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We investigate the efficiency of a gauge invariant input to a neural network for the path optimization
method. While the path optimization with a completely gauge-fixed link-variable input has successfully
tamed the sign problem in a simple gauge theory, the optimization does not work well when the gauge
degrees of freedom remain. We propose to employ a gauge invariant input, such as a plaquette, to overcome
this problem. The efficiency of the gauge invariant input to the neural network is evaluated for the two-
dimensional Uð1Þ gauge theory with a complex coupling. The average phase factor is significantly
enhanced by the path optimization with the plaquette input, indicating good control of the sign problem.
It opens a possibility that the path optimization is available to complicated gauge theories, including
quantum chromodynamics, in a realistic setup.
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I. INTRODUCTION

Exploring the phase structure of gauge theories at finite
temperature (T) and chemical potential (μ) is an interesting
and important subject not only in particle and nuclear
physics but also in astrophysics. Quantitative understand-
ing of heavy-ion experiments as well as the equation of
state for neutron stars requires nonperturbative information
of quantum chromodynamics (QCD) in the T − μ plane. It
is, however, a difficult task due to the sign problem.
Traditional Monte Carlo approaches work at low density,
but fail in the middle and high density regions.
Recently, several new methods are developed to over-

come the sign problem at high densities, e.g., μ=T ≥ 1. The
complex Langevin method [1,2] is a stochastic quantization
with complexified variables. It is a non-Monte-Carlo
approach and thus free from the sign problem. The
low computational cost allows us to apply it to four-
dimensional QCD at finite density [3–10]. The tensor
renormalization group method [11] is a coarse graining
algorithm using a tensor network. It is also a non-Monte-
Carlomethod.Although the computational cost is extremely
high, it has been vigorously tested even in four-dimensional
theoretical models [12–15]. Recent improved algorithms
considerably reduce the cost [16,17]. The Lefschetz thimble
method [18] is a Monte Carlo scheme that complexifies

variables and determines the integration path by solving an
antiholomorphic flow equation from fixed points such that
the imaginary part of the action is constant. Cauchy’s
integral theorem ensures that the integral is independent
of a choice of the integration path, if the path is given as a
result of continuous deformation from the original path [19],
crosses no poles, and the integral at infinity has no
contribution. The numerical study has been started with
Langevin algorithm [20], Metropolis algorithm [21], and
hybridMonte Carlo algorithm [22]. The high computational
cost is the main bottleneck of this method, but the algorithm
development is overcoming it [23,24]. The path optimiza-
tion method (POM) [25,26], also referred to as the sign-
optimized manifold [27], is an alternative approach that
modifies the integration path by use of the machine learning
via neural networks. The machine learning finds the best
path on which the sign problem is maximally weakened.
The POM successfully works for the complex λϕ4 theory
[25], the Polyakov-loop extended Nambu-Jona-Lasinio
model [28,29], the Thirring model [27,30], the (0þ 1)-
dimensional bose gas [31], the (0þ 1)-dimensional QCD
[32], the two-dimensional Uð1Þ gauge theory with a com-
plexified coupling constant [33], as well as noise reduction
in observables [34]. The recent progress of the complexified
path approaches is reviewed in Ref. [35].
A key issue of the POM in gauge theories is control of

the gauge degrees of freedom. In (0þ 1)-dimensional QCD
at finite density [32], the POM works with and without the
gauge fixing. In higher dimensions, however, the gauge
fixing is required for the neural networks to find an
improved path. The effect of the gauge fixing is discussed
in the two-dimensional Uð1Þ gauge theory with a com-
plexified coupling constant [33]. The average phase factor,
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an indicator of the sign problem, is never improved without
the gauge fixing. As we reduce the gauge degrees of
freedom by the gauge fixing, the average phase factor is
enhanced better.
Based on this result, we propose to adopt a gauge

invariant input for the optimization process. The link
variables are no longer the direct input to the neural
network. We first construct a gauge invariant quantity
and use it as the input. We employ the simplest gauge
invariant input, plaquette, in this study. A similar idea is
employed as a part of lattice gauge equivariant convolu-
tional neural networks [36]. The performance of the POM
with the gauge invariant input is demonstrated in the two-
dimensional Uð1Þ gauge theory with a complex coupling.
The sign problem originates from the imaginary part of the
complex coupling. The above-mentioned several methods
have been tested for this theory [33,37]. Since the analytic
result is available [38–40], we can utilize it for verification
of the simulation results.
This paper is organized as follows. In the next section,

we explain the formulation of the two-dimensional lattice
Uð1Þ gauge theory and the path optimization method. Our
numerical setup and results are presented in Sec. III.
Section IV summarizes this paper.

