.e., no functional integration is
performed over them, and are different for the different
flavors, depending on their electric charge. In particular,
considering a uniform magnetic field B⃗ in the ẑ direction
and the following gauge choice

At ¼ Ax ¼ Az ¼ 0; AyðxÞ ¼ Bx; ð4Þ
a possible discretization on a periodic toroidal lattice is the
following

ufi;y ¼ eia
2qfBix ; ufi;xjix¼Lx

¼ e−ia
2qfLxBiy ; ð5Þ

with all other Uð1Þ link variables set to one, where Li is the
number of lattice sites along direction i and last condition
guarantees smoothness of the magnetic field across the x
boundary [31–33]. This choice leads to a constant magnetic
field but for a single plaquette, which is pierced by an
additional Dirac string and guarantees a zero magnetic flux
across the lattice torus; invisibility of that string leads to a
quantization condition for B, which is more compelling for
the smallest quark charge qf ¼ e=3:

qfB ¼ 2πbz
a2LxLy

⇒ eB ¼ 6πbz
a2LxLy

; bz ∈ Z: ð6Þ

The external field leads to additional discretization errors.
Since themagnetic field acts on the system through the gauge
invariant Uð1Þ phase factors that dynamical quarks pick up
going through closed loops on the lattice, the phase factor for
the smallest nontrivial loop (a plaquette in the xy plane)

exp ðiqfBa2Þ ¼ exp

�
i
6πbz
LxLy

qf
e

�
ð7Þ

must be much smaller than 2π, hence

2bz
LxLy

≪ 1; ð8Þ

where we have considered the up quark, for which discretiza-
tion errors are larger; all that sets a UV cutoff for the largest
field explorable for a given lattice spacing, eB ≤ 2π=a2. For
the coarsest lattice studied in this study, a ≃ 0.114 fm, the
cutoff is around 20 GeV2, which is not too far from
eB ¼ 9 GeV2: this is at the origin of sizable discretization
effects observed for this value of the magnetic field, which
disappear only after a proper continuum extrapolation [23].

B. Observables

The determination of the (pseudo)critical temperature Tc
will be based on the analysis of the renormalized chiral
condensate and of the susceptibility of the strange quark
number, which are two standard observables used for the
same purposes in previous studies.
The f-flavor condensate is defined as

hψ̄ψif ¼ ∂
∂mf

�
T
Vs

logZ

�
¼ 1

4a3L3
sNt

hTrðMf
stÞ−1i; ð9Þ

where Vs is the spatial volume and the trace of the inverse
fermion matrix is determined configuration by configura-
tion, as usual, by means of noisy estimators. The con-
densate is affected by both additive and multiplicative
renormalizations, which can be subtracted following the
prescription of Ref. [34]

hψ̄ψirfðB; TÞ ¼
mf

m2
πF2

π
ðhψ̄ψifðB; TÞ − hψ̄ψifð0; 0ÞÞ: ð10Þ

The zero-T subtraction, which is performed at fixed UV
cutoff, eliminates additive divergences, while multiplication
by the bare quark massmf takes care of multiplicative ones.
In the following we will show results for the sum of up

and down contributions, i.e., the renormalized light quark
condensate Σr

l ðB; TÞ. The behavior of Σr
l ðB; TÞ will be

monitored to locate Tc, looking for its inflection point in
the region where it drops towards zero. Just for the purpose
of a finite size scaling analysis around the transition, we
will consider also the unrenormalized disconnected chiral
susceptibility

χdiscψ̄ψ ;f ≡ 1

16L3
sNt

½hðTrM−1
f Þ2i − hTrM−1

f i2�: ð11Þ

The dimensionless susceptibility of the strange quark
number is instead defined as follows (with f ¼ s):

χf ≡ 1

T2

∂
∂μ2f

�
T
Vs

logZ

�
;

¼ Nt

4L3
s
hTr½M−1

f ∂2
aμfMf − ðM−1

f ∂aμfMfÞ2�i; ð12Þ

where μf is the quark chemical potential and, in the last line,
only terms which do not vanish at μf ¼ 0 have been left in.2

