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We study pion-pion scattering in partially-quenched twisted-mass lattice QCD using chiral perturbation
theory. The specific partially-quenched setup corresponds to that used in numerical lattice QCD
calculations of the I ¼ 0 scattering length. We study the discretization errors proportional to a2, with
a the lattice spacing, and the errors that arise due to the use of Lüscher’s two-particle quantization condition
in a theory that is not unitary. We argue that the former can be as large as ∼100%, but explain how they can
be systematically subtracted using a calculation of the I ¼ 2 scattering amplitude in the same partially-
quenched framework. We estimate the error from the violation of unitarity to be ∼25%, and argue that this
error will be difficult to reduce in practice.
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I. INTRODUCTION

Considerable progress has been made over the last decade
in studying two-particle scattering at physical, or near-
physical, quark masses [1–9]. Our focus here will be on
calculations using the twisted-mass (TM) formulation of
lattice QCD (LQCD) [10]. In particular, the ETM collabo-
ration has used TM fermions to determine scattering lengths
in the following channels: KþKþ [11], Kþπþ [12], and ππ
scattering for I ¼ 2 [3,13] and I ¼ 0 [4]. All theseworks are
done at maximal twist, and make use of the two-particle
quantization condition derived by Lüscher [14,15].
The work we consider in most detail here is the

calculation of the I ¼ 0 ππ scattering length in Ref. [4].
The I ¼ 0 channel is the most challenging from a numeri-
cal point of view, due to the presence of fully disconnected
quark diagrams, and is likely to have the largest systematic
errors. For technical reasons described below, Ref. [4]
used a partially quenched (PQ) setup, in which some
of the valence quarks have differing twist angles from
the corresponding sea quarks. These valence quarks are
referred to as Osterwalder-Seiler (OS) quarks [16]. Using a
PQ theory implies that unitarity is violated [17,18], which
introduces an additional source of systematic error. Our aim
here is to use chiral perturbation theory (χPT) to shed new
light on the errors due to discretization and the violation of
unitarity. In this regard we note that, so far, results are only

available at a single lattice spacing. The specific version of
χPT that we use incorporates the effects of partial quench-
ing and discretization errors due to the twisted-mass, and is
denoted PQTMχPT.
A key feature of TMLQCD at maximal twist is that

discretization errors for physical quantities are automatically
OðaÞ improved [19]. Even so, when working at the physical
point, generic discretization effects are comparable to those
due to the nonzero values of the physical light quark masses.
To see this, recall that in χPT, a measure of the former effects
is a2Λ2

QCD, while that of the latter isM
2
π=Λ2

QCD ≈mq=ΛQCD.
Now, ifmq ≈ 5 MeV, 1=a ≈ 2 GeV, andΛQCD ≈ 300 MeV,
then mq=ΛQCD ≈ 0.016, while a2Λ2

QCD ≈ 0.022, which is
indeed of the same size. A concrete example of this result (to
be discussed further below) is that a pion composed of OS
quarks has, at present lattice spacings, a mass of about
250 MeV when the corresponding unquenched pions have
masses close to 135MeV. This difference is anOða2Þ effect,
which is seen to be as large as the pion mass-squared itself.
This implies that there can be large discretization errors in
quantities that are proportional to M2

π , such as the pion
scattering amplitudes near threshold.
One goal of this work is to determine when such Oða2Þ

errors are present. In this regard, we note that Ref. [20]
found, using TMχPT, that there are no such errors for I ¼ 2
scattering with unquenched TM fermions. Instead, the
leading discretization errors are proportional to a2mq,
and thus suppressed by a2Λ2

QCD compared to the physical
result. This work also showed, however, that studying
I ¼ 0 scattering with unquenched TM fermions was
challenging from a theoretical point of view because of
mixing with I ¼ 2, Iz ¼ 0 states, due to the breaking of
isospin. Specifically, they found that this mixing occurred
at Oða2Þ, and thus was comparable in magnitude to the
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scattering amplitudes themselves at the physical point.
Because of this problem, Ref. [4] used pions composed
of OS quarks to study I ¼ 0 ππ scattering, since there is
then an exact valence isospin symmetry, and the above-
described mixing with the I ¼ 2 channel does not occur.
This setup has not been studied previously using χPT, and
we carry out the calculation here in order to determine the
form of the leading discretization errors in this approach.
The second issue we address is the use of the two-particle

quantization condition in Ref. [4]. As we have stressed
recently in Ref. [21], and as is discussed in Ref. [22],
unitarity is needed in order to use this quantization
condition. Since PQ theories are not unitary, in general
one cannot use the quantization condition to determine PQ
amplitudes. However, we argued in Ref. [21] that the
quantization condition was likely valid if the lack of
unitarity was restricted to the t and u channels, i.e., if
unitarity in the s channel still held. We also proposed
alternative versions of the criteria that must be satisfied for
a two-particle channel in a PQ theory to be “physical
enough” to allow use of the quantization condition. Here
we apply these criteria to the case of OS pion scattering.
The remainder of this paper is organized as follows.

Section II describes the set-up within TMPQχPT.
Section III presents the results of the leading order
calculation of OS pion masses and scattering amplitudes.
Section IV studies the unitarity of the amplitude at one-loop
order [which is of next-to-next-to-leading order in our
power counting]. Section V discusses the implications for
the results presented in Ref. [4]. We conclude in Sec. VI.
Some technical results concerning the NLO contributions,
which we find do not give corrections to the scattering
amplitudes or masses, are relegated to Appendix.

II. THEORETICAL SETUP

In this section we construct the low-energy effective
chiral theory that corresponds to the calculations carried out
in Ref. [4]. We note that this work usedNf ¼ 2 sea quarks.1

TMLQCD involves isodoublets of quarks, which have
dimensionless mass terms of the form

m0 þ iμ0γ5τ3; ð1Þ

as well as a standardWilson derivative term and possibly an
improvement (“clover”) term [10]. We denote the doublet

of unquenched (sea) quarks by ðuS; dSÞ. We say that uS has
a positive twist and dS a negative twist, because of the signs
in the diagonal components of τ3. To obtain maximal twist,
the “normal” bare lattice mass m0 must be tuned to its
critical value, such that the renormalized normal mass
vanishes. The entire mass of the quarks is then due to the
bare lattice twisted mass, μ0. The details of this procedure
and its advantages are well known [16,19] and we do not
repeat them here. We only note that the presence of the γ5τ3
in the mass term leads to explicit breaking of isospin and
parity, although this vanishes in the continuum limit.
As noted in the introduction, the isospin breaking

