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The Cabibbo-Kobayashi-Maskawa matrix elements |V,| and |V ;| can be obtained by combining data
from the experiments with lattice QCD results for the semileptonic form factors for the B — D*£v and
B — n£v decays. It is highly desirable to use the Oktay-Kronfeld (OK) action for the form factor
calculation on the lattice, since the OK action is designed to reduce the heavy quark discretization error
down to the O(a*A*) =~ O(A*/(2my)*) level in the power counting rules of the heavy quark effective
theory (HQET). Here, we present a matching calculation to improve heavy-heavy and heavy-light currents
up to the 2> order in HQET, the same level of improvement as the OK action. Our final results for the
improved currents are being used in a lattice QCD calculation of the semileptonic form factors for the

B = D*¢v and B — D¢ decays.
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I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa (CKM) matrix con-
tains four of the fundamental parameters of the Standard
Model (SM) which describes flavor-changing phenomena
and CP violation [1,2].

The CKM matrix is a 3 x 3 unitary matrix, and |V, | is a
CKM matrix element which describes flavor-changing
weak interactions between bottom and charm quarks.
V.| is an important quantity in particle physics. It
constrains one side of the unitarity triangle through the
ratio |V,;|/|Vep|. It gives the dominant uncertainty in
the determination of the CP violation parameter ex in
the neutral kaon system, where there is currently tension
between the SM and experiment [3].

There are two competing and independent methods to
determine |V, |: one is to derive |V ;| from the exclusive
decays (B — D*/v and B — D¢7D) and the other is to
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obtain |V ,| from the inclusive decays (B — X .¢v). There
exists currently 36—4o tension between the exclusive |V |
and the inclusive |V ;| [4,5], which makes the study of
|V.,| even more interesting.

Another motivation to study the exclusive decays
(B— D*¢v and B — D¢D) is the tension in R(D™))
between the SM theory and experiment [6]. An update
from HFLAV [6] gave the combined tension in R(D) and
R(D*) to be about 3.86. A recent report from HFLAV [4]
and BELLE [7] claimed that the tension is about 3¢. Hence,
more precise determination of the semileptonic form
factors for the exclusive decays will be important to
confirm or dismiss a potential new physics possibility.

When we determine |V_,| from the exclusive decays
such as B — D*¢p, there are two different sources of
uncertainty: One comes from the theory, and the other
comes from experiment. Basically the experiments deter-
mine |V,,|-|F(1)| and the theory determines the form
factors | F(1)|. The dominant uncertainty in the calculation
of the semileptonic form factors |F(1)| comes from the
heavy-quark discretization [8]. Hence, it is essential to
reduce the heavy-quark discretization error as much as
possible in order to achieve higher precision in |F(1)].

It is challenging to reduce the discretization errors for b
and c quarks, since the heavy quark masses are comparable
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with or greater than the inverse of the lattice spacing 1/a.
The Symanzik improvement program [9] does not work for
amg ~ 1. The Fermilab formalism [10] makes it possible to
control the discretization errors of bottom and charm
quarks on relatively coarse lattices. In the Fermilab
formalism, the lattice artifacts for heavy quarks are
bounded in the limit of mya — oo, and they can be reduced
systematically by tuning coefficients of the action. With a
nonrelativistic interpretation of the Wilson action, one can
match the lattice theory to continuum QCD using the
heavy-quark effective theory (HQET) for heavy-light
systems [11-13] or nonrelativistic QCD (NRQCD) for
quarkonia [14,15]. Here we can estimate the lattice artifacts
due to neglecting the truncated higher order terms by using
the power counting of HQET or NRQCD.

A relativistic approach is also available for controlling
systematic errors due to heavy quark masses. In the heavy-
highly improved staggered quarks (HISQ) approach of
HPQCD [16-18], HISQ [19] valence quarks are simulated
on fine (a ~0.045-0.09 fm) gauge ensembles with 2 +
1 4+ 1 HISQ sea quarks [20]. For the b quark, a number of
unphysically light masses (m;, < m,,) are used, and the data
are extrapolated to the physical point. The heavy-HISQ
approach has the advantage that the lattice currents are
automatically renormalized, which drastically reduces the
current matching error. This approach exchanges uncer-
tainty in the extrapolation for reduction in the match-
ing error.

The Fermilab action includes the dimension five oper-
ators of the Wilson clover action and is improved up to the
A! order in HQET [10]. Here, 1 is an expansion parameter
for HQET:

A~A/(2mg),  aA, (1)

where A ~ 500 MeV is a generic energy scale in HQET.
The Oktay-Kronfeld (OK) action is an extension of the
Fermilab action and is improved up to the A* order in HQET
[21]. In order to calculate weak matrix elements while
taking advantage of the full merits of the OK action, it is
essential to improve also the flavor-changing currents up to
the A* order at the tree level. In this paper we explain
additional operators needed to improve the currents up to
the /* order and a matching calculation to determine the
coefficients for these operators. The resulting improved
currents can be used to calculate the semileptonic form
factors for the B — D*#v and B — D¢ decays [22,23].

In Sec. II we briefly review the Fermilab formalism and
show the explicit forms of the Fermilab and OK actions. In
Sec. III we introduce an approach to current improvement
and build up the improved current. In Sec. IV we explain
the matching calculations and determine the improvement
parameters, the coefficients for the improved current
operators. In Sec. V we present an interpretation of the
matching calculation based on HQET. The HQET

interpretation clarifies the structure of the matching con-
ditions and provides a cross-check. In Sec. VI we present
the results for the improvement parameters and discuss
their continuum and static limits. In Sec. VII we conclude.
The Appendixes contain technical details on the matching
calculations and comparison of the continuum limit with
results from the Symanzik program.

Preliminary results for the improved currents were
presented in [24].

II. LATTICE ACTIONS FOR HEAVY QUARKS

The Fermilab method [10] is used to systematically
improve lattice gauge theories with Wilson quarks [25]
with masses comparable to the lattice cutoff, amgy ~ 1.
Symanzik’s original local effective description of lattice
gauge theory [9] assumes amgy < 1, and so it does not
apply to heavy quarks. Instead, HQET and NRQCD can be
used as alternative effective field theories to describe the
lattice artifacts of heavy quarks [26-28]. A dual expansion
inA~A/(2mgy) ~ aA is used to construct the O(4') action
of effective-continuum HQET. Using a generalized version
of Symanzik’s effective field theory together with effective-
continuum HQET and NRQCD, an improved version of
the Fermilab action was developed in Ref. [21]. It is called
the OK action, which includes improvement terms
through O(43).

The Fermilab method begins with the observation that
time-space axis-interchange symmetry does not needs to be
respected to tune the lattice action and currents to the
renormalized trajectory [29]. For systems with heavy
quarks, Ref. [10] introduced independent, mass-dependent
couplings for the spatial and temporal parts of the clover
term [30] and pointed out the sufficiency of including only
spatial terms at higher order, without altering the Wilson
time derivative. Constructing the transfer matrix and
deriving the Hamiltonian, it is shown that the discretization
errors remain bounded as am, — co.

The analysis of the lattice Hamiltonian also led to
introducing an improved quark field for flavor-changing
currents [10]. Constructing flavor-changing currents with
the improved quark fields, the coefficients of the improve-
ment terms can be determined uniquely by matching two-
quark matrix elements. In Refs. [27,28], it was proven that
for improvement through O(4) in HQET it is sufficient to
match the improved field at tree level.

The equivalence of the lattice theory and HQET can be
expressed by the relation

Siat = SnoeT = /d4x'CHQET7 (2)

where the symbol = means that, in the regime where both
theories hold, all physical amplitudes with external states
on shell are equal to each other, and
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where z is the matching coefficient for the chromomag-
netic term and m,, m,, and my are the rest, kinetic, and
chromomagnetic masses of the quark, respectively. Here,
ht is a heavy-quark field which satisfies y,i" = A™. When
we consider matching between the lattice theory and
HQET, the rest mass m; makes no difference because it
does not affect the energy splittings and the matrix elements
[26]. The bare mass (or the hopping parameter) is deter-
mined by demanding that the kinetic mass m, be equal to
the physical mass.
The explicit formula of the Fermilab action [10] is

Skermilab = S0 + Sp + Sk, (4)

where
_ a@[mow X) + ()74 D ()
+Epx)y Dy (3) = 5 i () Ay ()
-5 rikap(ay ()] (5

where my, is a bare quark mass, the parameter ¢ breaks axis-
interchange symmetry if {# 1, and r; is the Wilson
parameter for the spatial directions. The lattice covariant
derivative operators are

Dlat,;ﬂ/’ = (za)—l (TM - T—ﬂ)l//? (6)
A”l// = a_z(Tﬂ + T—y - 2)‘/’7 (7)
3
Cly =" Aw, (8)
i=1
where the covariant translation is defined by
Tor(3) = Usy (0w (x £ af), (9)
Uiﬂ(x) = U(xv-X:l:a/})» (10)

where +p represents the positive and negative directions
along the u axis, and /i is a unit vector along the y axis. The
dimension five operators Sp and Sg are