2Considering the standard introduction of the chemical po-
tential on the lattice, where temporal gauge links in the forward/
backward temporal direction get multiplied by a factor
expð�aμfÞ, the derivatives ∂aμfMf and ∂2

aμfMf correspond to
just the temporal part of the Dirac operator, with an additional
minus for each derivative in the backward propagation.
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III. NUMERICAL RESULTS

Most of our simulations have been carried out at three
different lattice spacings, a ≃ 0.057, 0.086, and 0.114 fm,
keeping the spatial size fixed at aLs ≃ 2.75 fm and varying
the temporal lattice size Nt in order to change the temper-
ature. For reasons to be discussed below, results at the finest
lattice spacing are only available for eB ¼ 4 GeV2. In this
setup the magnetic field, according to Eq. (6), is kept fixed
in physical units by just using the same number of quanta
bz for every lattice spacing: that makes the continuum
extrapolation much easier.
In particular, we have fixed bz ¼ 41 and bz ¼ 93,

respectively, for 4 and 9 GeV2. Larger spatial sizes, up
to ∼4 fm, have been explored in a few cases, in order to
check the impact of finite size effects, or to perform a finite
size scaling analysis around the transition: in those cases,
bz has been increased accordingly in order to keep eB
fixed, see Eq. (6). Additional simulations, needed for zero
temperature subtractions or normalization, have been
performed for eB ¼ 0, 4, and 9 GeV2 on lattices with a
temporal extension of around 5.5 fm, which is large enough
to be considered as a good approximation for T ≃ 0.3

Monte Carlo sampling of gauge configurations has been
performed based on a rational hybrid Monte Carlo
(RHMC) algorithm running on GPUs [35,36]. For each
simulation we performed Oð103Þ RHMC trajectories of
unit length, taking measures every five trajectories.

A. The finite temperature transition at large eB

In Fig. 1 we show the renormalized light condensate
Σr
l ðB; TÞ as a function of T for the two explored values of

eB and for various lattice spacings and spatial extensions.
Results have been normalized by those obtained for the
same values of B at T ≃ 0: that suppresses much of the UV
cutoff dependence already observed for eB ¼ 9 GeV2 at
T ¼ 0 in Ref. [23].
A residual UV cutoff, as well as a finite size dependence,

is visible around the transition; however that does not
obscure the main message emerging from Fig. 1. Tc is
around 100 MeV for eB ¼ 4 GeV2 and drops below
80 MeV for eB ¼ 9 GeV2. Moreover, one observes a
significant strengthening of the transition, which seems
to become strong first order, with a large gap in the chiral
condensate, at the larger value of eB.
Some considerations should be made about the possible

weaknesses of our results. We have been forced to work
with aspect ratios Ls=Nt around 2, which is marginally
compatible with a reliable study of thermodynamics, by

some converging constraints: the fact that the range of
physically relevant temperatures turns out to be lower than
expected from previous lattice studies [20], and the need for
lattice spacings fine enough to support the explored values
of eB, all that combined with a limited budget of available
computational resources. This is also the reason we do not
have results available for the finest lattice spacing at
eB ¼ 9 GeV2, since in that case, without a significant
increase of Ls, the aspect ratio would have been close to 1
around the transition.
Nevertheless, the main results depicted above do not

seem to be much affected by such weaknesses. The
dependence on the finite spatial size is visible around
the transition but is not significant. The value of Tc at
eB ¼ 9 GeV2, where only two lattice spacings are avail-
able, seems to decrease even more when moving from the
coarser to the finer lattice, while the transition is sharp and
seemingly strong first order in both cases.
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FIG. 1. Renormalized chiral condensates, divided by their
values at T ¼ 0, obtained for eB ¼ 4 GeV2 (top) and eB ¼
9 GeV2 (bottom) for various lattice spacings and spatial exten-
sions. The drop of the pseudocritical temperature is clearly
visible, as well as the appearance of a well defined gap at the
larger value of eB.