introduced by the twist in the mass creates mixing between
the I ¼ 0 and I ¼ 2, Iz ¼ 0 states, and Ref. [4] avoids this
using OS valence fermions. To describe this setup in χPT
we introduce a doublet of OS valence fermions ðdV; uVÞ,
along with a corresponding ghost-quark doublet ðd̃V; ũVÞ,
with both new doublets having the same mass term as in
Eq. (1). The ghost quarks (“ghosts” for short) cancel the
determinant produced by the valence quarks [17]. We have
interchanged the order of the flavors relative to the sea-
quark doublet ðuS; dSÞ, so that the signs of the twists for the
two valence flavors are opposite to those of the corre-
sponding sea quarks. (Alternatively, this sign flip could be
achieved by replacing τ3 with −τ3 in the mass term, while
leaving the order of the flavors in the doublet unchanged.)
Choosing the OS quarks to have opposite twist from the sea
quarks of the same flavor allows us to pick out doublets
containing one up and one down quark with the same sign
of the twist. In particular, the doublet ðuS; dVÞ has positive
twist, while ðuV; dSÞ has negative twist. There is an exact
SU(2) isospin symmetry acting on each doublet with
definite twist, so by constructing pions composed of
quark-antiquark pairs from one of these doublets, we avoid
mixing between I ¼ 0 and I ¼ 2, Iz ¼ 0 states. In par-
ticular, we focus on ðuS; dVÞ and refer to the isospin
symmetry of this doublet as SUð2Þþ symmetry, with the
subscript denoting positive twist. In the following, we will
sometimes refer to this pair as the “OS quarks,” and the
SUð2Þþ symmetry as “OS isospin.”
All six fields are collected into a single spin-1=2 field,

QTr ¼ ðuS; dS; dV; uV; d̃V; ũVÞ: ð2Þ

If the twisted part of the mass terms were absent, then
the theory would have an SUð4j2Þ graded flavor
symmetry, which includes a flavor SUð4Þ in the quark
subsector. With μ ≠ 0, the latter group is broken down
to SUð2Þþ × SUð2Þ− ×Uð1Þ, where SUð2Þþ has been
described above, SUð2Þ− is the corresponding symmetry
between negative twist quarks dS and uV , while the U(1)
acts oppositely on positive and negative twist quarks. We
only make use of the SUð2Þþ in the following.
We note in passing that one could use a formulation in

which all OS quarks, both up and down, are valence quarks.

1Much recent work using TM fermions uses Nf ¼ 2þ 1þ 1
sea quarks, with nondegenerate strange and charm sea quarks
(see, e.g., Ref. [3]). Although a calculation of I ¼ 0 ππ scattering
has not yet been attempted with Nf ¼ 2þ 1þ 1 TM fermions,
any future such calculation would still, at long distances, be
described by the effective chiral theory that we construct. This is
because, if we work at energies such that kaon-antikaon pairs
cannot be created, we can integrate out the strange (and charm)
quarks leaving an effective lattice theory with only up and down
quarks, and having renormalized couplings.
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Thiswould lead to a clear separation betweenvalence and sea
quarks, whereas in the formulation described above, uS is
playing both roles. The disadvantage of this “fully valence”
approach is that it would requiremore fields, since onewould
need to introduce two valence doublets and their correspond-
ing ghosts, leading to the fieldQ having 10 components. We
prefer towork with theminimal formulation given in Eq. (2).
The effective chiral low-energy theory describing the

interactions of the pseudo-Goldstone bosons and fermions
(PGBs and PGFs) in the present context has been developed
in several works. The construction of PQχPT in the con-
tinuum was worked out in Ref. [17]; see Refs. [23,24] for

reviews. The systematic extension of χPT to include the
effects of discretization errors for TM fermions was made in
Refs. [25–28], and applied to pion scattering inRef. [20]. The
combination of partial quenching and twisted-mass effects
was described inRef. [29] and extended inRef. [30]. Herewe
simply quote the resulting form of the effective theory.
Before doing so we comment on the appropriate power

counting needed to develop TMχPT. As noted in the
introduction, when using near-physical quark masses,
one has mq ∼ a2, where here we are leaving factors of
ΛQCD implicit. Combined with the usual p-regime power
counting of χPT, this leads to

Leading order ðLOÞ : mq ∼ p2 ∼ a2;

Next-to-leading order ðNLOÞ : mqa ∼ p2a ∼ a3;

Next-to-next-to-leading order ðNNLOÞ : m2
q ∼mqp2 ∼ p4 ∼mqa2 ∼ p2a2 ∼ a4: ð3Þ

The regime in which this power counting holds is referred
to as the LCE (large cutoff effects) or “Aoki” regime.
For the most part we shall need only the LO chiral

Lagrangian. This is given, in Euclidean space, by
[29,31,32]

LLO ¼ f2

4
strð∂μΣ†∂μΣÞ −

f2

4
strðχΣ† þ Σχ†Þ þ Va2 ;

Va2 ¼ −â2W0
6 strðΣþ Σ†Þ2 − â2W0

7 strðΣ − Σ†Þ2
− â2W0

8 strðΣ2 þ Σ†2Þ; ð4Þ

where Σ ∈ SUð4j2Þ is the field that contains PGBs and
PGFs, “str” denotes supertrace (or “strace” for short),
χ ¼ 2B0M, with M the renormalized mass matrix, and f ≈
90 MeV and B0 are the usual continuum LO low-energy
coefficients (LEC s), while â ¼ 2W0a, withW0, along with
W0

6,W
0
7, andW

0
8, being LECs associated with discretization

errors. If we restrict ourselves to the unquenched subsector,
the only combination of the latter three LECs that appears
is 2W0

6 þW0
8.

The form (4) holds for any partially quenched, OðaÞ
improved, Wilson-like LQCD action. To obtain PQTM
fermions, one uses the diagonal mass matrix

M ¼ mqeiωmτ
VS
3 ;

τVS3 ¼ diagðτ3; τ3; τ3Þ ¼ diagð1;−1; 1;−1; 1;−1Þ; ð5Þ

where mq is the physical quark mass, and ωm is the input
twist angle. These are related to the bare parameters m0

and μ0 in the standard manner (see, e.g., Ref. [27]); all we
need here is that for maximal twist, ωm ¼ π=2, we have
mq ¼ Z−1

P μ0=a.

The vacuum is determined at LO by minimizing the
potential, including both the mass term and Va2 . This
leads to

Σ0 ≡ h0jΣj0i ¼ exp ðiω0τ
VS
3 Þ; ð6Þ

with ω0 the vacuum twist angle. In general ω0 differs from
ωm by Oð1Þ, due to the competition between the mass and
a2 terms in the potential, but for maximal twist one has
ω0 ¼ ωm ¼ π=2. This is the case that we study henceforth.
There are corrections to this result at higher order in χPT
[33], but we will not need these in the following.
This discussion has ignored the presence of the strace in

the terms in the potential. Indeed, while the choice (6)
minimizes the potential in the quark sector, it maximizes it
in the ghost sector. Nevertheless, as argued in Refs. [34,35],
it is legitimate to proceed naively and develop perturbation
theory by expanding about the extremum. The arguments
for this also show that, for the purposes of developing
perturbation theory, one can express LLO in terms of Σ and
Σ†, rather than the choice Σ and Σ−1 that is required for a
nonperturbative analysis [36,37].
We next expand Σ about its vacuum value to define the

