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We analyze the pseudocritical behavior of three-flavor QCD using highly improved staggered quarks on
lattices with temporal extentNτ ¼ 8 and for quark masses corresponding to a pseudoscalar Goldstone mass
in the range 80 MeV ≲mπ ≲ 140 MeV. Our findings are consistent with the occurrence of a second order
chiral phase transition at vanishing values of the quark masses. The chiral phase transition temperature at
this finite value of the lattice spacing is determined to be Tc ¼ 98þ3

−6 MeV. A comparison with a
corresponding analysis performed in (2þ 1)-flavor QCD suggests that the continuum limit extrapolated
chiral phase transition temperature in three-flavor QCD will turn out to be below 90 MeV.
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I. INTRODUCTION

The nature of the QCD chiral phase transition as a
function of the number of light flavors and the value of the
quark masses has been the subject of intense and ongoing
study ever since the first work of Pisarski and Wilczek [1].
It is now well-established that the transition is a crossover
for the physical values of the light and strange quark masses
[2]. The transition is, however, expected to become second
order and first order in the two-flavor and three-flavor
chiral limits, respectively. Consequently, a critical value for
the strange quark mass is expected to exist where a
tricritical point separates the region of first and second
order chiral phase transitions. This is sketched in the well-
known Columbia plot for the quark mass dependence of
phase transitions in QCD [3].
Lattice studies have provided strong evidence for the

expected second order nature of the chiral phase transition
in the two-flavor chiral limit also for physical value of the
strange quark mass. The transition is expected to belong to
the 3d, Oð4Þ universality class if the anomalous Uð1ÞA
symmetry remains sufficiently broken; otherwise, a second
order phase transition belonging to the Uð2Þ ×Uð2Þ
universality class is also possible [4]. However, as critical
exponents in both universality classes are similar a differ-
entiation between both possibilities will be difficult in
practice [4].
While the axial anomaly plays a decisive role for the

symmetry breaking pattern in two-flavor QCD, it is of less

relevance in three-flavor QCD [4]. Irrespective of whether
or not the Uð1ÞA symmetry is effectively restored at the
chiral phase transition temperature, a renormalization
group (RG) analysis [5] suggests that the transition is first
order, as originally predicted in [1]. The functional RG
analysis of the three-flavor chiral transition, however,
suggests that a first order transition, only occurs for rather
small values of the pion mass, mπ ≲ 25 MeV. This is in
accordance with lattice QCD calculations using staggered
fermions. Although such calculations find first order
transitions in calculations with unimproved gauge and
fermion actions [6], the bounds on the critical mass show
a strong cutoff and discretization scheme dependence
[7–9]. In calculations using improved staggered fermions
no direct evidence has been found for a first order transition
on lattices with temporal extent Nτ ¼ 6 for mπ ≳ 80 MeV
and a bound on the pseudoscalar Goldstone mass, above
which no first order transition exists, has been estimated to
be mc

π ≃ 50 MeV [10]. In calculations with OðaÞ improved
Wilson fermions [11] first order transitions have been
found at nonzero values of the quark masses and the
bound on the critical mass is weaker, mc

π ≲ 110 MeV. This
bound, however, also is consistent with a continuous
transition in the continuum limit [11,12]. In fact, a recent
analysis of the order of the chiral transition as a function of
the number of flavors, performed with staggered fermions
and extrapolated to the continuum limit [12], suggests that
the chiral phase transition in three-flavor QCD is second
order, which is in contrast to RG analyses. However, as has
been pointed out, such analyses are based on a Landau-
Ginsburg effective action for the order parameter, which is
arrived at by integrating out all gauge degrees of freedom
ending up with a ϕ4 effective Lagrangian for the order
parameter field. The role of gauge fluctuations, however, is
subtle and may also influence the order of the chiral phase
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transition [13,14]. It also has been argued that a ϕ6

contribution to the effective Lagrangian for the order
parameter may be of relevance and may allow for a second
order chiral phase transition to occur in QCD with number
of massless flavors being larger than two [12]. A continu-
ous transition in the chiral limit of three-flavor QCD thus
may not be ruled out entirely.
In addition to the exploration of the flavor dependence of

the chiral phase transition the determination of the chiral
phase transition temperature is of central interest. The
chiral phase transition temperature is expected to drop with
increasing number of flavors, nf, [15] and will eventually
vanish at a critical value of the number of flavors,
corresponding to the conformal limit of QCD [16],
n�f ∼ 10. In recent years, different lattice estimates for both
the chiral crossover Tpc as well the (2þ 1)-flavor chiral

transition temperature T
nf¼ð2þ1Þ
c , obtained using different

actions and with different choices of observables for setting
the scale, have converged [17–20]. The crossover temper-
ature, occurring for physical values of the two (degenerate)
light quark masses (mu ¼ md) and a strange quark mass,
mphys

s ≃ 27mu, has been determined to within 1% to be
Tpc ¼ 156.5 ð1.5Þ MeV [17] and Tpc ¼ 158.0 ð0.6Þ MeV
[18]. In the limit of vanishing two light quark masses,
keeping the strange quark mass fixed to its physical value,
the phase transition temperature in the continuum limit has

been found to be T
nf¼ð2þ1Þ
c ¼ 132þ3

−6 MeV [20]. A value
consistent with this number has recently been obtained also
in calculations with twisted mass Wilson fermions in a
ð2þ 1þ 1Þ-flavor calculation [21].
In three-flavor QCD calculations the boundary for a first

order transition has been found at T
nf¼3
c ¼ 134ð3Þ MeV

and a pseudoscalar mass, mc
π ≃ 110 MeV [11]. Irrespective

of whether, below this mass, indeed a first order transition
exists or whether this only corresponds to pseudocritical

temperature, this value for T
nf¼3
c will drop further when

approaching the chiral limit, leading to a chiral transition
temperature below that of (2þ 1)-flavor QCD. In general it
is expected that the phase transition temperature drops with
increasing nf. In fact, the functional RG analysis presented
in [15] suggests that the chiral phase transition temperature
in QCD with nf ¼ 3 massless quarks is smaller by about
25 MeV compared to the two-flavor case.
In the study presented here we want to further explore the

nature of the chiral phase transition in three-flavor QCD
and, in particular, provide a first estimate of the chiral phase
transition temperature based on calculations with the highly
improved staggered quark (HISQ) action. These calcula-
tions extend earlier studies performed with the HISQ action
[10] on coarser lattices. We work here at Nτ ¼ 8 compared
to Nτ ¼ 6 used in [10].
The paper is organized as follows. In the next section we

introduce the chiral observables we will study to determine
the chiral phase transition temperature in three-flavor QCD.