1
Sp = —ECBé'aSZW(X)iZ'BlatW(x)’ (11)

1
Sg = _ECECQSZ p(x)a - Epyy (x). (12)

Here the chromomagnetic and the chromoelectric fields are

Biai = Filw Eyi = Fhait’ (13)

Eezjk

with the clover field-strength tensor

Fi = » Z;mgn ji)sign(0)T,T;T_;T_; —He. (14)
v=+tv
Here sign(iz) = £1 for i = +u.
The OK action [21] includes counterterms up to A order,
incorporating all dimension six and some dimension seven
bilinear operators. The OK action is

Sok = 8o + S+ Sg+ S¢ + 57, (15)

where Sq (S7) represents counterterms of dimension six
(seven). Explicitly,

Se = aéz (x) [CIZViDIat,iAlm.i + {7 - Dy, AV}

+ ¢3{7  Dyo, iZ - Biy} + cpp{yaDiga, @ - Ey flw(x),
(16)

and

= a7z w(x) Z c4A? + CSZ{IZ Biagi» A}y (x).
Niall
(17)

The coefficients {c;} are determined by matching the
dispersion relation, interaction with a background field,
and Compton scattering amplitude at tree level.

Taking redundant operators into account, the operators in
Egs. (16) and (17) are a complete set for matching through
O(2%) at tree level. In general, at dimension six, there are
contributions from not only bilinears, but also four-quark
operators such as

0rQ)(0ro). (18)
0rQ)> 4,7y, (19)
f

where Q represents heavy quarks and g, represents light
quarks with flavor f. In the heavy-light system, however,
four-quark operators of the type in Eq. (18) contribute to
physical matrix elements only through heavy-quark loops,
and so contributions from these operators are suppressed by
at least an additional factor of A> [21]; such operators are
omitted from the OK action. When [heavy quark]-[light
quark] scattering is matched at tree level, one finds that the

034509-3



BAILEY, JANG, LEE, LEE, and LEEM

PHYS. REV. D 105, 034509 (2022)

tree-level coupling of four-quark operators of the type in
Eq. (19) is proportional to a redundant coupling of the pure-
gauge action and can be eliminated by adjusting this
coupling [21]. Thus, the four-quark operators are neglected,
and the OK action has only six new bilinear operators.

III. IMPROVEMENT TERMS FOR THE LATTICE
HEAVY QUARK CURRENTS

In the calculation of hadronic matrix elements for B —
DY) ¢p decay, heavy-quark discretization errors come from
both the hadronic states and the flavor-changing currents
[26,28]. Using the OK action for b and ¢ quarks, we expect
the hadronic states of the B and D"*) mesons to be improved
up to A% order by the action itself. To take full advantage of
the OK action for » and ¢ quarks, we must improve the
flavor-changing currents up to A° order, the level of
improvement of the OK action. Here we explain how to
improve the currents up to A* order using HQET.

The current improvement to first order in 4 was studied
in [10,26,28]. If one neglects loop corrections, the current
improvement can be done by introducing an improved
quark field [10,28],

V/14at = li,[c}/;l\Plb’ (20)
A}ft = lijlcyﬂySlPHw (21)

where W, is (f = b, ¢)
¥ip(x) = e[l +adygy -Dyly(x).  (22)

Here, the normalization factor ¢”%/% is introduced to
cancel out the field renormalization of the lattice quark
fields: m,a = log(1 + mga) is the rest mass at tree level
(f = b, c¢). The parameter d, is an improvement parameter
to be determined by a matching condition. In [10,28], it is
shown that introducing the improved quark field Eq. (22) is
enough for the current improvement at tree level.

Here we would like to extend the idea of the improved
quark field to O(4*). We need to find a complete set of
operators up to dimension six. The continuum Foldy-
Wouthuysen-Tani (FWT) transformation [31,32] is a good
starting point.

Let us review how to derive the HQET Lagrangian from
the QCD Lagrangian. The fermionic part of the QCD
Lagrangian in Euclidean space is

Lpire = =Q(P +m)Q, (23)
where Q is a heavy quark field with mass m. At tree level,
the HQET Lagrangian can be derived by using a FWT
transformation, which decouples quark and antiquark. The
FWT transformation up to 1/m* order is

1 1 1
—ll-—y.D4—(y-D?+——a-E
Q 2m’ +8m2(y ) Tam®

3(y-D)? _Y'D“'E_ {raDy, @ - E}
16m? 8m? 8m?
11(y-D)*  3(y-D)’r4Dy
128m* 16m*

L (1-D)*7aDy(y-D)  3(r-D)rsDa(y -D)?
8m* 32m*
574Dy(y - D)?
32m*

+ﬁ{74D4»{74D4,“'E}} h+O(1/m). (24)

+

v -D{y,D;.a-E}
16m*

(¢-E)?
32m*

The corresponding HQET Lagrangian up to 1/m? order is
- Lo i
‘CHQ:h+ —D4—m—|——D +—

-B
2m 2m6
D-E-E-D is-(DxE-ExD)
8m? 8m?
1 1

where / is the heavy quark field in the rest frame of the
heavy quark, with quark field 2" and antiquark field A~:

e

h:t
2

h. (26)
In Eq. (25), we drop terms with the antiquark field 4~ for
simplicity. Equation (25) is consistent with the NRQCD
Lagrangian at the tree level [33]. A study on extending
Eq. (24) to arbitrary higher order is given in Ref. [34].

Taking the continuum FWT transformation as an ansatz,
we introduce the O(4%)-improved quark field on the lattice
as follows:

1
‘P[(x) = em'”/z 1 + Cldﬂ/ . Dlat + EadeA(?’)
1, 1,
+ ECl dBlZ . Blat + Ed dEa 'Elat
1
+ @ dpp{y4Daa @ - Er} + 3 @’ dy; Dy 1A

1 .
+ §a3d4{y * Dy, Am} + a3d5{y Dy, iZ - By }
+ a3drﬁ{7 Dy, - Ep} + a3d6 [7’4D4lan A(3>]

+ a’dz[y4Dyia, IZ - Bi] [ (x). (27)

Here note that the terms up to dimension five are identical
to those introduced in Ref. [10]. To compare Eq. (27) with
the continuum FWT transformation in Eq. (24), let us
rearrange terms up to O(1/m?) in Eq. (24) as follows:
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| 1 ' 1
0=|1-—y D+-—D*+—Z.B+—a-E

2m 8m? 8m 4m?
{r4Ds,a-E} 3{y-D.D*} 3{y -D,iZ-B}
- 8md 2w 32w
_ {r D,a-E} + [74D4,D?] + [y4Dy,iX - B] h
16m? 16m? 16m?
—U,-h,. (28)

All the terms in Eq. (27) except the d; terms have
corresponding terms in Eq. (28). The d5 term is necessary
to remove rotational symmetry breaking effects on the
lattice.

IV. MATCHING CALCULATION

Now, we need to determine the improvement parameters
d; in Eq. (27). There are many relevant matrix elements for
matching. If we choose the simplest two-quark matrix
element, (c(p’,s")|J,|b(p.s)) (with J =V, A), we can
determine d,—d,, but cannot determine the rest. To deter-
mine the remaining parameters, we match matrix elements
with one-gluon exchange. We can choose the four-quark
matrix element (£(p,.s,)c(p',s')|J,|b(p.s)C(p1.s1)),
with one spectator light quark # which exchanges a gluon
with heavy quarks. In the following two subsections, we
show matching calculations with two-quark and four-quark
matrix elements, respectively.

A. Matching two-quark matrix element

Let us consider the following matrix element of lattice
and continuum QCD:

(e(p". )P TP b(p. 5)) = (c(P.s)[ETBIb(P. $))con:
(29)

where I =y,,7,rs represents the Dirac matrices of the
flavor-changing currents, and ¥, and ¥, are the improved
quark fields defined in Eq. (27). In the equations of this
and the following sections, we set a = 1 for notational
convenience.