PG fields. This is conveniently done using

Σ¼ ξ0Σphξ0; ξ0 ¼ expðiω0τ
VS
3 =2Þ; Σ0 ¼ ξ20; ð7Þ

for if we then expand Σph as

Σph ¼ expð
ffiffiffi
2

p
iΠ=fÞ; ð8Þ

the fields in the PG matrix Π have their standard flavor
interpretation. For example, the upper left 2 × 2 block
contains the unquenched pion field,
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πSS ¼
 1ffiffi

2
p π0SS πþSS

π−SS ¼ ðπþSSÞ† − 1ffiffi
2

p π0SS

!
; ð9Þ

as well as a singlet component. This was the basis used in
Ref. [29]. We shall instead use a different basis for the
neutral fields (and different nomenclature for the charged
fields). Since Π is straceless, there are five linearly

independent neutral fields. We choose these to be π0þþ
and π0−−, which are the neutral components of the OS pion
isotriplets composed of quarks of definite twist, together
with three neutral fields composed of states with differing
twist: η4, which is an SU(4) generalization of the η; ϕ0,
which is a superposition of the two ghost-antighost pairs;
and ϕ1, which spans the quark and ghost sectors.

Π ¼

0
BBBBBBBBBBBBBBB@

π0þþffiffi
2

p þ η4
2
þ ϕ1

2
πþ−þ πþþþ πuu−þ ω15 ω16

ðπþ−þÞ† − π0−−ffiffi
2

p − η4
2
þ ϕ1

2
ðπdd−þÞ† ðπþ−−Þ† ω25 ω26

ðπþþþÞ† πdd−þ − π0þþffiffi
2

p þ η4
2
þ ϕ1

2
ðπþþ−Þ† ω35 ω36

ðπuu−þÞ† πþ−− πþþ−
π0−−ffiffi
2

p − η4
2
þ ϕ1

2
ω45 ω46

ω51 ω52 ω53 ω54
ϕ0ffiffi
2

p þ ϕ1 ϕ56

ω61 ω62 ω63 ω64 ϕ†
56 − ϕ0ffiffi

2
p þ ϕ1

1
CCCCCCCCCCCCCCCA

: ð10Þ

The subscripts on the various pion fields indicate the twists
of the component antiquark and quark fields, respectively.
This matrix is straceless and Hermitian, with the ωjk being
PGFs, while the ϕ fields are PGBs that have propagators
with an unphysical overall sign. We stress that πþSS and π

þ
−þ

are different notations for the same field, as can be seen by
comparing Eqs. (9) and (10). The choice of which notation
we use in the following depends on which feature of the
results that we wish to emphasize.
We have assumed in the above that we can treat Π as a

Hermitian field, so that Σ†
ph ¼ expð− ffiffiffi

2
p

iΠ=fÞ. For the
bosonic fields in Π this is standard, while in the fermionic
sector it is a convenient convention. Specifically we are
defining Hermitian conjugation such that ωjk ¼ ω†

kj. This
is a convention since ωjk and ωkj are treated as independent
Grassman fields in Euclidean functional integrals.
The lattice simulations of Ref. [4] use the pion fields

πþþþ, π0þþ and π−þþ, and it is on these that we mainly focus
below. Due to a discrete symmetry, we could, however,
have equally well used the πa−− states, i.e., those composed
of fields with negative twist.
Rewriting the Lagrangian in terms of Σph leads, at

maximal twist, to

LLO ¼ f2

4
strð∂μΣ

†
ph∂μΣphÞ −

f2B0mq

2
strðΣ†

ph þ ΣphÞ
− â2W0

6½strðΣ0Σph þ Σ†
phΣ

†
0Þ�2

− â2W0
7½strðΣ0Σph − Σ†

phΣ
†
0Þ�2

− â2W0
8strðΣ0ΣphΣ0Σph þ Σ†

phΣ
†
0Σ

†
phΣ

†
0Þ; ð11Þ

Expanding in powers of Π, the quadratic term is

LLO ⊃
1

2
strð∂μΠ∂μΠÞþB0mqstrðΠ2Þ−1

2
w0
6f

2½strðτVS3 ΠÞ�2

−
1

4
w0
8f

2½strðτVS3 ΠτVS3 ΠÞþ strðΠ2Þ�; ð12Þ

while the quartic term is

LLO ⊃
1

6f2
str½ð∂μΠÞΠð∂μΠÞΠ− ð∂μΠÞ2Π2�−B0mq

6f2
strðΠ4Þ

þw0
6

3
strðτVS3 ΠÞstrðτVS3 Π3Þ

þw0
7

4
strðτVS3 Π2ÞstrðτVS3 Π2Þ

þw0
8

24
½3strðτVS3 Π2τVS3 Π2Þ

þ4strðτVS3 ΠτVS3 Π3Þþ strðΠ4Þ�: ð13Þ

Here we have converted to the dimensionless LECs

w0
j ¼

16â2W0
j

f4
ðj ¼ 6; 7; 8Þ: ð14Þ

The cubic term vanishes at maximal twist, a point explained
in Appendix.

III. LEADING-ORDER TMPQχPT RESULTS

In this section we use the chiral Lagrangian given in
Eq. (11) to determine the LO results for propagators,
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masses and scattering amplitudes. We also briefly discuss
the mixing of two OS pions having I ¼ 0 with a single
unquenched neutral pion, which requires working at NLO
in χPT.

A. Propagators and masses

We first read off the propagators and particle masses
from Eq. (12). For fields labeled as lower-case pions
in Eq. (10), the propagators take the standard form
1=ðp2 þM2Þ, with the masses being

Mðπ�−þÞ2 ¼ Mðπuu−þÞ2 ¼ Mðπdd−þÞ2 ¼ Mðπ�SSÞ2
¼ 2B0mq ≡ ðM�

SSÞ2; ð15Þ

Mðπ�þþÞ2 ¼ Mðπ0þþÞ2 ¼ Mðπ�−−Þ2 ¼ Mðπ0−−Þ2
¼ 2B0mq − w0

8f
2 ≡M2

OS; ð16Þ

As noted in the first line, the masses of all the pions that are
composed of quarks and antiquarks with opposite twists
coincide, and contain no discretization errors at LO. This
includes the charged sea-quark pions. These masses differ
by Oða2Þ from those of the pions in which the quarks and
antiquarks have the same twist, i.e., the results in the second
line. Such pions are collectively called OS pions in Ref. [4],
and thus we have introduced the common nomenclature
MOS (adapted from that in Ref. [4], where MOS

π is used).
As an aside, we note that MOS is also the mass obtained

from the pole in the correlator of the unquenched neutral
pion, π0SS, if one keeps only the connected Wick contraction.
This mass is denotedm0;conn

π in Ref. [29]. The separation of
contractions can be formulated in a partially quenched
theory, and one finds m0;conn

π ¼ MOS [29].
A prediction from Eqs. (15) and (16) is that

ΔOS ¼ M2
OS − ðM�

SSÞ2 ¼ −w0
8f

2; ð17Þ

i.e., that there is a mass-independent Oða2Þ offset between
the charged sea-quark and OS pion squared masses. Since
w0
8 is known to be negative [29,36,37], this offset is

positive. To our knowledge, the accuracy of this prediction
in practice has not been discussed previously. It can be
tested using the results quoted in Table II of Ref. [4], and
this is done in Table I. Since the two masses in the
difference are certainly correlated, we cannot determine
the error on the difference. Nevertheless, it is clear that, to
high precision, the offset is constant. This indicates that
higher-order corrections to Eq. (17), which, among other
effects, would lead to a linear dependence on μ0, are small.
The sign of the offset is as predicted, and its value is such
that the mq and a2 contributions toM2

OS are comparable for
physical quark masses, as already noted in the introduction.
Numerically, we find

ffiffiffiffiffiffiffiffi
ΔOS

p
=a ≈ 200 MeV, which is com-

parable to ΛQCD and thus of the expected size.

