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We present the first calculation of the x dependence of the isovector transversity generalized parton
distributions (GPDs) for the proton within lattice QCD. We compute the matrix elements with nonlocal
operators containing a Wilson line. The calculation implements the Breit symmetric frame. The proton
momenta are chosen as 0.83, 1.25, and 1.67 GeV, and the values of the momentum transfer squared are
0.69 and 1.02 GeV2. These combinations include cases with zero and nonzero skewness. The calculation is
performed using one ensemble of twisted-mass fermions with a clover term: two degenerate-mass light
quarks, a strange quark, and a charm quark. The lattice results are renormalized nonperturbatively and
finally matched to the light-cone GPDs using one-loop perturbation theory within the framework of large-
momentum effective theory. The final GPDs are given in the MS scheme at a scale of 2 GeV. In addition to
the individual GPDs, we form the combination of the transversity GPDs that is related to the transverse spin
structure of the proton. Finally, we extract the lowest two moments of the GPDs and draw a number of
important qualitative conclusions.
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I. INTRODUCTION

The current picture of the nucleon structure stems from
decades of increasingly precise measurements of form
factors (FFs) and parton distribution functions (PDFs),
which, in turn, are special cases of more general functions,
the generalized parton distributions (GPDs). At a given
hard scale Q2, GPDs depend on three variables: the
longitudinal momentum fraction of the parent nucleon
carried by a given parton, x; the square of the four-
momentum transferred to the target in a given reaction,
t; and the skewness, ξ, which represents the change in the
longitudinal momentum fraction induced by the momen-
tum transfer. Physically, GPDs can be seen as correlations
between the longitudinal momentum of partons, with
a given spin, and their position in the transverse
spatial plane of the parent hadron. Together with the

transverse-momentum-dependent PDFs, these functions
give an overall, three-dimensional picture of the nucleon,
whose comprehension is one of the main goals of the high-
energy nuclear physics community.
GPDs have been proposed in the 1990s [1–4], but they

are still relatively unknown when compared to their FF
and PDF counterparts. Experimentally, the access to GPDs
is through exclusive reactions, such as deeply virtual
Compton scattering (DVCS) and deeply virtual meson
production (DVMP). As in the case of collinear PDFs,
GPDs can be separated into chiral-even and chiral-odd
distributions. In the chiral-even sector, there are two
unpolarized ½Hðx; ξ; tÞ and Eðx; ξ; tÞ] and two helicity
[H̃ðx; ξ; tÞ and Ẽðx; ξ; tÞ] GPDs. While H and H̃ are
helicity-preserving functions, E and Ẽ carry information
on the helicity flip of the parent hadron, and contribute to
the quark angular momentum while preserving its helicity.
In the forward limit, ξ; t → 0, Hðx; 0; 0Þ ¼ f1ðxÞ, and
H̃ðx; 0; 0Þ ¼ g1ðxÞ, with f1ðxÞ and g1ðxÞ being the unpo-
larized and the helicity PDFs, respectively. Most of the
experimental activity so far has been in the determination
of the helicity-preserving, chiral-even distributions; see
Ref. [5] for a comprehensive review. In the chiral-odd
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sector, there are four transversity GPDs [6]: HTðx; ξ; tÞ,
ETðx; ξ; tÞ, H̃Tðx; ξ; tÞ, and ẼTðx; ξ; tÞ. All twist-2 GPDs
are even under the replacement ξ → −ξ, except for ẼT,
which is odd. As a result, the integral over x of ẼT vanishes.
Of the four chiral-odd GPDs, only one survives in the
forward limit [6], HTðx; 0; 0Þ ¼ h1ðxÞ, where h1ðxÞ is the
transversity PDF. Chiral-odd GPDs are, thus, objects
describing the correlation between the parton momentum
and its position in the transverse plane of a transversely
polarized nucleon. In fact, as shown in Ref. [7], GPDs
describe the density of polarized partons in the impact
parameter plane for both longitudinal and transverse polar-
izations. M. Burkardt then proposed [8] that chiral-odd,
impact-parameter-dependent PDFs are related to the chiral-
odd GPDs, making possible a decomposition of the quark
angular momentum with respect to quarks with definite
transversity. Such relations have been also explored in
Refs. [9,10]. As a result, a combination of chiral-odd
GPDs can be used to calculate the correlation between
the quark spin and the quark angular momentum in an
unpolarized nucleon. In particular, the quark contribution to
the nucleon transverse anomalous magnetic moment can be
computed from the combination ETðx; 0; 0Þ þ 2H̃Tðx; 0; 0Þ.
Transversity GPDs are thus remarkably interesting objects.
Because they are chiral odd, they cannot be measured in
DVCS, making them largely unexplored. However, they can
be measured using DVMP, either through the photon
production of vector mesons [11], or from the diffractive
production of two vector mesons [12,13]. Notably, chiral-
odd GPDs are the leading-twist contributions in γρ photo-
production [11,14], and simulations are presently being
performed [15] in the kinematic range of the future
Electron Ion Collider (EIC) to be built at Brookhaven
National Laboratory in the U.S. Also, transversity GPDs
appear in the exclusive neutrino and antineutrino production
of a D pseudoscalar charmed meson on an unpolarized
nucleon [16,17].
Until recently, the study of GPDs using lattice QCD

was restricted to the computation of the first few Mellin
moments (see, e.g., the reviews of Refs. [18–22]). The
reason is that the correlation functions defining GPDs are
nonlocal operators sitting on the light front, and such a
computation is not amenable to lattice QCD, because the
latter is formulated in Euclidean spacetime. Conversely,
GPDs could be defined in the infinite-momentum frame, in
which case the hadron under study receives an infinite
boost, which is also not attainable in lattice QCD. However,
as proposed by X. Ji [23], one can define a purely spatial
correlation and apply a large, but finite, momentum
boost in a given direction. Then, one can use perturbation
theory to connect the resulting distributions to the light-
front ones [24–26], in the context of a large-momentum
effective theory (LaMET) [27,28]. After LaMET was
proposed, other approaches, which are simultaneously
concurring and complementary to LaMET, have been

put forward—namely pseudo-PDFs [29], good lattice cross
sections [30–32], and the “OPE without OPE” [33]
approaches. Moreover, some earlier proposed methods
[34–36] have been reinvestigated and further developed.
The different approaches have been applied to the compu-
tation of a variety of quantities, markedly to quark isovector
and isoscalar distributions in the nucleon, to the gluon
distribution in the nucleon and pion, and to isovector
distributions in the pion and kaon; see, e.g.,
Refs. [33,37–80]. A summary of these approaches together
with lattice results can be found in the recent reviews of
Refs. [28,81,82]. Very recently, LaMET has also been used
in the realm of transverse-momentum-dependent PDFs
[83–89], with first results for the associated soft function
already being reported [90,91]. Even more recently,
LaMET has been extended to the exploration of twist-3
PDFs in the nucleon [92–95], as well as twist-3 GPDs [96].
Although still in their infancy due to constraints in

increasing the momentum boost, as well as from systematic
effects, such as discretization and volume effects, the lattice
QCD calculations in the field of PDFs have advanced
enormously. Returning to GPDs, the first perturbative
calculation of the matching equations, which relate the
distributions with a finite momentum boost to the ones
with infinite momentum, appeared soon after the original
proposal by X. Ji [97,98]. However, it took a few years
until the first study of GPDs of the proton within lattice
QCD was performed [68]. In that work, the focus was
on the chiral-even GPDs for both the unpolarized and
helicity cases. Here, we extend this work for the chiral-
odd GPDs of the proton, following the same methodology
as Ref. [68].
The paper is organized as follows: In Sec. II, we outline

the general methodology of the GPDs and present the
relations between the matrix elements and the GPDs that
are needed to disentangle the latter. In Sec. III, we give the
lattice details for the isolation of the ground state, the
control of statistical uncertainties, and the kinematic setup.
In separate subsections, we summarize the renormalization
procedure and the reconstruction of the x dependence using
the Backus-Gilbert method, as well as the matching
formalism. The main results for the matrix elements are
presented in Sec. IV, and the final GPDs are given in Sec. V.
We also present a comparison with the unpolarized and
helicity GPDs. Section VI shows our results for the Mellin
moments of GPDs and quasi-GPDs, and Sec. VII summa-
rizes our findings.