Section III summarizes basic relations needed for our
discussion of finite size scaling (FSS) of chiral observables.
In Sec. IV we summarize some results on the chiral
transition in three-flavor QCD obtained previously on
coarser lattices and present a first comparison with data
on the disconnected part of the chiral susceptibility
obtained in our new study. In Sec. V we finally present
our results for the FSS analysis of the chiral order
parameter and its susceptibility, from which we deduce
the chiral phase transition temperature on lattices with
temporal extent Nτ ¼ 8. We give our conclusions in
Sec. VI.

II. SIMULATION PARAMETERS
AND OBSERVABLES

A. Simulation parameters

The results that we present here were obtained from
lattice QCD simulations with three degenerate flavors. In
our calculations with staggered fermions we use the HISQ
action and a tree-level improved Symanzik gauge action.
This framework is identical to that used previously in finite
temperature calculations for (2þ 1)-flavor QCD [22–24] as
well as the three-flavor QCD calculations [10] performed
on lattices with temporal extent Nτ ¼ 6.
The temporal extent of our lattices was fixed at Nτ ¼ 8

throughout while the spatial extent was chosen to be one of
Nσ ¼ 24, 32 or 40. In order to control finite-volume effects
in our calculations we typically performed calculations at a
given quark mass value for two different values of Nσ.
The larger one is chosen such thatmπL ≥ 3 in the region of
the pseudocritical temperatures.
We used the Bielefeld GPU code [25] to generate around

10,000–50,000 hybrid Monte Carlo trajectories separated
by 0.5 TU (time units) for Nσ ¼ 40 and 1 TU for the
smaller volumes. These datasets have been generated
in 10 independent streams that have been decorrelated
initially using about 200 trajectories. The rational hybrid
Monte Carlo algorithm [26,27] was used to generate the
configurations and the step sizes were tuned so as to
achieve acceptance rates of 60–80%. We saved gauge
field configurations after every fifth time unit and per-
formed calculations of various chiral observables on these
configurations.
We generated datasets for different values of the quark

masses at up to 17 values of the temperature in the range
110MeV≲ T ≲ 170 MeV. As a guidance for our choice of
bare quark masses we used the line of constant physics
(LCP) determined in Ref. [24] for the case of (2þ 1)-flavor
QCD. This LCP defines the value of the strange quark
mass, mphys

s ðβÞ, as a function of the gauge coupling β. It is
tuned to its physical value by demanding the mass of the ηss̄
meson to stay constant on this LCP. We choose different
sets of three degenerate light quark masses, mq, corre-

sponding to mq ¼ Hmphys
s ðβÞ, with H ¼ 1=27; 1=40; 1=60
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and 1=80. Further details of our scale setting are discussed
in the next subsection.

B. Scale setting

In the continuum limit the relation between lattice cutoff
and gauge coupling β ¼ 10=g2 is controlled by the uni-
versal, asymptotic 2-loop β function of three-flavor QCD,

aΛL ≡ fðβÞ ¼
�
10b0
β

�
−b1=ð2b20Þ

expð−β=ð20b0ÞÞ; ð1Þ

with b0 ¼ 9=ð16π2Þ and b1 ¼ 1=ð4π4Þ andΛL denoting the
QCD Λ parameter for the three-flavor lattice discretization
scheme. Equation (1) receives corrections at nonzero values
of the lattice spacing that depend on the observable used to
set the scale. We use here the nonperturbative β functions
fKaðβÞ and a=r1ðβÞ determined in (2þ 1)-flavor QCD for
the kaon decay constant, fKa, as well as the parameter r1=a
deduced from the slope of the heavy quark potential [24].
In all our figures we use the fK scaling function to

introduce a temperature on lattice with the temporal extent
Nτ ¼ 8,

T ¼ 1

aNτ
¼ fK

fKaNτ
; ð2Þ

where we set the scale for the temperature by using the
value fK ¼ 156.1=

ffiffiffi
2

p
MeV for the kaon decay constant as

has been done also in the determination of the chiral phase
transition temperature in (2þ 1)-flavor QCD [20]. We note
that this value agrees within errors with the average
provided by the Flavor Lattice Averaging Group (FLAG)
[28]. This scale setting also is used in all our fits to data. In
some cases we use fits based on the r1=a parametrization to
obtain some idea about systematic errors in our results that
are not yet continuum extrapolated. As a physical value for
r1 we use r1 ¼ 0.3106 fm.
As mentioned in the previous subsection we choose the

three degenerate quark masses in our simulations as
fractions of the strange quark mass used in the (2þ 1)-
flavor QCD calculations to define a LCP. For this we use
the parametrization of mphys

s ðβÞ given in Appendix C of
Ref. [24]. Our choice of three-flavor quark mass,
mphys

s =80≲mq ≲mphys
s =27 then corresponds to a light

pseudoscalar Goldstone mass in the range 80 MeV≲mπ ≲
140 MeV in the continuum limit of (2þ 1)-flavor QCD.

C. Chiral observables

On each saved gauge field configuration, we calculated
the chiral condensate, hψ̄ψi, and its susceptibility, χtot,
which are obtained from the free energy density of three-
flavor QCD, fðT;mqÞ ¼ −ðT=VÞ lnZðT; V;mqÞ, as the
first and second derivative with respect to the quark
mass mq,

hψ̄ψi ¼ −
1

N3
σNτ

∂fðT;mqÞ
∂mq

; ð3Þ

χtot ¼
∂hψ̄ψi
∂mq

: ð4Þ

The chiral susceptibility is represented in terms of dis-
connected, χdisc, and connected, χcon contributions,
χtot ¼ χdisc þ χcon. These chiral observables are given in
terms of the inverse of the staggered fermion matrix,
DqðmqÞ, and its higher powers,

hψ̄ψi ¼ nf
4NτN3

σ
htrD−1

q i;

χdisc ¼
1

NτN3
σ

�
nf
4

�
2

ðhtr2D−1
q i − htrD−1

q i2Þ;