The results for the PGF masses match those of the
charged pions, and, in particular, depend only on the
relative sign of the twist of the component quark and
ghost-quark,

Mðω16Þ2 ¼ Mðω25Þ2 ¼ Mðω36Þ2
¼ Mðω45Þ2 ¼ 2B0mq; ð18Þ

Mðω15Þ2 ¼ Mðω26Þ2 ¼ Mðω35Þ2 ¼ Mðω46Þ2
¼ 2B0mq − w0

8f
2: ð19Þ

The propagator has the bosonic form, with the overall sign
depending on the ordering of ωjk and ωkj. Specifically,
when ordered withωjk precedingωkj, an overall minus sign
arises if j < k.
The ghost-ghost PGBs ϕ1 and ϕ56 have propagators with

unphysical overall signs, −1=ðp2 þM2Þ, due to the super-
trace. Their masses are

Mðϕ56Þ2 ¼ 2B0mq; Mðϕ1Þ2 ¼ 2B0mq − w8f2; ð20Þ

again matching the pattern for the π fields.
Finally, we consider the η4 and ϕ0. Here there is mixing,

due to the w0
6 term in Eq. (12). In the basis fη4;ϕ0g, the

propagator is given by the inverse of 
p2 þ 2B0mq − w0

8f
2 0

0 −ðp2 þ 2B0mq − w0
8f

2Þ

!

− w0
6f

2

 
4 −2

ffiffiffi
2

p

−2
ffiffiffi
2

p
2

!
; ð21Þ

which is

1

p2 þMðπ0SSÞ2
�
1 0

0 −1

�

þ 2w0
6f

2

½p2 þMðπ0OSÞ2�½p2 þMðπ0SSÞ2�
�

1
ffiffiffi
2

pffiffiffi
2

p
2

�
: ð22Þ

Here

TABLE I. Numerical results for the mass splitting defined in
Eq. (17). These are given in the final column, and determined
from the results in the second and third columns, which are taken
from Ref. [4]. The first column gives the bare twisted mass, with
the top row corresponding approximately to physical-mass
charged pions. The lattice spacing is a ¼ 0.931ð8Þ fm [38].

μ0 aMðπ�SSÞ aMOS a2ΔOS

0.0009 0.06212(6) 0.11985(15) 0.0105
0.003 0.11197(7) 0.15214(11) 0.0106
0.006 0.15781(15) 0.18844(24) 0.0106
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Mðπ0SSÞ2 ¼ 2B0mq − ð2w0
6 þ w0

8Þf2 ≡ ðM0
SSÞ2 ð23Þ

is the mass of the neutral unquenched pion. The appearance
of this mass can be understood as due to hairpin diagrams
with loops of sea quarks summed to all orders. We also
observe that the second term in the propagator, Eq. (22),
involves the double poles characteristic of PQχPT.
A nontrivial check on the results just presented is

obtained by directly calculating the propagator of π0SS,
which can be done using the relation [obtained by compar-
ing the representations of the upper left block ofΠ given by
Eqs. (9) and (10)]

π0SS ¼
1

2
π0þþ þ 1

2
π0−− þ 1ffiffiffi

2
p η4: ð24Þ

Using the results above, this propagator is given by

2 ×
1

4

1

p2 þ ðM0
OSÞ2

þ 1

2

�
1

p2 þ ðM0
SSÞ2

þ 2w0
6f

2

½p2 þ ðM0
OSÞ2�½p2 þ ðM0

SSÞ2�
�

¼ 1

p2 þ ðM0
SSÞ2

; ð25Þ

which is the desired result.
We close this subsection by noting that, by using a clover

term in the fermion action, the breaking of the physical
isospin symmetry in the unquenched theory is greatly
reduced, with M�

SS ≈M0
SS (see Table II of Ref. [4]).

Thus the combination 2w0
6 þ w0

8, which controls isospin
breaking in the physical sector, almost vanishes. We stress,
however, that this does not imply that discretization errors
in all quantities are similarly small, since, as we have seen
from Table I, w0

8 itself is not small.

B. Scattering amplitudes

We next consider LO scattering amplitudes, which can
be determined from the quartic term in LLO, given in
Eq. (13). Results for scattering amplitudes in the
unquenched sector have already been given in Ref. [20],
and we have checked that we agree with these. What we
focus on here are the scattering amplitudes of OS pions, and
in particular those composed of quarks with positive twist.
These are the amplitudes studied numerically in Ref. [4],
and we wish to determine the form of the Oða2Þ contri-
butions to them.
For the scattering of OS pions, the nonderivative terms in

LLO collapse down to a contribution that is of the same
form as that in the continuum,

cOS

�ðπ0þþÞ2
2

þ πþþþπ−þþ

�
2

; ð26Þ

except that the overall coefficient,

cOS¼−
2B0mq

6f2
þw0

7þ
2

3
w0
8 ¼−

M2
OS

6f2
þw0

7þ
1

2
w0
8; ð27Þ

includes a2 corrections. As expected, the form in Eq. (26) is
invariant under the OS isospin group, SUð2Þþ, so that there
is no mixing between I ¼ 0 and I ¼ 2, Iz ¼ 0 amplitudes.
On the other hand, these results imply that there is anOða2Þ
contribution to the scattering of two OS πþ mesons, unlike
for the corresponding sea pions.
Including the kinetic term, the full LO scattering

amplitudes for the different choices of OS isospin are
given by

ALO
I¼2 ¼

1

f2
ð−sþ 4

3
M2

OSÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
kinetic term

− 4cOS; ð28Þ

¼ 1

f2
ð−sþ 2M2

OSÞ − 4w0
7 − 2w0

8; ð29Þ

¼ 1

f2
½−sþ 2M2

OS þ 2ΔOS − 4f2w0
7�; ð30Þ

ALO
I¼1 ¼

t − u
f2

¼ −ðp1 − p2Þ · ðk1 − k2Þ ð31Þ

ALO
I¼0 ¼

1

f2
ð2s −M2

OSÞ − 10w0
7 − 5w0

8; ð32Þ

¼ 1

f2
½2s −M2

OS þ 5ΔOS − 10f2w0
7�: ð33Þ

The I ¼ 1 result comes only from the kinetic term, since it
requires momentum dependence, and thus is the same as in
the continuum. The I ¼ 2 and I ¼ 0 results contain
discretization errors from both w0