At tree level, the difference between lattice and con-
tinuum matrix elements comes from the spinors and
normalization factors,

3i(y - p)p*

; 2
m wp _p
m — 1= _r
\/;u(p,s) { 2m 8mE | 16m

x u(0,s5) + O(p*), (30)

The corresponding spinor on the lattice can be expanded as
follows:

ily-p  p*

2sinhm; 8m%

NP (p.5) = 21 -

i3c, +C/2 3i(y -p)p?
ELRATES I )

6 sinhm; 4= 16m3,
x u(0,s) + O(p*), (31)
where
1 & ré
= , 32
8m%  8sinh®m; 4de™ (32)
3 1

i
16m} ~ 2sinhm, {262 T [g%s(z cothm; +1)

S (S | B SN G
+ b m, (2sinhm1_ )} +4sinh2m1}' (33)

Here N (p) is the normalization factor for a spinor of the
external quark line on the lattice, while \/% is that in the

“(p,s), u(p,s)

continuum. Explicit formulas for N'(p), u
are given in Appendix C.
The matching condition can be expressed as

No(p)RO (p)ulit(p.s) = \/’g:jubms), (34)

N RO ) = | (). (69

where subscripts b and ¢ are introduced to distinguish
bottom and charm. R (p) represents the zero-gluon
vertex, which contains kinetic corrections and the normali-
zation factor from the improved quark field. The explicit
formula of R (p) is given in Appendix C. The overall
factor /> from the improved quark field [in Eq. (27)]
cancels out the overall factor e="1/% in Eq. (31), which
leads to the matching condition of Eq. (34).

Expanding in pa and comparing terms up to O(p?), one
can determine d;, d,, d3, and d4. For example, from
matching in O(p) [10,28],

¢ I f+my) 1

dy=—> = .
"7 2sinhm;  2m - mg(2+my) 2m

(36)

The results for d,, d;, and d, are given in Sec. VL
Especially, the rotational symmetry breaking term with
d; in Eq. (27) eliminates the unwanted symmetry breaking
term > ;_, 7xpi in Eq. (31).

In tree level matching, the other improvement parameters
do not contribute to the two-quark matrix element. One
should choose matrix elements with external gluons or
gluon exchange. In the next subsection, we introduce a
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p P+Q. p
b c
q
b1 D2
/ /!
(@) -

FIG. 1.

b1 D2

(b)

Tree-level continuum diagrams with a gluon exchange. A colored box represents an insertion of the flavor-changing operator.

(a) One-gluon emission from the b quark. (b) One-gluon emission from the ¢ quark.

four-quark matrix element with additional light spectator
quarks, which includes a gluon exchange.

B. Matching four-quark matrix element

Let us consider the following four-quark matrix element
for matching:

(€(pa.s2)c(p’, S’)|‘i’lcrwlb|b(l7, $)C(P1s51))1a
= (£(p2,52)c(p',s")[eTb|b(p, )E(P1y51))cons  (37)

where I'=y,,7,rs are matrices of the flavor-changing
currents, ¢ represents a light spectator quark (£ €
{u,d, s}), and ¢ and b represent charm and bottom quarks,
respectively.

At tree level, the connected diagram contains one-gluon
exchange between the light spectator quark and the heavy

/

p P+q p

(a)

quarks. Here we consider only the diagram with one-gluon
exchange at the b-quark line, shown in Fig. 1(a). The
diagram with one-gluon exchange on the c-quark line,
shown in Fig. 1(b), is identical if we switch b — c. The
lattice diagrams which correspond to the continuum dia-
gram in Fig. 1(a) are shown in Figs. 2(a) and 2(b). One-
gluon emission may occur through the one-gluon vertex of
the OK action as in Fig. 2(a) or through the vertex of the
improved quark field as in Fig. 2(b). The small black dot
attached to the current operator (cyan circle) with (without)
a gluon line represents the one-gluon (zero-gluon) vertex of
the improved quark fields. The charm quark part has a
separate matching factor which is completely factorized
from the bottom quark part.

Hence, let us focus on matching the lattice diagrams with
one-gluon exchange on the b-quark line in Fig. 2 to the
continuum diagram in Fig. 1(a). The matching condition is

D P

P1 P2

(b)

FIG. 2. Tree-level lattice diagrams with one-gluon exchange at the b-quark line. (a) One-gluon emission from the action vertex and (b)
one-gluon emission from the improved quark field. A cyan-colored circle represents an insertion of the flavor-changing current operator.
The black dot without a gluon line in (a) and in (b) represents the zero-gluon vertex from the improved quark fields. The black dot with a
gluon line in (b) represents the one-gluon emission vertex from the improved quark field.
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n(q)[RY (p + ¢)S(p + q)(=gt") A, (p + ¢, p)
+ (=g)RS) (p + g, )N, (p)ul (p. )

= S,(p + 4) (=gt} \/z—fubm ) (38)

where ¢ is a four-momentum of the emitted gluon, u is a
Lorentz index, and #* is a generator of the SU(3) color
group. n,(q) = 2sin(3q,)/q, is the gluon line wave-
function factor [35]. S), and S} are fermion propagators
of b quarks in the continuum and on the lattice, respec-
tively. Here A, is one-gluon emission vertex from the OK

action for b quarks. R,(70> and Rg,l) come from the improved

quark field for b quarks. 224

emission vertex from the improved quark field for b quarks.

Explicit formulas for A, and R,(,lll are given in Appendix C.

Both the spatial momentum of the external b quark, p,
and the four-momentum of the exchanged gluon, ¢, are
O(Aqcep): P+ 4. 94 = Agep- They are much smaller than the
physical b-quark mass, m,;, and the lattice cutoff scale
1/a = 1.6-4.5 GeV. Hence, it is possible to expand both
sides of Eq. (38) in power series of ¢/m,, p/m,, qa,
and pa.

When we expand in ¢ and p on both sides of Eq. (38), a
careful treatment is needed with the expansion of the heavy
quark propagator, since it has pole structure. For example,
in the continuum, the heavy quark propagator with
momentum p + g can be expanded as follows,

represents the one-gluon

m—iy-(p+q)
:m(l+74)—iY4(f’4+Q4)—i7'(17+4)
2im(py +q4) + (Pa +q4)* + (p + q)*
_ 1 1+, {1—74_ r-(p+q)
i(ps+q4) 2 dm  2m(ps + q4)

1+ +q)°
U7 ta)y qz)}+ (39)
4m(ps + q4)
where p, is
2 2
[p° ()
Da = pa— lm:l{2m_8m2+“}' (40)

Note that (py + g4,p + q) is the residual momentum of the
internal heavy quark with momentum p + g. If we do the
power series expansion as in Eq. (39), then it is natural to
identify each term in the matrix element in terms of HQET.

Similarly, we can apply the power series expansion to the
OK-action heavy quark propagator [21]

S (p +q) = [u(p + q) — cos(ps + q4)
+ iyysin(ps + q4) + iy -K(p + q)]7". (41)
where
Ki(p) = Sin(Pi)[C - 202ﬁ2 - le’iz], (42)

| . .
u(p) =1+ my+ Ersﬁfpz + 042(1?1‘)4- (43)

Here p; = 2sin(p;/2). Since p,q, < 1/a,m;, we can
expand the lattice propagator as in Eq. (39),

1 14y,
iP5 +aqs) 2

sup+a) = e sl

where the ellipsis represents higher order terms. Here,
note that

~lat __ .
Py = P4 — UMy

|:2m2 P —— W4sz

where m,, my, and wy [21] are functions of the OK action
coefficients. Their explicit formulas are given in
Appendix E. In the construction of the OK action, the
dispersion relation of the heavy quark is already matched to
the continuum. This indicates that m, = my = m and
wy =0, so pit = p, through O(p*).

The expansions of the external quark spinors are intro-
duced in Egs. (30) and (31). Finally, we need to expand the

lattice vertices A,(p + ¢. p), RO (p +¢), and thl)(p +
¢, p) in powers of pa and ga. They are analytic in pa and
qa, and the expansion is straightforward. Comparing both
sides of the expansion of the matching condition in
Eq. (38), we obtain a number of constraint equations for
the OK-action parameters c¢; and the current-improvement
parameters d;. These constraints are sufficient to determine
all the improvement parameters d; through 13 order, and to
put constraints on a subset of the OK-action parameters c;.
The constraints are consistent with the ¢; given in [21].

In the discussion that follows, we identify the terms in
the expansion of the matching condition with contributions
from (lattice and continuum) HQET. This exercise sheds
light on the structure of the matching calculations and leads
naturally to useful cross-checks. Let us begin with the
matching calculation at leading order. First, let us choose
u = 4, the time direction. Then both sides of Eq. (38) are
identical,

] L (45)

1

. (Coru(0.9) (46)
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where P, = p4 + q4. In HQET this contribution arises
from one-gluon emission from the one-gluon vertex of the
leading-order (LO) Lagrangian:

Ly = h"[-D, — m]h*. (47)

Second, let us choose the spatial direction y =i (i = 1,
2, 3). At leading order the right-hand side (RHS) of
Eq. (38) is

—i(2p; +q;) + e Ziar v
: — | (—=gt*)u(0, s).
2imP, o | (9110, 5)

RHS =
(48)

Here the first term proportional to 1/P, in Eq. (48)
represents gluon emission by the next-to-leading-order
(NLO) Lagrangian:

1 i

L= bpz +2ma.3} nt (49)

where the definition of the matrix X, is in Appendix A. The
second term in Eq. (48) represents gluon emission by the
NLO correction term in the FWT field rotation for b quarks
in the flavor-changing current, given in Eq. (24).

