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The appearance of a light composite 0þ scalar resonance in nearly conformal gauge-fermion theories
motivates further study of the low energy structure of these theories. To this end, we present a
nonperturbative lattice calculation of s-wave scattering of Goldstone bosons in the maximal-isospin
channel in SU(3) gauge theory with Nf ¼ 8 light, degenerate flavors. The scattering phase shift is
measured both for different values of the underlying fermion mass and for different values of the scattering
momentum. We examine the effect of a light flavor-singlet scalar (reported in earlier studies) on Goldstone
boson scattering, employing a dilaton effective field theory (EFT) at the tree level. The EFT gives a good
description of the scattering data, insofar as the magnitude of deviations between EFT and lattice data are
no larger than the expected size of next-to-leading order corrections in the EFT.
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I. INTRODUCTION

The existence of a light composite 0þ scalar resonance
has been strongly indicated by lattice calculations in a
variety of four-dimensional gauge–fermion theories near

the lower boundary of the conformal window [1–20]. Its
presence has sparked renewed interest in theories of a
composite Higgs boson, e.g., [20–25].
Despite considerable numerical effort to date, little is

known from direct lattice calculation about the light scalar
resonance beyond its mass. For these studies, work is
ongoing to control lattice artifacts [10] and finite-volume
effects [26] and to push closer to the chiral limit [14].
Lattice computation near the conformal window is gen-
erally impeded by the long correlation lengths of the nearly
conformal systems, and the disconnected diagrams intrinsic
to the evaluation of correlation functions of flavor singlet
operators present additional challenges. Beyond the singlet
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scalar two point function, form factor and scattering
amplitudes involving the scalar singlet as an external state
are also desirable to study but present similar or greater
numerical challenges in practice.
In this work, we instead probe the physics of the

light singlet scalar through the lattice computation of
pseudo-Nambu–Goldstone boson (PNGB) scattering at low
energies. Chiral symmetry completely constrains PNGB
scattering to leading order when the PNGB momenta and
massMπ are small compared to other scales [27]. However,
the presence of a light 0þ scalar of mass Mσ leads to
additional pole terms in the leading-order expressions for
the scattering amplitude whose form cannot be fixed by
chiral symmetry [28]. For the lattice ensembles we con-
sider, Mπ ≈Mσ, indicating that the scalar pole terms may
contribute significantly if the coupling between the PNGBs
and 0þ scalar is not too small.
In this work we investigate the role of the light scalar in

s-wave ππ → ππ PNGB scattering at low energies. We
employ the Lüscher finite volume method [29] to extract
the scattering phase shift nonperturbatively on the lattice.
The near-conformality of the gauge theory and the
observed spectrum reported in previous publications
[13,14] lead us to interpret the lattice results in terms of
an effective field theory (EFT) including a light singlet
scalar interpreted as an approximate dilaton, along with the
PNGBs [30–33]. Alternative EFT descriptions for the light
scalar have been suggested in Refs. [34,35].
We focus on a scattering channel, designated as “maxi-

mal isospin,” which contains no fermion-line-disconnected
diagrams, allowing us to extract the scattering length to a
high statistical precision. The scalar can then be exchanged
in the t and u channels, contributing to the scattering length
and effective range. In general, the coupling of the 0þ scalar
to the PNGBs can depend on the details of explicit chiral
symmetry breaking, and may also have dependence on the
momenta. In the context of the EFT we employ, it will be
determined by only a small number of EFT parameters.
In Sec. II, we detail our numerical lattice calculation of

low-energy ππ scattering. In Sec. III, we apply the dilaton
EFT to the scattering length data, and assess the consis-
tency of the EFT and the ability of the scattering data to
constrain the model. We summarize our results in Sec. IV,
and discuss open questions.

II. LATTICE COMPUTATION OF SCATTERING
PHASE SHIFT

We carry out our lattice study of maximal isospin ππ
scattering on gauge ensembles for SU(3) gauge theory with
two staggered flavors which become Nf ¼ 8 dynamical,
degenerate light flavors in the continuum limit. The
unrooted staggered fermion action is improved with a single
nHYP smearing step [36–38]. The gauge action includes
both fundamental and adjoint plaquette terms. The phase

structure of this lattice action as well as the low lying
hadronic spectrum have been presented in Refs. [13–15,39].
In the continuum limit, the four tastes of each staggered

flavor become degenerate, and the full SULð8Þ ×
SURð8Þ → SUVð8Þ chiral symmetry breaking pattern is
recovered with 63 PNGBs. Any two of the Nf ¼ 8 fermion
flavors can be chosen to transform under an SU(2)
subgroup of this SU(8), with the remaining 6 transforming
as singlets. For 2 → 2 PNGB scattering in the maximal
I ¼ 2 isospin channel of this SU(2) subgroup, there is
therefore no mixing with two particle states involving the
other 6 flavors. Equivalently, two PNGBs in an I ¼ 2 state
also belong to an irreducible representation of the full
SU(8). This property makes a complete coupled channel
analysis unnecessary.
To better understand how lattice artifacts affect the global

symmetries, consider the subgroup SUVð2Þ × SUVð4Þ ⊂
SUVð8Þ. This SUVð2Þ rotates between the two staggered
flavors and is exact even at finite lattice spacing, and
SUVð4Þ is the continuum symmetry for a single staggered
flavor. The four tastes of each staggered flavor lead to 16
tastes of pseudoscalar bilinears, an SU(4) adjoint 15 and
singlet 1. Each of these 16 pseudoscalar tastes may trans-
form in the adjoint 3 or singlet 1 representation of SUVð2Þ,
for a total of 64 pseudoscalars corresponding to the adjoint
63 and singlet 1 of SUVð8Þ. The 16 tastes are designated by
the spin-taste structure γ5 ⊗ ξF [40].
At finite lattice spacing, the SUVð4Þ taste symmetry is