II. METHODOLOGY

The most computationally expensive aspect of this work
is the calculation of the proton matrix elements of nonlocal
operators containing a Wilson line. Without loss of general-
ity, the Wilson line is in the z direction, Wð0; zÞ, which is
the same as the direction of the momentum boost for the
proton. The operator under study is the tensor with a Dirac
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structure of the form σ3j, where j is in the x or y direction.
Under these constraints, the matrix element reads

hjTðΓν; z; Pf; Pi; μ0Þ
≡ ZTðz; μ0Þ · hNðPfÞjψ̄ðzÞσ3jWð0; zÞψð0ÞjNðPiÞi;
j ¼ 1; 2; ν ¼ 0; 1; 2; 3: ð1Þ

jNðPiÞi and jNðPfÞi represent the initial (source) and final
(sink) states of the proton labeled by its momentum. We
calculate the matrix elements h1T and h2T separately, because
they do not contribute to the same kinematic setup, and they
can be used as independent equations for disentangling the
GPDs [see, e.g., Eqs. (6)–(13)]. The matrix elements have a
dependence on the parity projection, Γν, which is implied in
the right-hand side of Eq. (1) for simplicity. We will discuss
this below and in Sec. III. Also, in this discussion, we
consider hjT as the renormalized matrix element in a given
scheme and at a scale μ0, entering through the renormal-
ization function, ZTðz; μ0Þ. More details on the renormal-
ization procedure are given in Sec. III B.
GPDs require off-forward kinematics—that is, Pf − Pi≡

Δ ≠ 0. In fact, GPDs depend on the four-vector momentum
transfer squared, t, and not on the individual nucleon
momenta. We note that the matrix element hjT depends on
the source and sink momenta. In the boosted frame,
t is defined as t≡ −Δ2 þ ðEðPiÞ − EðPfÞÞ2. EðpÞ is the
energy of the proton at momentum p given by the dispersion
relation,EðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, andm is themass of the proton.

The standard definition of the light-cone GPDs is in the
symmetric (Breit) frame, which requires that Pf ¼ Pþ Δ

2

and Pi ¼ P − Δ
2
, where P represents the proton momentum

boost, P ¼ ð0; 0; P3Þ. Besides t, the GPDs have an implicit
dependence on the momentum transfer in the direction of
the boost via the parameter skewness. On the lattice, the
relevant quantity is the quasi-skewness, defined as

ξ ¼ −
Pf3 − Pi3

Pf3 þ Pi3
¼ −

Δ3

2P3

: ð2Þ

The skewness is an important parameter of GPDs, as it
separates the x region into two parts: that is, the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) region [99–102]
and the Efremov-Radyushkin-Brodsky-Lepage (ERBL)
[103,104] region, defined as

DGLAP region∶ x > jξj;
ERBL region∶ x < jξj:

Each region has a physical interpretation [105]. In the
positive-x (negative-x) DGLAP region, the GPDs corre-
spond to the amplitude of removing a quark (antiquark) of
momentum p from the hadron, and then inserting it
back with momentum pþ Δ (where Δ is the Minkowski

momentum transfer). In the ERBL region, the GPD is the
amplitude for removing a quark-antiquark pair with
momentum −Δ. By definition, the ERBL region becomes
trivial at ξ ¼ 0.
As mentioned above, the matrix elements depend on the

details of the kinematic setupPf,Pi, while the GPDs depend
on t and ξ; the remaining dependence on the setup is absorbed
into the coefficients of the GPDs that appear in the decom-
position. Since there are four transversity GPDs—HT , ET ,
H̃T , and ẼT—one needs four independent matrix elements
hjTðΓν; z; Pf; PiÞ to disentangle them; this can be controlled
by the choice of the operator (j), parity projector (ν), and
initial and final momenta. Note that the decomposition is
independent of z, and is applied at each value of z separately.
The decomposition of the matrix elements is based on
continuum parametrizations, which for the transversity case
take the following form in Euclidean space:

hjTðΓν; z; Pf; PiÞ ¼ ⟪σ3j⟫FHT
ðz; ξ; t; P3Þ

þ i
2m

⟪γ3Δj − γjΔ3⟫FET
ðz; ξ; t; P3Þ

þ P3Δj − PjΔ3

m2
⟪1̂⟫FH̃T

ðz; ξ; t; P3Þ

þ 1

m
⟪γ3Pj − γjP3⟫FẼT

ðz; ξ; t; P3Þ;
ð3Þ

where ⟪O⟫≡ ΓνūNðPf; s0ÞOuNðPi; sÞ, with uN being the

proton spinors. Also, P ¼ PfþPi

2
andΔ ¼ Pf − Pi. FG plays

the role of a form factor, which gives the quasi-GPD ofG,Gq

once the Fourier transform is taken (G∶HT; ET; H̃T; ẼT). The
parametrization of Eq. (3), in its general form, is very
complicated. Here, we give the relevant expressions for the
class of momentum transfer that we use. We apply four
different parity projectors—that is, the unpolarized, Γ0, and
three polarized, Γk:

Γ0 ¼
1

4
ð1þ γ0Þ; ð4Þ

Γk ¼
1

4
ð1þ γ0Þiγ5γk; k ¼ 1; 2; 3: ð5Þ

The first class of momenta we employ is Δ ¼ ð0; q; 0Þ,
which correspond to zero skewness. In this case, the
initial and final momenta are Pi ¼ ð0;− q

2
; P3Þ and

Pf ¼ ð0; q
2
; P3Þ, respectively. For these momenta, we have

nonzero contributions from four matrix elements—that is,

h1TðΓ2; z; Pf; PiÞ ¼ −iC0

EðEþmÞ
2m2

FHT
; ð6Þ

h1TðΓ3; z; Pf; PiÞ ¼ −iC0

qP3ðEþmÞ
4m3

FẼT
; ð7Þ
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h2TðΓ0; z; Pf; PiÞ ¼ iC0

�
qP3

4m2
FHT

þ qP3ðEþmÞ
4m3

FET

þ qP3ðEðEþmÞ − P2
3Þ

2m4
FH̃T

�
; ð8Þ

h2TðΓ1; z; Pf; PiÞ ¼ iC0

�ðmðEþmÞ þ P2
3Þ

2m2
FHT

−
q2ðEþmÞ

8m3
FET

þ q2P2
3

4m4
FH̃T

�
; ð9Þ

where C0 ¼ 2m2

EðEþmÞ for zero skewness, and E denotes the

energy (Ef ¼ Ei ≡ E). Note that FHT
and FẼT

are obtained
directly from Eqs. (6) and (7), respectively. FET

and FH̃T

are disentangled using Eqs. (8) and (9) together with
Eq. (6).
For nonzero skewness, we employ Δ ¼ ð0; qy; qzÞ with

jqzj ¼ jqyj ¼ q (q > 0)—that is, Pf ¼ ð0; qy
2
; P3 þ qz

2
Þ and

Pi ¼ ð0;− qy
2
; P3 −

qz
2
Þ. For these momenta, we have non-

zero contributions from four matrix elements—that is,

h1TðΓ2;z;Pf;PiÞ¼ iC

�
−
ðEfþmÞðEiþmÞþP2

3

4m2
FHT

þPfzðEiþmÞ−PizðEfþmÞ
8m3

ð2P3FẼT
þqFET

Þ
�
; ð10Þ

h1TðΓ3; z; Pf; PiÞ ¼ iCsignðqzÞ
�
−

q2

8m2
FHT

−
qP3ðEi þ Ef þ 2mÞ

8m3
FẼT

−
q2ðEi þ Ef þ 2mÞ

16m3
FET

�
; ð11Þ

h2TðΓ0; z; Pf; PiÞ ¼ C

�
qP3

4m2
FHT

þ qP3ðEf þ Ei þ 2mÞ
8m3

FET
þ qP3ðEf − EiÞ

8m3
FẼT

þ FH̃T

qP3ð2ðEf þmÞðEi þmÞ þ q2 − 2P2
3Þ

8m4

�
; ð12Þ

h2TðΓ1; z; Pf; PiÞ ¼ iC

�ð2ðEf þmÞðEi þmÞ þ 2P2
3 − q2Þ

8m2
FHT

−
qðEfðq − P3Þ þ Eiðqþ P3Þ þ 2mqÞ

8m3
FET

þ q2P2
3

4m4
FH̃T

−
P3ð2P3ðEi − EfÞ þ qðEi þ Ef þ 2mÞÞ

8m3
FẼT

�
; ð13Þ

where C ¼ 2m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EfEiðEfþmÞðEiþmÞ

p , Pfz ¼ P3 þ qz
2
, and Piz ¼

P3 −
qz
2
. Unlike the case Δ ¼ ð0; q; 0Þ, here all matrix

elements enter into the decomposition of all four GPDs.
Since we are using positive and negative values for the
momentum transfer, one has to be careful with the signs
in the decomposition. In addition to the signs of the
kinematic factors, one also has to consider that HTq,
ETq, and H̃Tq are even functions of ξ, while ẼTq is odd
[106,107], which also holds for the quasi-GPDs [108] and
FG. For example, FẼT

ðz;−ξ; t; P3Þ ¼ −FẼT
ðz; ξ; t; P3Þ,

which is taken into account in the decomposition for
the negative value of ξ.
Once FHT

, FET
, FH̃T

, and FẼT
are disentangled from the

renormalized matrix elements, we transform them in
momentum (x) space to obtain the x dependence using
the Backus-Gilbert (BG) method [109], as described in
Sec. III C. This procedure gives the quasi-GPDs HTq, ETq,
H̃Tq, and ẼTq. Note that we use the subscript q to denote
the quasi-GPDs. Finally, the light-cone GPDs HT , ET , H̃T ,
and ẼT are obtained after application of the matching
procedure, outlined in Sec. III D.