Now, let us consider the left-hand-side (LHS) of Eq. (38)
with spatial direction p =i, which corresponds to the
lattice part in the matching condition,

€ijk2jqk Vi
2im3P4 2]”13

—-i(2p; +q;)

LHS = -
21m2P4

(=g1*)u(0, ),
(50)

where m, and mp are the kinetic mass and the chromo-
magnetic mass at tree level, respectively,

| & r
27’7’12_’71()(2‘i"71(>)+2(14"”0)’ GD)
| S cpl
ZmB a m0(2 -+ mo) + 2(1 + m()) ’ (52)

and the coefficient m5 includes a correction from the
improved current

[ (1 + my)
2 mo(+mg) 53)

The first two terms in Eq. (50) come from the lattice HQET
Lagrangian at NLO:

-1 i
£t —pt|\—p? 4+ —6-B|ht, 54
1 2m2 + 2mB ¢ ( )

which is the lattice version of Eq. (49). The matching
condition requires that all the masses equal the physical
mass: m, = mg = my = m. Here, m, = myp = m is con-
sistent with the original matching of the OK action. The
relation my = m reproduces Eq. (36),

g = Utm) 1 (55)
my(2 +mgy) 2m

For the expansion through A* order, the full expressions
are given in Appendix B. The continuum part of the
expansion [the RHS of Eq. (38)] is given in Egs. (B1)
and (B2). And the lattice part [the LHS of Eq. (38)] is given
in Egs. (B3) and (B4). The mass parameters m; and
symmetry breaking parameters w; and dw; in Egs. (B3)
and (B4) encapsulate the lattice artifacts. They are func-
tions of the OK-action parameters and the improvement
parameters d; of the improved quark field. The explicit
formulas for m;, w;, and dw; are given in Appendix E. The
matching conditions are simply

m; = m, w; =0, dw; = 0. (56)

As we present in Appendix E, the mass parameters m;
can be classified into two groups. The first group M, =
{my, my,, mg, my, mp } contains the masses to be matched
by the action matching. The second group M, =
{m3, myg, ..., mg, m;} contains the masses to be matched
by the current matching. We can classify the matching
conditions into
m; eM as

w; =0, action, (57)

m; = m, m; € M, dw; = 0. current.  (58)
The matching conditions of Eq. (57) are equivalent to a
subset of those for the OK action [21]: namely, the dispersion
relation and background field interaction. The matching
conditions of Eq. (58) determine a complete set of current
improvement parameters d; at tree level. The explicit for-
mulas for d; are summarized in Sec. VI.

In Sec. V, we will interpret the entire matching procedure
in the language of HQET. Interpreting Eq. (38) in terms of
the continuum and lattice HQET Feynman rules, we will
show how the matching conditions can be factorized

systematically.

V. CROSS-CHECK BY HEAVY QUARK
EFFECTIVE THEORY

We have cross-checked the final results presented in
Sec. VI in several ways. First, three researchers (Leem,
Bailey, Sunkyu Lee) have done the calculations, and con-
firmed them. Second, when we do the matching calcu-
lation, it produces about 150 constraints on the eleven
improvement parameters. The constraints also involve the
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coefficients in the improvement terms of the original OK
action. The final results reported here are consistent with all
the constraints as well as the OK action coefficients. Third,
we show that the results are consistent with factorization of
the matching condition in accord with the structure of
contributions from HQET. Here we explain this third
consistency check.

If we use HQET as a stepping stone for matching
between continuum QCD (<> continuum HQET) and
lattice QCD (<« lattice HQET), the matching condition
given in Eq. (37) can be described by HQET (lattice
HQET). Especially, the subdiagrams in Eq. (38) can be
described by HQET Feynman rules. For the continuum, the
RHS of Eq. (38) is

RHS
1 o o0 NG 0
= [Rib,(p+a.p) + z;R(Hé(p +4q) (EA(Hé(p +4q))
1
x EA%"‘(’) +q. p)] (—gt*)u(0,s), (59)

where Aﬁg and Ag()) . Tepresent the zero-gluon emission
and one-gluon emission vertices, respectively, which come

from the HQET Lagrangian in Eq. (25). R Q and R;()l u

represent the zero-gluon emission and one-gluon emission
vertices, respectively, which come from the FWT trans-
formation in Eq. (28) between the QCD quark field Q and
the HQET field h. Here n represents the number of
perturbative insertions of higher order terms in the
HQET Lagrangian with no gluon emission. The spinor
u(0,5) = y4u(0,5) = u,(s) can be understood as the
HQET spinor with » = (1,0). The explicit formulas for

Rgg, Rgé o Ag)()), and AI({%W are given in Egs. (D1)—~(D6) in
Appendix D.

Now let us consider the lattice part. The LHS of Eq. (38)
can be arranged as follows:

LHS = [ w5 4 g p)

lat, ( 1 lai
JFZRt (p+q) (P A t(>(P+fI)>

I
x EALEQ(ﬂ)(p +4 p)] (=gt)u(0. 5), (60)

n

where Alﬁg ) and Alﬁg H) are the lattice counterparts of A;Q
and Agé’ﬂ
HQET Lagrangian which is matched to the lattice action.
We showed 1/m terms of this Lagrangian in Eq. (54). At
order 1/m?, the lattice HQET Lagrangian is expressed in
terms of a single short-distance coefficient 1/m2,

. They can be interpreted as the vertices of the

D-E-E-D
8m2

ic-(DxE—ExD)
8m?2.

L =p+ nt. (61)

As given in [10,21], the condition my = m determines the
chromoelectric coefficient ¢ in the action. At order 1/m?>,
however, tree-level matching of the four-quark matrix
elements in Eq. (37) cannot give constraints on the two-
gluon emission terms. In [21], the full matching of the
action up to 1/m? (or %) is presented using the two-gluon
emission vertices in Compton scattering. The explicit
formulas for Al}% ) and Al;;b( ”) are given in Eqs. (D7)-
(D9). They are consistent with the results in [21].

In Eq. (60), RlHaB(O) and RﬁtQ(j) represent the zero-gluon
emission and one-gluon emission vertices, respectively,

which are the lattice counterparts of Rﬁ% and Rﬁé’ﬂ,

respectively. As Rgg and Rg()lﬂ come from the FWT
transformation between the QCD and HQET quark fields
[Eq. (28], Rig”
between the lattice improved quarks and the HQET quarks,
for example, ¥, = U} - h;,. We obtain this relation, in turn,
from the expression for the improved field given in
Eq. (27). The explicit formulas for Rlsa( ) and Rlat( ) are
given in Egs. (D10)-(D12).

As a result, the matching condition in Eq. (38) can be
factorized as the matching of individual building blocks as
follows:

and R};“Q ”) follow from the relation

lat,(O 0 lat,(1 1

A = Ay Moy = Mg (62)
lat, 0 lat, 1

Rio” = Rip.  Riol) = Ry, (63)

Here Egs. (62) provide the matching conditions for the
action. Similarly, Eqs. (63) give the matching conditions for
the improved currents. We obtain U™ as follows:

Ula‘:I—L)LD
2

ms
i
-E D? 2B
+4 (lea _'—Sm%)ZL +8me
{raDy,@-E} 3{y-D,D*} 3{y-D,iX-B}
8m;,, 32m§DD2L 32m?
{r D.a-E} [14D4, D]  [74D4,iX - B]
16m2E 16mg 16m3
dw,
d D3 —=|y-D,D? 64
OV RS S (64)

where the coefficients m; € M, and dw; are identical to
those in the expanded formulas in Egs. (B3) and (B4).
Explicit formulas for m; and dw; are given in Appendix E.
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As aresult, the matching relation for the flavor-changing
currents is

where U, is defined in Eq. (28). This relation is identical to
the matching conditions in Eq. (58).

X7 ~ 7, yilat lat
¥, I¥(x),, = h UXTU Ay, (65) VL RESULTS
The matching conditions can also be written as The final results for the improvement parameters
d; are
Ul = Uy, (66)
|
1 1
dl — M -, (67)
my(2+my) 2m
dr — 2{:(1 + mO) _ FSC _ 5.:2(1 + m0)2 L (68)
2T me(2 + mg) ! 2(1+mg) m3(2+my)?>  4m*’
2(1 1 1
dp = — 2( + mo)C2 _ (mg+ 1)l . (69)
mg(2 +my)*  mo(2+my)  2m
dB — dz, (70)
didg
d. =——, 71
e 4 ( )
1+ myg 1 (14 mp)(m§+2mg+2)  Cep(l+mg) (24 2my+ m)cge
dpg = N PG Y ) 3 2 (72)
(mo + 2m0 + 2) 4m [m0(2 =+ mo)] [m0(2 + mo)] m0(2 + mo)
3C1 + C/2
dy=————4d 73
3 sinh m, b (73)
g = G(md +3mi+5mg+3)  r?(Bmi+6my+4)  2(1 +m0)cz_ (1 +my)*&?
4 2m3(2 + mg)? 4m3 (2 + my)? my(2 +mgy)  2m3(2 + my)? !
rs¢ (1 +mg)idy 3
- 1 - 3 (74)
4(1 4 my) 2my(2 + mgy) 16m
d,
ds = —, 75
;=5 (75)
B 2(1—|—m0) Z:ZCE _ CCEE(m(Z)+2m0+2) _dE< _2((1+m0)> _ 1 :| (76)
O (MR 4 2my +2) [4mg(2+mg)  2mo(1+mg)(2+mg) 4\ mg(2+mp))  24m|
d7 — d6' (77)

Here my is a bare quark mass defined in Eq. (5). For
numerical work, the procedure for obtaining m, from a
hopping parameter « is given in Ref. [36]. Note that m is
equal to m,, a kinetic quark mass defined in Eq. (E1). The
coefficients c; are parameters for the OK action.