explicitly broken atOða2Þ to SO(4) and atOða2p2Þ to SW4,
the discrete lattice spin-taste group [41,42]. The γ5 ⊗ ξ5
nonsinglet pseudoscalars become the only three exact
PNGBs in the chiral limit, with the remaining sixty having
masses proportional to the lattice spacing. The spectral study
has revealed that the taste splitting of the 63-plet masses are
on the order of 20%–30% [14]. Lattice artifacts generate
irrelevant four-fermion operators whichmix the ξF tastes, so
that maximal isospin 2 → 2 scatting can involve coupling
between two particle states of other tastes at finite lattice
spacing. However, such mixing should be highly sup-
pressed, particularly for the scattering of pseudoscalars in
an SO(4) irrep at lowmomentum. Therefore, wewill assume
it sufficient to study a single (diagonal) taste channel.
We consider the 2 → 2 s-wave scattering of pseudosca-

lars with spin-taste structure γ5 ⊗ ξ5 in the maximal isospin
I ¼ 2 channel of SUVð2Þ. Denoting the staggered flavors as
ðχ1; χ2Þ, this spin-taste structure corresponds to the dis-
tance-zero interpolating operator πþðxÞ ¼ χ̄2ðxÞϵðxÞχ1ðxÞ,
with staggered phase ϵðxÞ ¼ ð−1Þxþyþzþt. We probe the
I ¼ 2 s-wave scattering channel with the interpolating
operator constructed from two PNGBs at rest.

OI¼2ðtÞ ¼ πþðtÞπþðtþ 1Þ ð1Þ

where the individual PNGB operators are projected onto
zero spatial momentum
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πþðtÞ ¼
X
x⃗

χ̄2ðxÞϵðxÞχ1ðxÞ: ð2Þ

We separate the operators by one time slice to avoid the
projection onto unwanted states from Fiertz rearrangement
identities [43–45]. The I ¼ 2 two point correlation function
is then given by

CI¼2ðt; t0Þ ¼ hOI¼2ðtÞOI¼2ðt0Þ†i
¼

X
x⃗1;…;x⃗4

hπþðt4; x⃗4Þπþðt3; x⃗3Þπþðt2; x⃗2Þ†

× πþðt1; x⃗1Þ†i ð3Þ

with t1 ¼ t0, t2 ¼ t0 þ 1, t3 ¼ t, and t4 ¼ tþ 1. Two types
of Wick contractions contribute to the correlation function,
the so called “direct” (D) and “crossed” (C) channels.

CI¼2ðt; t0Þ ¼ CDð13; 24Þ þ CDð14; 23Þ
− CCð1324Þ − CCð1423Þ; ð4Þ

CDðik; jlÞ ¼
X
x⃗i ;x⃗j ;
x⃗k;x⃗l

Tr½G†
xkxiGxkxi �Tr½G†

xlxjGxlxj �; ð5Þ

CCðijklÞ ¼
X
x⃗i ;x⃗j ;
x⃗k;x⃗l

Tr½GxkxiG
†
xkxjGxlxjG

†
xlxi �; ð6Þ

where Tr½…� denotes the color trace and Gxy is a point
propagator from y to x. The CD and CC correlators may
instead be constructed from Green’s functions computed on
wall sources [43,44] satisfying

X
x0
Dx;x0GW

x0;t0
¼

X
y⃗

δx;ðy⃗;t0Þ: ð7Þ

By inverting on a wall source at ti ¼ t0 and tj ¼ t0 þ 1, we
construct the Wick diagrams for the I ¼ 2 correlation
function with only 2Nc inversions per configuration:

CW
D ðik; jlÞ ¼

X
x⃗k;x⃗l

Tr½GW†
xk;tiG

W
xk;ti �Tr½GW†

xl;tjG
W
xl;tj �; ð8Þ

CW
C ðijklÞ ¼

X
x⃗k;x⃗l

Tr½GW
xk;tiG

W†
xk;tjG

W
xl;tjG

W†
xl;ti �; ð9Þ

which are equivalent to Eqs. (5) and (6) up to terms with
open quark lines which produce gauge-variant noise. We
choose not to gauge fix, allowing the gauge variant terms to
average out in the ensemble average rather than being
removed by explicit gauge fixing. This is sometimes
referred to as the “moving wall” method [45]. From the
same wall sources, we also construct the two point
correlation function of πþ at rest and extract the PNGB
mass and decay constant.

In this work we restrict our attention to low momentum
scattering, where the scattering phase shift may be
expanded in powers of k2=M2

π.

k cot δIðkÞ ¼ 1

aI
þ 1

2
rIM2

π

�
k2

M2
π

�
þO

�
k4

M4
π

�
; ð10Þ

where aI and rI are the s-wave scattering length and
effective range respectively in the isospin I channel. We
have suppressed angular momentum indices on these
quantities.
The gauge ensembles used in this study are detailed in

Table I. A multiexponential fitting procedure is applied to
the I ¼ 2 correlation function as well as the πþ two point
function. On each gauge ensemble and for each correlation
function, we apply a consistent fitting procedure and
statistical analysis. Energy levels are extracted with a three
state cosh fit using the full covariance matrix between time
slices. In the case of the I ¼ 2 correlation function, an extra
constant is added to the fit function to account for a wrap
around effect where each of the PNGBs propagate in
opposite directions. The second excited state, being the
highest fit state in the correlation function, is assumed to be
excited state contaminated and is discarded. In principle the
first I ¼ 2 excited state can be used to probe larger
scattering momenta at a fixed quark mass. However, we
have found that the first excited state energies on our
ensembles correspond to scattering momenta outside of the
radius of convergence of the effective range expansion
Eq. (10). Therefore in this study we focus our attention
entirely on the ground state I ¼ 2 energy level on each
ensemble.
To completely control the fit range systematics, we apply

an extension of the Akaike information criterion (AIC) [46]
studied recently by Jay and Neil to average over fits to
correlation functions in lattice QCD [47]. Each fit is
assigned a probability PrðMjDÞ as