3Given the relatively low temperatures explored in this study,
this is not a trivial statement. Actually, our reference “zero
temperature” lattice corresponds to T ≃ 36 MeV, which is well
below the explored values of T and deep in the confined region, at
least for the present values of eB.
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Similar conclusions are obtained by looking at results for
the strange quark susceptibility, which are reported in
Fig. 2. The susceptibility raises in correspondence of the
same temperatures at which the chiral condensate drops,
and has a sudden jump, suggesting a strong first order
transition, for eB ¼ 9 GeV2. In the latter case, UV cutoff
effects are clearly visible and significant, even if they affect
mostly the overall magnitude of the susceptibility, and only
marginally the location of Tc: similar significant UV cutoff
effects have been reported in Ref. [23], at the same value of
eB, for the chiral condensate, and can be ascribed to the
rough discretization of such large magnetic field, since up
quarks pick an elementary phase around plaquettes which
is large (∼2π=3 and ∼π=3, respectively, for a ¼ 0.114 fm
and a ¼ 0.086 fm). We notice that the magnetic field
induces a strong enhancement in quark number suscep-
tibilities: similar observations have been reported in
Ref. [37].
Results obtained for Tc from both observables are shown

as a function of a2 in Fig. 3. For eB ¼ 4 GeV2 Tc has been
determined by fitting the inflection point of Σr

l or χs, while
for eB ¼ 9 GeV2 the determination coincides with the
midpoint of the two temperatures where the sharp jump is
observed, with an uncertainty given by their half-
difference; a systematic uncertainty of around 2%, related
to the determination the lattice spacing [28–30], should
be considered in both cases. A tentative continuum extra-
polation of Tc, assuming Oða2Þ corrections, is also
reported for eB¼4GeV2, leading to TcðeB ¼ 4 GeV2Þ ¼
ð98� 3Þ MeV, while for eB ¼ 9 GeV2 we do not have
enough degrees of freedom even for a linear fit. In the latter
case, given the two available lattice spacings and all
other systematic uncertainties, we believe that a safe and

conservative estimate for the continuum extrapolated tem-
perature is TcðeB ¼ 9 GeV2Þ ¼ ð63� 5Þ MeV.
We have put the two critical temperatures, together with

previous results available in the literature, in order to draw a
first tentative sketch of the updated QCD phase diagram in
a magnetic field, which is reported in Fig. 4. A first
observation is that our results, which are consistent with
all previous direct lattice determinations, point to a steady
decrease of Tc even in the large field region, contrary to a
much smoother approach to the infinite B limit reported in
the investigation of Ref. [20], which however was based on
an effective description of QCD at large eB in terms of an
anisotropic pure gauge theory [3,38]. The second obser-
vation is that our results strongly suggest the presence of a
strong first order transition, with a critical end point along
the line which continuously connect TcðeB ¼ 0Þ with
TcðeB ¼ 9 GeV2Þ. The presence of a first order transition
at large eB was predicted in previous literature, with an
estimate for the critical end point, based on an extrapola-
tion, at eBc ¼ 10ð2Þ GeV2 [20]; our results suggest, for the
first time from a direct lattice determination, that the critical
point is located somewhere in the middle between eB ¼ 4

and 9 GeV2. Such a conclusion however requires some
deepening of our investigation, based on a finite size
scaling analysis, in order to assess that at eB ¼ 9 GeV2

the transition is indeed first order: this is done in the
following subsection.
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FIG. 3. Transition temperatures as a function of a2, determined
from the chiral condensate and from the strange quark
number susceptibility at the two explored values of eB. For
eB ¼ 4 GeV2, Tc has been determined by fitting the inflection
point of Σr

l or χs. For eB ¼ 9 GeV2, instead, the determination is
obtained from the sharp jump observed for both quantities, with
an uncertainty given by the half-difference of the temperatures on
the two sides of the jump. A tentative continuum extrapolation of
Tc, assuming Oða2Þ corrections, is reported in both cases,
however for eB ¼ 9 GeV2 this is not even a fit, since only
two lattice spacings are available.
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FIG. 2. Strange quark number susceptibility as a function of T
for both explored values of eB and for various lattice spacings
and spatial extensions. Significant UV cutoff effects are visible
for the larger magnetic field, however this does not affect the
conclusion for the appearance of a large gap at the transition in
that case.
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B. Finite size scaling around the critical temperature