III. LATTICE CALCULATION

A. Matrix elements

In this work, we focus on the isovector flavor combi-
nation u − d for the transversity GPDs, which requires the
calculation of only the connected diagram shown in Fig. 1.
The matrix elements are constructed from the two-point
and three-point correlation functions,

C2ptðP; tÞ ¼ 2ðΓ0Þαβ
X
x

e−iP·xh0jNαðx; tÞNβð0; 0Þj0i ð14Þ

FIG. 1. Connected diagram entering the calculation of the
three-point functions. The initial and final states with the
quantum numbers of the nucleon are indicated by Nð0; 0Þ and
Nðx; tÞ, respectively. The red curly line indicates the Wilson line,
W, of the nonlocal operator.

CONSTANTIA ALEXANDROU et al. PHYS. REV. D 105, 034501 (2022)

034501-4



and

Cj
TðΓν; z;Pf;Pi; ts; τÞ
¼ ðΓνÞαβ

X
x;y

eiðPf−PiÞ·ye−iPf ·xh0jNαðx; tsÞψ̄ðy þ zẑ; τÞσ3j

×Wðy þ zẑ; yÞψðy; τÞNβð0; 0Þj0i; ð15Þ

where NαðxÞ ¼ ϵabcuaαðxÞðdbT ðxÞCγ5ucðxÞÞ is the interpo-
lating field for the proton, and τ is the current insertion
time. Without loss of generality, we take the source to be at
ð0; 0Þ. The three-point functions are calculated for the up
and down quark/antiquark fields, ðψ ; ψ̄Þ, which are com-
bined to form the u − d isovector contribution.
For nonzero momentum transfer, one must form an

optimized ratio to cancel the time dependence in the
exponentials and the overlaps between the interpolating
field and the nucleon states, namely

Rj
TðΓν; z;Pf;Pi; ts; τÞ

¼ Cj
TðΓν; z;Pf;Pi; ts; τÞ

C2ptðPf; tsÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ptðPi; ts − τÞC2ptðPf; τÞC2ptðPf; tsÞ
C2ptðPf; ts − τÞC2ptðPi; τÞC2ptðPi; tsÞ

s
: ð16Þ

In the limit ðts − τÞ ≫ a and τ ≫ a, the ratio of Eq. (16)
becomes time independent, and the ground-state matrix
element is extracted from a constant fit in the plateau
region—that is,

Rj
TðΓν; z;Pf;Pi; ts; τÞ ⟶

ts−τ≫a

τ≫a
hj;BT ðΓν; z;Pf;PiÞ: ð17Þ

In this work, we choose ts ¼ 12a, which was also used in
our previous work for the unpolarized and helicity GPDs
[68]. An extensive study on the excited-states effect for
the forward limit of nonlocal operators was performed in
Ref. [58]. In that work, we demonstrated that a source-sink
separation above 1 fm is sufficient to obtain the ground-state
contribution within the reported uncertainties. hj;BT denotes
the bare matrix element, while Eq. (1) is renormalized one.
These are related multiplicatively, using the renormalization
function, ZTðz; μ0Þ, obtained nonperturbatively:

hjTðΓν; z;Pf;Pi; μ0Þ ¼ ZTðz; μ0Þ · hj;BT ðΓν; z;Pf;PiÞ: ð18Þ

Note that the multiplication is complex. We refer the reader
to Sec. III B for more details.
To improve the overlap with the proton ground state, we

construct the proton interpolating field using momentum-
smeared quark fields [110] on APE-smeared gauge links
[111]. The momentum smearing technique is essential for
suppressing gauge noise in matrix elements with boosted

hadrons, and in particular for nonlocal operators [40]. The
momentum smearing approach allows us to obtain GPDs
for protons boosted up to P3 ¼ 1.67 GeV. Beyond that
momentum, it is unfeasible to obtain the matrix element
with controlled statistical uncertainties at a reasonable
computational cost. This is in agreement with other
calculations of nonlocal operators with boosted hadrons
(see, e.g., Table 1 of Ref. [82]). The momentum-smearing
function S on a quark field, ψ , reads

SψðxÞ ¼ 1

1þ 6αG

�
ψðxÞ þ αG

X3
j¼1

UjðxÞeiξ̄P·jψðxþ ĵÞ
�
;

ð19Þ

where αG is a parameter of the Gaussian smearing [112,113],
Uj is a gauge link in a spatial j direction,P is the momentum
of the proton (either at the source, or at the sink), and ξ̄ is a
free parameter that can be tuned to achieve maximal overlap
with the proton-boosted state. For ξ̄ ¼ 0, Eq. (19) reduces to
the Gaussian smearing function. The fact that the exponent
in Eq. (19) depends on the momentum of the proton state
means that separate quark propagators are needed for every
Δ, because the gauge links are modified every time by a
different complex phase. In our implementation, we keep ξ̄P
parallel to the proton momentum at the source and at the
sink. This strategy avoids potential problems due to rota-
tional symmetry breaking. It also has the benefit that every
correlator entering the ratio of Eq. (16) is optimized
separately. The effectiveness of the momentum smearing
has been demonstrated in our previous work for PDFs
[40,58], as well as for GPDs [68]. In fact, for the unpolarized
GPDs, we found that the statistical noise is suppressed by a
factor of 4–5 in the real part, and 2–3 in the imaginary part,
depending on the value of z.
The analysis is performed using a gauge ensemble of

twisted-mass fermions with a clover improvement and
Iwasaki-improved gluons. The ensemble has two dynami-
cal degenerate light quarks plus a strange and a charm
quark (Nf ¼ 2þ 1þ 1) [114] in the sea. The quark masses
have been tuned so that the pion mass is about 260 MeV.
The lattice volume is 323 × 64, and the lattice spacing
a ¼ 0.093 fm. The three-point correlators are obtained
for a source-sink separation of ts ¼ 1.12 fm. In Table I,

TABLE I. Statistics for the transversity GPDs at each momen-
tum boost, momentum transfer, and skewness.

P3 [GeV] Δ ½2πL � −t [GeV2] ξ Nconfs Nmeas

0.83 (0,2,0) 0.69 0 519 4152
1.25 (0,2,0) 0.69 0 1315 42 080
1.67 (0,2,0) 0.69 0 1753 112 192
1.25 (0,2,2) 1.02 1=3 417 40 032
1.25 (0,2,−2) 1.02 −1=3 417 40 032
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we summarize the statistics for each value of the nucleon
momentum boost P3, momentum transfer Δ, and squared
four-momentum t, as well as skewness ξ. The GPDs have
definite symmetry with respect to ξ → −ξ, and therefore,
we combine the data at þ1=3 and −1=3. Below, we also
compare with the transversity PDF, h1, obtained on the
same ensemble with the statistics shown in Table II.