−2lnðPrðMjDÞÞ¼−2lnðPrðMÞÞþχ2minþ2kþ2Ncut; ð11Þ

where PrðMÞ is the prior given to each fit, which we take to
be uniform, χ2min is the minimum χ2 which is −2 ×
ðmax log likelihoodÞ for each fit, k is the number of model
parameters used in the fit, and Ncut is the number of data
points cut out by the fit window. The extended AIC
probability is then used to average over the best fit values
of the parameters in each fit, as well as to average the
bootstrap error bars. In our fits, we have a good signal to
noise ratio all the way across the lattice, allowing us to
always take tmax ¼ T=2. Therefore, we need only control
the tmin systematic through this procedure. In all cases, we
find that the AIC averaged result is in good agreement with
the value extracted from picking a single fit where the
excited state contamination has plateaued with tmin, though
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the AIC average generally assigns a slightly larger overall
error bar than choosing a single fit.
The scattering phase shift is computed via the Lüscher

procedure from the ground state energy of the I ¼ 2
correlation function. For two identical scalars in an s-wave,
the Lüscher finite volume quantization condition [29] is
given by

k cot δðkÞ ¼ 2π

L
π−3=2Z00

�
1;
k2L2

4π2

�
; ð12Þ

k2¼1

4
E2
ππ−M2

π; Z00ð1;q2Þ¼
1ffiffiffiffiffiffi
4π

p
X
n⃗∈Z3

1

n⃗2−q2
: ð13Þ

Each two-PNGB energy level extracted from the I ¼ 2
correlation function yields a corresponding determination
of the scattering phase shift at scattering momentum k2.
The scattering observables k2 and k cot δ depend system-
atically on the fit range choice for both the I ¼ 2 and
PNGB correlation functions. This systematic is controlled
by multiplying the AIC distributions to form a joint

distribution in ðtmin;π; tmin;I¼2Þ and averaging against this
distribution.
The results of the multiexponential fitting and scattering

analysis on each ensemble are shown in Table II, where
errors reflect statistical plus fit systematic errors processed
through the AIC procedure. The values of the PNGB mass
and decay constant reported here are from the new analysis
with wall sources as described above. We use the normali-
zation of the PNGB decay constant corresponding to the
QCD value Fπ ¼ 92.2ð1Þ MeV as in Ref. [14]. The results
are consistent within statistical errors compared to
Ref. [14], but errors have shrunk considerably due a
combination of the fit range systematic control through
the AIC procedure, higher availability of gauge statistics
for certain ensembles, and perhaps a statistics gain through
the use of wall sources. We have restated the values of the
singlet scalar mass computed in [14] for convenience
because we will make use of it in Sec. III. In addition to
the basic quantities in lattice units, we have included values
for certain ratios that will be useful in Sec. III.
The scattering length and effective range are in principle

independent observables, and are sensitive to a different set

TABLE I. Summary of statistics for each stream, specifying the lattice volume, the fermion mass am, and the trajectory length τ (in
molecular dynamics time units, MDTU) used in the configuration generation via the hybrid Monte Carlo algorithm. All streams use bare
coupling βF ¼ 4.8. For each stream, we perform measurements each “S” MDTU, which provides Nmeas measurements from the stated
number of thermalized MDTU. We reduce autocorrelations by combining LBin measurements into NBin ‘binned’ samples, choosing LBin
by analyzing autocorrelations of the PNGB and I ¼ 2 correlation functions.

Volume am τ MDTU S Nmeas LBin NBin

243 × 48 0.00889 1.0 24480 40 613 4 153
323 × 64 0.00889 1.0 5960 40 150 8 18

5960 40 150 8 18
5960 40 150 8 18
5960 40 150 8 18

243 × 48 0.0075 1.0 9680 40 243 4 60
323 × 64 0.0075 1.0 24600 40 616 4 154
483 × 96 0.0075 1.0 19690 10 1970 8 246

19580 10 1959 8 244
323 × 64 0.005 2.0 2520 40 64 1 64

2520 40 64 1 64
3160 40 80 1 80

483 × 96 0.005 1.0 3950 10 396 8 49
3140 10 315 8 39

483 × 96 0.00222 1.0 2048 16 129 3 43
1168 16 74 3 24

643 × 128 0.00125 0.5 1296 36 37 4 9
1296 36 37 4 9
1296 36 37 4 9
1920 40 49 4 12
3132 36 88 4 22
1080 40 28 4 7
3132 36 88 4 22
1520 40 39 4 9
3132 36 88 4 22
920 40 24 4 6
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of low energy parameters in an EFT. We assess the
significance of the effective range contribution to the
scattering phase shift in Fig. 1 by plotting Mπ=k cot δ
against the effective range expansion parameter for the
gauge ensembles for which we have two volumes with the
same am. For comparison we show the leading order
dilaton EFT prediction with the dotted and dashed lines.
These curves have been determined by fixing the dilaton
EFT parameters through a global fitting procedure which
we explain in detail below. While the data points for the
same am tend to lie within error bars, data shows a clear
downward trend in correspondence with the dilaton EFT
prediction, indicating a non-negligible sensitivity to the
effective range term. The leftmost point with blue triangular
marker corresponds to the ensemble with am ¼ 0.0075 and
volume 483 × 96 where we have very high statistics. This
point is in clear tension with the tree level dilaton EFT
prediction. The overall validity of the tree level dilaton EFT
description of the scattering data is discussed further in
Sec. III.