7 and w0
8, although the

former can be rewritten in terms of the measured mass
difference ΔOS, as shown by the final forms for each
quantity. Also useful are the s-wave scattering lengths,
which are proportional to the amplitudes at threshold,
where s ¼ 4M2

OS. These are given by

MOSaLO0;I¼2 ¼
M2

OS − ΔOS þ 2f2w0
7

16πf2
ð34Þ

MOSaLO0;I¼0 ¼ −
7M2

OS þ 5ΔOS − 10f2w0
7

32πf2
: ð35Þ

Here we are using the sign convention, standard in most of
the LQCD literature (although not followed in Ref. [4]),
that a positive scattering length corresponds to a repulsive
interaction.
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We draw two conclusions from these results. First, the
I ¼ 0 OS amplitude does contain Oða2Þ terms. Since these
involve both ΔOS (which is known) and w0

7 (which is not),
we do not know a priori the size of these corrections. They
could be comparable to the physical M2

OS term, as for MOS

itself, or they could be smaller, as in the difference
M�

SS −M0
SS. It is not possible to determine which option

holds from the results of Ref. [4] alone, since they are
available only for two quark masses, and at a single lattice
spacing, and have relatively large errors.
Our second conclusion is that the size of the discretiza-

tion errors for I ¼ 0 scattering can be determined by
calculating the I ¼ 2 amplitude for OS pions. In particular,
if one calculates a0;I¼2 and compares to the LO prediction
(34), then one can determine w0

7 (given the result obtained
above for ΔOS), and use this to remove the Oða2Þ errors
from a0;I¼0, Eq. (35). A more direct way of proceeding is to
make use of the fact that the Oða2Þ terms in the two
amplitudes are proportional, so that LO discretization errors
cancel in the following linear combinations:

ALO
I¼0 −

5

2
ALO

I¼2 ¼
9
2
s − 6M2

OS

f2
; ð36Þ

MOS

�
aLO0;I¼0 −

5

2
aLO0;I¼2

�
¼ −

3M2
OS

8πf2
: ð37Þ

To our knowledge a calculation of a0;I¼2 using OS pions
has not been carried out; indeed, there has previously been
no motivation to do so given that I ¼ 2 scattering can be
studied with unquenched pions. Such a calculation should,
however, be straightforward, since it involves only a subset
of the Wick contractions needed for the I ¼ 0 calculation,
and this subset involves only quark-connected diagrams.
One might be concerned that higher-order corrections in

χPT could be significant. In this regard, we have two
comments. First, the results in Table I provide partial
evidence that the LO prediction is reliable, as there is no
significant dependence on μ0. This does not, however, rule
out large a4 corrections. Second, there are no NLO
contributions to the scattering amplitudes discussed in this
subsection. The reason for this is discussed in the following
subsection. The first corrections occur at NNLO, an
example of which is discussed in Sec. IV.

C. Mixing with states with vacuum
quantum numbers

A significant challenge in the lattice calculation of
Ref. [4] is the presence of mixing between the OS I ¼ 0

state and a single neutral unquenched pion (π0SS in our
notation). In the continuum, such mixing violates parity
and G-parity, but with TM fermions, lattice artifacts break
parity and the physical isospin symmetry in such a way that
mixing is allowed. It does not occur, however, at LO in χPT

when working at maximal twist, as is evident from the
absence of cubic vertices in Sec. II. A natural question,
therefore, is at what order does this mixing occur.
The answer is that it occurs at NLO in the expansion

described in Eq. (3). To see this one must write down all
allowed NLO terms in the Lagrangian and expand in the
field Π. There are many such terms, each with a different
combinations of LECs, all of which correspond to artifacts
of discretization and are unknown. Thus we do not think it
is useful to explicitly calculate the mixing amplitude.
Instead, we determine the overall chiral scaling of the
terms that contribute.
The form of the allowed NLO terms is given in

Appendix, Eqs. (A1) and (A2). If we expand these out
we obtain linear terms of the form

ða3 þ amqÞstrðΠτVS3 Þ ð38Þ

and the following cubic terms

a3strðΠτVS3 Þ3; a3strðΠτVS3 ΠτVS3 ΠτVS3 Þ;
a3strðΠτVS3 ΠτVS3 ÞstrðΠτVS3 Þ; ða3þamqÞstrðΠ2ÞstrðΠτVS3 Þ;
ða3þamqÞstrðΠÞstrðΠ2τVS3 Þ; ða3þamqÞstrðΠ3τVS3 Þ;
astrð∂Π∂ΠðΠτVS3 þτVS3 ΠÞÞ; astrð∂Π∂ΠÞstrðΠτVS3 Þ:

ð39Þ

As is discussed in the appendix, there are no terms with
even powers of Π. In these equations we are being
schematic, showing simply the overall structures that
appear and the form of the coefficients. Ignoring for
now the linear term, we see that the three-pion vertices
appear for nonzero a, and it is straightforward to see that
they lead to vertices of the forms πþþþπ−þþπ0SS and
π0þþπ0þþπ0SS. Thus we find that the mixing discussed in
Ref. [4] occurs at NLO, and that the on shell mixing
amplitude is proportional to a3 and aM2, where M is a
generic meson mass.
Now we return to the linear term, Eq. (38), and argue that

it leads to contributions scaling in the same fashion as those
from the cubic terms just discussed. This leads to a mixing
of π0SS with the vacuum, and thus to a shift in the twist angle
of OðaÞ. This in turn leads to additional contributions
involving odd powers ofΠ that are fed down from the even-
powered LO vertices. One way of seeing this is to take, say,
a four point LO vertex and absorb one of the pions into the
vacuum, leading to an additional factor of a3 þ aM2 from
the absorption vertex and 1=ða2 þM2Þ from the propaga-
tor. Combining this with the a2 þM2 from the initial vertex
one ends up, crudely speaking, with the same a3 þ aM2

scaling as that obtained from the cubic vertices.
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IV. APPLICABILITY OF TWO-PARTICLE
QUANTIZATION CONDITION

In this section, we discuss in which channels it is valid to
use the two-particle quantization condition of Lüscher
when using TM fermions with OS valence quarks.2 To
do so, we apply the criteria that we recently developed in
Ref. [21]. Unitarity is an essential ingredient both in the
derivation of the quantization condition, and in the justi-
fication for the standard spectral representation of corre-
lators. The observation of Ref. [21] is that it is likely
sufficient, however, for unitarity to hold in the s channel. If
the unitarity violation introduced by the use of a partially
quenched theory manifests itself only in the t and u
channels, then this does not invalidate the use of the
quantization condition. In the case at hand, this question
can be studied using χPT.
The simplest criterion to implement of those proposed in