The fixed UV cutoff approach we have followed till now
allows only for a discrete set of temperatures; as a
consequence, a large jump in some observables somewhere
is only suggestive of a first order transition but does not
necessarily imply it. Smoking guns would be instead the
presence of metastable histories, double peak distributions,
and a proper finite size scaling (FSS) analysis, which
however require a fine tuning of the temperature around the
transition point.
Therefore, in order to clarify this aspect, we have decided

to give up our fixed cutoff approach for a set of dedicated
simulations. In particular, we have chosen one of the two
simulation points at eB ¼ 9 GeV2 adjacent to the jump,
taking it as the starting point for a temperature scan where
Nt is kept fixed and T is changed by tuning the lattice
spacing through the bare parameters.
As a further variation, the lattice spacing has been

changed by tuning just the inverse gauge coupling β,
which enters the pure gauge action, and not the bare quark
masses, which enter the fermion determinant. That sim-
plifies the FSS analysis, allowing for an easy application of
the multihistogram method, in particular without the need
for a costly reweighting of the fermion determinant. On the
other hand, that has the drawback of moving us away from
the physical line; however it should be clear that this is not a
relevant aspect: we are just doing a fine-tuning, with the
purpose of crossing the critical surface somewhere close to

the starting point and test if it is first order or not. Since the
presence of a first order transition, i.e., of a gap in physical
observables, is stable under small variations of the para-
meters, we will obtain a valid and clear-cut answer anyway.
In order to make the computational effort of the FSS

analysis affordable, we worked on the coarsest lattice; on
the other hand, the jumps observed in the chiral condensate
and in the strange quark number susceptibility suggest
that the transition does not weaken going towards the
continuum limit. As a starting point, we have chosen the
Nt ¼ 22 lattice at β ¼ 3.787, ams ¼ 0.0457, and amu=d ¼
0.00162, which corresponds to T ≃ 78.5 MeV and is the
first point on the upper side of the transition, and changed β
downwards, so as to increase the lattice spacing and
decrease T, till we have crossed the transition. This has
been repeated for three different spatial sizes, Ls ¼ 24, 30,
and 36.
As a first result, in Fig. 5 we show the disconnected and

unrenormalized4 chiral susceptibility χdisc;u of the up quark
(similar results are obtained for the down quark). Results
clearly show that the susceptibility increases with the
volume and that data collapse onto each other according
to the following FSS ansatz (ϕ is an unknown scaling
function)

χdisc;uðLs; βÞ
Lγ=ν
s

¼ ϕððβ − βcÞL1=ν
s Þ; ð13Þ

when ν and γ are fixed to the expected effective first order
critical indexes for three spatial dimensions, i.e., ν ¼ 1=3
and γ ¼ 1. The critical value of β in Fig. 5, which optimizes
the collapse, is βc ≃ 3.780.
As further evidence of the presence of a first transition,

now we focus on Monte Carlo (MC) histories of some
observables, looking for the presence of double peak
distributions or metastable behaviors around the transition.
Figure 6 shows the MC history of the light chiral con-
densate, in units of HMC trajectories of unit length, on the
Ls ¼ 24 lattice at β ¼ 3.7755: the history clearly oscillates
between two values, with a corresponding and well-defined
double peak distribution.
As we move to a larger lattice, Ls ¼ 36, the double peak

distribution becomes so sharp that the system is not able to
easily tunnel from one phase to the other in a reasonable
MC time. This is clear from Fig. 7, where we show the MC
histories of two twin runs, performed with exactly the same
parameters but starting from different sides of the phase
transition: the two runs keep staying in their phase for a few
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FIG. 4. We draw a first sketch of the updated version of the
QCD phase diagram in a magnetic field, where our continuum
extrapolated determinations of Tc at eB ¼ 4 and 9 GeV2 are
plotted together with previous lattice determinations as well as
tentative extrapolations (dotted line). The blue and red bands in
the small field region are continuum extrapolations from
Ref. [15], obtained, respectively, from the strange quark number
susceptibility and the quark condensate. The determinations of
Ref. [20] are not extrapolated to the continuum limit, which may
account for their values seeming a bit higher.