B. Renormalization

The matrix elements hjT are renormalized nonperturba-
tively with the renormalization function ZT , which is
defined in an RI-type scheme at some scale μ0. The vertex
functions of the nonlocal tensor operator are calculated
using the momentum source method [115,116] that sup-
presses statistical noise. We work in the twisted basis to
calculate the matrix elements hjT , and therefore, the
operator σ3j (physical basis) renormalizes with the operator
γ5σ3j. We apply the following condition to the vertex
functions of γ5σ3j at each value of z separately:

Z−1
q ZTðzÞ Tr½VTðp;zÞ=p�jp2¼μ2

0
¼ Tr½PTVBorn

T ðp;zÞ�jp2¼μ2
0
:

ð20Þ

We also calculate the quark propagator that is needed for
the quark field renormalization, Zq:

Zq ¼
1

12
Tr½ðSðpÞÞ−1SBornðpÞ�jp2¼μ2

0
: ð21Þ

Vðp; zÞ [SðpÞ] is the amputated vertex function of the
operator (fermion propagator), and SBornðpÞ is the tree level
of the propagator. In the prescription of Eq. (20), the vertex
functions are projected with the so-called minimal projec-
tor, which defines ZTðzÞ. The use of this definition is
necessary, as the matching formalism is only known for this
scheme [117]. Note that we use the symbol ZT for the
renormalization function prior to taking the chiral limit of
Eq. (24). Similarly, for the fermion field renormalization,
Zq. In a nutshell, the vertex function of the tensor nonlocal
operator1 σ0l (l ≠ j ≠ 3 ≠ l) with a Wilson line in the z
direction contains contributions from three structures—
that is,

VT ¼ σ0lS1 þ
1

p2
3

ðγ0pl − γlp0Þ=pS2 þ
1

p3

ðσ30pl − σ3lp0ÞS3
ð22Þ

[see, e.g., Eq. (76) of Ref. [118]]. The projector is defined
such that it isolates the tree-level contribution of the vertex
function, S1. For the operator under study, we use the
projector

PT ¼ 1

4

�
−σ0l þ ðp2

0 þ p2
l Þ

p0pj
σjl

�
: ð23Þ

In this work, we calculate the vertex functions with the
Wilson line in all spatial directions projected with the
equivalent PT . Since S1 is independent of the direction of
the Wilson line, we average over the three directions.
Numerically, we find that the estimates of ZTðzÞ using the
minimal projector are similar to the estimates obtained by
projecting with the tree-level value. This is an indication
that the contamination from S3 in the vertex function is
small.2

The prescription of Eq. (20) is mass independent, and
therefore ZT should not depend on the quark mass.
However, there might be a residual cutoff effect of the
form amq. To eliminate any systematics related to such an
effect, we extract ZT using five degenerate-quark-mass
ensembles (Nf ¼ 4) with the same lattice spacing as the

ensemble we use for hjT. These Nf ¼ 4 ensembles corre-
spond to a pion mass in the range 350–520 MeV. The
estimates of ZT from each ensemble are used for a chiral
extrapolation. More details on this procedure can be found
in Ref. [58].
ZT is scheme and scale dependent, and therefore, it is

defined at some RI scale μ0. We use several values of μ0,
chosen to be isotropic in the spatial directions, which
suppresses discretization effects. Furthermore, the vertex

momentum is such that the ratio p4

ðp2Þ2 is less than 0.35 [119].

In this work, we use different values of μ0 [ðaμ0Þ2 ∈ ½1; 5�]
to check the dependence of the matching formalism on μ0.
For each value of μ0, we apply a chiral extrapolation using
the fit

ZRI
T ðz; μ0; mπÞ ¼ ZRI

T ðz; μ0Þ þm2
πZ̄RI

T ðz; μ0Þ ð24Þ

to extract the mass-independent ZRI
T ðz; μ0Þ. For our final

results, we use the renormalization functions defined on a
single RI renormalization scale, ðaμ0Þ2 ≈ 2.57. This scale
also enters the matching equations, which connect the
quasi-GPDs in the RI at a scale of μ0 to the GPDs in the MS
at a scale of 2 GeV. We find negligible dependence in the

TABLE II. Statistics for the transversity PDF at the three values
of the proton momenta.

P3 [GeV] Nconfs Nmeas

0.83 194 1560
1.25 731 11 696
1.67 1644 105 216

1This is equivalent to the operator we are interested in for the
twisted basis, γ5σ3j.

2The structure S2 is automatically eliminated with the minimal
projector and is therefore irrelevant in this discussion.
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final GPDs when varying the initial scale μ0 in the
quasi-GPDs.

C. Reconstruction of x dependence

The quantities FG,
3 where G ¼ HT; ET; H̃T; ẼT , are

related to the quasi-distributions, Gq, via a Fourier trans-
form, as the latter are expressed in momentum space:

Gqðx; ξ; t; μ0; P3Þ ¼
Z

∞

−∞
dze−ixP3zFGðz; ξ; t; P3; μ0Þ: ð25Þ

Therefore, extracting the quasi-GPDs requires integration
over a continuum range of z, while the lattice provides only
a discrete set of determinations of FG, for integer values of
z=a up to roughly half of the lattice extent in the direction
of the boost, L=2a. Thus, obtaining the quasi-GPDs, or for
that matter any x-dependent distributions, poses a math-
ematically ill-defined problem, as discussed in detail in
Ref. [50]. The inverse problem originates from incomplete
information—i.e., attempting to reconstruct a continuous
distribution from a finite number of input data points.
As such, its solution necessarily requires making additional
assumptions that provide the missing information. These
assumptions should be mild and preferably model inde-
pendent—otherwise, the reconstructed distribution may
be biased.
In this work, we use the Backus-Gilbert (BG) method

[109], which was also proposed in Ref. [50]. The method
relies on a model-independent criterion to choose from
among the infinitely many possible solutions to the inverse
problem, namely that the variance of the solution with
respect to the statistical variation of the input data should be
minimal. While the BG method is superior to the naive
Fourier transform, there are limitations due to the small
number of the lattice data, and the BG would be improved
if a larger volume and finer lattice spacing ensemble were
used. The reconstruction is done separately for each value
of x. In practice, we separate the exponential of the Fourier
transform into its cosine and sine parts, related to the real
and imaginary parts of the matrix elements, respectively.
We define a vector aKðxÞ, where K is either the cosine or
sine kernel, of dimension d equal to the number of available
input matrix elements—i.e., d ¼ zmax=aþ 1—the matrix
elements for z beyond zmax are neglected, assuming that
they are approximately zero within uncertainties. The BG
procedure consists in finding the vectors aKðxÞ for both
kernels according to the variance minimization criterion.
The vector aKðxÞ is an approximate inverse of the cosine/
sine kernel function KðxÞ—that is,

Δðx − x0Þ ¼
Xd−1
z=a¼0

aKðxÞz=aKðx0Þz=a; ð26Þ

where Kðx0Þz=a ¼ cosðx0P3zÞ or Kðx0Þz=a ¼ sinðx0P3zÞ are
elements of a d-dimensional vector of discrete kernel
values corresponding to integer values of z=a entering
the reconstruction. Therefore, the function Δðx − x0Þ is an
approximation to the Dirac delta function δðx − x0Þ. The
quality of this approximation depends on the achievable
dimension d at given simulation parameters.
The vectors aKðxÞ are identified from optimization

conditions based on the BG criterion. For more details,
see Ref. [50]. Below, we summarize the methodology. We
define a d × d-dimensional matrix MKðxÞ, with matrix
elements

MKðxÞz=a;z0=a ¼
Z

xc

0

dx0ðx − x0Þ2Kðx0Þz=aKðx0Þz0=a
þ ρδz=a;z0=a; ð27Þ

where xc is the maximum value of x for which the quasi-
distribution is taken to be nonzero (i.e., its reconstruction
proceeds for x ∈ ½0; xc�). The parameter ρ regularizes the
matrixMK . This regularization was proposed by Tikhonov
[120], and it is suggested as a possible way to make MK
invertible [50,121,122]). The value of ρ determines the
resolution of the method and should be taken as rather
small, in order to avoid a bias. We use ρ ¼ 10−3, which
leads to reasonable resolution and is large enough to avoid
oscillations in the final distributions related to the presence
of small eigenvalues of MK. We have checked that the
dependence on ρ is negligible. Additionally, we define a
d-dimensional vector uK, with elements

uK;z=a ¼
Z

xc

0

dx0Kðx0Þz=a: ð28Þ

Applying the aforementioned optimization conditions
leads to

aKðxÞ ¼
M−1

K ðxÞuK

uT
KM

−1
K ðxÞuK

: ð29Þ

Finally, the BG-reconstructed quasi-distributions are
given by

Gqðx; ξ; t; μ0; P3Þ ¼
1

2

X
z=a

ðacosðxÞz=aReFGðz; ξ; t; P3; μ0Þ

þ asinðxÞz=aImFGðz; ξ; t; P3; μ0ÞÞ:
ð30Þ

3In this discussion, we show explicitly the dependence of FG
on the renormalization scale, μ0, as it refers to renormalized
quantities.
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D. Matching procedure

Following the reconstruction of the x dependence of the
quasi-GPDs, we proceed with obtaining the light-cone
GPDs. Contact between the physical GPDs and the
quasi-GPDs is established through a perturbative matching
procedure. The general factorization formula reads