Ref. [21] (which is the second of the criteria introduced in
that work) uses quark line diagrams, which trace the flavor
indices in χPT calculations. The criterion states that if
intermediate ghost quarks appear in the quark-line dia-
grams for s-channel two-particle loops, then the quantiza-
tion condition cannot be used. The logic here is that ghost
quarks act as a proxy for the presence of intermediate states
that differ from those on the external lines, indicating a
breakdown of unitarity.
In Fig. 1 we show examples of quark-line diagrams for

the one-loop s-channel scattering process for OS pions
having I ¼ 2, 1 and 0. For I ¼ 2, we show all the distinct
classes of diagrams that appear, taking account of the fact
that the LO vertices, given in Eq. (13), can have either one

or two straces. This leads to a greater number of quark-line
diagrams than those appearing in the continuum theory,
where only single-trace vertices occur at LO. Nevertheless,
none of the diagrams involve ghost quarks, and thus using
the quantization condition for I ¼ 2 OS pions is not ruled
out. This result extends to s-channel loops at any order
in χPT.
Next, we turn to I ¼ 1 and I ¼ 0, for which many more

classes of diagram contribute. Since the presence of a single
diagram involving ghost quarks is sufficient for our
criterion to invalidate the use of the quantization condition,
we show in Fig. 1 only examples of diagrams containing
ghost loops. The ghost quarks are either explicit, as in
diagrams (f) and (h), or implicitly contained in the hairpin
vertices, as in diagrams (e) and (g). Since we have chosen to
display diagrams for I ¼ 1, Iz ¼ 0, each of the diagrams in
this channel will also contribute to I ¼ 0 scattering. There
are many more types of diagram involving ghost quarks
that are not shown in Fig. 1. However, the subset of
diagrams we do include is enough to conclude that the
quantization condition cannot be used to study OS pion
I ¼ 1 or I ¼ 0 scattering.
As noted in Ref. [21], the diagrammatic criterion is not

entirely foolproof, as the contributions corresponding to a
given unphysical quark-line diagram could cancel.
However, in that work we also introduced two other criteria
which do not suffer from such an ambiguity. The first of
these (which is the first of that work) restricts the form of
the ratio of correlation functions given in Eq. (47), and we
do make use of it here. Here we use the third criterion of
Ref. [21]: the two-particle quantization condition can only
be valid if the PQ scattering amplitude satisfies s-channel
unitarity. We apply this criterion using one-loop results
from χPT.
Since s-channel unitarity involves cutting diagrams only

in the s channel, it can be tested at one-loop order simply by

FIG. 1. Classes of topologically distinct s-channel one-loop quark-line diagrams contributing to I ¼ 2 ¼ Iz, I ¼ 1, Iz ¼ 0, and I ¼ 0
scattering. The choices of Iz are for convenience. All classes of diagram are shown for I ¼ 2 (up to exchange of the quark/antiquark
flavors), while only a subset are shown for I ¼ 1 and I ¼ 0. Labels and colors indicate quark or antiquark flavors, with lines tracing the
(anti)quark flavors as they propagate through the diagram. Unlabeled dashed lines may have any flavor, and may represent sea, valence,
or ghost (anti)quarks. The hairpin vertices in diagrams (e) and (g) implicitly contain an infinite sum of intermediate sea quark, valence
and ghost loops.

2The quantization condition breaks down above the first
inelastic threshold, where more than two particles can go on
shell, and we consider here only the kinematic regime in which
this is not allowed.

ZACHARY T. DRAPER and STEPHEN R. SHARPE PHYS. REV. D 105, 034508 (2022)

034508-8



calculating the s-channel loop diagram, shown in Fig. 2.
The imaginary part of this loop must be proportional to the
squared magnitude of the tree-level amplitude, with the
proportionality constant related to the phase space available
at the chosen value of s. One way in which unitarity can fail
is if the particles in the loop have different masses from
those of the external particles, for then the phase space
differs from that appearing in the unitarity relation.
We begin with the I ¼ 2 channel, which we can pick out

by studying πþOSπ
þ
OS scattering. The key point here is that

only πþOSπ
þ
OS intermediate states can appear in the s-channel

loop. This is clear from the diagrammatic quark-line
analysis given above, but can be checked by direct
calculation. Specifically, we find that the contribution from
the s-channel loop is

Aðs1Þ
OS;I¼2¼

1

f4
ð−sþ2M2

OSþ2ΔOS−4f2w0
7Þ2Jðs;M2

OS;M
2
OSÞ

þ 1

9f4
ð5sþ24w0

7f
2−12M2

OS−12ΔOSÞIðM2
OSÞ;

ð40Þ

where Jðs;M2
A;M

2
BÞ is the s-channel loop integral and

IðM2
AÞ is the tadpole integral that arises when derivatives

act on the internal legs. These are defined as follows,

Jðs;M2
A;M

2
BÞ≡ μϵ

Z
q

d4−ϵq
ð2πÞ4−ϵ

1

ðq2 þM2
AÞðq̃2 þM2

BÞ
ð41Þ

IðM2
AÞ≡ μϵ

Z
q

d4−ϵq
ð2πÞ4−ϵ

1

q2 þM2
A
: ð42Þ

Here, q and q̃ ¼ qþ pþ k are the momenta, and MA and
MB are the masses, that appear in the s-channel loop (see
Fig. 2). Unitarity is studied by considering the coefficient of
Jðs;M2

OS;M
2
OSÞ, since the tadpole function does not have

an imaginary part. Comparing to Eq. (30), we see that the
coefficient of J is simply the square of the LO scattering
amplitude, ALO

I¼2, and that the masses in the internal
propagators are the same as those of the external legs.
Together this implies that I ¼ 2 scattering is consistent with
s-channel unitarity. Although this is only based on a one-
loop calculation, we argue in Ref. [21] that it will hold to all
orders.
Next we turn to the I ¼ 1 case. We have calculated the

s-channel one-loop diagram for πþOSπ
0
OS scattering. The

intermediate states that contribute are πþOSπ
0
OS, πþSSπ

dd
−þ,

πþVVπ
uuþ−, ω15ω52, and ω16ω62. A schematic form of the total

result is sufficient for our purposes. Let Aðs1Þ
contðMπÞ be the

contribution from the loop in continuum QCD, which we
know satisfies s-channel unitarity. Then we find

Aðs1Þ
OS;I¼1 ¼

1

2
Aðs1Þ

contðMOSÞ þ
1

2
Aðs1Þ

contðM�
SSÞ; ð43Þ

Aðs1Þ
contðMπÞ ¼

ðt − uÞ
6f4

½ðs − 4M2
πÞJðs;M2

π;M2
πÞ þ 2IðM2

πÞ�:

ð44Þ

Since M�
SS ≠ MOS, the phase-space for the second term of

Eq. (43) does not match that required given that the external
particles are OS pions, and s-channel unitarity fails. This is
consistent with the diagrammatic result from above. We do
stress, however, that unitarity is recovered in the continuum
limit, when M�

SS ¼ MOS.
Finally, we consider the I ¼ 0 channel. Here the calcu-

lation is more involved, with many intermediate states. We
find that the contribution from s-channel loops is

Aðs1Þ
OS;I¼0¼

3s2

8f4
Jðs;ðM�

SSÞ2;ðM�
SSÞ2Þþ

1

8f4
Jðs;M2

OS;M
2
OSÞð8M2

OSð8f2w0
7þ26M2

OSþ5sÞ

−8ðM�
SSÞ2ð−8f2w0

7þ44M2
OSþ7sÞ−112f2sw0

7þ256f4w02
7 þ160ðM�

SSÞ4þ13s2Þ

−
3

f4
ð−3ðM�

SSÞ2þ3M2
OSþðM0

SSÞ2Þ2Jðs;M2
OS;ðM0

SSÞ2Þþ
3

2f4
ð3ðM�

SSÞ2−2ðM2
OSþðM0

SSÞ2ÞÞ2Jðs;ðM0
SSÞ2;ðM0

SSÞ2Þ

þ 5s
12f4

IðM�
SSÞ2þ

1

36f4
IðM2

OSÞð−336f2w0
7−168ðM�

SSÞ2þ120M2
OSþ65sÞ: ð45Þ

FIG. 2. One-loop s-channel scattering diagram with p; k; p0,
and k0 labeling the external 4-momenta, and q and q̃ ¼ qþ pþ k
labeling the internal 4-momenta.
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It is straightforward to check that this form violates
unitarity, both because the coefficients of J are not the
square of the LO amplitude, Eq. (33), and because the
masses in the arguments of J vary from term to term.
Again, this is consistent with the diagrammatic analysis.

V. IMPLICATIONS FOR PREVIOUS WORK

The conclusion from the previous section is that one
cannot use the two-particle quantization condition for I ¼ 0
OS pion scattering. This would seem to invalidate the
calculation of Ref. [4], and render the χPT results of Sec. III
irrelevant. In this section we argue that the situation is not
quite so dire. The application of an invalid quantization
condition introduces additional systematic errors into the
results of Ref. [4], and these new errors can be approx-
imately quantified.
The breakdown of s-channel unitarity leads to two

distinct but related problems if one nevertheless applies
Lüscher’s formalism. The first concerns the fit that is used
to extract the finite-volume energies. In particular, if O†

I is
an operator that creates the pair of OS pions with OS
isospin I, and OI is the corresponding annihilation oper-
ator, then the energies are extracted from

hOIðτÞO†
I ð0Þi ¼

X∞
n¼0

cne−Enτ; ð46Þ

where E0 ≤ E1 ≤ E2 ≤ …, and the cn’s are real and
positive coefficients. For physical theories, one can extract
quantities of interest such as the energy shift δE0 ¼ E0 −
2Mπ using a ratio of correlation functions

RðτÞ ¼ hOIðτÞO†
I ð0Þi

hπþþþπ−þþi2
¼ Ze−δE0jτj þ excited-state contributions; ð47Þ

which may be expanded as

RðτÞ ¼ Z
�
1 − jτjδE0 þ

τ2

2
ðδE0Þ2 þ � � �

�
þ � � � ð48Þ

where Z is some positive real constant. Here, for simplicity,
we are assuming that the pions in the denominator of RðτÞ,
and two-pion system propagating in the numerator, are at
rest, as in the calculation of Ref. [4].3

For theories in which s-channel unitarity does not hold,
the coefficient of the term quadratic in τ will not be half the
square of the coefficient of jτj. Explicit examples of this
failure are given in Refs. [21,39]. For the examples of

interest here, our results in Sec. IV show that the expansion
of the ratio RðτÞ for I ¼ 1 and I ¼ 0 OS pions will not
satisfy Eq. (48). If one nevertheless fits to this form, then an
additional systematic error will appear in δE0.
To estimate the size of this error, we need to know the

relative contribution of the linear and quadratic terms for
the values of τ that contribute to the fit. In the calculation of
Ref. [4], and focusing on the lightest quark mass, the
energy shift is δE0 ∼ −0.01a−1, while the fit extends up to
τ ∼ 10a. Thus jτδE0j≲ 0.1 in the fit range, implying that
the quadratic term is a no larger than a 5% correction to the
linear term. We therefore expect the error in the extraction
of the energy shifts arising from the breakdown of unitarity
to be small, and in particular much smaller than the second
source of error we now discuss.
The second problem that arises from the breakdown of s-

channel unitarity concerns the quantization condition itself.
This converts energy shifts into scattering phase shifts. For
our considerations it will be sufficient to use the threshold
expansion, which reads [14,15]

δE0 ¼ −
4πa0
MπL3

�
1þ c1

a0
L

þ c2
a20
L2

þOðL−3Þ
�
; ð49Þ

with c1 ¼ −2.837 and c2 ¼ 6.375. If s-channel unitarity is
violated, then only the leading order term is correct: the
c1=L correction, and all higher-order terms, are invalid. To
estimate the size of the error that arises from nevertheless
applying expression (49), we can determine the size of the
first two corrections for the parameters used in Ref. [4].
For their lightest quark mass, the OS pion mass is
aMπ ¼ 0.11985, on a lattice of size L=a ¼ 48, and the
scattering length obtained from solving the quantization
condition for I ¼ 0 OS pions is Ma0 ¼ 0.73. The 1=L and
1=L2 corrections are then of size −36% and þ10%,
respectively, compared to the leading term. We therefore
estimate the error arising from applying the quantization
condition in a situation where it is not valid to be
approximately 25%.
In principle, one could account for this source of error by

calculating the explicit form of the 1=L (and possibly
higher order) corrections using χPT at finite volume. One
would forgo the Lüscher formalism and instead fit the
finite-volume correlation functions that are calculated on
the lattice directly to the predictions from χPT. This
approach was first proposed for the quenched theory
[40], and was worked out for Wilson fermions (without
twisting) in Ref. [39]. Unlike the two-particle quantization
condition, it is not model-independent, but relies on the
effective theory, here PQTMχPT, to capture the violations
of unitarity.
In the present case, however, this approach is likely to be

very difficult to implement. This is because the one-loop
contributions that lead both to the τ2 term in Eq. (48) and
the c1=L term in Eq. (49) involve, in part, contributions

3We note that Ref. [4] does not fit to the ratio of correlators, but
rather to the numerator itself. This does not affect our argument as
it is only the part of the correlator dependent on δE0 that is
impacted by partial quenching.
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with an OS π0 and a sea-quark π0 appearing in the loop, and
also contributions with two sea-quark π0s, as can be seen
from Eq. (45). Both of these intermediate states are lighter
than that with two OS pions, so the simple exponential fall
off assumed in Eq. (48) is not valid, and the correct form
with which to replace Eq. (49) is unclear.
Based on this discussion, we conclude that an additional

systematic error of∼25% from unitarity violation should be
added to the result for a0 obtained in Ref. [4]. We view this
as an essentially irreducible error, due to the difficultly in
correcting for violations of unitarity. In addition, based on
the analysis of Sec. III B, we expect that there is an Oða2Þ
discretization error that could be as large as 100%. The key
point here is that we do not know whether the two Oða2Þ
terms in Eq. (35)—those proportional to ΔOS and w0

7—
partly cancel or not. This is because we have, at present, no
information on the size of w0

7. However, as noted in Sec. III
B, calculations of the scattering length for I ¼ 2 OS pions,
which are not affected by unitarity violations, could be used
to determine w0

7 and thus correct for the LO discretization
errors. Thus this nominally very large discretization error
could be substantially reduced, very likely well below the
size of the error due to the violation of unitarity.