4Since we want to explore the critical behavior of the chiral
susceptibility as the thermodynamical limit is approached, look-
ing at just the disconnected part, which is expected to diverge
itself at a genuine transition, is enough. For the same reason, the
subtraction of regular (at fixed UV cutoff) renormalization
constants is irrelevant to our purposes.
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thousands of RHMC trajectories; moreover, in this case the
bistability is clearly visible also in the pure gauge action.

C. Confining properties of the two phases

Having clarified that the large B region of the B − T
phase diagram is characterized by a well-defined phase
separation, a number of interesting questions emerge,
regarding the properties and differences between the two
phases. It is not the purpose of the present investigation to
give a comprehensive answer to such questions, however
we would like to touch at least one aspect, which has been
already considered in some previous studies and regards the
confining properties of the theory [23,39–44].
It is known that, at zero temperature, the static quark-

antiquark potential become anisotropic, with a suppression
of the string tension in the direction parallel to the magnetic
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FIG. 5. FSS analysis of the unrenormalized disconnected chiral
susceptibility of the up quark. Data have been obtained on lattices
with Nt ¼ 22, fixing bz ¼ 93, 145, 209, respectively, for
Ls ¼ 24, 30, 36 so as to keep eB constant as the thermodynam-
ical limit is approached; the inverse gauge coupling β has been
tuned while keeping the bare quark masses fixed at ams ¼
0.0457 and amu=d ¼ 0.00162. The FSS ansatz has been checked
(lower figure) by fixing ν ¼ 1=3 and γ ¼ 1, as expected around a
first order transition, with βc ≃ 3.780.

FIG. 6. MC history and distribution of the light quark con-
densate on the 243 × 22 lattice at β ¼ 3.7755, ams ¼ 0.0457,
amu=d ¼ 0.00162, and bz ¼ 93. The bistability and the corre-
sponding double peak distribution are clearly visible.
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FIG. 7. Two twin MC histories obtained on the 363 × 22 lattice
at β ¼ 3.7785, ams ¼ 0.0457, amu=d ¼ 0.00162, and bz ¼ 209.
The two runs have been started from different sides of the phase
transition, and keep staying in their starting phase for the whole
run, consisting of a few thousands of RHMC trajectories of unit
length. We show both the light quark condensate (top) and the
pure gauge action (down).
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field, and an enhancement in the transverse directions
[23,40–43]. The longitudinal string tension σL is sup-
pressed by more than one order of magnitude at
eB ¼ 9 GeV2, with respect to its value at eB ¼ 0, while
the transverse string tension σT seems to saturate its
increase at a value which is around 50% higher that the
B ¼ 0 value [23]. The possible existence of a critical
magnetic field Bc at T ¼ 0, where the longitudinal string
tension vanishes, and what could happen at such a critical
field, is still unclear [23]. On the other hand, studies at finite
temperature and up to moderate values of the magnetic field
[42,44] have shown that anisotropies in the static potential
become less significant approaching the phase transition.
As a minimal, additional contribution to the investigation

of the confining properties in the B–T plane, we decided to
investigate the static quark-antiquark potential at a fixed
value of the temperature, T ≃ 86 MeV, for the two different
explored magnetic fields, eB ¼ 4 and 9 GeV2. According
to Fig. 4, the two simulations points should lay on the two
different sides of the transition line. In this case we have
decided to perform the investigation on the finest lattice,
whose size is 483 × 40.
In order to determine the static quark-antiquark potential,

similarly to Refs. [23,41,42], we studied the Wilson loop
hTrWðan⃗; antÞi and its dependence on the Euclidean time
ant, exploiting the relation

hTrWðan⃗; antÞi ∝ e−aVðan⃗Þnt ; ð14Þ

which holds for large enough ant. In particular, from the
previous equation one can derive

aVðan⃗Þ ¼ lim
nt→∞

log

� hTrWðan⃗; antÞi
hTrWðan⃗; aðnt þ 1ÞÞi

�
; ð15Þ

so that the potential at fixed n⃗ can be obtained by fitting to a
constant the log in the rhs of Eq. (15) as a function of nt, at
least in a suitable stability range.
The application of such prescription in the present finite

temperature context might seem not appropriate. Indeed,
because of the limited Euclidean temporal extension, the
static quark-antiquark potential is usually extracted from
Polyakov loop correlators. However, on one hand such
correlators turn out to be extremely noisy in our case,
beyond the limit of feasibility, because of the relatively low
temperatures considered in our investigation, which imply a
large number of lattice sites in the temporal direction. On
the other hand, because of the same reason, the temporal
extension turns out be large enough (Nt ¼ 40 in our
particular case) and marginally compatible with an extrac-
tion of the potential also from Wilson loops. It is clear that
one should be careful about possible systematic effects
related to this compromise, however the results we are
going to show are clear-cut enough to make such system-
atics less worrying.