A. Accounting for finite-volume effects

To compare the lattice data of Table II with the
predictions of a continuum EFT, we must first ensure that
finite-volume effects in all lattice determined quantities are
small relative to their quoted uncertainties. We have data
taken for many quantities at multiple lattice volumes using
the same fermion mass (overlapping volumes), enabling
estimation of these effects.
It can be seen in Table II that central values for aMπ and

aFπ taken using the same fermion mass change by an
amount greater than their statistical uncertainties between
lattice volumes. We therefore perform a dedicated infinite
volume extrapolation of the PNGB masses and decay
constants in this section, and use this extrapolated data
in the fit to dilaton EFT in Sec. III.
We do not have data for aMσ at multiple lattice volumes,

so the volume dependence cannot be inferred directly from
data, and we will not perform a dedicated infinite-volume
extrapolation for this quantity. We will attribute the volume
dependence of the scattering phase shift in Table II entirely
to the scattering momentum k2 dependence coming from
the effective range, as discussed above and illustrated
in Fig. 1.
To extrapolate aMπ and aFπ to the infinite volume limit,

we use the following model

MπðLÞ ¼ Mπ

�
1þ α

M2
π

F2
π

e−MπL

ðMπLÞ3=2
�
; ð14Þ

FπðLÞ ¼ Fπ

�
1 − β

M2
π

F2
π

e−MπL

ðMπLÞ3=2
�
: ð15Þ

In these formulas, Mπ and Fπ represent the extrapolated
mass and decay constant. The parameters α and β are
extracted from a fit to lattice data, and crucially, we assume
that they have no dependence on the fermion mass.
Expressions similar to Eqs. (14) and (15) have been derived
earlier in the literature [48–53], assuming that the PNGBs
are well described by chiral perturbation theory.

FIG. 1. Plot showing the variation of the scattering phase shift
with scattering momentum for the three largest fermion masses.
The points indicate the lattice data, given in Table II, whereas the
lines represent tree level dilaton EFT predictions, as explained in
Sec. III.

TABLE II. Physical observables extracted from PNGB and I ¼ 2 correlation functions on each gauge ensemble, with the addition of
the 0þþ massMσ results computed in Ref. [14]. Here, a indicates the lattice spacing. Error bars represent statistical plus fit systematics
determined through the AIC procedure.

Volume amq aMπ aFπ aMσ a2k2 ak cot δ M2
π=F2

π k2=M2
π Mπ=k cot δ

243 × 48 0.00889 0.22754(21) 0.051862(77) 0.279(30) 0.00193(15) −0.585ð38Þ 19.250(62) 0.0374(29) −0.391ð24Þ
323 × 64 0.00889 0.225501(85) 0.052449(41) � � � 0.000745(43) −0.602ð35Þ 18.485(24) 0.01466(85) −0.376ð19Þ
243 × 48 0.00750 0.20949(28) 0.047428(94) � � � 0.00240(17) −0.491ð31Þ 19.51(10) 0.0547(40) −0.428ð25Þ
323 × 64 0.00750 0.20616(11) 0.048171(51) 0.2573(66) 0.000830(45) −0.548ð25Þ 18.316(36) 0.0195(11) −0.377ð17Þ
483 × 96 0.00750 0.205686(20) 0.048220(15) � � � 0.0002410(29) −0.5292ð56Þ 18.196(11) 0.005696(68) −0.3887ð41Þ
323 × 64 0.00500 0.16725(21) 0.039196(81) 0.182(24) 0.001117(75) −0.429ð25Þ 18.207(78) 0.0399(27) −0.391ð21Þ
483 × 96 0.00500 0.165841(52) 0.039823(28) � � � 0.000264(16) −0.489ð26Þ 17.343(24) 0.00961(57) −0.340ð18Þ
483 × 96 0.00222 0.10972(10) 0.027104(44) 0.131(20) 0.000416(25) −0.330ð17Þ 16.388(60) 0.0346(22) −0.333ð17Þ
643 × 128 0.00125 0.081971(67) 0.021419(27) 0.089(32) 0.000216(10) −0.265ð11Þ 14.646(48) 0.0321(15) −0.309ð12Þ
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We perform a least-squares method fit of Eqs. (14) and
(15) to all the data we have in Table II for the PNGBmasses
and decay constants on overlapping volumes (14 points
total). Correlations between the lattice measurements are
accounted for in this fit. We find that χ2min=Ndof ¼ 2.05,
indicating slight tension between the data and this crude
model. The central values and standard errors for α and β
indicated by the fit are

α ¼ 1.530ð78Þ; β ¼ 1.62ð12Þ: ð16Þ

In Figs. 2 and 3, lattice data at am ¼ 0.0075 are plotted
on top of the curves given by Eqs. (14) and (15), using
parameter values taken from the fit. The plots confirm that
the variation in the PNGB mass and decay constant with

lattice size is comfortably larger than the statistical uncer-
tainties, and that the model describes this variation rea-
sonably well.
We use this model to estimate the infinite volume

extrapolated values of aMπ and aFπ at all of the remaining
fermion masses, for which data at only one lattice volume is
available. The results of all the extrapolations are presented
in Table III. This extrapolated data will be compared with
EFT predictions in the following section.
We have estimated the total uncertainty in the extrapo-

lated quantities by adding in quadrature their statistical
uncertainties (shown in Table II) to the shift in central value
due to the infinite volume extrapolation. This shift is given
by the difference between that quantity at the largest
available lattice volume in Table II and the corresponding
central value of that quantity in Table III. We assigned
uncertainties in this conservative way, because the model
we are using for these extrapolations is only approximate.
These total uncertainties are presented in Table III.
As the uncertainties in Table III arise from systematic

finite volume effects to a great extent, which we only
estimate using an approximate model, we should not
assume that correlations between these extrapolated quan-
tities can be properly obtained from the statistical corre-
lations between the lattice measurements in Table II. We
therefore regard all quantities in Table III as completely
uncorrelated.

III. DILATON EFT

The EFTwhich we employ describes the interaction of a
single scalar dilaton with the N2

f − 1 PNGBs associated
with the breaking of the approximate global symmetry
group G ¼ SUðNfÞL × SUðNfÞR to the diagonal subgroup
SUðNfÞV . It is employed to compute the low energy
properties of an underlying gauge theory capable of
producing a light composite scalar along with the
composite PNGBs. In terms of the PNGB fields π and
an additional real scalar field χ, the Lagrangian of the EFT
is given below. See [33] and references therein.