VI. CONCLUSION

Twisted-mass fermions offer many advantages for com-
putations in LQCD, including automatic OðaÞ improve-
ment, but these come at the price of the violation of isospin
and parity symmetries away from the continuum limit. The
size of unphysical effects due to the violation of these
symmetries is, generically, ofOða2Þ, which is, for presently
accessible values of a, of comparable size to physical
contributions proportional to the light quark masses. This
makes it challenging to calculate quantities that are
themselves proportional to the light quark masses, an
important example being the pion scattering amplitudes
near threshold. While the I ¼ 2 amplitude evades this
concern, as all discretization errors turn out to be propor-
tional to a2mq [20], the Oða2Þ isospin breaking makes it
difficult to calculate the I ¼ 0 amplitude.
This problem was avoided in Ref. [4] by working in a PQ

setup using OS valence quarks, such that a modified
version of isospin was an exact symmetry. This allowed
a result for the s-wave, I ¼ 0 scattering length to be
determined. In this work we have shown, however, that
there are two additional source of systematic error in this
result that have not previously been accounted for. The first
is that OS pion scattering amplitudes do contain Oða2Þ
contributions, and these cannot be subtracted using pre-
viously-determined quantities. Thus there is, a priori, a
systematic error of Oð100%Þ in the resulting scattering
length. We show, however, that this error can be substan-
tially reduced if one also calculates the scattering of I ¼ 2
OS pions, for a range of quark masses. Such a calculation,

though not previously undertaken, is much simpler than
that required for I ¼ 0 OS pions.
The second, and ultimately more challenging, source of

error is due to partial quenching. As we have recently
emphasized, one cannot, in general, apply the two-particle
quantization condition to PQ correlators [21]. What we
have shown here is that this prohibition applies for systems
of two OS pions with I ¼ 0 (or I ¼ 1), whereas the
quantization condition can be used for the I ¼ 2 OS pion
channel. The breakdown for I ¼ 0 implies that, if one
nevertheless proceeds using the quantization condition,
then there is an additional systematic error. We have
estimated this error to be ∼25%, and argued that it is
essentially irreducible.
Our work suggests that a systematically improvable

calculation of the I ¼ 0 scattering amplitude near threshold
using twisted-mass fermions is very challenging. It appears
to us that one must work in an unquenched setup, so that
the two-particle quantization condition is valid, and thus
deal with the isospin breaking, which in effect makes this a
problem involving the πþSSπ

−
SS and π0SSπ

0
SS channels. To

remove the unphysicalOða2Þ effects from the results would
likely require using the χPT results of Ref. [20], together
with higher-order corrections.
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APPENDIX: HIGHER-ORDER
CONTRIBUTIONS IN χPT

In this appendix we collect some technical comments
related to the χPT calculations presented in the main text.
First, we write out the NLO terms in the PQ chiral

Lagrangian, which are used in Sec. III C. These consist of
ap2, amq and a3 terms,

LNLO ¼ âW4str½ð∂μΣÞð∂μΣ†Þ�str½Σþ Σ†�
þ âW5str½ð∂μΣÞð∂μΣ†ÞðΣþ Σ†Þ�
− âW6str½χ0†Σþ Σ†χ0�str½Σþ Σ†�
− âW7str½χ0†Σ − Σ†χ0�str½Σ − Σ†�
− âW8str½χ0†Σ2 þ Σ†2χ0� þ a3La3 ðA1Þ

where the notation is that of Ref. [39], while the a3 terms
have the schematic form

La3 ∼ str½ΣþΣ†�þ str½Σ3þΣ†3�þ str½Σ2�Σ†2�str½Σ�Σ†�
þ str½Σ�Σ†�2str½ΣþΣ†�; ðA2Þ
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where the� signs in the third term are both positive or both
negative. Here, ∼ indicates that there is an independent
LEC multiplying each term on the right-hand side. We do
not keep track of these LECs as they are not required for
our analysis.
Second, we discuss why, when working at maximal

twist, there are no terms involving odd powers of the fieldΠ
in the expansion of the LO Lagrangian, Eq. (4). For the
terms that are independent of a, this follows because, at
maximal twist, the condensate cancels the twist in the mass,
leading to the standard kinetic and mass terms expressed in
terms of Σph, as shown by the first two terms in Eq. (11).
These terms are symmetric under Π → −Π, so that only
even powers of Π can appear in their expansions. For the
terms induced by the nonzero lattice spacing, the key result
is that they are proportional to a2, as the term linear in a has
been absorbed by a redefinition of χ [32]. This implies that,
when expressed in terms of Σph, as in Eq. (11), they involve
two powers of Σ0Σph. These can appear in one or two
straces, with each strace containing either a Hermitian or
anti-Hermitian combination, although the total term must
be Hermitian. If one expands Σph, a given strace will thus
have the form

iðx1þy1þx2þy2Þstr½Πx1 ðτVS3 Þy1 Πx2 ðτVS3 Þy2 � � H:c:; ðA3Þ

where the xi are non-negative integers, while the yi are
either 0 or 1, H.c. indicates Hermitian conjugate, and we
have used the result that Σ0 ¼ iτVS3 at maximal twist. Using
the hermiticity of Π and τVS3 , together with the cyclicity of
the strace, we see that the Hermitian conjugate term has the
same (opposite) sign if N ≡ x1 þ x2 þ y1 þ y2 is even
(odd). Thus to avoid a cancellation N must be even
(odd) if the Hermitian conjugate is added (subtracted).
Now we consider the ways in which one might obtain a

cubic vertex from the a2 terms. If there is a single strace, it
must contain an odd power of Π, so that x1 þ x2 is odd,
while we know that y1 þ y2 ¼ 2 since there are two powers
of Σ0. Thus N must be odd. However, as there is a single
strace, the term must be Hermitian, and so, from above, we
know that terms with odd N vanish. So there is no such
vertex.
If there are two straces, to obtain a cubic vertex one of

themmust contain an odd power ofΠ, and the other an even
power. Since

P
i yi ¼ 1 for both terms, we know that N is

odd for one strace, and even for the other. Since the two
terms are both either Hermitian or anti-Hermitian, this in
turn implies that one of the two terms vanishes.
Similar arguments can be used to demonstrate that the

quadratic and quartic terms arising from the NLO
Lagrangian in Eq. (A1), vanish.
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