II. FORMULATION

A. Two-dimensional Uð1Þ gauge action

The gauge action is Wilson’s plaquette action [41]
given by

SG ¼ −
β

2

X

n

ðPn;12 þ P−1
n;12Þ; ð1Þ

where n represents the lattice site, and β ¼ 1=ðgaÞ2 is an
overall constant consisting of the gauge coupling constant g
and the lattice spacing a. P (P−1) is the plaquette (its
inverse). The definition is

Pn;12 ≔ Un;1Unþ1̂;2U
−1
nþ2̂;1

U−1
n;2; ð2Þ

where μ̂ is a unit vector in the μ direction and Un;μ with
μ ¼ 1; 2 are the Uð1Þ link variables. We impose a periodic
boundary condition in each direction.
In addition to the plaquette, we measure expectation

values of the topological charge Q defined on the lattice,

Q ≔ −
i
4π

X

n

ðPn;12 − P−1
n;12Þ: ð3Þ

In the continuum limit, Q recovers the continuum
form Q ¼ ð1=4πÞ R d2xϵμνFμνðxÞ.
The analytic result of this theory has been obtained

[38–40]. The partition function Z is represented through the
modified Bessel function InðβÞ,

Z ¼
Xþ∞

n¼−∞
InðβÞV; ð4Þ

InðβÞ ≔
1

2π

Z
π

−π
dϕeβ cosϕ−inϕ; ð5Þ

where V ¼ N1N2 is the volume factor with Nμ being the
lattice size in μ direction. Since InðβÞ is well defined for all
complex values of β, the analytic solution is available over
the whole domain of β.

B. Path optimization method with plaquette
and link input

The path optimization method utilizes complexified
dynamical variables to tame the sign problem. In the case
of theUð1Þ gauge theory, the plaquette and the link variable
are extended as

Pn;12 ¼ Un;1Unþ1̂;2U
−1
nþ2̂;1

U−1
n;2; ð6Þ

Un;μ ¼ eigAμðnþμ̂=2Þ≕Un;μe−yn ; ð7Þ

where Aμ ∈ C. The modification of the integral path is
represented by yn ∈ R, originated from the imaginary part
ofAμ, which is evaluated by a neural network consisting of
the input, a single hidden, and the output layers, as follows.
The neural network is a mathematical model inspired by a
brain, which is often used for the machine learning [42–45].
A sufficient number of the hidden layer units with a
nonlinear function called an activation function reproduce
any continuous function, as proven by the universal
approximation theorem [46,47]. The variables in the hidden
layer nodes (hj) and the output (yn) are set as

hj ¼ Fðwð1Þ
ji ti þ bjÞ; ð8Þ

yn ¼ ωnFðwð2Þ
nj hj þ bjÞ; ð9Þ

where i; j ¼ 1;…; 2 × ndeg with the number of the degree of
freedom ndeg and w, b, and ω are parameters of the neural
network. An activation function F defines a relation of data
between two layers, the input and hidden layers aswell as the
hidden and output layers. The activation function is taken to
be a tangent hyperbolic function in this work. Our choice of
the input t ¼ ftig is the plaquette or the link variable.