Assuming mga < 1, we can cross-check the results
against those from the Symanzik improvement program.
In Table I, we show how the coefficients ¢; of the OK action
and d; of the current behave in the continuum limit
mpa — 0. Here, we tune { so that m; = m, and do not

[
fix the redundant coupling r, to make the comparison
clear. In Appendix F, we show the Symanzik improve-
ment of the OK action through O(a?). The O(a?) study
gives restricted information on ¢; and d;. It gives terms to
the next-to-leading order for cp, cg, d; and only the
leading order for cy, ¢, ¢3, cgg, da, dp, dg. At higher
order, it does not give any information. The results from
Symanzik improvement are given in Egs. (F11)-(F15)
(for ¢y, ¢y, c3, and cgg) and Egs. (F21)-(F23) (for
dy,d,,dp, and dg). They are consistent with the
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TABLE L.
the continuum limits. Here, { is fixed so that m; = m,.

Behavior of the OK action coefficients c¢; (second column) and the current improvement parameters d; (fourth column) in

Coefficient moa — 0 (m; = my) Coefficient moa — 0 (m; = my)
cs rs di 2 (1=1) + 35 (1 +3r3)moa + O((mga)?)
CE T +r)+5(=2=3r,+3r)mpa dy =djp (1 =10r; + r2) 4+ g (1 + 23r, + 271} = 3r})mga
+ O((moa)?) +O((mga)?)
cy —t+ 5 (=14 5r)mpa + O((mga)?) dg (1 =6r, =3r2) 4+ & (=1 +2r; + 3r2)moa + O((moa)?)
Cr=0¢3 48( —6r, +3r2) d,, 768(1 Try + 312 +31)
+g5 (=1 = ry+3r2 =3r))mga + 5916 (=11 + 307, + 127 — 5413 — 9r)mga + O((moa)?)
+0((mga)?)
s S+ (= R)mga + O((mga)?)  die (1= r =32 -38)
+ 15365 (—9 + 80r, + 11077 + 12073 — 4513 )moa + O((mga)?)
e irs Tg(rg = ri)mga + O((moa)?)  ds 1(=145r0) + g5 (=1 =3r)mga + O((mya)?)
CEE o (5+6r,—3r2) dy = 2ds s (5=31ry+ 1572 +3r3)
+ 555 (1 =97 +3r7 = 3r3)mpa + 53555 (29 + 570r 4 360r% — 117013 — 45rH) mya + O((mya)?)
+0O((mga)?)
de = d; A (=11 =31r, = 9r2 4+ 3r%)

+ oges (=11 + 2557, + 23517 — 1513 mpa + O((mya)?)

expanded formulas of c¢; (the second column) and d; (the
fourth column) in Table I.

Although the O(a?) study gives partial information on ¢;
and d,, it helps us to investigate a puzzle involving d. The
problem is that our result for dr given in Eq. (69) is
different from that in Ref. [10]. The result for dy in
Ref. [10] is

¢ = cg)(1 + mya)

dg(FNAL) =
=l ) moa(2 + moa)
1 1
_ g( + moa) = (78)
myamga(2 + moa)  2msa

which is obtained for the quarkonium system by working
up to order v* in the power counting of NRQCD. Our result
for dg is

dp(SWME) = — 2(1 +moa)d  Leg(l + moa)
E mia*(2 + moa)?>  moa(2 + mya)
1
2mia? 79
2msa® (79)

Here, for the comparison, we replace m in Eq. (69) with m,
without loss of generality. Taking the continuum limit
(mga — 0 and |p|/m < 1) of these results gives

de(FNAL) = - (3 =27, = )
l

+ 73 (3 =2r, + 3r)mya + O((mya)?),

(80)

1
d(SWME) = o (1 = 6r, = 312)
1
+ 18 (=14 2r, +3r2)mpa + O((mya)?).

(81)

As we can see, even the leading-order terms of d(FNAL)
and dp(SWME) are different from each other. Our result
for the leading term in dz(SWME) is consistent with that
from Symanzik improvement, given in Eq. (F23). We have
not found any problem in the derivation of dz(FNAL) in
Ref. [10]. Hence, we do not yet understand the source of the
difference between d(FNAL) and dz(SWME). However,
Andreas Kronfeld, one of the authors of Ref. [10] (FNAL)
has derived dy independently, following our Feynman
diagram method, and produced results consistent with
dr(SWME) [37]. The Hamiltonian method that produced
dg(FNAL) is under investigation [37].

Next, let us consider the static limit. In the Fermilab
method [10,21], lattice discretization error is bounded in
the static limit. If we set the improvement parameters to
zero: d; = 0, or the action coefficients to zero: ¢; = 0, the
d1scretlzat10n error comes from mismatches between lattice
masslike terms m;(d; = 0,c; = 0) and the physical mass
m, or from pure lattice artifacts w; and dw;. For example, if
one does not introduce the second order improvement
parameter d, in the improved current, the discretization
error propagates from the discrepancy between 1/(8m?)
and 1/(8mj, )|4,—o [With d, = 0 in Eq. (E9)]. Likewise, if
one does not introduce the chromoelectric term in the
action (cg = 0), the discretization error will propagate from
the discrepancy between 1/(4m?) and 1/(4mg)|.,—o.
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As we can see in Egs. (E2) and (E9), 1 /4m%|CE:O and
1/(8m} )] 4,—o behave smoothly as am, — co. The other
terms of the action matching in Eqgs. (E1)—(E6) and those
in the current matching in Egs. (E7)-(E18) have the
same property. The smooth behavior makes it possible
to control the discretization errors even for heavy quarks
with mpa > 1.

VII. CONCLUSION

The goal of this paper is to improve the current operators
through 43 order in HQET power counting, the same level
as the OK action. These improved currents can be used to
calculate the semileptonic form factors for the B — D*£7,
B = D¢, B — n¢p, and B, = K¢ decays and the decay
constants fp and fp. Our final results for the improvement
coefficients d; are presented in Sec. VI.

We adopt the concept of the improved quark field in
Ref. [10] and extend it to O(43) at tree level. We find that
one needs to add seven more terms of higher dimension and
corresponding improvement parameters at order A’ to
Eq. (A.17) of Ref. [10]. With one exception (the d; term),
the higher dimension lattice operators are lattice versions of
operators in the continuum FWT transformation. The dj
operator is required to compensate for rotation-symmetry-
breaking contributions from the normalized spinors of the
OK action. Thus, we need 11 improvement terms in total.

Our matching conditions in Egs. (34) and (38) determine
the improvement parameters uniquely. Our final results
given in Sec. VI have been checked in several ways. First,
three individuals (Jachoon Leem, Jon Bailey, Sunkyu Lee)
have performed the calculation and cross-checked the
results against one another. Second, the matching condition
provides about 150 self-consistent constraint equations.
The constraint equations from the temporal and spatial
components of the one-gluon emission vertex are consistent
with each other. The constraint equations from the zero-
gluon emission vertex are also consistent with those from
two-quark matrix elements. As a by-product, the matching
condition reproduces the constraint equations for the zero-
gluon and one-gluon emission vertices of the OK action. In
addition, the matching condition can be expressed in terms
of contributions from continuum HQET [Eq. (59)] and
lattice HQET [Eq. (60)]. For the quark-level matrix
elements we match, the vertices of the continuum currents
and action are in one-to-one correspondence with the
vertices of the lattice currents and action [Egs. (62) and
(63)]. This one-to-one mapping provides another cross-
check on the final results in Sec. VI. At the same time, we
note that Eq. (65) is established for the quark-level matrix
elements we match by constructing the rotation matrix from
the ansatz for the improved field.