L ¼ 1

2
∂μχ∂μχ þ Lπ þ LM − VΔðχÞ; ð17Þ

FIG. 2. Dependence of the PNGB mass aMπ on the inverse of
the spatial extent of the lattice L for the fermion mass
am ¼ 0.0075. The gray line shows the L–dependence predicted
by the model in Eq. (14), using the best fit values for the
parameters α and β indicated in Eq. (16). For the range of lattice
volumes for which we have data, the finite-volume correction to
aMπ is clearly significant.

FIG. 3. Dependence of the PNGB mass aFπ on the inverse of
the spatial extent of the lattice L for the fermion mass
am ¼ 0.0075. The gray line shows the L–dependence predicted
by the model in Eq. (15).

TABLE III. Result of the extrapolation aMπ and aFπ to the
infinite volume limit. The central values and uncertainties for
these quantities will be used in the fit to dilaton EFT in Sec. III.
Details on how these extrapolations were performed are provided
in the text.

am aMπ aFπ

0.00889 0.22525(27) 0.052491(59)
0.0075 0.205680(20) 0.048233(20)
0.005 0.16575(10) 0.03982(28)
0.00222 0.1085(12) 0.02742(32)
0.00125 0.08115(82) 0.02165(23)
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where

Lπ ¼
f2π
4

�
χ

fd

�
2

Tr½∂μΣð∂μΣÞ†�: ð18Þ

The matrix field Σ ¼ exp ½2iπaTa=fπ� transforms as Σ →
ULΣU

†
R under the action of unitary transformations

UL;R ∈ SUðNfÞL;R. It also satisfies the nonlinear con-
straints ΣΣ† ¼ 1Nf

. The Ta are the generators of SU(8),

normalized so that Tr½TaTb� ¼ 1
2
δab.

The explicit breaking of the global internal symmetry,
necessary for the implementation of lattice computations, is
described by the term

LM ¼ m2
πf2π
4

�
χ

fd

�
y
Tr½Σþ Σ†�; ð19Þ

where m2
π ≡ 2Bπm vanishes when the fermion mass m of

the underlying theory is set to zero. The parameter y can be
interpreted as the scaling dimension of the chiral conden-
sate of the underlying gauge theory at strong coupling [54].
The dilaton potential VΔðχÞ, employed in Ref. [33] and

discussed earlier in Refs. [55,56], is given by

VΔðχÞ ¼
m2

dχ
4

4ð4 − ΔÞf2d

�
1 −

4

Δ

�
χ

fd

�
Δ−4

�
: ð20Þ

It contains two contributions. One is a scale-invariant term
(∝ χ4) representing the corresponding operators in the
underlying gauge theory. The other (∝ χΔ) captures the
leading-order effect of the scale deformation in the under-
lying theory. The potential has a minimum at χ ¼ fd > 0,
with mass md for the dilaton.
In Ref. [33], this EFT was used to fit lattice data for the

SU(3) gauge theory with Nf ¼ 8 Dirac fundamental
fermions. A key feature of the EFT is that the dilaton
mass (the explicit breaking of scale symmetry) can be tuned
as small as necessary with fd held fixed. It has been
suggested in Refs. [30,57–59] that the explicit breaking in
the underlying theory, and also in the EFT as a conse-
quence, can be made arbitrarily small by tuning the number
of flavors Nf arbitrarily close to the critical value Nc

f at
which confinement gives way to IR conformality. The form
of VΔðχÞ interpolates among several specific forms found
in the literature. The choiceΔ ¼ 2 gives the Higgs potential

of the standard model, while the choice Δ → 4 corresponds
to a nearly marginal deformation of scale symmetry [60].
The mass deformation in Eq. (19) contributes, in the

vacuum hΣi ¼ 1, an additive term to VΔ. The entire
potential is

WðχÞ ¼ VΔðχÞ −
Nfm2

πf2π
2

�
χ

fd

�
y
; ð21Þ

leading to a new minimum for χ which determines its
vacuum value hχi ¼ Fd > fd. Minimizing the potential
leads to the transcendental equation for Fd shown below

F4−y
d

ð4 − ΔÞf4−yd

�
1 −

�
fd
Fd

�
4−Δ

�
¼ yNff2πm2

π

2f2dm
2
d

; ð22Þ

which can be solved numerically to obtain Fd for a given
choice of the fermion mass and EFT parameters.
By employing the value hχi ¼ Fd in Eqs. (18) and (19),

and properly normalizing the PNGB kinetic term, one has
simple scaling relations for the PNGB decay constant Fπ

and PNGB mass Mπ:

F2
π

f2π
¼ F2

d

f2d
; ð23Þ

M2
π

m2
π
¼

�
F2
d

f2d

�y
2
−1
: ð24Þ

There is also a new curvature at the potential minimum,
determining the dilaton mass Md. In terms of Fd=fd:

M2
d

F2
d

¼ m2
d

ð4 − ΔÞf2d

�
4 − yþ ðy − ΔÞ

�
fd
Fd

�
4−Δ

�
: ð25Þ

A. PNGB scattering

The Feynman diagrams that contribute to the scattering
process πaπb → πcπd at tree level are shown in Fig. 4. Here
ðabcdÞ≡ Tr½TaTbTcTd�, all four momenta are directed
inward, and s≡ ðpa þ pbÞ2, t≡ ðpa þ pcÞ2 and u≡
ðpa þ pdÞ2 are the Mandelstam variables.
The dimensionless scattering amplitude is then given at