Gqðx; ξ; t; μ0; ðμ0Þ3; P3Þ

¼
Z

1

−1

dy
jyjCG

�
x
y
;
ξ

y
;
μ

yP3

;
ðμ0Þ3
yP3

; r

�
Gðy; t; ξ; μÞ

þO
�
m2

P2
3

;
t
P2
3

;
Λ2
QCD

x2P2
3

�
; ð31Þ

where CG is the matching kernel and is known to one-loop
level in perturbation theory. The involved renormalization
scales are μ0, the RI renormalization scale; its z component

ðμ0Þ3 [with r ¼ μ20=ðμ0Þ23]; and μ, the final MS scale—here
we choose μ ¼ 2 GeV. This formula establishes that quasi-
distributions are equal to light-cone distributions up to
power-suppressed corrections [nucleon mass (m) correc-
tions and higher-twist corrections]. The matching coeffi-
cient for the GPDs was first derived for flavor nonsinglet
unpolarized and helicity quasi-GPDs in Ref. [97] and for
transversity quasi-GPDs in Ref. [98], using the transverse-
momentum cutoff scheme. Recently, a matching formula
was also derived for all Dirac structures [117] relating
quasi-GPDs renormalized in a variant of the RI/MOM
scheme to MS light-cone PDFs [minimal projector of
Eq. (23)]. In these calculations, it was shown that the
matching for GPDs at zero skewness is the same as for
PDFs. It was also demonstrated that, to one-loop level, the
H-type and E-type GPDs have the same matching formula.
The matching kernel for the transversity GPDs and parton
momentum p3 reads

CG

�
σ3j; x; ξ;

p3

μ
;
p3

ðμ0Þ3
; r

�
¼ δðx − 1Þ þ αsCF

2π

8>>>>><
>>>>>:

G1ðσ3j; x; ξÞþ x < −ξ
G2ðσ3j; x; ξ; p3=μÞþ jxj < ξ

G3ðσ3j; x; ξ; p3=μÞþ ξ < x < 1

−G1ðσ3j; x; ξÞþ x > 1

−
αsCF

2π

���� p3

ðμ0Þ3

����fPT

�
σ3j;

p3

ðμ0Þ3
ðx − 1Þ þ 1; r

�
þ
þ αsCf

4π
δðx − 1Þ ln

�
μ2

ðμ0Þ23

�
: ð32Þ

The functions G1, G2, G3 for the matching of bare quasi-GPDs can be found in Ref. [117], while the one-loop RI
counterterm fPT

for the RI/MOM variant that we employ (minimal projector, PT) is given in Ref. [49]. The plus
prescription is defined as

fðxÞþ ¼ fðxÞ − δðx − 1Þ
Z

dyfðyÞ; ð33Þ

and it combines the so-called “real” (vertex) and “virtual” (self-energy) corrections. Below, we give the expressions for the
functions Gi for completeness:

G1ðσ3j; x; ξÞ ¼ −
xþ ξ

ðx − 1Þð1þ ξÞ ln
x − 1

xþ ξ
þ ðξ → −ξÞ; ð34Þ

G2ðσ3j; x; ξÞ ¼
xþ ξ

ð1 − xÞð1þ ξÞ
�
ln
4ð1 − xÞ2ðxþ ξÞp2

3

ðξ − xÞμ2 − 1

�
þ 2ξ

1 − ξ2
ln
ξ − x
1 − x

; ð35Þ

G3ðσ3j; x; ξÞ ¼
2ðx − ξ2Þ

ð1 − xÞð1 − ξ2Þ
�
ln
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − ξ2

p
ð1 − xÞp2

3

μ2
− 1

�
þ ξ

1 − ξ2
ln
xþ ξ

x − ξ
: ð36Þ

IV. NUMERICAL RESULTS

We begin our presentation with the bare matrix elements for the ground state, as extracted from Eq. (17). In Fig. 2, we plot
the four matrix elements contributing to Δ ¼ 2π

32
ð0; 2; 0Þ (t ¼ −0.69 GeV2)—that is, Eqs. (6)–(9). We compare the signals

for the three values of P3 employed. As expected, the statistical uncertainties increase with the momentum. We find that the
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FIG. 2. Bare matrix elements hjTðΓÞ for the four different projectors, Γ0, Γ1, Γ2, Γ3, at t ¼ −0.69 GeV2 and ξ ¼ 0. We compare results
at three nucleon boosts: P3 ¼ 0.83 GeV (yellow squares), P3 ¼ 1.25 GeV (red diamonds), and P3 ¼ 1.67 GeV (blue circles).
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matrix elements of h1TðΓ2Þ have the most dominant
contributions in both the real and imaginary parts,
followed closely by h2TðΓ1Þ. We remind the reader that
h1TðΓ2Þ is directly related to the leading HT GPD; see
Eq. (6). h2TðΓ0Þ has a smaller signal than the above matrix
elements, but it is clearly non-negligible. On the contrary,
the matrix element contributing to ẼT , h1ðΓ3Þ, has a
negligible contribution for both the real and imaginary
parts, with the exception of the real part for
P3 ¼ 1.67 GeV, which slightly deviates from zero. We
note that a convergence with respect to P3 is not
necessarily anticipated in the matrix elements, but rather
at the level of the final matched GPDs. As can be seen
from Eqs. (6)–(13), there is a dependence on the kin-
ematic setup, which includes P3 through the energies, and
in some cases, directly. We remind the reader that the
matching also contains the momentum boost P3.
Upon renormalization of the matrix elements of Fig. 2,

we disentangle the four FG’s that will eventually be
matched to each transversity GPD. We demonstrate the
dependence of FG on P3 in Fig. 3. For z ¼ 0, FG values are
independent of P3; this does not hold for z ≠ 0 due to the
breaking of Lorentz invariance. In fact, the values at z ¼ 0
correspond to the tensor form factors, which are the lowest
moments of the transversity GPDs. Further discussion can
be found in Sec. VI. Focusing on the highest momentum,
we find the signals for FHT

, FET
, and FH̃T

. As expected
from the behavior of h1ðΓ3Þ, FẼT

is suppressed compared
to the other ones. The imaginary part of FET

and FH̃T
is also

zero within uncertainties.
It is interesting to compare the matrix elements contrib-

uting to HT for different values of the momentum transfer.
In Fig. 4, we show h1TðΓ2Þ at P3 ¼ 1.25 GeV for −t ¼ 0,
0.69, 1.02 GeV2. For the case of ξ ¼ 0 (−t ¼ 0,
0.69 GeV2), the matrix element is proportional to FHT

,
while for ξ ≠ 0 (−t ¼ 1.02 GeV2) it receives contributions
from FET

and FẼT
. The most notable feature of h1TðΓ2Þ is

the lowering of its value with the increasing of −t for both
the real and imaginary parts. The real part becomes
compatible with zero at z=a ¼ 9, 8, 6 for −t ¼ 0, 0.69,
1.02 GeV2, respectively. For the imaginary part, we find
that compatibility with zero is at z=a ¼ 14, 12, 8 for
−t ¼ 0, 0.69, 1.02 GeV2, respectively.
The decomposed, renormalized FG’s are shown in Fig. 5

for jξj ¼ 1=3 and −t ¼ 1.02 GeV2. FET
and FHT

are the
most dominant contributions in the matrix elements,
followed by FH̃T

. The ξ-odd FẼT
is compatible with zero.

We also find that FHT
(FET

) has the highest (lowest) signal-
to-noise ratio. Based on these results, we expect that the
final ẼT GPDs will have a signal compatible with zero,
and ET will have enhanced statistical uncertainties as
compared to HT .