There remains a puzzle involving dg. Our result
(SWME) is given in Eq. (79). At present, there is another
result (FNAL) for dy available in Ref. [10] which is

presented in Eq. (78). They are different from each other
even at leading order in the continuum limit. To check the
validity of our result, we have performed Symanzik
improvement assuming mpa < 1 and |p|/m < 1. We find
the result is consistent with our result for d. However, we
have not found any problem with the derivation of dy in
Ref. [10]. Therefore, this issue needs further investigation.

This study is an essential step for lattice simulations of
decay constants and form factors with OK heavy quarks. To
take full advantage of the OK action, however, we should
consider radiative corrections. The dominant radiative
corrections are factorized as overall matching factors of
the lattice currents. For the Fermilab action, the one-loop
correction is already performed in Ref. [28]. We plan to
extend this work to the OK action in the near future. For the
next-to-leading-order corrections, additional improvements
in both action and currents may also be required. For the
OK action, the radiative corrections for the dimension five
operators (cp and cg terms) at the one-loop level are
desirable. For the current, the radiative corrections for the
dimension four and five operators (d;, d,, dg, and dg
terms) are also desirable. The radiative corrections may
produce four-fermion operators, but since they are dimen-
sion six or higher operators, they belong to significantly
higher orders in HQET power counting and may be
neglected. After obtaining the complete set of one-loop
corrections to the dimension four and five operators,
we expect the discretization error to be reduced to
O(a,2?) + O(2*) ~0.2%.

In the determination of |V.,| from the B — D*/v
exclusive decay, the heavy quark discretization error is a
significant contribution to the theoretical uncertainty.
Because of parametrization dependence [38-41], lattice
calculations near zero recoil are necessary for a reliable
determination of |V,|. In a recent study of the FNAL/
MILC Collaboration [5], a joint fit is used with exper-
imental results (large recoil) and lattice calculation (near
zero recoil) to determine |V,|. The final error of their
results is around 2%, and the theoretical uncertainty is 2
times larger than the experimental error. The uncertainty
from the quark discretization in [5] is of order a,a, a*, and
a®. Using the OK action and the improved current in this
paper (with radiative corrections), we expect to reduce
these errors significantly. In the lattice simulation with OK
quarks [23,24], our final goal is to reduce the theoretical
uncertainty to the same level as that of the future experi-
ment BELLE 2.
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APPENDIX A: NOTATION

We use the same signature for the y matrices as in
Ref. [10]. The representation for Euclidean gamma
matrices is

00 () w

RHS(u = 4) = [1_7'(P+‘1) (p+aq) ir-q

iPy  2mP, 2mP;  4m?
i(p+9°)° q-(p+q) 14

4m2P§1 8m?3 8m?

_(P+a)’Cl+9)’+4°)

+ €k 2

where ¢ are Pauli matrices. The y-matrices satisfy the
Clifford algebra:

{7;4’ 71/} = 25/41/- (A2)

The remaining definitions are

(%5 (Y w

where a; = y,y; and Z;, = —£€,~jk[}/i,}’j]-

APPENDIX B: MATCHING SUBDIAGRAMS

The expansion of the right-hand side (continuum) of
Eq. (38) through third order in 4 is as follows:

qipx | ip°+29-(p+q) v pP+a)(p+q)

Y
+ ik "4m?P,

+ 8m?P, 4m*P?

iqipe v @+qp* v P+29) (P +q)>

+ o3t €L

iq;pi(p +9)*

8m? * 16m3P, * 8m3P,

Al AR (T +49)°)? (p+q)?)

16m*P?

1 Qpitag) tepndiZian | iqy
2m’

RHS(u = i) = P, ywery
iy-p(p;+4q;)

8m3Pﬁ

i(p;+4q;)
4m?

Zq(p+q)° B

— —gt*)u(0, s),
8m3P‘3‘ 8m3Pi (=gt*)u(0, s)

(B1)
ktre ipt+q)-q  iv-Pta)p;
4m? am?>pP, "' 4m*P,
Pp+q)° (pitalas 4ai 14

q
+ €i.]'k2j

2

+ €iji

o i9;Dk
4m2P4 l]kYS 4m2P4

4m2Pi

3p+a)’+q . py-pta) (pitq)rp

i(2p. - g _
i2pi+a:) 4m> P} * 8m3 8m3 7 T g3

i(pr+ 1) 494 q;pr | (4p;+q;)p

16m3 i 8m?> 8m?>

i(q, —2py)p?

L Bri+29)(p+q)°
8m3P4 16m3P4

_(pita)r-pp+9)?’ q-(p+a)(p+4q)
8m3 P} 8m3 P}

(2pi+4:)((p+9)*)?
8m’P3

+€ijkzj

+

(—gt*)u(0,s).

And the left-hand side (lattice) is

+€ijk2j

Vit €ijkYs

+ eijkEj +e€

8m? kY's 8m? + 16m3P,
i(p+29)p+9)° pir-P+9)(p+4q)
8m3Py 8m3 P}

q;p(p+9q)* .
4pPrar
gmip2 | C

(B2)
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1 7y p+q (P+e?’ ir q+i(p+qr)2 iq* +2ei3Ziq;px _iy- (P +q)(p +q)
iPy  2msP, 2myP;  Amg. 8m2 : Py 8miP, 4m,ms P2

i((p+9)°)° ¢ —2ieuZiqipe q-2p+aq) , 74 v p+ap’-v w-q9)p+q)°

+ +
Am2P} 16m3,_ 1om?  smy_ 1t 16mymP,

(II:F

ool ta) o Yoty (pta® (o+a) v L e
16miDD2 P, 16m,m2.P3 16m2m%iP2 8m‘31P4 i

((p+9)°)°

8m3 P}

LHS(u=4) =

_|_

+

N DN CERRE oo USRS (~g1)u0.5). (8

LHS(,Ll:l>: }/i_( Pi ql)_ jk qu“r‘ flg yi—i 14 - ('Iz_’_ Ukzj qk (ql jk j(2 Pk qk))
2m3 2m2P4 2mBP4 4maE Ssz 8m 8mE
1

Lipta) gy iCpita)pta)y ipitadgy_, o 4pis oo P9
4m3mBP4 4m3m2P4 4m3mBP4 ”k4m3mBP4 ljk i 4dm m2P4

_i2pit+a)pt+a)?’ 4 9:(2pita) | 9i9s 3(p+9)’+p?) 3¢

Am2P? g3 T 1emd | 16m3 amy U 32my

p+a)-2p+q) 3qr-q 3Q2pi+a)r-2p+q) (2p,+q,)7 p+p7 q q4qk
- 3 i+ 3 + +ie kZ,
16msmy, 32ms3 32m? 16m3m>, 16m

o,

yDD2

: q4(2pi + q1) 3q;pk q;px  dw,
..247 e X 2 (—g-(2 . .a(2p: .
e e o + €175 o €S Te z 3+ 2 (—q-2p+aq)yi+7v-92p;+4q;))

Cpi+a)(p+9)°+p*)  q-Cr+9)q;  2pit+a)p+9)
8m2P4 16m2m%P4 16mf)2 m2P4

Qk(P2+(P+‘I)) aP+a)?’ . Cpita)g(2p+q) wy

X i€;i 2
8m3, P, U T o 22mBP4+ R 16mym2P, 8P,
/

12P,
2pi+a)p+q)-v(p+9)*

8mym3 P}

q;pp+9)° a((p +9)*)?
ijkl’s 5 i€k 2 3
T 8mymymp Py 8mympgP;

1
+ gdWU’i@P% +3piqi+q?) +

+iepE,; - (Pid*—qP-q)

lel]kZJ('qu + (2[7, +4q; )((pl +qi)2 +pz) l€l]ijpk2 (2P+q) lel]kzjqk(ql +Qk)

16P

(wg +wy)
12P,

(pit+a)g-rp+9)° a-P+q)P+49)
8m3m2mBPﬁ 8m3m2mBPﬁ
2pi+4q)((p+9)*)

+ 8m%Pi :| (—gt“)u(O, S). (B4)

6P 8P

i€ Zqx((3p7 +3pigi +a7) + Bpi+3pea +43)) —

+ Te

APPENDIX C: LATTICE FEYNMAN RULES

The one-gluon vertices of the OK action from Ref. [21] are as follows (set a = 1):

1 1 ] 1
Ay(p +q.p) = yscos (P4 + 5@4) —isin <P4 + 544) +%CECZOH sin g; COS 5 4

- , 1
+ g ) i singi[sin(p + q)y = sin py] cos S gy (C1)
i
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1 . . 1 i . 1 . 1
Ai(p+q.p)={y;cos (Pi +§611> —irsin (Pi —|—§q,-> —§CECGi SNG4 COS5g; —ECBCGirmZm SINg,COS5

1 1 1 1
—cz{y,cos<p,+ q)z4[sm 2(pj—|—q])—|—sm ZPJ] —|—2sm<p,—|— q)Zy] sin pj—i—q])—l—smp]]}