ðiÞ t ¼ ReP; ImP; ð10Þ

ðiiÞ t ¼ ReU; ImU: ð11Þ

We compare (i) with (ii) in terms of the efficiency of the
neural network. A schematic picture of our neural network
with the plaquette input is given in Fig. 1.
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The expectation value of a complexified observable O is
calculated by

hOi≔ 1

Z

Z
DUOðUÞe−SGðUÞ ¼ 1

Z

Z

C
DUOðUÞe−SGðUÞ;

¼ 1

Z

Z
DU½OeiθjJe−SG j�U∈C;

¼hOeiθipq
heiθipq

; hOipq≔
1

Z

Z
DU½OjJe−SG j�U∈C; ð12Þ

where C is the integration path that specifies the com-
plexified link variables U ¼ UðUÞ and the Jacobian
JðUðUÞÞ ¼ detð∂U=∂UÞ. θ is the phase of Je−SG ¼
eiθjJe−SG j. h� � �ipq denotes the expectation value with the
phase quenched Boltzmann weight. In contrast to the naïve
reweighting, Eq. (12) is evaluated on the modified inte-
gration path where the sign problem is maximally weak-
ened by the machine learning without change of the

expectation value guaranteed by Cauchy’s theorem. This
is the advantage of the path optimization method.
The cost function controls optimization through the

neural network. We apply the following cost function F
to minimize the sign problem,

F ½yðtÞ� ¼ jZjðjheiθðtÞipqj−1 − 1Þ: ð13Þ

We evaluate it by the exponential moving average (EMA)
as in Ref. [33]. Using this cost function (13), the neural
network finds the best path that enhances eiθðtÞ as much as
possible.

III. NUMERICAL SETUP AND RESULT

A. Setup

We evaluate performance of the POM for β ¼
0.0þ ð0.25–2.25Þi. The sign problem is originated from
the imaginary part of β. We generate gauge configurations
by the hybrid Monte Carlo algorithm in the POM. The total
number of configurations is 50000. Statistical errors are
estimated by the Jackknife method with the bin size of 250.
The neural network utilizes the ADADELTA optimizer [48]
combined with the Xavier initialization [49]. The param-
eters in Eqs. (8) and (9) are optimized during learning. The
flow chart is displayed in Ref. [33]. We set the learning rate
to 1 and the decay constant 0.95, combined with the batch
size of 10. The number of units in the input layer reflects
our choice of t in Eqs. (10), (11) as

ðiÞ Nplaq
input ¼ 2nplaqdeg for plaquette input; ð14Þ

ðiiÞ Nlink
input ¼ 2nlinkdeg for link input; ð15Þ

where nlinkdeg ¼ 2N1N2 and nplaqdeg ¼ N1N2. The number of
units in the output layer is common to (i) and (ii),
Noutput ¼ nlinkdeg . We employ a single hidden layer with
Nhidden ¼ 10 hidden units on 2 × 2 lattice, 16 on 4 × 4
lattice, and 64 on 8 × 8 lattice, respectively. As we set the
Nhidden proportional to the volume, the cost of the neural
network is Oðn2degÞ and is Oðn3degÞ for the Jacobian.

B. Result

Figure 2 exhibits the neural-network-step-number
dependence of the exponential moving average of the
average phase factor hexpðiθÞiEMA at β ¼ 0.0þ 0.5i
on a 4 × 4 lattice as a typical example. The path optimiza-
tion with the plaquette input successfully enhances
hexpðiθÞiEMA, while that with the link variable input does
not. Similar behavior is also observed at other values of β
on 2 × 2; 4 × 4 and 8 × 8 lattices. Our result verifies the
advantage of the gauge invariant input to the neural network
for the two-dimensional Uð1Þ gauge theory with the com-
plex coupling.

FIG. 1. Schematic picture of the neural network with the
plaquette input. The link variable Un;μ is converted to the
plaquette Pn;μν in the input layer. hi and yi are hidden and
output layers, respectively.
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FIG. 3. Histogram of the phases with and without the path
optimization at β ¼ 0.0þ 0.5i on 2 × 2 (upper panel), 4 × 4
(middle panel), and 8 × 8 (lower panel) lattices.
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FIG. 5. The average phase factors with and without the path
optimization at β ¼ 0.0þ ð0.25–2.25Þi on 2 × 2 (upper panel),
4 × 4 (middle panel), and 8 × 8 (lower panel) lattices.
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The enhancement with the plaquette input is confirmed
in the histogram of the phases, shown in Fig. 3. While the
naïve reweighting gives a broad distribution of the phase
factor, the path optimization significantly sharpens the peak
structure. We stress that the POM works even on the 8 × 8
lattice, where the sign problem is severer. Although the
naïve reweighting has almost flat dependence on the
phase, the POM can still extract a peak structure around
θ=π ∼ −0.2.
Figure 4 represents the volume dependence of the

average phase factor at β ¼ 0.0þ 0.5i with additional
simulation results on 6 × 6, 10 × 10, and 12 × 12 lattices.