V. x DEPENDENCE OF GPDs

As mentioned in Secs. II and III, the quasi-distribution
approach relates the lattice data at a given value of the
momentum boost to the light-cone GPDs. Therefore, the
final light-cone GPDs should be momentum independent.
Practically, this argument is not exact, because the match-
ing kernel is known only to the one-loop level, and there are
systematic effects, such as higher-twist contamination.
In this work, we use three values of P3 to check for
convergence in the final GPDs with respect to the momen-
tum boost. Choosing the right value for the cutoff zmax in
the reconstruction of the x dependence is also an important
aspect of the analysis. The criterion is not unique, and one
can use the z behavior of each FG as a guidance. Based
on our results, we choose zmax such that the functions
FGðzmaxÞ become zero. According to this criterion, we find
that appropriate choices for HT at P3 ¼ 0.83, 1.25, and
1.67 GeV and ξ ¼ 0 are zmax=a ¼ 13, 9, and 7, respec-
tively. This holds for both the real and imaginary parts. As
expected, the increase of P3 results in a faster decrease of
the matrix elements. For the real part of ET and H̃T , we
choose zmax=a ¼ 7. Our results for ET and H̃T indicate that
the imaginary part is compatible with zero within errors,
and is hence neglected. Some fluctuations at large zmax are
due to the rapid increase of the renormalization functions.
For all the GPDs at jξj ¼ 1=3, we use zmax=a ¼ 7 for both
the real and imaginary parts. We remind the reader that
the distributions at nonzero skewness, Gðx; 1=3; tÞ have
already been combined with Gðx;−1=3; tÞ, which is
symmetric for the three GPDs we show here.
The convergence of HT is shown in the left panel of

Fig. 6 for ξ ¼ 0 and t ¼ −0.69 GeV2. The bands include
only statistical uncertainties. We find that convergence is
achieved for the two highest values of P3, implying that the
reconstructedHT is momentum independent even when the
matrix elements have a momentum boost of 1.25 GeV. This
conclusion is based on the current statistical uncertainties
and the one-loop truncation of the matching formalism. For
HT , a momentum of 0.83 GeV is also compatible with the
higher momenta up to around x ¼ 0.4. Beyond that point,
the distribution is lower than its value for the higher
momenta. In the right panel of Fig. 6, we compare, at
the highest momentum P3, HTðx; 0;−0.69 GeV2Þ with its
forward limit, h1ðxÞ. We find that for the small- and
intermediate-x region, h1ðxÞ is higher than HT , which is
expected. After x ¼ 0.4, the two distributions are compat-
ible. The same equality seems to hold numerically for the
whole antiquark region. The large-x behavior of PDFs and
GPDs for the unpolarized case has been studied using a
power-counting analysis [123]. While similar arguments do
not exist for the transversity GPDs, our data indicate that
there is no t dependence for x → 1, similar to the unpo-
larized H GPD, but unlike the helicity H̃ GPD [68].
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FIG. 3. Renormalized FHT
, FET

, FH̃T
, and FẼT

(from top to bottom), extracted using Eqs. (6)–(9). Results correspond to
t ¼ −0.69 GeV2, ξ ¼ 0, and three nucleon momenta. The color notation is the same as in Fig. 2.
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At P3 ¼ 1.25 GeV, we have results for both zero and
nonzero skewness, which are compared in Fig. 7. In the
ERBL region, there is a significant decrease of the

distribution as −t increases. However, the distribution in
the DGLAP region shows less sensitivity in t. We note that
the discontinuity at x ¼ �ξ is not physical, as twist-2 GPDs

FIG. 5. Renormalized FHT
(blue squares), FH̃T

(red diamonds), FET
(yellow circles), and FẼT

(purple triangles) at jξj ¼ 1=3,
−t ¼ 1.02 GeV2, and nucleon momentum P3 ¼ 1.25 GeV.

FIG. 4. Bare matrix elements computed using the projector Γ2 at zero momentum transfer (green squares), ξ ¼ 0 and −t ¼ 0.69 GeV2

(blue diamonds), and jξj ¼ 1=3 at −t ¼ 1.02 GeV2 (purple circles). The nucleon momentum is P3 ¼ 1.25 GeV.

FIG. 6. Left: HT for ξ ¼ 0 and −t ¼ 0.69 GeV2, as a function of the proton momentum boost. P3 ¼ 0.83, 1.25, 1.67 GeVare shown
with yellow, red, and blue bands, respectively. Right: comparison of h1ðxÞ (violet band) and HTðx; 0;−0.69 GeV2Þ (blue band) for
P3 ¼ 1.67 GeV. Results are given in the MS at a scale of 2 GeV.
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are continuous functions at the boundaries of the ERBL
region [52,108]. The observed effect is due to uncontrolled
higher-twist contamination, which cannot be treated by the
matching formalism, as it contains only the leading twist.
The data for ET and H̃T at ξ ¼ 0 are shown in Fig. 8 for

the two higher momenta. For these GPDs, we do not show
results for P3 ¼ 0.83 GeV, as the matrix elements for FET

and FH̃T
do not decay to zero. This is an indication that a

boost of 0.83 GeV is not large enough. As expected from
the decomposition of the matrix elements in coordinate
space, the uncertainties on these quantities are significantly
enhanced compared to HT . Thus, one will need consid-
erably larger statistics to address them in the future. At the
present stage, the qualitative conclusion that can be drawn
is the approximate symmetry between the quark and
antiquark regions, originating from the imaginary part
of the respective matrix elements being compatible
with zero (see Fig. 3). This also implies a much larger

magnitude of the antiquark part for these two GPDs as
compared to HT . We also find that H̃T is negative. Similar
qualitative conclusions are observed in the scalar diquark
model of Ref. [108]. Comparing the distributions for
the two momenta, we find compatibility within the large
uncertainties.
Figure 9 compares ET (left) and H̃T (right) at the same

boost of 1.25 GeV for zero and nonzero skewness. The
behavior is similar to HT—that is, the increase of −t
reduces the magnitude of the distributions, and the intro-
duction of skewness leads to nonphysical discontinuities at
x ¼ �ξ due to higher-twist effects. However, due to the
large uncertainties in ET and H̃T , the function left and right
of the boundaries x ¼ �ξ appears to be continuous within
uncertainties. Here we do not show ẼT, as the signal is
weak and zero within uncertainties (see, e.g., Fig. 5).
We also explore the combination ET þ 2H̃T , which is

related to the transverse spin structure of the proton, and is
considered a more fundamental quantity than ET [7]. The
ET þ 2H̃T combination has the physical interpretation of
the lateral deformation in the distribution of transversely
polarized quarks in an unpolarized proton. Also, according
to Ref. [8], the lowest Mellin moment [n ¼ 0 in Eq. (37)] of
ET þ 2H̃T in the forward limit is the transverse spin-flavor
dipole moment in an unpolarized target [8], kT . The first
nontrivial moment of ET þ 2H̃T [n ¼ 1 in Eq. (37)] is
related to the transverse-spin quark angular momentum
in an unpolarized proton. In Fig. 10, we show the
combination ET þ 2H̃T for P3 ¼ 1.25 GeV at zero and
nonzero skewness. Our results for the two values of ξ are
compatible within uncertainties, which are rather large.
We do find that the distribution for jξj ¼ 1=3 tends to be
systematically lower than the one at ξ ¼ 0, but further study
is needed to control the uncertainties and reach more
meaningful conclusions.
Since we have results for the unpolarized and helicity

GPDs on the same ensemble and kinematic setup [68], it is

FIG. 7. Comparison of h1ðxÞ (violet band), HTðx; 0;
−0.69 GeV2Þ (blue band), and HTðx; 1=3;−1.02 GeV2Þ (green
band) for P3 ¼ 1.25 GeV. Results are given in the MS at a scale
of 2 GeV.

FIG. 8. ET (left) and H̃T (right) for momentum boosts of 1.25 GeV (red band) and 1.67 GeV (blue band) at ξ ¼ 0 and
−t ¼ 0.69 GeV2. Results are given in the MS at a scale of 2 GeV.
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interesting to compare how the momentum transfer affects
these distributions. To this end, we plot the unpolarized
[f1ðxÞ], helicity [g1ðxÞ], and transversity [h1ðxÞ] PDFs
for P3 ¼ 1.67 GeV in the top panel of Fig. 11. All
distributions are of similar magnitude and shape. f1ðxÞ
and h1ðxÞ decay faster to zero as x increases, while g1ðxÞ
has a comparatively slower decay. The slopes of f1ðxÞ
and h1ðxÞ in the small- and intermediate-x regions are
similar. For fξ; t; P3g ¼ f0;−0.69 GeV2; 1.67 GeVg
(lower-left plot of Fig. 11), we observe that all distributions
are suppressed compared to the PDFs. In particular, the
decrease is more significant for the unpolarized case—that
is,Hðx;0;−0.69GeV2Þ is lower thanHTðx;0;−0.69GeV2Þ
in the small- and intermediate-x regions. Their difference
in the large-x region remains the same. Furthermore,
H̃ðx; 0;−0.69 GeV2Þ and HTðx; 0;−0.69 GeV2Þ are com-
patible for x < 0.4. Further increase of the momentum
transfer, fjξj; t; P3g ¼ f1=3;−0.69 GeV2; 1.25 GeVg,

suppresses the GPDs even more (lower-right plot of
Fig. 11). We note that this plot corresponds to the maximum
available momentum, P3¼1.25GeV. However, we observe
convergence with momentum for the leading GPDs and their
PDFs, so comparison with the upper and lower-left plots is
acceptable. As in the previous two plots, the unpolarized
Hðx; 1=3;−1.02 GeV2Þ is lower than the other two distri-
butions. In the ERBL region, the transversity is slightly
higher than H and H̃. In the DGLAP region, H̃ and HT are
compatible, while H is a bit lower. We want to emphasize
again that these observations are only qualitative.