1 1 N | N | . 1 . )
¢ [4005 <Pi +§Qi) [smzi(pi +q;)+ smzip,} +2sin <Pi +§%‘> [sin(p; +q;) + smpi]}

1
+c3 c08 54 [zj:yj sing;[sin(p; +¢q;) —sin p;] — yizj: sing;[sin(p; +¢;) —sin p}]

- y4y5§:€irm sin qr[Sin(pm + Qm) + sin pm}:|

r,m

. . . 1 o 1 )1 )1
= CprYiSinga[sin(py + ga) —sin py]cos~g; —8icysin| p; +-¢; ) |sin 2(pl+q,)+sm P

1 1 1 1 1
—4c5e,-,mstinq,cos§q,- [Zj:{sm 2(pj+q,)+s1n ZPJ} - {sm 2(pm+qm)+s1n 3 ” (C2)

The zero-gluon vertex of the improved quark field is as follows:

R(O)(p +q) = /2 [1 + idlzyj sin(pj + qj ZdQZsm pj —I—qj

) . .51
p;i+4a;) 4ld427j sin(p; + Qj)smz_ Pr+ar)|- (C3)

1
_—zd3Zy] sin(p; + g;)sin® = 3 2(

2 (
The one-gluon vertices of the improved quark field are as follows:
| 1 i . . . .
R‘(1 )(p +gq,p) =em/? COS > 4a¥a [5 dEZ?’j simng; — dEE}’4ZVj sin g;[sin(p4 + q4) — sin py]
J J

+d,, Y singjlsin(p; + q;) —sinp;| —id,, Y e, Z;sing,[sin(p,, + q,,) + sin p,,]
j J.l.m

1 41 o1
—4e 1/2d6COS<p4+§6]4>74 Ej |:Sln2§(pj+Qj)—Sln2§pj], (C4)
(1) my/2 ! id, si ! ! E i :
R,/ (p+q.p) =e™/?|=d,y;cos| p; +§qi —id,sin| p; +§%’ _EdB €irm2m SING, COSE%'

' 1 1
- %dE}'M'i cos > q;sin g, + drE;ieirmEmm sin gu[sin(p, + q,) + sin p,] cos g,

1

. . . 1 . . .
= dy 7480 qa[sin(p; + g;) = sin pi] 08 5 ¢; + dpgy; sin ga[sin(ps + g4) = sin paJcos 5 g;

1 1 ! o1
+ §d4 [}’i cos <Pi + 5‘][) ;4 {szi (pj+aq;)+ szipj]

_ 1 . .
+ 2sin (p,- + Eqi) ;7][51H(pj +q;) + smpj]}
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1 1 o1 | . 1 . .
+ Ed3}/i [4 cos (pi + §Qi) [smz— (pi+q;) + smzipi] + 2sin <p,~ + 5q,-> [sin(p; + g;) + sin pi]]

2

1 . . . . . .
+ ds c0S = ;i {—zj:yj sin g;[sin(p; + q;) — sin p;] + yizj: sin g;[sin(p; + ¢;) — sin pj]]

1
d _
+ 5cos2

. , , 1
+ 2dgy4[sin(py + q4) — sin py] sin (pi +3 qi>

r.m

The factor for the external incoming fermion with momen-
tum p and spin s is given by N(p)u!®(p,s) with the
normalization factor N(p) and the spinor u¥(p,s) as
follows [10,21]:

—cosh E\ /2

N(p) = (M(/le)l)sth> ,
ﬂ(p) —coshE + sinh E — iy - K
—cosh E)(u(p) — cosh E — sinh E)
()

(Co)

lat(p’ )

V2(u(p
x u(0, s),
where u(p) is given in Eq. (43) and u(0, s) is a constant

spinor which satisfies y4u(0,s) = u(0,s). Here, N(p)
corresponds to /% and u'(p,s) corresponds to the

Qiy4y526irm sin Qr{Sin(pm + Qm) + sin pm}

. . . r .
- lzeirmd7 [sin(py + g4) — sin py COS5 4 5m qr2m74:| .

(C5)

m+E—iy-p

mu(o, S).

u(p.s) = (C8)

APPENDIX D: HQET FEYNMAN RULES

The zero-gluon vertex of the HQET Lagrangian is as
follows:

1

AP = =5 P45 5GP (D)

The one-gluon vertices of the HQET Lagrangian are as
follows:

2 —2ie;4qip iz
continuum spinor as follows: AS& (p+q.p)=|1- 1 8n]1k261 Pt , (D2)
|
i 1 . i2p; + q;
Aioi(p +a.p) = =5 2P+ @) + 5 eipZiq+ g o 8 (i + e Zi(2pe + i) + (73) ((p+q)?+p°)
1
— = €uZq((p + 9% +p?)|. (D3)
8m
The zero-gluon vertex from Eq. (28) is as follows:
RO(p) = 1=y p— —sp? + 2L (D4)
HQ 2m 8m?> 16m>* "
The one-gluon vertices from Eq. (28) are as follows:
1 i q .
Rﬁl())A(p +4q,p) = —WY q +8—ni37 q— W(qz — i€ 2iq, i) — Tom? (> +2p-q), (Ds5)
. 2
(1) 1 i qi
Ruqi(p+4a.p) =5 vi+ 5dari—¢ - 2(2p,+CI) g2 CkZidk g 37
3 3
=358 0 2P+ @)2pita) + 07+ (P +0))r) - 55 sienai(Eiy P +7- (P +4)L))
q . q qs .
+ T’;?, (e Z;(2pi + qi) +q;) + T;g (2pi +aq;) + Tjngleijkszk' (D6)
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The zero-gluon vertex of the lattice HQET Lagrangian is as follows:

lat, (0 1 1 1
ASEQ( )(P) = —2—m2172 + e p*)* + EW“ZP?' (D7)
4 i

The one-gluon vertices of the lattice HQET Lagrangian are as follows:

2 DieqipiE
S I | (08)
E
lat,(1) _ i 1 qs4 . i(2p; + q;) 2 2
Ay (P+4q.p) = —Z—mz(zl?i +4q;) + %%kzj% + §m2 (g + i€ Z;(2p + qi)) + SITZ’((I’ +4q)* +p°)
1 i i
- ngez’jkzﬂh((p +q)* +p*) + o Wa(2pit a)((pi + q;)* + pi) — 3B, (pig>—ap-q)

1 1 1
- EWBzeiijijqz - §W33€ijkCIij2 “(2p+q) - Ewﬁeeijkzj%(%z + q7)

1
- g 0 e B0 + 3pias + D) + G+ 3t + )| (09)

The zero-gluon vertex from Eq. (64) is as follows:

Jat, (0 i
RSIQ( '(p) =1 “om,

1 3iy-p .
) et ik P P2 —dwy ir;pl. (D10)
Mp2 "M, pp2 7

The one-gluon vertices from Eq. (64) are as follows:

lat,(1)

Ryg4 (p+q.p)=-

q4
v-q+
4m§ g 8ngE

o 1
o —ie i) — —— (a2 +2p - q). D11
Y q Toms (g% — 2ie;2iq,pr) Tom? (*+2p-q) (D11)

(1) 1 iqy I
Ryq.(p+4q.p) = %%‘ +mi/i _M(zpi +q;) +
a. DL

€pZide 4

2 3 Vi
8mip  8my,,

3 3i€i 'qu
———— -2+ @)2pi+a)+ P+ P+9) - 25
32m e 32msz

(ieijkZi(2pk + qi) + qi) +

Er-p+ry-p+qZ)

ﬂ(

qs .
Tom? 2pi+q;) + i€ Ziqx + dwy:(3p} 4+ 3p:iq;: + q7)
6

q4
16m3 16m;

ArE

1
+§dW2(Q‘ Cp+aq)yi+7-92p; +aq:)). (D12)

APPENDIX E: SHORT-DISTANCE COEFFICIENTS

The lattice short-distance coefficients which determine the action coefficients are as follows (set a = 1):

1 2 1 2
I C + rSC ) _ é’ + CBC , (El)
2my  mo(2+mg)  2(1+ myg) 2mg my(2+mg)  2(1 + my)
1 & e
_ , E2
dmy  mg(2+mo) " my(2 + mg) (E2)
1 84 4+ 8r, 3 (1 +m r2e? 32¢c
— = . C . + C > K Z.: ( 5 0) + K C > + Z: 2 , (E3)
my  my(2+ my) m(2 + my) (14 mg)*  mo(2+ myg)
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1 1 I"S(}"S—CB)QQ
my,  m;  (1+mg)?