χcon ¼ −
nf

4NτN3
σ
htrD−2

q i: ð5Þ

We evaluate these chiral observables using up to 100
Gaussian random vectors to evaluate the trace of the
inverse of Dq. After calculating the traces on each con-
figuration, the observables were calculated by dividing the
total number of configurations into 10 bins and using the
jackknife procedure.
In the continuum limit the chiral observables defined in

Eq. (5) require additive and multiplicative renormalization.
The former arises from a ultraviolet divergent contribution
to the chiral condensate, hψ̄ψi ¼ hψ̄ψiren þ ðcUV=a2Þmq.
We use the strange quark mass mphys

s ðβÞ for multiplicative
renormalization of the chiral observables to define the order
parameter, M, and its susceptibility χM as

M ¼ mphys
s hψ̄ψiren=f4K;

χM ¼ ∂M
∂H : ð6Þ

Here mphys
s is our reference mass in three-flavor QCD,

whose choice is motivated by the LCP determined in
(2þ 1)-flavor QCD calculations, and H ¼ mq=m

phys
s .

This makes the observables dimensionless and RG invari-
ant up to logarithmic corrections. As we do not have direct
access to the UV-divergent contribution, we instead evalu-
ate the unsubtracted observables

Mb ¼ mphys
s hψ̄ψi=f4K;

χMb
¼ ðmphys

s Þ2χtot=f4K: ð7Þ

With this we have

M ¼ Mb − cUVN2
τT2

ðmphys
s Þ2
f4K

H; ð8Þ
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χM ¼ χMb
− cUVN2

τT2
ðmphys

s Þ2
f4K

: ð9Þ

Here the 1=a2 divergence manifests itself as N2
τ , since the

continuum limit is obtained by sending Nτ → ∞ at fixed T.
For fixed,Nτ, the UV term picks up a quadratic temperature
dependence and a logarithmic correction arising from the
anomalous dimension of the strange quark mass termmphys

s .
In fact, in a small temperature interval around the chiral
phase transition temperature the temperature dependence of
the UV term is to a good approximation linear in T. This is
shown in Fig. 1.
Using the parametrizations of the strange quark mass in

lattice units, mphys
s ðβÞ, and the kaon decay constant,

fKaðβÞ, given in [24] we evaluated the normalization
factor multiplying the UV constant cUV and interpolated
the result with a quadratic Ansatz. For this we find

N2
τT2

ðmphys
s Þ2
f4K

¼ 38.54ð1þ 1.23δT þ 1.31ðδTÞ2Þ; ð10Þ

with δT ¼ ðT − 100Þ=100. This quadratic approximation is
shown as a solid line in Fig. 1. Here we also give the result
of a linear fit in the temperature interval ½100∶125 MeV�.
We note that this UV term can be treated as part of the
regular contributions in a (finite-size) scaling analysis. We
will discuss this in more detail in the next section.
In order to eliminate the divergent UV contributions

explicitly in chiral observables we introduce the difference

Mχ ¼ M −HχM ≡Mb −HχMb
: ð11Þ

In fact, this observable can also be considered as an order
parameter for the chiral phase transition. At high temper-
atures it vanishes, Mχ ∼H3, and at low temperatures it

equals the order parameter M at H ¼ 0 but receives
different corrections at Oð ffiffiffiffi

H
p Þ.

III. SCALING AND FINITE-SIZE SCALING
OF CHIRAL OBSERVABLES

As there is increasing evidence that also three-flavor
QCD will have a second order phase transition in the chiral
limit, or at a rather small quark mass, it is appropriate to
analyze thermodynamic observables in three-flavor QCD
also in terms of relevant scaling functions. As we are
currently analyzing the chiral limit at fixed values of the
cutoff the universality class of three-dimensional, Oð2Þ
symmetric models would be appropriate, while the Zð2Þ
universality class is of relevance, if a second order phase
transition occurs at a small value of the quark mass, mc

q.
In the vicinity of a critical point, ðTc;mc

qÞ, the
thermodynamic free energy, fðT;mqÞ, can be resolved
into singular and regular contributions, fðT;mqÞ ¼
fsðT;mqÞ þ frðT;mqÞ. The temperature and quark mass
dependence of fsðT;mqÞ is expressed in terms of a
universal scaling function, ffðzÞ, which is characteristic
for a particular universality class. Thus we have

fsðT;mqÞ ¼ h0h1þ1=δffðzÞ; z ¼ t=h1=βδ; ð12Þ

with t and H being dimensionless variables constructed
from the temperature T and quark mass mq,

t ¼ 1

t0

T − Tc

Tc
; h ¼ 1

h0

mq −mc
q

mphys
s

≡H −Hc

h0
: ð13Þ

The constants β and δ are critical exponents of the 3D,Oð2Þ
universality class for which we use [29]

β ¼ 0.3490; δ ¼ 4.7798; ð14Þ

while t0 and h0 are nonuniversal constants that are
introduced to fix the overall normalization of the order
parameter M [19].
For small quark masses, in the vicinity of the chiral

transition temperature, Tc, the dominant contributions to
the order parameter M and its susceptibility χM arise from
the singular part of the free energy. Scaling relations for
these observables are then obtained by taking derivatives of
fsðzÞ with respect to H. We have

MðT;mqÞ ¼ −
∂fs
∂H ¼ h1=δfGðzÞ; ð15Þ

and

χMðT;mqÞ ¼
∂M
∂H ¼ h1=δ−1

h0
fχðzÞ; ð16Þ
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(T Nτ ms
phys)2/fK

4

approximation: quadratic (solid)

linear (dashed)

FIG. 1. The prefactor of the UV-correction term for Nτ ¼ 8 and
cUV ¼ 1. Lines show quadratic and linear approximations of the
parametrizations of mphys

s ðβÞ and fKaðβÞ obtained in (2þ 1)-
flavor QCD.
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respectively. Here fGðzÞ and fχðzÞ are also universal
functions of the scaling variable z, which can be obtained
from ffðzÞ. Both these functions have been determined
numerically using high-statistics Monte Carlo simulations
for the 3D,Oð2Þ andOð4Þ universality classes [29–32]. We
will make use of the implicit parametrization provided for
these functions for the Oð2Þ case in Ref. [33].
In the scaling regime the difference of order parameter

and chiral susceptibility, introduced in Eq. (11), is given in
terms of these scaling functions