tree level by

iMab;cdðs; t; uÞ ¼ 2i
3F2

π
f½ðabcdÞ þ ðadcbÞ�ð6M2

π − 3tÞ þ ½ðacdbÞ þ ðabdcÞ�ð6M2
π − 3uÞ þ ½ðadbcÞ þ ðacbdÞ�ð6M2

π − 3sÞg

− i
δabδcd

F2
d

ðsþ ðy− 2ÞM2
πÞ2

s−M2
d

− i
δacδbd

F2
d

ðtþ ðy− 2ÞM2
πÞ2

t−M2
d

− i
δadδbc

F2
d

ðuþ ðy− 2ÞM2
πÞ2

u−M2
d

: ð26Þ
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We examine a scattering process in which the PNGBs
belong to the same SU(2) triplet, that is, they are each
bound states of a single SU(2) fermion doublet. When
Nf > 2, for example Nf ¼ 8 in our case, one could
imagine that the chosen fermion doublet carries electro-
weak quantum numbers and the others are electroweak
singlets. The triplet of SU(2) PNGBs can scatter in three
independent isospin channels I ¼ 0, 1 and 2. We focus here
on the I ¼ 2 channel since, as noted in Sec. II, the lattice
computation in the underlying gauge theory then contains
no fermion-line-disconnected diagrams. The scattering
amplitude in this channel takes the form

MI¼2ðs; t; uÞ ¼ 2M2
π − s
F2
π

−
1

F2
d

ðtþ ðy − 2ÞM2
πÞ2

t −M2
d

−
1

F2
d

ðuþ ðy − 2ÞM2
πÞ2

u −M2
d

: ð27Þ

The first term in this expression comes from the chiral-
Lagrangian four-point interaction while the next two (pole)
terms arise from exchange of the dilaton scalar in the t and
u channels.
For our purposes, we develop MI¼2ðs; t; uÞ in a partial

wave expansion:

MIðs; t; uÞ ¼ 32π
X∞
l¼0

ð2lþ 1ÞPlðcos θÞtIlðsÞ; ð28Þ

tIlðsÞ ¼
1

64π

Z þ1

−1
dðcos θÞPlðcos θÞMIðs; t; uÞ: ð29Þ

For the l ¼ 0 partial wave component, this gives

t20ðsÞ ¼
2M2

π − s
32πF2

π
þ 2k2 −M2

d − 2M2
πðy − 2Þ

16πF2
d

þ ½M2
d þ ðy − 2ÞM2

π�2
64πF2

dk
2

log

�
4k2 þM2

d

M2
d

�
: ð30Þ

with s ¼ 4ðk2 þM2
πÞ and k ¼ jk⃗j is the PNGB spatial

momentum in the center of mass frame.
For any partial wave and isospin channel, the tree-level

amplitude tIlðsÞ can be expressed in terms of the scattering
phase shift δIl as

tIlðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

π þ k2
p
k cot δIl − ik

; ð31Þ

where k2lþ1 cot δl has a power-series expansion in k2 valid
for k2 ≪ M2

π. For the case l ¼ 0, this expansion takes the
form shown in Eq. (10).
For the dilaton EFT, we then have

MπaI¼2 ¼ −
M2

π

16πF2
π

�
1 − ðy − 2Þ2 f

2
π

f2d

M2
π

M2
d

�
; ð32Þ

and

MπrI¼2 ¼ −
16πF2

π

M2
π

·
1

1 − ðy−2Þ2f2πM2
π

f2dM
2
d

þ 64πF2
π

M2
π

·
1þ ðy−2Þf2πM2

π

f2dM
2
d

þ ðy−2Þ2f2πM4
π

2f2dM
4
d

ð1 − ðy−2Þ2f2πM2
π

f2dM
2
d

Þ2
: ð33Þ

These expressions give the scattering length and effective
range in terms of quantities directly measured on the lattice
(F2

π, M2
π and M2

d) and two dimensionless fit parameters of
the dilaton EFT (y and f2π=f2d). We note that the expressions
take on simpler forms, derivable from a chiral Lagrangian
with no dilaton present, when either f2π=f2d → 0 or
ðy − 2Þ → 0. The first is a limit in which the dilaton
decouples from the PNGBs. The second leaves in place
a dilaton contribution to the full scattering amplitude
(second line of Eq. (26)), but eliminates it for the I ¼ 2
channel (second and third terms of Eq. (27)) at threshold
where s ¼ 4M2

π .

B. Comparison with lattice data

In this section, we first assess qualitatively whether the
dilaton EFT is compatible with the lattice data for scatter-
ing. We then perform a global fit of all the lattice data to the
leading order dilaton EFT, allowing quantitative assessment
of the goodness of fit and extraction of the best fit values for
the EFT parameters. Finally, we discuss the interpretation
of the global fit.

FIG. 4. Feynman diagrams in dilaton EFT which appear in the
π–π scattering amplitude at tree level. The dashed lines represent
PNGBs and the solid lines represent the dilaton.
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In Fig. 5, we plot the s–wave I ¼ 2 scattering length
against M2

π=F2
π . The black dashed line represents the

leading order EFT prediction obtained from Eq. (32).
The gray band represents a rough estimate of the range
of values which could be accommodated by higher order
corrections to the scattering length in dilaton EFT. The
points represent lattice data taken for all the fermion masses
and lattice volumes appearing in Table II (9 points total),
after extrapolation to the infinite volume and zero scattering
momentum limits, needed for direct comparison with
the EFT.
To place the points in Fig. 5, we use the infinite volume

extrapolated values forM2
π=F2

π, shown in Table III. We also
further process the lattice data for Mπ=k cot δ to determine
the scattering lengths. This can be viewed as an extrapo-
lation of lattice data taken at nonzero scattering momentum
to the zero momentum point. To extract the scattering
lengths, we use Eq. (10), along with lattice data for the
scattering momenta and the dilaton EFT expression for the
effective range shown in Eq. (33). Use of the dilaton EFT
expressions requires knowledge of parameters, such as y
and f2π=f2d. We take these values from a global fit of the
dilaton EFT to lattice data, which we show in Table IV.
The position of the gray band is given by

aband ¼ aI¼2

�
1� M2

π

ð4πFπÞ2
�
; ð34Þ

where aI¼2 represents the tree level dilaton EFT prediction
for the scattering length from Eq. (32). The correction term
is chosen to scale the same way as a generic next to leading
order (NLO) correction with size given by naive dimen-
sional analysis.
In Fig. 5, most but not all of the points overlap with the

black dashed line within uncertainties, indicating that the
tree level dilaton EFTapproximates the data well. However,
with the majority of points lying below the dashed line,
there is mild evidence of a systematic discrepancy between
the tree level theory and lattice data. All of the points lie
comfortably within the gray band though, which suggests
that small higher order corrections in the dilaton EFT could
plausibly improve the agreement.
To quantify the level of agreement between the tree level