Results for the static quark-antiquark potential, com-
puted for the two different orientations and magnetic fields,
are shown in Fig. 8: the different behavior in the two phases
is particularly clear, also by eye, for the transverse
direction, where the linearly rising potential suddenly
flattens moving from 4 to 9 GeV2. In order to make a
more quantitative analysis, we have tried to fit data
according to the Cornell ansatz

VðrÞ ¼ V0 −
α

r
þ σr ð16Þ

obtaining the following results. For eB ¼ 9 GeV2, data are
well fitted (with χ2=d:o:f:≲ 1) by a purely Coulombic
potential both in the transverse and in the longitudinal
direction; if one tries to include a nonzero σ, the fit returns
negative values (for σL) or values compatible with zero
within errors (for σT). For eB ¼ 4 GeV2, instead, a nonzero
string tension is clearly needed in the transverse direction,
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FIG. 8. Static quark-antiquark potential, extracted from Wilson
loops computed on the 483 × 40 lattice at the two different values
of the magnetic field and separately for the transverse (T) and
longitudinal (L) directions. The reported curves correspond to fit
to the Cornell potential (for eB ¼ 4 GeV2) or to a purely
Coulombic potential (for eB ¼ 9 GeV2).
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with
ffiffiffiffiffi
σT

p ¼ 475ð20Þ MeV, which is not far from the T ¼
0 result obtained for the same lattice spacing in Ref. [23],ffiffiffiffiffi
σT

p ≃ 520 MeV; for the longitudinal direction a full fit to
Eq. (16) returns

ffiffiffiffiffi
σL

p ¼ 215ð20Þ MeV (which is close also
in this case to the T ¼ 0 result

ffiffiffiffiffi
σL

p ≃ 240 MeV [23]);
however one should consider that in this case reasonably
good fits are obtained also assuming a purely Coulombic
potential, if enough points are discarded at short distances.
To summarize, present evidence is compatible, within

numerical uncertainties, with the transition from a strongly
anisotropic confined phase to a completely deconfined
phase, in which the string tension vanishes in all directions,
as the critical line is crossed. Such evidence should be
supported by future studies, aimed at assessing in a more
precise way which string tension is vanishing or not on both
sides of the transition. In this respects, several scenarios are
plausible, including the possible existence of an intermedi-
ate phase in which σL ¼ 0 but σT ≠ 0, for a subset of values
of B and T (for predictions in this direction, see for instance
Refs. [45,46]).
However, the sudden drop of the transverse string

tension is a quite clear and undoubtful phenomenon even
now. In the simplest scenario, one can assume that the
critical temperature TcðBÞ continues its drop as a function
of B until it hits the ground at some critical magnetic
field Bc. That would imply that, even at T ¼ 0, there is
no transition to an anisotropically deconfined phase
where σL ¼ 0 and σT ≠ 0, but rather a sudden transition
to a completely deconfined phase. Of course, even the
assumption that TcðBÞ hits the ground is not supported, at
the present time, by any other evidence.

IV. CONCLUSIONS AND PERSPECTIVES

The numerical results presented in this study update our
understanding of the QCD phase diagram in an external
magnetic field in a substantial way, bringing new facts and
new speculations into the overall picture. The main new
results are that the (pseudo)critical temperature TcðBÞ
continues its steady decrease as a function of eB, reaching
values as a low as 60 MeV for eB of the order of 10 GeV2,
and that the crossover turns into a real first order transition
for large enough magnetic fields. The latter fact has been
speculated for a long time: in this paper we have provided
first numerical evidence based on lattice simulation of
Nf ¼ 2þ 1 QCD with physical quark masses. Moreover,
we have provided a first rough location of the critical end
point ðBE; TEÞ of the first order line, with 4 GeV2 < eBE <
9 GeV2, or alternatively 65 MeV≲ TE ≲ 95 MeV.
The existence and location of this critical end point have