Mχ ¼ h1=δðfGðzÞ − fχðzÞÞ: ð17Þ

From Eqs. (15) and (16), it is readily seen that

ðH −HcÞχMð0; hÞ
Mð0; hÞ ¼ fχð0Þ

fGð0Þ
¼ 1

δ
; ð18Þ

irrespective of the quark mass mq. Curves for different
quark masses will have a unique crossing point at T ¼ Tc.
We also will analyze the related observable, obtained

from the ratio of the nonsubtracted chiral order parameter
and its susceptibility, Mb=χMb

for various H at their
corresponding pseudocritical temperature [34]. The pseu-
docritical temperatures defined by the maximum of the
chiral susceptibility correspond to a specific value of the
scaling variable z, i.e. z ¼ zp,

MðTpc; hÞ
χMðTpc; hÞ

¼ ðH −HcÞ
fGðzpÞ
fχðzpÞ

; ð19Þ

with zp ¼ 1.58ð4Þ and fGðzpÞ=fχðzpÞ ¼ 1.58 and 1.51 in
the Oð2Þ and Zð2Þ universality classes, respectively. We
note that the rhs of Eq. (19) is solely determined by the
universal contribution which is an important aspect for the
analysis of the nature of the chiral transition [34].
Note that Eqs. (18) and (19) only hold provided the

quark mass is sufficiently close to mc
q so that the regular

contributions coming from frðT;mqÞ can be ignored.
In addition to regular contributions, Eq. (18) also receives

correctionswhen the system sizeL is finite. Then the scaling
functions fGðzÞ and fχðzÞ in Eqs. (15) and (16) must be
replaced by the corresponding FSS functions fG;Lðz; zLÞ
and fχ;Lðz; zLÞ. Here zL ¼ L0=Lhν=βδ is a second scaling
variable and ν ¼ βðδþ 1Þ=d with d ¼ 3 is the critical
exponent controlling the divergence of the correlation length
at the critical point. L0 is another nonuniversal constant that
can be fixed through a normalization condition, e.g. for the
chiral condensate [35]. In the thermodynamic limit (L → ∞)
the finite size scaling functions, fG;Lðz; zLÞ and fχ;Lðz; zLÞ,
go over to their infinite-volume equivalents fGðzÞ≡
fG;Lðz; 0Þ and fχðzÞ≡ fχ;Lðz; 0Þ.
The infinite and finite volume scaling functions have

been determined for the 3D, Oð2Þ and Oð4Þ cases [33,35].

In our FSS analysis we use a rational polynomial para-
metrization of the FSS functions [36] similar to what has
been used also for the analysis of FSS in Oð4Þ spin
models [35]
As we will see, the observed transition is a crossover for

all the quark masses that we studied. According to the
standard picture of the phase diagram [3], this transition
should turn into a first order phase transition if the quark
mass is less than a certain value mq < mc

q. For mq ¼ mc
q

then, the transition will be second order belonging to the
3D, Zð2Þ universality class. If on the other hand, the
expected first order region is absent, then the transition will
be second order belonging to the 3D, Oð2Þ universality
class in the three-flavor chiral limit for fixed Nτ. Since we
did not find any evidence of a nonzero critical quark mass
mc

q in our study, we will assume mc
q ¼ 0 in the following

and use the Oð2Þ scaling functions for the rest of this work.

IV. CHIRAL ORDER PARAMETER
AND ITS SUSCEPTIBILITY

In the analysis of the chiral transition in (2þ 1)-flavor
QCD it has been found that in the continuum limit the
pseudocritical temperature is about Tpc ≃ 156.5 MeV at
physical values of the quark masses and drops in the limit of
vanishing light quark masses to the value of the chiral phase
transition temperature of about 132 MeV. On lattices with
temporal extent Nτ ¼ 8 the corresponding pseudocritical
and chiral phase transition temperatures are larger by 5 and
12 MeV, respectively. As we expect the pseudocritical
temperatures in three-flavor QCD to be smaller than those
of the (2þ 1)-flavor theorywe explored in our calculations a
range of temperatures 100 MeV≲ T ≲ 170 MeV.

A. Chiral observables on Nτ = 8 lattices

We present our results for the nonsubtracted chiral
order parameter, Mb, and its susceptibility, χMb

, calculated
on lattices with temporal extentNτ ¼ 8, in Fig. 2. The order
parameter Mb varies rapidly but smoothly, starting from
a high value and decreasing to a low value over the
temperature range considered here. For three-flavor
quark masses corresponding to H ¼ 1=27 we observe
the most rapid change of Mb at temperatures around
T ≃ ð135–140Þ MeV. In this temperature range also the
chiral susceptibility, χMb

, has its maximum. This indicates
that at this quark mass value the pseudocritical temperature
in three-flavor QCD is shifted by about (20–25) MeV
relative to that of (2þ 1)-flavor QCD. This trend also
persists for the smaller quark masses examined by us.
Except for the case H ¼ 1=60 we show in Fig. 2 results

for two different volumes. While the volume dependence is
negligible in Mb and χMb

slightly above the corresponding
pseudocritical temperatures, evidence for a characteristic
volume dependence is seen at smaller temperatures. In fact,
contrary to what would be expected at or close to a second
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or first order phase transition, we see no increase in the
peak height of χMb

with increasing volume. Instead we
observe a slight decrease of the peak height of χMb

and a
shift of the peak position towards larger temperatures as the
volume is increased. At the same time the peak becomes
more pronounced with increasing volume. This behavior is
reminiscent of the finite volume effects known from an
analysis of finite size scaling functions in 3D, OðNÞ
symmetric spin models [33,35].
At fixed quark mass we also see evidence in the data for a

slight volume dependence of the nonsubtracted chiral order
parameterMb. This is clearly visible in Fig. 2(top). In Fig. 3
we show the chiral order parameter as function of H for
several values of the temperature. As can be seen for
T ≥ 140 MeV the order parameter depends linearly on the
quark mass and extrapolates smoothly to zero for H → 0.
At lower temperatures the quark mass dependence of the
location of the maximum in χMb

suggests that in the chiral
limit all our calculations correspond to a range of temper-
atures in the chirally symmetric phase.
For a first analysis of the quark mass dependence of Mb

we thus fitted the data on the largest lattices available to an
Ansatz,

Mb ¼ AHe: ð20Þ
Results for the exponente are shown in the inset of this figure.
Within errors it is consistent with unity for T ≥ 140 MeV
and decreases continuously with decreasing temperature. At
the lowest temperature, T ≃ 110 MeV, we find e ≃ 0.27,
which is larger but compatiblewith the exponent one expects
to find at a critical point belonging to the three-dimensional
Oð2Þ or Zð2Þ universality classes, i.e. e≡ 1=δ ≃ 0.21.
It is evident from Fig. 2(top) that finite volume effects are

relevant at lower temperatures and need to be treated
carefully to arrive at results in the thermodynamic limit.
We will analyze this volume dependence further in Sec. III.