VI. MOMENTS OF GPDs

The Mellin moments of GPDs are defined viaZ
1

−1
dxxnGðx; ξ; tÞ; n ¼ 0; 1;…: ð37Þ

These are interesting in their own right, as they are related
to form factors and towers of generalized form factors.
Recently, there has been exploration of the Mellin moments
of quasi-GPDs, and their relation to the moments of GPDs.
Of particular relevance is the work of Ref. [108], which
derives relations for the Mellin moments of the transversity
quasi-GPDs and GPDs using model-independent argu-
ments. Also, a numerical analysis is presented using the
diquark spectator model. The following model-independent
relations are given for the n ¼ 0 Mellin moments for both
the GPDs and the quasi-GPDs4:Z

1

−1
dxHTðx; ξ; tÞ ¼

Z
∞

−∞
dxHTqðx; ξ; t; P3Þ ¼ AT10ðtÞ;

ð38Þ

FIG. 10. ET þ 2H̃T for momentum boosts of 1.25 GeV, with
fξ; tg ¼ f0;−0.69 GeV2g (orange band) and fjξj; tg ¼
f1=3;−1.02 GeV2g (red band). Results are given in the MS at
a scale of 2 GeV.

FIG. 9. ET (left) and H̃T (right) for momenta 1.25 GeV, with fξ; tg ¼ f0;−0.69 GeV2g (red band) and fjξj; tg ¼ f1=3;−1.02 GeV2g
(green band). Results are given in the MS at a scale of 2 GeV.

4Here, the integral of the quasi-GPDs does not contain the
kinematic factor shown in Ref. [108], because all factors are
included in our definition of the matrix elements hjT .
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Z
1

−1
dxETðx; ξ; tÞ ¼

Z
∞

−∞
dxETqðx; ξ; t; P3Þ ¼ BT10ðtÞ;

ð39Þ
Z

1

−1
dxH̃Tðx; ξ; tÞ ¼

Z
∞

−∞
dxH̃Tqðx; ξ; t; P3Þ ¼ ÃT10ðtÞ;

ð40Þ
Z

1

−1
dxẼTðx; ξ; tÞ ¼

Z
∞

−∞
dxẼTqðx; ξ; t; P3Þ ¼ 0: ð41Þ

As can be seen, the lowest moments of GPDs are indepen-
dent of ξ, and the lowest moments of quasi-GPDs are, in
addition, P3 independent. The form factors AT10, BT10, and
ÃT10 are extracted from the matrix element of the local tensor
operator as defined in Ref. [7]. Note that the lowest moment
of ẼT is zero due to time-reversal symmetry [6].
The corresponding relation for the n ¼ 1 Mellin

moments of the transversity GPDs is related to the

generalized form factor of the one-derivative tensor
operator—that is [7],Z

1

−1
dxxHTðx; ξ; tÞ ¼ AT20ðtÞ; ð42Þ

Z
1

−1
dxxETðx; ξ; tÞ ¼ BT20ðtÞ; ð43Þ

Z
1

−1
dxxH̃Tðx; ξ; tÞ ¼ ÃT20ðtÞ; ð44Þ

Z
1

−1
dxxẼTðx; ξ; tÞ ¼ 2ξB̃T21ðtÞ: ð45Þ

For the two lowest moments—that is, n ¼ 0, 1
[Eqs. (38)–(45)], a ξ dependence appears only in the
n ¼ 1 moment of ẼT , as it is the only ξ-odd GPD. HT ,
ET , and H̃T are even functions of ξ.
Here, we calculate the moments of the transversity

GPDs as a consistency check of our results. Our goal is

FIG. 11. Top plot: the PDFs f1ðxÞ, g1ðxÞ, and h1ðxÞ for P3 ¼ 1.67 GeV. Bottom-left plot: the GPDs Hðx; 0;−0.69 GeV2Þ,
H̃ðx; 0;−0.69 GeV2Þ, and HTðx; 0;−0.69 GeV2Þ for P3 ¼ 1.67 GeV. Bottom-right plot: the GPDs Hðx; 1=3;−1.02 GeV2Þ,
H̃ðx; 1=3;−1.02 GeV2Þ, and HTðx; 1=3;−1.02 GeV2Þ for P3 ¼ 1.25 GeV. The unpolarized, helicity, and transversity distributions
are shown with red, yellow, and purple bands, respectively. Results are given in the MS at a scale of 2 GeV.
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not to provide numerical results for the form factors
and generalized form factors, as the calculation of these
quantities is still at an exploratory stage, but to perform
a number of checks for the Mellin moments using our
results:
(1) P3 independence of the n ¼ 0 Mellin moments of

quasi-GPDs.
(2) Relation between the n ¼ 0 Mellin moments of

GPDs and quasi-GPDs.
(3) t dependence of the form factors and generalized

form factors.
(4) Relation between the n ¼ 0 and n ¼ 1 Mellin mo-

ments of a given GPD.
(5) Comparison between the n ¼ 0 Mellin moments

with the corresponding value of the matrix element
at z ¼ 0.

For the HT GPD, we find the following values using our
lattice data:

Z
2

−2
dxHTqðx; 0;−0.69 GeV2; P3Þ

¼ f0.65ð4Þ; 0.64ð6Þ; 0.81ð10Þg;Z
2

−2
dxHTq

�
x;
1

3
;−1.02 GeV2; 1.25 GeV

�
¼ 0.49ð5Þ;

ð46Þ
Z

1

−1
dxHTðx; 0;−0.69 GeV2Þ

¼ f0.69ð4Þ; 0.67ð6Þ; 0.84ð10Þg;Z
1

−1
dxHT

�
x;
1

3
;−1.02 GeV2

�
¼ 0.45ð4Þ; ð47Þ

Z
1

−1
dxxHTðx; 0;−0.69 GeV2Þ

¼ f0.20ð2Þ; 0.21ð2Þ; 0.24ð3Þg;Z
1

−1
dxxHT

�
x;
1

3
;−1.02 GeV2

�
¼ 0.15ð2Þ: ð48Þ

For the ET GPD, we have

Z
2

−2
dxETqðx; 0;−0.69 GeV2; P3Þ ¼ f1.20ð42Þ; 2.05ð65Þg;Z

2

−2
dxETq

�
x;
1

3
;−1.02 GeV2; 1.25 GeV

�
¼ 0.67ð19Þ;

ð49Þ
Z

1

−1
dxETðx; 0;−0.69 GeV2Þ ¼ f1.15ð43Þ; 2.10ð67Þg;Z

1

−1
dxET

�
x;
1

3
;−1.02 GeV2

�
¼ 0.73ð19Þ; ð50Þ

Z
1

−1
dxxETðx; 0;−0.69 GeV2Þ ¼ f0.06ð4Þ; 0.13ð5Þg;Z

1

−1
dxxET

�
x;
1

3
;−1.02 GeV2

�
¼ 0.11ð11Þ; ð51Þ

and for the H̃T GPD, we find

Z
2

−2
dxH̃Tqðx; 0;−0.69 GeV2; P3Þ

¼ f−0.44ð20Þ;−0.90ð32Þg;Z
2

−2
dxH̃Tq

�
x;
1

3
;−1.02 GeV2; 1.25 GeV

�
¼ −0.26ð9Þ;

ð52Þ
Z

1

−1
dxH̃Tðx;0;−0.69 GeV2Þ ¼ f−0.42ð21Þ;−0.92ð33Þg;Z

1

−1
dxH̃T

�
x;
1

3
;−1.02 GeV2

�
¼−0.27ð9Þ; ð53Þ

Z
1

−1
dxxH̃Tðx;0;−0.69GeV2Þ¼ f−0.17ð8Þ;−0.30ð10Þg;Z

1

−1
dxxH̃T

�
x;
1

3
;−1.02GeV2

�
¼−0.05ð5Þ: ð54Þ

The numbers in the curly brackets correspond to P3 ¼
f0.83; 1.25; 1.67g GeV for HT, respectively. For ET and
H̃T , we only show results for P3 ¼ f1.25; 1.67g GeV, as
explained in the previous section. For the quasi-GPDs, we
integrate in the region x ∈ ½−2;þ2�, but we check that
extending the interval gives compatible results. The n ¼ 1

moment of ẼT is zero within uncertainties for ξ ¼ 0, which
is consistent with Eq. (45). Before commenting further on
the above results, let us also provide the values of the form
factors, as extracted from the matrix elements at z ¼ 0:

AT10ð−0.69 GeV2Þ ¼ f0.65ð4Þ; 0.65ð6Þ; 0.82ð10Þg;
AT10ð−1.02 GeV2Þ ¼ 0.49ð5Þ; ð55Þ

BT10ð−0.69 GeV2Þ ¼ f1.71ð28Þ; 1.22ð43Þ; 2.10ð67Þg;
BT10ð−1.02 GeV2Þ ¼ 0.68ð19Þ; ð56Þ

ÃT10ð−0.69 GeV2Þ ¼ f−0.67ð14Þ;−0.45ð21Þ;−0.92ð33Þg;
ÃT10ð−1.02 GeV2Þ ¼ −0.24ð8Þ; ð57Þ

Similarly to the Mellin moments of GPDs, the form factors
do not depend on the momentum boost of the proton. Since
Eqs. (55)–(57) are extracted directly from the matrix
elements, we can also provide estimates for BT10 and
ÃT10 at P3 ¼ 0.83 GeV.
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Based on the results shown in Eqs. (42)–(57), we
conclude the following:
(1) For the quasi-GPDs at t ¼ −0.69 GeV2 and ξ ¼ 0,

we have three momenta for HTq [Eq. (46)] and two
momenta for ETq and H̃Tq [Eqs. (49) and (52)]. The
two lowest P3 values forHT are in agreement, and in
slight tension with P3 ¼ 1.67 GeV. The values for
ETq between P3 ¼ 1.25 GeV and P3 ¼ 1.67 GeV
are consistent within the uncertainties. It should be
mentioned, however, that the uncertainties are much
larger than for HTq. Similar conclusions to the ones
for ETq are also valid for H̃Tq.
We observe that the agreement of both the n ¼ 0,

1 moments of the GPDs for different P3 values is
better than for the quasi-GPDs. This is an indication
that the matching procedure removes the bulk of the
P3 dependence.

(2) The n ¼ 0moments of quasi-GPDs for a given value
of P3 are fully compatible with the results of the
n ¼ 0 moment of the corresponding GPDs for the
same value of P3.

(3) For all the n ¼ 0 moments that we present here, we
find that the values at t ¼ −1.02 GeV2 are lower than
those at t ¼ −0.69 GeV2, as expected. For n ¼ 1, we
observe a flatter behavior with the increase of −t in
HT . This is similar to the t dependence of past
calculations, for example, of AT20 using one-deriva-
tive operators [124,125]. For ET and H̃T , the signal
decays to zero at t ¼ −1.02 GeV2.

(4) Another outcome of the numerical analysis is the
fact that the n ¼ 1 moment of a given GPD is
suppressed compared to n ¼ 0. This is expected, as
the higher moments have support at higher values of
x, where the GPDs decay.

(5) Finally, we compare the n ¼ 0 moments
[Eqs. (38)–(40)] with the values of the matrix
elements at z ¼ 0 [Eqs. (55)–(57)]. We find that these
are in excellent agreement with the values obtained
from the integrals, for both t ¼ −0.69 GeV2 and
t ¼ −1.02 GeV2. Regarding the caseof ẼT , the results
are consistent with zero.

The above conclusions are highly nontrivial,5 as the
extraction of the Mellin moments from the final GPDs
includes the reconstruction of the x dependence and the
matching. Therefore, these results serve as very important
cross-checks of the validity of our results.

VII. SUMMARY

In this paper, we present the first lattice QCD calculation
of transversity GPDs for the proton, employing the

quasi-distribution approach. GPDs are defined in the
Breit frame, which we employ in this work. We use
kinematic setups for both zero and nonzero skewness. In
particular, we present results for fξ; tg ¼ f0;−0.69 GeV2g
using momentum boosts P3 ¼ 0.83, 1.25, 1.67 GeV. For
nonzero skewness, we have fjξj;tg¼f1=3;−1.02GeV2g
for P3 ¼ 1.25 GeV. The matrix elements are renormalized
in position space using a variation of the RI-MOM scheme,
the so-called minimal projector. The choice of the projector
is such that it isolates the tree-level contributions from the
vertex functions of the operator. This is necessary, as the
available matching formulas have been developed for that
scheme [117]. To compute the x dependence of the GPDs,
we apply the Backus-Gilbert method to obtain the quasi-
GPDs. Finally, we apply the perturbative matching equa-
tions to extract the light-cone GPDs. In particular, the
analytic equations of the matching relate the quasi-GPDs
defined in the RI scheme at a scale μ0 to the physical GPDs
in the MS scheme at 2 GeV.
We use a combination of operators, momentum source

and sink, as well as parity projectors, so that we can
disentangle the four transversity GPDs, HT , ET , H̃T , and
ẼT . For the latter, we find zero signal within uncertainties,
as it is suppressed compared to the other GPDs. The P3

dependence, at fixed −t ¼ 0.69 GeV2 and ξ ¼ 0, is inves-
tigated by boosting the proton at P3 ¼ 0.83, 1.25, and
1.67 GeV. Our results in Figs. 6 and 8 show that momentum
convergence in HT is observed at the two highest boosts.
A much larger set of statistics is needed to fully establish
such a conclusion for ET and H̃T , which suffer from large
statistical errors. Nevertheless, there is qualitative agree-
ment between our lattice results and the analysis of GPDs in
the scalar diquark model of Ref. [108], where, for example,
H̃T is negative, in agreement with our findings. At
P3 ¼ 1.25 GeV, we also extract the GPDs at jξj ¼ 1=3
and −t ¼ 1.02 GeV2. At nonzero ξ, there is a nontrivial
distinction between the ERBL (−ξ < x < þξ) and DGLAP
(−1 < x < −ξ, ξ < x < 1) regions, and we find that the t
dependence of the GPDs is more prominent in the ERBL
region.
In addition to the individual GPDs, we extract the

combination ET þ 2H̃T (see Fig. 10), both at zero and at
nonzero skewness and for the two t values considered in
this work. This quantity provides the transverse spin-flavor
dipole moment in an unpolarized target, kT , through its
lowest moment and in the forward limit (t ¼ 0). At the
present stage, we are in no position to estimate kT , because
that would require the knowledge of ET and H̃T for
multiple t values to extract their values at t ¼ 0 through
fits. This is certainly a very interesting direction, which we
will pursue in the future.
Our results for the transversity GPDs are combined

with the unpolarized and helicity GPDs from Ref. [68] that
were calculated on the same ensemble and for the same

5We note that the equality of the zeroth Mellin moments of
quasi-GPDs and GPDs should be trivially satisfied due to the use
of the full plus function of Eq. (32).
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kinematic setup. We compare the three types of PDFs, and
the effect of introducing momentum transfer and nonzero
skewness (see Fig. 11). As expected, the H, H̃, and HT
GPDs are suppressed compared to their PDF counterparts.
Another aspect of our analysis is the calculation of the two

lowest Mellin moments for the GPDs. We also extract the
lowest moment of quasi-GPDs using the relations of
Ref. [108]. This is an important part of this work, leading
to a number of conclusions that are consistent with the
expected relations. In a nutshell,we find that then ¼ 0Mellin
moments of quasi-GPDs do not depend on P3, even though
the quasi-GPDs have an explicit dependence on P3. In
addition, the moments of GPDs obtained at different
momenta are consistent. The expectation that the n ¼ 0
Mellin moments of GPDs and quasi-GPDs will be the same
is confirmed by our results numerically. Also, the Mellin
moments have the expected t dependence—that is, they
decrease as −t increases. Another conclusion is that going
from n ¼ 0 to n ¼ 1 results in decreasing the values for the
moment. Last, but not least, the n ¼ 0 moments are fully
consistent with their extraction from the matrix elements at
z ¼ 0. These conclusions hold for all transversity GPDs,
except ẼT , which is consistent with zerowithin our precision.
The calculation presented here is the first of a series of

studies aiming at the calculation of GPDs on several
ensembles, in order to quantify systematic uncertainties
such as pion mass dependence and discretization effects.
Having results from larger-volume ensembles will allow us
to obtain the GPDs for several values of t and fit the t
dependence. As previously mentioned, this is important for
obtaining the forward limit for the GPDs that drop out of
the matrix element at t ¼ 0. In this way, lattice QCD can
provide a robust way of probing the three-dimensional
structure of the nucleon and complement the rich exper-
imental programs aiming at unraveling this structure.
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