- A(ry—cp)B(1+my)  16L(cy — c3) W cpl —4cs
? mg(2 + mg)? mo(2 +mg) Pol4mg
= K(E+6c1) | & =24y L _TsE = 24y + 325
Pome2+mg) A1+ mg) ! 4(1+my)

The lattice short-distance coefficients which determine the improvement parameters are as follows (set a = 1):

1 _ (1+m0)ij (mo—l—l)Z_,'cE @
dmi,  mi(2+my)?  2my(2+my) 27

1 ¢(1+my) d ry SC(1+mg)?  dy

8’”%)1__’"0(24""0)1 4(1+mg) " 2m3(2+me)? " 27

L L +mg) J cpl (1 + mp)? +@
8m2y,  mo(2+mg) | A1+ mg)  2mi(2+mg)? 2
1 | dydy
= —_ d s
16m; —~ 16m3m, T "
1 (L mg)(m§+2mg+2)¢  (1+mg)fep | (m§+2mo+2)cgg  (mg+2mg +2)dgg
16ngE 4m8(2 +mg)? 4m(2 + my)? 4my(2 + my) 4(1 + my)
3 B(mi43mi+5my+3)  rLrBmi+6mo+4)  2(1 4 mg)c,
16m2DDZL 2m3(2 + mg)? 4m3(2 + mg)? mo(2 + my)
(1 +mg)*¢? g e n (1 4 my)ld, —d,

_2m(2)(2—|—m0)2 ! 4(1 4+ my) ! 2my(2 + my)

3 O(my+3m§+5my+3) | cpl?(Bmi+6my+4)  2(1+mp)cs
16m3 2m3 (2 + mg)? 4m3(2 + mg)? my(2 4 my)
(L mp)*E? d - cl d (1 +mg)ldy
2m3(2+mo)> AL+ mg) ' 2mg(2 + mg)

—2ds,

1 B 1 _ CZCE CCEE(mé~I—2m0+2)
16m — 16mym2;  4mo(2+my)  2mo(1 + mg)(2 + my)

dg ( 20(1 + my) 1 (m3 +2mg + 2)
4\ me(2+mg)) " 24m, 21 +mg) @
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1 1L e Cepp(md + 2mg + 2)
16m3  16msm2;  4mo(2 +mg)  2mo(1 + my)(2 + myg)

dg 20(1 + mg) 1 (m 4 2my +2)
ZE _ El
3 ( Y me(2+mg)) | 24my 2(1+mg) " (E16)
3 2
dw, = dy+dy — 2 T2 (E17)
sinh m
dws — {(ry—cp) di + $(ry — cp) 4+ 28(dy — dp) (1 + my) (E18)
2 l +m0 ! m0(2—|—m0) ’

APPENDIX F: SYMANZIK IMPROVEMENT PROGRAM (mya — 0 LIMIT)

In this section we consider the improvement of the action and current in the limit mya — 0 through O(a?). In doing so we
reproduce the leading-order behavior of the action and current improvement parameters in Table 1. In the mya — 0 limit,
one can expand the OK action in a,

_ 1 1
Sok.a> = ZG4W<X) {mo + 74Draga + C¥ - Dy — 53A4 ) riaAl®
X

1 . 1
- 5035012 By (x) — ECECG“ By (x) + ClaZZViDlat,iAlat,i + cpa’{y - Dy, AG}
i

+ ¢30*{y - D1y, iZ - By} + cppa®{y4Diya. ot - Elat}] w(x). (F1)

The corresponding local effective Lagrangian through O(a?) is given by

1 1
Ssym = /d“xy?(x) {mo + <}’4D4 + 6y4a2D2> + C(J’ D+ 627’[421)?)

1 1 1 1
—EaD?1 —Ersé,'aDz —ECBCiaZ-B—EcECaa-E

+ 63 @D} + 2@y -D.D*} + c3a*{y - D.i% - B} + cppa*{yiD.a E}} w(x)
i

1 1 1
:/d4x1[/(x) {mo+)/4D4+C7-D—§aDﬁ—§rSCaD2—ECBCiaE-B

1 1 1
- ECECaa ‘E+ gmazDi + <61 + 84’) zj:yiazD? + c,a*{y -D,D?}

ey DT B) + ey (1D E) () (2)

If the action is to be improved through O(a?), the action in Eq. (F2) should be equivalent to the Dirac action through O(a?),
PRl + 7D+ yaDyR(x) = RHS of (F2), (F3)
where the transformations R and R should be in terms of mya, y - D, and y,D,,. To match the action through O(a?), they are

1 1 1 7 1
R = {1 +moa - erCa)’ D — Za74D4 ~ % (amg)?* — Eamo(ahDU

242 202
+ <i+3rsC_ s >(am0)ay‘D+ (—L—LC%— s )(ay-D)2

48 16 16 48 8 32

5 g 1 rl ne
96 (aysDy)* - EvE ay4Dgay - D + <4_8 t16 g) ay - Day4D4] . (F4)
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— 1 1 1 7 1
R = {1 + moa - reay -D — 4 7aDs - % oz (amg)* — Eamo(GMDU
3rd r2e? 1 rg r?
D — -D)?
- (48 6 16 Jlamolar Dt {—gg =g 5y J(ar D)
5 re? 1 rl 2
96 —(ay4Dy)* — 3—207 Day,D, + <48 i6 ) >074D407 : D] ; (F5)
| 1 1
where the coefficients of Eqs. (F4) and (F5) are fixed by my = my — _m(z) a+ _mg a. (F7)

Eq. (F3). For example, the — } ay,D, term in Egs. (F4) and 2 3
(F5) is tuned to fix the coefficient of aD?L in Eq. (F2) to be
— % Not only determining Eqs. (F4) and (F5), Eq. (F3)
gives constraint equations on the action parameters
¢, cp,cg,...) at the tree level. For example, if one
compares the mass term on both sides of Eq. (F3), it gives

the relation between the physical quark mass and the bare

mass 11 1
] 1 1—|—<2 Ersg“>m0a+< 24+2r C——r2C2>m0a =¢,
my =m, <1 +-mya — —m%a2> (F6)

Through second order in a, the RHS of Eq. (F7) is equivalent
to the rest mass m; = Log(1 + mgya)/a. Thus, Eq. (F7) is
equivalent to identifying the rest mass with the physical quark
mass. Likewise, if one compares the coefficients of ay - D on
both sides of Eq. (F3), one obtains the constraint equation

2 12 (F8)

which gives which gives

1 1
C=1+§(1 ry)moa +

24( 1+ 6r, +3r2)mia® + O(mga)?, (F9)

which is identical to Eq. (4.11) of Ref. [10]. As mentioned in Ref. [10], the above ¢ value is determined by the condition

mp = mj.
Now, if we insert Egs. (F7) and (F9) into the LHS of Eq. (F3), we obtain

_ 1
R[m, 47y -D + ysD4]R = my + Ly - D + y4D,4 —Ersé’a(y'D)z

1 1 11
5 (}/4D4) +aaE(_Z<1 + rs) + <—ﬁ+8r >m0a>
1 1 r 2
— 3 2 . 3( - s Ts
T *(yaDy)* + a*(y - D) ( 5 4+8>
5
+{y4Ds.a-E} <% Yé‘__ 252> (F10)
which determines
8 =Ts (F11)
1 1 ) ,
CE :5(1 +ry) —|—§(—2—3rs + 3rs)mpa + O(mgya)*, (F12)
1
cp = —g‘f' (’)(moa), <F13)
Cy = C3 = @(_1 — 61, +3r2) + O(mgya), (F14)
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1
CEE = %(5 + 6r, —3r2) + O(mya).

(F15)

The (tree-level) matching of the action through O(a?) is done by specifying the action parameters according to Egs. (F7),
(F9), and (F11)—(F15). If one defines g(x) = Ry (x), then the Lagrangian of g(x) corresponds to the Dirac Lagrangian.

One can identify R as the transformation required for the (tree-level) current improvement. Here we can eliminate terms
with the time derivative by using the equation of motion for the RHS of Eq. (F3),

(ay - D)(ayaDa)y(x) = (=(moa)(ay - D) = {(ay - D)*)w(x). (F16)
(ayaDy)(ay - D)y (x) = (a’a - E + (moa)(ay - D) + {(ay - D)*)y(x), (F17)
(ayaDy)*w(x) = (mga® — $*(ay - D)* — a*Ca - E)y(x), (F18)
1 1 . 1
ay,Dyw(x) = <—m0a —Cay-D + Ersé‘azD2 + ECBCLaZ -B + EcEé’aa -E
(e = &lay - D - ) ). (F19)
Then,
R= |14 S mpa=Limpar | |1+ (1= r)+ L (1432 D+ (1= 10r, + 2)(ay - D)?
= 5 Mod = ¢ (moa 1 r) + g rHmga | ay % ry +r2)(ay
1

+ % (1-6r, —3r})d’a- E] + O((mya)?), (F20)

which gives the leading behaviors of d,, d,, dp, and dg as

1 1
d, :Z(l —ry) —l—ﬁ(l + 3r)mya + O((mya)?), (F21)
1

dy =dp = 3—2(1 —10r; + %) + O(mga), (F22)
dp = L (1 —6r,—3r2) + O(mya). (F23)
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