B. Comparison with results from Nτ = 6 lattices

Before going into a more detailed analysis of the volume
dependence and universal scaling behavior of our results,
obtained on lattices with temporal extent Nτ ¼ 8, we want
to compare with earlier results obtained on coarser lattices
with temporal extent Nτ ¼ 6. In that case results exist only
for the disconnected chiral susceptibility, χdiscMb

, and critical
couplings had been extracted from the peak position of
χdiscMb

. For better comparison with our current results we thus
also show this susceptibility obtained by us on lattices with
temporal extentNτ ¼ 8, in Fig. 4. In Tables I and II we give
pseudocritical temperatures obtained from the peak posi-
tions of χdiscMb

for Nτ ¼ 6 and 8.
In both cases we used the temperature scale determined

from the parametrization1 of fKa.
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FIG. 3. The nonsubtracted chiral order parameter Mb as
function of H at fixed temperature. Lines show fits to the Ansatz
given in Eq. (20). The inset shows results for the fit parameter e.
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FIG. 2. Results for the nonsubtracted order parameter Mb (top)
and its susceptibility χMb

(bottom) as a function of temperature
for all quark masses and volumes. Bands show polynomial
interpolations and are shown here only for better visualization
of the results on the largest lattice available at given quark mass.

1We note that the relevant range of couplings in nf ¼ 3
calculations is smaller than those for nf ¼ 2þ 1. Differences
in temperature scales extracted from different physical observ-
ables thus are more pronounced. Comparing results obtained
from the parametrization of a=r1 to that of fKa we find that the
former scale gives temperatures that are systematically larger by
about 10 MeV for Nτ ¼ 6 and 5 MeV for Nτ ¼ 8. Of course, in
the continuum limit both ways of scale setting will lead to a
unique temperature scale [37].
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The calculations for Nτ ¼ 6 [10] have been performed at
various temperature values, keeping the quark mass fixed in
units of the lattice spacing while in our current calculations
on Nτ ¼ 8 lattices the quark mass is varied along a line of
constant physics by keeping the ratio H fixed. Using the
parametrization mphys

s ðβÞ we obtained the corresponding
ratio H at the pseudocritical coupling βcðmqÞ also for the
Nτ ¼ 6 datasets given in [10]. The resulting ratios H−1 are
given in Table I.
The pseudocritical temperatures, obtained for Nτ ¼ 6

and 8 from maxima in the disconnected susceptibilities2 are
shown in Fig. 5. Here the data are plotted versusH1=βδ, with
βδ ¼ 1.67 for the 3D, Oð2Þ universality class. We fitted
these data using an Ansatz inspired by the universal scaling
of pseudocritical temperatures in the vicinity of second
order phase transitions [22],

Tdisc
pc ðmqÞ ¼ Tc þ acH1=βδð1 − bcH1−1=δþ1=βδÞ: ð21Þ

The term proportional to bc arises from the leading regular
contribution to the free energy, being proportional to H.
However, as can be seen in Fig. 5 our data are not sensitive
to this correction. In fact, they are well described by a
straight line fit in terms of H1=βδ. The fits shown in the
figure for bc ¼ 0 yield Tdisc

pc ¼ 108.3ð4Þ MeV for Nτ ¼ 6

and 95.8(7) MeV for Nτ ¼ 8, respectively. They both have
a χ2=d:o:f: less than unity.
This result, as well as the quark mass dependence of the

order parameter shown in the previous subsections moti-
vated a more detailed scaling analysis of the three-flavor
results for the chiral order parameter and its susceptibility,
which we present in the following section.

V. FINITE SIZE SCALING ANALYSIS
OF CHIRAL OBSERVABLES

We want to improve here on our determination of the
chiral transition temperature obtained in the previous
sections through an analysis of disconnected part of the
chiral susceptibility on the largest lattices available. Wewill
analyze the finite size dependence of the unsubtracted
chiral order parameter Mb and its susceptibility χMb

.
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FIG. 4. Results for the disconnected chiral susceptibility χdiscMb
as

a function of the temperature for all quark masses and volumes.
TABLE II. Results for pseudocritical temperatures obtained
from the peak of the disconnected part of the chiral susceptibility
on the largest lattice used in simulations on lattices with temporal
extent Nτ ¼ 8.

Nτ ¼ 8

H−1 mq Nσ Tdisc
pc (MeV)

27 0.00309 32 134.0(0.9)
40 0.00220 32 127.7(3.5)
60 0.00159 40 120.0(2.5)
80 0.001237 40 115.7(0.8)

TABLE I. Results for the pseudocritical temperature obtained
from the location of peaks in χdiscMb

for Nτ ¼ 6. They are obtained
from Ref. [10] as discussed in the text.

Nτ ¼ 6

H−1 mq Nσ Tdisc
pc (MeV)

15.0 0.0075 16 138.2(4.4)
32.8 0.00375 24 129.8(1.1)
50.8 0.0025 24 126.9(2.7)
70.0 0.001875 24 124.2(1.3)
110.3 0.00125 24 120.2(1.3)
151.2 0.0009375 24 118.2(0.9)
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FIG. 5. Pseudocritical temperatures obtained from the location
of maxima in the disconnected chiral susceptibility on the largest
lattices available for various values of the quark masses as given
in Tables I and II. The straight line fits shown here are done for
H ≤ 1=40 and H ≤ 1=27 for Nτ ¼ 6 and Nτ ¼ 8, respectively.