The naïve reweighting leads to steep exponential falloff as a
function of the volume. The sign problem becomes
extremely severer toward the infinite volume limit. The
path optimization evidently changes the volume depend-
ence of the average phase factor to be milder. It indicates
better control of the sign problem.
We plot the average phase factors with and without the

path optimization as functions of Imβ in Fig. 5. The average
phase factors are enhanced by factors of up to 4 on 2 × 2,
21 on 4 × 4, and 27 on 8 × 8 lattices, respectively. The
enhancement decreases, however, as we approach the
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critical coupling Imβc ∼ 1.5 where the partition function
becomes zero, corresponding to the Lee-Yang zero. While
clear peaks are still visible in the histogram of the phases by
the path optimization even at β ∼ βc on 2 × 2 lattice, no
clear peak is obtained and the neural network eventually
becomes unstable around βc on 4 × 4 and 8 × 8 lattices, as
displayed in Fig. 6. We need further improvement of the
POM around βc on large lattices.
Comparison with the exact solution (4) is accomplished

for the expectation values of the plaquette and the topo-
logical charge. The result for the plaquette is plotted in

Fig. 7 and for the topological charge in Fig. 8. The naïve
reweighting works in a small β region but starts to deviate
from the exact value with uncontrolled errors as β becomes
larger. Our data using the POM agree with the exact
solution, as long as we find a peak in the histogram of
the phases. The valid region of the POM is definitely
extended to larger β. Deviations from the exact solution are
also observed by the path optimization case, if we have no
clear peak in the histogram of the phases, where the
enhancement of the phase factor by the path optimization
is still limited to be small or the path optimization is
unstable. One reason of the failure is a restriction of the
statistics. The machine learning requires more data to find
the best path especially for a system with a large degree of
freedom. Another possibility is the effect of the multi-
modality. Though there can be several regions contributing
to the integral (relevant thimbles), the optimized path
may emphasize only a part of them. Quantitative evaluation
of the systematic errors of the POM result is still
difficult and is beyond the scope of this paper. It is an
important future work. Nevertheless, these results demon-
strate the superiority of the POM over the naïve reweight-
ing for the analysis of the Uð1Þ gauge theory with the
complex β.

IV. SUMMARY

We established the efficiency of gauge invariant input in
the POM for the two-dimensionalUð1Þ gauge theory with a
complex coupling. While the path optimization using the
link variable input without gauge fixing shows no gain, the
optimization with the gauge invariant input shows a clear
increase in the average phase factor through the neural
network process. The gain is up to 4 on 2 × 2, 21 on 4 × 4,
and 27 on 8 × 8 lattices. Even on 8 × 8 lattice at
β ¼ 0.0þ 0.5i, the POM using the gauge invariant input
successfully identifies a peak structure in the histogram of
the phases, where the naïve reweighting shows no peak in
the histogram. We confirm the volume dependence of the
average phase factor becomes much milder by the POM
with the gauge invariant input. We also calculated expect-
ation values of the plaquette and the topological charge for
comparison with their exact solutions. Our results agree
with the analytical values, as long as we find a peak in the
histogram of the phases. The valid region is clearly
enlarged to larger β, compared with that by the naïve
reweighting method. It is encouraging toward the POM
analysis in more realistic cases.
In the severer sign problem region near the critical

point on the large volume, the gain of the POM is less
clear. Further improvement of the POM is required. One
possible direction is the incorporation of larger Wilson
loops and the Polyakov lines as input to the neural
network. Another direction is the adoption of novel
approaches that respect the gauge symmetry in the neural
network, such as the lattice gauge equivariant convolutional
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NAMEKAWA, KASHIWA, OHNISHI, and TAKASE PHYS. REV. D 105, 034502 (2022)

034502-6



neural networks [36] and the gauge covariant neural net-
work [50]. In addition, there is a different approach that
modifies the action instead of the integral path [51–53].
The combination of the modifications of the action and the
integral path seems to be interesting.
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