EFT and the available data, we perform a global fit
incorporating the two extrapolated quantities aMπ and
aFπ from Table III, and the raw lattice data for aMd
and Mπ=k cot δ shown in Table II, where a denotes the
lattice spacing. The uncertainties in aMπ and aFπ are
mainly systematic rather than statistical, arising from the
use of an approximate model to estimate the size of finite–
volume effects, so we treat aMπ and aFπ as uncorrelated
with all other quantities entering the fit. Similarly aMd
measurements are each taken on their own lattice ensem-
bles, and so are uncorrelated with the other fitted quantities.
This yields 24 quantities to fit. We also use lattice data for
a2k2, to account for the momentum dependence expected
for the scattering phase shift.
We then fit tree-level dilaton EFTexpressions to this data

set. First, the EFT determination of aFπ can be found from
solving the transcendental equation in Eq. (22) and using
the scaling relation in Eq. (23). Then the PNGB and dilaton
masses can be determined from Eqs. (24) and (25) using
this result. The EFT prediction for the scattering phase shift
Mπ=k cot δ is made using Eqs. (10), (32) and (33) along
with data for the scattering momentum. There are then 6
independent free parameters from the EFT that appear in
these expressions. We take them to be fy; aBπ; f2π=f2d;
Δ; a2f2π; m2

d=f
2
dg.

To do the fit, we construct a chi-square function bilinear
in the differences between the four quantities for which we
have lattice data and their EFT predictions. Then, we
minimize the chi-square function with respect to the 6 EFT
parameters. We find that χ2min=Ndof ¼ 3.03 for
Ndof ¼ 24 − 6 ¼ 18, indicating that the tree level EFT is
not a perfect description.
The parameters’ values at this chi-squared minimum are

listed in Table IV. We use these values to make the dilaton
EFT predictions shown in Figs. 1, 5 and 6. The values we
get lie close to the allowed ranges found in earlier dilaton
studies of the Nf ¼ 8 theory [33,58] which reported good
agreement between the tree level EFT and the available
lattice data, but did not consider scattering observables. The
estimated uncertainties of the fit parameters are obtained by

FIG. 5. Points representing the scattering lengths determined
from lattice data are plotted against the finite-volume extrapolated
quantity M2

π=F2
π. They are compared with the tree level dilaton

EFT prediction given in Eq. (32), and shown here as the straight
black dashed line. The central values from the global fit are input
to obtain this dependence. The gray band plotted around the
dashed line represents a rough estimate for the size of higher
order corrections to the EFT prediction, and is given by Eq. (34).
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calculating the inverse Hessian of the chi-squared function
at its minimum, to extract the standard errors. These
parameter uncertainties are somewhat smaller than those
reported in the earlier studies, reflecting the smaller
uncertainties in this more recent lattice data set.
However these errors, shown for completeness, should
be interpreted with caution. As they were extracted from a
tree level fit, the best fit values for the EFT parameters may
move outside the ranges indicated once higher order effects
within the dilaton EFT are accounted for.
Even a fundamentally accurate low energy EFT may fail

to fit lattice data if the precision of the data exceeds the
theoretical error introduced by truncating the EFTat a fixed
order in its low energy expansion. This consideration,
together with the good qualitative agreement between the
tree level EFT and the data suggest that dilaton EFT is a
good low energy description of this gauge theory, despite
the chi-squared per degree of freedom of the global fit being
somewhat larger than one. However, more precise lattice
measurements and higher order calculations within the
dilaton EFT are now well motivated to confirm this picture.
Our global fit favors ðy − 2Þ2f2π=f2d ∼ 10−3, ensuring

that Eq. (32) for the scattering length describes a straight
line with gradient −1=16π to a high level of approximation.
It can be seen in Fig. 5 that this relationship is also roughly
satisfied by the lattice data. This is also the same prediction
for the scattering length as in chiral perturbation theory
(without any light scalar state). However we note that the
Oð100%Þ variation of Fπ with fermion mass evident in the
lattice data could not be explained using chiral perturbation
theory, and so it would provide a poor global fit to this
dataset considered as a whole. The issues encountered
when comparing chiral perturbation theory with lattice data
for scattering alongside other observables are discussed for
the Nf ¼ 6 theory in [61] and for the Nf ¼ 8 theory
in [15,16].

C. Other isospin channels

In future, scattering lengths in other isospin channels
could be measured for the Nf ¼ 8 theory on the lattice,
allowing for new independent tests of this dilaton EFT.

Given that the typical size of scattering momenta obtained
on our lattices is much less than the mass splitting between
PNGBs in different taste multiplets, it makes sense to
consider scattering processes involving only the lightest
triplet of PNGBs. These PNGBs have insufficient kinetic
energy to scatter into PNGBs with different tastes for the
region of parameter space that we can study on the lattice.
For this lightest triplet of PNGBs, the different possible

scattering channels can be fully specified by their SU(2)
isospin quantum numbers. The dilaton EFT scattering
amplitude in the maximal isospin (I ¼ 2) channels has
already been calculated in Eq. (27), and its l ¼ 0 partial
wave component shown in Eq. (30). The I ¼ 1 amplitude
will have a vanishing l ¼ 0 component due to Bose
symmetry, and we shall not consider it further. Finally,
the I ¼ 0 scattering amplitude is a promising target for
future lattice study, and we shall calculate the l ¼ 0
scattering length using the dilaton EFT here.
The I ¼ 0 amplitude has a pole coming from dilaton

exchange in the s-channel. It can therefore become diver-
gent for certain physical momentum values, if Md > 2Mπ .
However, the EFT still remains weakly coupled in this
regime. Also, for scattering near threshold, this s-channel
contribution to the amplitude is sensitive to the three-point
interaction between a dilaton and PNGB pairs for dilaton
momenta k2 ∼ 4M2