2Further details on the determination of these maxima are
discussed in Sec. V B.
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As can be seen in Fig. 2 MbðT;mq; NσÞ and
χMb

ðT;mq; NσÞ show a sizeable volume dependence for
all the quark masses and for temperatures T < TpcðmqÞ.
Above the pseudocritical temperature this volume depend-
ence is significantly weaker. We define the pseudocritical
temperature, Tpcðmq;NσÞ, on lattices with spatial extentNσ

as the location of the maximum of χMb
for a given quark

mass and volume. We also define TpcðmqÞ as the infinite
volume pseudocritical temperature for a given quark mass.

A. FSS analysis of the chiral condensate
and its susceptibility

We start with an analysis of the difference of the chiral
order parameter and its susceptibility, introduced in
Eq. (11). As discussed there this difference eliminates
any dependence of the chiral observables linear in H and
thus also is independent of leading correction to scaling
relations arising from regular contributions to the chiral
observables. In Fig. 6, we thus compare MχðT;mq; NσÞ to
the difference of FSS functions,

MχðT;mq; NσÞ ¼ h1=δðfG;Lðz; zLÞ − fχ;Lðz; zLÞÞ: ð22Þ

Aside from the critical temperature in the chiral limit, Tc, a
fit to this Ansatz involves the three nonuniversal parame-
ters, h0, z0 ¼ h1=βδ0 =t0, zL;0 ¼ L0h

ν=βδ
0 , which determine the

overall amplitude of Mχ and set the scale for the scaling
variables z and zL, respectively. It is apparent from the
quark mass dependence of the maxima of χMb

and the
estimate of Tc from the chiral extrapolations in a finite
volume, given in the previous sections, that the chiral phase
transition will be located at a temperature below 110 MeV.
We thus perform fits only for temperatures close of the
chiral transition temperature, i.e. for temperatures below
121 MeV. The results of such fits in different fit ranges for
the quark masses, H ∈ ½0; Hmax� are given in Table III and
shown in Fig. 6. As can be seen the fits yield a good
χ2=d:o:f: when leaving out the datasets for our largest

quark mass ratioH ¼ 1=27. However, even when including
these datasets we obtain a reasonable fit result for 28 data
points using only the three nonuniversal parameters of the
3D, Oð2Þ scaling functions.
A related observable is the ratio of the chiral suscep-

tibility and the chiral order parameter which has been used
in [20] to determine the chiral phase transition temperature
in (2þ 1)-flavor QCD,

HχMb
ðT;mq; NσÞ

MbðT;mq;NσÞ
¼ fχ;Lðz; zLÞ þH1−1=δfregðTÞ

fG;Lðz; zLÞ þH1−1=δfregðTÞ
: ð23Þ

Unlike the difference Mχ analyzed above this ratio is
sensitive to regular contributions as well as the subtraction
of a UV divergent term. It, however, eliminates the explicit
dependence on the nonuniversal scale parameter h0. For the
contributions of the regular term we use a leading order
Taylor expansion in the vicinity of the chiral transition
temperature, Tc,

fregðTÞ ¼ a0 þ a1
T − Tc

Tc
þ a2

�
T − Tc

Tc

�
2

: ð24Þ

In the temperature range analyzed by us this regular term,
also takes care of the UV divergent contribution to the order
parameter, as is apparent from Fig. 1. We note that in this fit
Ansatz the nonuniversal parameter h0 does not explicitly
appear as an independent fit parameter, but is absorbed as

an overall factor h1=δ0 in the fit parameters ai of the
regular term.
We perform a FSS analysis of the ratio given in

Eq. (23). We again performed fits in different fit intervals
H ∈ ½0; Hmax� and a small temperature interval,
T=½MeV� ∈ ½0; 121�. In this temperature interval it suffices
to use a regular term, given by Eq. (24), with a2 ¼ 0.
Results of these fits are summarized in the upper part
of Table IV and are shown in Fig. 7 for the two cases
Hmax ¼ 1=27 and 1=40, respectively.
We note that the fits based on differences ofMb and χMb

and the fit of the ratioHχMb
=Mb are in excellent agreement

with each other, although only the latter is sensitive to
regular contributions to the chiral observables. The param-
eters of the singular part of these fits are consistent with
each other within errors. The parameters of the regular term

TABLE III. Nonuniversal parameters of the Oð2Þ scaling
functions obtained from fits of the difference of order parameter
and chiral susceptibility, Mχ .

Hmax Fit Tc (MeV) h−1=δ0 z0 zL;0 χ2=d:o:f:

1=27 Singular 100(1) 72(1) 0.50(3) 4.05(7) 4.52
1=40 Singular 97(1) 83(3) 0.47(2) 4.15(6) 2.44
1=60 Singular 93(2) 94(6) 0.41(3) 4.16(7) 1.29
1=80 Singular 103(10) 62(24) 0.6(2) 4.1(1) 1.59

Mb-HχMb

T[MeV]

Solid: Hmax=1/27

Dotted: Hmax=1/40

H-1 Nσ
Nτ=8

O(2)

27   24
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40   24
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FIG. 6. Finite size scaling fits to the difference of the chiral
order parameter and its susceptibility,MχðT;mq; NσÞ, with (solid
lines) and without (dotted lines) the largest quark mass ratio
H ¼ 1=27. The gray region has been left out of the fits. The fit
parameters are summarized in Table III.
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seem to be quite sensitive to the upper bound (Hmax) for the
set of quark masses used in the fit. They are not well
determined in the small temperature interval used for these
fits. In fact, the χ2=d:o:f: changes only little when only the
leading temperature dependent term in the fit is used. The
resulting parameters for this fit are shown in the lower half
of Table IV.
For the case of Hmax ¼ 1=80 the regular contribution

vanishes within errors. We thus also give the result of a fit
that only uses the singular term in the fit Ansatz. As can be
seen this suffices to obtain a good fit at this small value of
the quark mass and yields fit results for the nonuniversal
parameters of the scaling functions that are in good
agreement with those obtained in a larger quark mass
range by including contributions from a regular term.
We also performed fits that include a quadratic correction

in the regular term. This allows us to enlarge the fit range
for temperatures above the transition temperature up to
values that correspond to the pseudocritical temperature for
the largest quark mass contributing to the fit. This way we
still obtain fits with χ2=d:o:f: close to unity. Results of these
fits are summarized in Table V. We note that these fits give
large coefficients with opposite sign for terms linear and
quadratic in temperature. The reduced temperature factor
tt0 ¼ ðT − TcÞ=Tc is about 1=3 at the upper end of the fit

interval, T ≃ 130 MeV, which is comparable with the
difference in magnitude of the coefficients a1 and a2,
i.e. contributions from linear and quadratic terms in the
regular part compensate each other to a large extent. We
thus conclude that the parameters of the singular part of our
fits are well determined, while the parametrization of the
regular is not strongly constrained.