many significant implications: from a phenomenological
point of view, especially for the possible consequences
stemming from a strong first order cosmological QCD
transition, which could be observable even nowadays
[21,22], and from a theoretical point of view, for a

comparison with predictions from many effective model
studies [47–54].
The new facts emerging from our investigation are

reported in Fig. 9, which represents our present proposal
for the QCD phase diagram. The proposal contains also
some question marks, concerning open issues and spec-
ulations, that essentially regards the fate ofTcðBÞ in the large
B limit. A naïve linear extrapolation of present determi-
nations of Tc in theB–T planewould imply that Tc vanishes
for eBc ∼ 20 GeV2: does that really happen, and in that case
would 20 GeV2 be a natural scale forNf ¼ 2þ 1QCD?Or
does instead Tc flatten for larger magnetic fields, approach-
ing a finite value, or zero, only asymptotically?
The issue will be likely solved by future studies, and is

strictly correlated to the fate of the confining properties of
the QCD vacuum in a strong magnetic field. Indeed, if any
critical magnetic field exists at T ¼ 0 where the confining
properties of QCD get disrupted, this field likely coincides
with the critical field where TcðBÞ hits the ground: results
from Ref. [23] indicate that such a critical field, if any, is
larger than 9 GeV2, and so do the finite T results presented
here. One interesting point emerging from our study is that,
as one crosses the critical line, the string tension seems to
vanish, within our present numerical uncertainties, both in
the longitudinal and in the transverse directions: if that
applies down to T ¼ 0, then one should not expect any
anisotropic deconfinement of the QCD vacuum at large
fields, as hypothesized in Ref. [42], with the string tension
vanishing only in the longitudinal direction, but rather a
sudden quench of σ in all directions at Bc.
There is a number of relevant issues that should be

refined or investigated by future studies. First of all, one
should consider that our study has been performed with a
compromise between the need for a fine lattice spacing, in

FIG. 9. Updated QCD phase diagram in an external magnetic
field, based on new facts and new speculations emerging from our
numerical investigations. The (pseudo)critical temperature TcðBÞ
continues its steady drop as a function of B, and the transition
switches from a crossover to first order at a critical end point
located in the range 4 GeV2 < eBE < 9 GeV2 (or alternatively
65 MeV < TE < 95 MeV). The fact that TcðBÞ hits the ground
at some finite critical magnetic field Bc or not remains an open
question for future studies.
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order to allow for a large magnetic field, and the need for
large spatial sizes, in order to properly study thermody-
namics. The compromise, given the presently available
computational resources, has revealed to be not easy at all,
essentially because of the unexpectedly low temperatures
reached by the critical line, which forced us to work with
low aspect ratios. Even if we have shown that systematics
related to the finite UV cutoff and to the finite spatial size
are reasonably under control, efforts should be pursued in
the future to improve on such systematics: a first step in this
direction would be the availability of larger spatial sizes in
order to be able to study the transition at eB ¼ 9 GeV2 also
on finer lattices.
A more precise location of the critical end point ðBE; TEÞ

could be achieved following different approaches. Since the
first order transition at 9 GeV2 seems to be quite strong, one
could consider lower values of eB and investigate how the gap
in physical observables changes along the transition line,
trying to extrapolate the point where it vanishes. Alternatively,
one could start from the low B region, trying to detect the
critical behavior associated with the end point, which is
generally expected to be in the 3D-Ising universality class.
A future line of research should be dedicated to a precise

characterization of the properties and differences of the two
phases along the first order transition. In this investigation

we have started a preliminary characterization of the
confining properties, but many other relevant physical
quantities should be considered, including a determination
of the latent heat along the first order line and of the
transport properties [55,56] in both phases.
Finally, present results, in particular those regarding the

critical end point, should be put in the framework of a more
general and multidimensional view of the QCD phase
diagram, including a finite baryon chemical potential [57–
63], different number of light fermions [64] or a finite
rotation [65–68].
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