π . This three-point interaction is unsup-
pressed when y is close to 2, ensuring that the dilaton
makes a large contribution to the scattering amplitude near
threshold in this channel.
Using Eq. (29) and the I ¼ 0 equivalents of Eqs. (31)

and (10), we can extract the scattering length in the I ¼ 0
channel

MπaI¼0 ¼ 7M2
π

32πF2
π

þ f2π
f2d

M4
πðM2

dð5y2 þ 4yþ 20Þ − 8M2
πðy − 2Þ2Þ

32πF2
πM2

dðM2
d − 4M2

πÞ
:

ð35Þ

The first term in this expression is derivable from the chiral
Lagrangian, and includes no dilaton contribution. The
second term arising from exchanged dilatons vanishes in
the limit f2π=f2d → 0 when the dilaton decouples from the
PNGBs. However, unlike in the I ¼ 2 case, this term
remains large when y − 2 ≪ 1.
In Fig. 6, the I ¼ 0 scattering length predicted from

dilaton EFT is plotted. On the same set of axes, the tree-
level chiral Lagrangian prediction for the scattering length,
corresponding to the first term in Eq. (35) is also plotted for
reference. It can be seen that the dilaton EFT prediction for
this quantity differs quite significantly from the chiral
Lagrangian prediction except near the chiral limit, when
M2

π=F2
π becomes small, and the PNGBs become signifi-

cantly lighter than the dilaton. The spike appearing in the

TABLE IV. Best fit values and standard errors for the
six dilaton EFT parameters taken from the global fit.
These uncertainty ranges do not take into account the
effects of higher order contributions arising in the EFT.

Parameter Value

y 2.1321(61)
aBπ 2.210(60)
f2π=f2d 0.0865(42)
Δ 3.11(20)
a2f2π 5.8ð2.1Þ × 10−5

m2
d=f

2
d 1.28(26)
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dilaton EFT prediction arises from the s-channel pole in the
amplitude. It occurs when M2

d ¼ 4M2
π , which is expected

nearer to the chiral limit than current lattice data.
To make the dilaton EFT prediction, central values from

the global fit have been used to predict the dependence of
M2

d=M
2
π [which appears in Eq. (35)] as the chiral limit is

approached. Due to the uncertainties in many of these
parameters, there is uncertainty in this prediction away
from the regime where lattice data is available
13 < M2

π=F2
π < 20. In particular, the location of the spike

depends on the value chosen for Δ. However, Fig. 6 is
sufficient to capture the qualitative behavior of the scatter-
ing length.
The clear difference between the dilaton EFT and the

chiral Lagrangian predictions for the I ¼ 0 scattering
length (even at distances from the chiral limit currently
accessible on the lattice) make measurement of this
quantity a worthwhile goal for future lattice studies.
Such a measurement provides a complimentary probe of
the interaction strength between the light scalar and the
PNGBs, and would further test the dilaton EFT hypothesis.

IV. CONCLUSION

In this work, we have considered the maximal isospin
s-wave scattering of PNGBs in a nearly conformal gauge
theory known to possess a light scalar state. We have
investigated the possibility that the light scalar, being nearly
degenerate with the PNGBs on the gauge ensembles
considered, may play a significant role in ππ scattering.
While the light scalar pole is not resonant in the I ¼ 2
channel, the state is exchanged in the T- and U-channels
and contributes significantly to the scattering length and

effective range if the coupling of the light scalar to the
PNGBs in the I ¼ 2 channel is not too small.
The nonperturbative lattice determination of the scatter-

ing phase shift through the Lüscher procedure is the first
such analysis carried out in a theory with a confirmed light
composite scalar. By utilizing moving wall sources and the
high gauge statistics available to us, we succeeded in
determining the scattering phase shift to high statistical
precision. The calculation was limited by the fact that ðakÞ2
was small on the available gauge ensembles, leading to a
small signal to noise ratio in the difference Eππ − 2Mπ

compared to Eππ and Mπ individually. Nonetheless, our
results still showed a significant effective range contribu-
tion as demonstrated in Fig. 1. A more detailed study of the
effective range contribution would be desirable in future
studies by utilizing moving frames and further overlapping
volumes.
We compared our data to a leading order dilaton EFT in

order to further understand the lattice results and to assess
whether the leading order dilaton EFT predictions can
provide a good global fit of the data. We have presented for
the first time the leading order expressions for ππ scattering
in the dilaton EFT for the I ¼ 2 and I ¼ 0 channels. The
complete global fit to the data has revealed slight
differences between the predictions of leading order dilaton
EFT and the lattice data.
Our result for the scattering length in the I ¼ 0 channel

expressed in Eq. (35) and illustrated in Fig. 6 points to a
clear difference between the dilaton EFT and the chiral
Lagrangian predictions, even at values of M2

π=F2
π currently

accessible on the lattice. While the I ¼ 0 scattering
provides additional numerical challenges on the lattice,
these new results from the EFT motivate strongly a
dedicated lattice study of this channel.
With these results, we have demonstrated that PNGB

scattering provides significant information about the
dynamics of nearly conformal gauge theories which exhibit
light scalar states. The scattering phase shifts provide
independent tests of effective descriptions such as the
dilaton EFT. In future work, improved precision in
the extraction of the scattering phase shifts as well as
the exploration of other scattering momenta will provide
stronger tests of the dilatonic effective description. If
discrepancies between the tree level dilaton EFT and lattice
data persist, this is good motivation for considering NLO
terms in the dilatonic effective description.
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