B. FSS analysis of the pseudocritical temperature

The chiral phase transition temperature Tc can be deter-
mined from a finite size scaling analysis of the pseudocritical
temperature Tpcðmq;NσÞ, which can be obtained straight-
forwardly from our data for χMb

ðT;mq; NσÞ.
To determine Tpcðmq;NσÞ from the maxima of

χMb
ðT;mq; NσÞ, 100 bootstrap samples were constructed

at the level of saved gauge configurations for each volume
and quark mass, followed by fitting the χM data in the peak
region to a quadratic Ansatz for each such bootstrap sample.
Starting with a minimum of three points, the fit interval was
increased by adding one point at a time on either side of the
peak to go up to a maximum of five points in all. In this
way, we performed around 3–5 fits for each bootstrap
dataset. The final value of Tpcðmq;NσÞ for a given quark
mass and volume was obtained by taking the mean of
all the fits performed on the 100 bootstrap samples and

HχMb
/Mb

T[MeV]

Solid: Hmax=1/27

Dotted: Hmax=1/40

H-1 Nσ
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FIG. 7. Finite size scaling fits to the ratio of chiral suscep-
tibility, χMb

ðT;mq; NσÞ, and chiral order parameter,
MbðT;mq; NσÞ, with (solid lines) and without (dotted lines)
the largest quark mass ratio H ¼ 1=27. The gray region has been
left out of the fits. Shown is a fit as given in Eq. (23) with a regular
contribution linear in temperature (a2 ¼ 0). The fit parameters are
summarized in Table IV.

TABLE V. Parameters of fits to HχMb
=Mb using a regular term quadratic in the reduced temperature tt0. We give

results for different fit ranges and cuts on the quark mass range: T < 135 MeV for H ¼ 1=27, T < 130 MeV for
H ¼ 1=40, T < 126 MeV for H ¼ 1=60.

Hmax

Tc (MeV) z0 zL;0 a0 a1 a2

χ2=d:o:f:Singular part Regular part

1=27 101(2) 0.55(6) 4.09(6) 2.0(7) −39ð8Þ 139(20) 3.45
1=40 91(4) 0.33(6) 4.15(5) −0.5ð2.1Þ −27ð15Þ 81(26) 1.51
1=60 91(4) 0.33(7) 4.14(5) −1.6ð1.4Þ −21ð10Þ 60(17) 0.73

TABLE IV. Parameters of fits to the ratio HχMb
=Mb using the

Ansatz given in Eq. (23). The upper half shows fit results obtained
with a regular term including terms linear in temperature, while in
the lower half only results for fits with a constant term in the
regular part are shown. For the smallest bound on the quark mass
ratio, Hmax ¼ 1=80, we also show the result from a fit the uses
only the singular part of the fit Ansatz.

Hmax

Tc (MeV) z0 zL;0 a0 a1

χ2=d:o:f:Singular part Regular part

1=27 101(2) 0.58(7) 4.04(8) −0.4ð4Þ −0.4ð3.2Þ 2.97
1=40 93(4) 0.37(7) 4.15(6) −5ð2Þ −14ð4Þ 1.32
1=60 93(4) 0.4(1) 4.15(7) −4ð2Þ 6(8) 0.77
1=27 101(1) 0.57(4) 4.04(8) −0.1ð1Þ � � � 2.85
1=40 100(1) 0.56(4) 4.17(7) −1.6ð3Þ � � � 1.89
1=60 96(1) 0.49(3) 4.16(7) −3.1ð4Þ � � � 0.73
1=80 98(8) 0.50(8) 4.1(1) −0.8ð5.5Þ � � � 1.06
1=80 100(1) 0.51(3) 4.09(8) � � � � � � 0.85
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error was the standard deviation of this distribution. The
resulting estimates for the finite-volume pseudocritical
temperatures for all available lattice sizes are given in
Table VI. Similar procedure was used to locate the peak
position of χdiscMb

for the highest available volumes for each
quark mass.
We present our results for Tpcðmq;NσÞ for all the quark

masses and volumes in Fig. 8. We fitted these data using the
FSS scaling Ansatz for Tpc deduced from the FSS Ansatz
for χMb

ðT;mq;NσÞ ¼ ∂Mb=∂H using Eq. (23),

Tpcðmq;NσÞ ¼ Tc

�
1þ zpðzLÞ

z0
H1=βδ

�
; ð25Þ

where zpð0Þ ¼ zp gives the location of the maximum of the
infinite volume Oð2Þ scaling function fχðzÞ and zpðzLÞ is a
parametrization of the finite volume dependence of this
peak location [36],

zpðzLÞ ¼ zpð1 − 1.361ð8Þ=z4.48ð3ÞL Þ: ð26Þ

This parametrization holds for zL ≤ 0.9. The resulting fits
for the pseudocritical temperatures are also shown in Fig. 8,
again for the cases with and without including the largest
quark mass,H ¼ 1=27, used in our calculations. The chiral
phase transition temperatures obtained from these fits are

given in Table VII. The chiral phase transition temperature
as well as the nonuniversal parameters z0 and zL;0 obtained
from the analysis of the maxima of χMb

are within errors in
agreement with those deduced from our analysis ofMχ and
the ratio HχMb

=Mb.
In Fig. 9 we show extrapolation of the pseudocritical

temperatures to the chiral limit using Tpc obtained on the
largest volumes available for each mass. This gives Tc ¼
103ð3Þ and 97(4) MeV with Hmax ¼ 1=27 and 1=40,
respectively. These numbers are in complete agreement
with the previously found numbers from the FSS fits. In
fact, the FSS fits shown in Fig. 8 suggest that the
pseudocritical temperatures, obtained on our largest latti-
ces, differ from the infinite volume extrapolated results by
less than 2 MeV.
We took into account the systematic differences in our

fits resulting from changes of the fit range for H as well as
the fit Ansätze that include or leave out contributions from
regular terms in the different observables we fitted.
Averaging over all these fit results for Tc we obtain for
the chiral phase transition temperature in three-flavor QCD
on lattices with temporal extent Nτ ¼ 8,

Tc ¼ 98þ3
−6 MeV: ð27Þ

This result is consistent within errors with all fit results for
Tpc presented in Tables III to VII and shown in Fig. 10.

TABLE VI. Results for pseudocritical temperatures obtained
from the maxima of the total chiral susceptibility on lattice with
temporal extent Nτ ¼ 8 and different spatial lattice sizes.

H−1 mq Nσ Tpc (MeV) Nσ Tpc (MeV)

27 0.00309 24 136.0(1.2) 32 136.8(1.9)
40 0.00220 24 127.9(1.9) 32 131.9(1.2)
60 0.00159 � � � � � � 40 126.8(0.9)
80 0.001237 32 115.7(1.2) 40 118.4(1.4)

FIG. 8. Results for the peak location Tpcðmq;NσÞ plotted versus
the finite volume scaling variable ðzL=zL;0Þ3 ¼ ðNτ=ðNσHν=βδÞÞ3.
The data are plotted as points whereas the bands are the fit results
for two different choices of the fit interval in H.

TABLE VII. Results for the nonuniversal parameters entering
the fit to the pseudocritical temperature, Tpc, given in Eq. (25).

Hmax Tc (MeV) z0 zL;0 χ2=d:o:f:

1=27 102(2) 0.57(5) 3.8(2) 3.58
1=40 95(3) 0.41(5) 3.7(2) 2.68

FIG. 9. The pseudocritical temperatures obtained from the peak
location Tpcðmq; NσÞ on the largest available volumes (circle),
plotted versus H1=βδ. Results at finite volume correspond to
mπL ≃ 4 (H−1 ¼ 27, 60) and mπL ≃ 3.3 (H−1 ¼ 40, 80), re-
spectively. Also shown are results for the infinite volume
extrapolated pseudocritical temperatures (squares) obtained from
the FSS analysis shown in Fig. 8.
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Weighting with the Akaike information criterion or by the
inverse of the squared error form each fit yields estimates
for Tc which agree very well with the value quoted
in Eq. (27).
Our result for the chiral phase transition temperature,

obtained from a scaling analysis for nonzero quark
masses corresponding to pseudoscalar Goldstone masses
mπ ≳ 80 MeV, relies on the occurrence of second order
phase transition in the chiral limit. In support of this we
show in Fig. 11 the ratioMb=χMb

, evaluated at the position
of the maxima of χMb

for fixed H. The dashed curves,
following the data, show the result of the fit to HχMb

=Mb

given in Eq. (23), using a regular term up to quadratic order
in T and evaluated at Tpc obtained from Eq. (25), with
zpðzLÞ approximated by its infinite volume value zpð0Þ.
This ratio is compared to straight lines with slopes given by
the parameter ratio of scaling functions for the 3D, Oð2Þ
universality class (red) and three lines corresponding to the
Zð2Þ universality class, respectively. The latter is shown for
three hypothetical critical massesHc, below which a region
of first order transitions might exist in three-flavor QCD.
This comparison puts stringent bounds on the possible
on a critical quark mass below which a first order chiral
phase transition may still occur. For quark mass ratios
smaller than H ≃ 1=60 results for HχMb

=Mb, evaluated at

Tpcðmq;NσÞ are in good agreement with the parameter free
universal Oð2Þ scaling function. This leaves little room for
a nonvanishing Hc and a possible approach of the data for
Mb=χMb

to the universal Zð2Þ scaling function. Our results
thus suggest a continuous chiral phase transition in the 3D,
Oð2Þ universality class at least at finite values of the cutoff
corresponding to Nτ ¼ 8.

VI. CONCLUSIONS

We have presented results on the chiral phase transition
in three-flavor QCD. Our calculations have been performed
for finite values of the lattice spacing, corresponding to
Nτ ¼ 8. For the range of quark masses, corresponding in
the continuum limit to light pseudoscalar Goldstone masses
in the range 80 MeV ≤ mπ ≤ 140 MeV we find no direct
evidence for a conjectured first order phase transition. In
the transition region we observe pseudocritical behavior
with a finite volume dependence that is consistent with the
expected FSS behavior in the 3D, Oð2Þ universality class.
The parameter free comparison of the ratio Mb=χMb

with
3D, Oð2Þ and Zð2Þ scaling functions gives further support
for a second order phase transition in the chiral limit
of three-flavor QCD, at least on lattices with temporal
extent Nτ ¼ 8. For the chiral phase transition temperature
at these nonvanishing values of the lattice spacing we
find Tc ¼ 98þ3

−6 MeV.
In (2þ 1)-flavor QCD the chiral phase transition at this

value of the cutoff was about 10 MeV larger than the
continuum limit extrapolated phase transition temperature.
Assuming that cutoff effects are of similar magnitude also
in three-flavor QCD, in the continuum limit the chiral phase
transition temperature in three-flavor QCD is expected to
be below 90 MeV. This needs to be confirmed in future
calculation.
We also find that the pseudocritical temperature at a

pseudoscalar mass of about 110 MeV, which corresponds
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various observables using different fit Ansätze and datasets as
discussed in the text.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1/
80

1/
60

1/
40

1/
27

80 90 110 140

Mb/χMb
 @ Tpc

H

mπ [MeV]

Nτ=8

O(2)

Z(2)@Hc=1/160

Z(2)@Hc=1/240

Z(2)@Hc=1/320

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1/
80

1/
60

1/
40

1/
27

80 90 110 140

Mb/χMb
 @ Tpc

H

mπ [MeV]

Nτ=8

O(2)+reg. Hmax=1/27

O(2)+reg. Hmax=1/40

FIG. 11. The ratio Mb=χMb
versus the quark mass ratio H

compared to scaling predictions from the Oð2Þ and Zð2Þ
universality classes. The dashed curves (blue and green) show
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toH ≃ 1=40, is about (30–40) MeV larger than Tc, i.e., it is
about 135MeVas shown in Fig. 8. This is indeed consistent
with the estimate of the transition temperature at this value
of the pseudoscalar mass obtained with Wilson fermions
[11]. In this case, however, the transition temperature is
identified as the location of the end point of a region of first
order phase transitions. The difference between the two
results obtained within the staggered and Wilson fermion
discretization schemes, respectively, will need to be inves-
tigated further in the future.

The data corresponding to the plots in this work can be
found in Ref. [38].
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