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If known, the spectrum of heavy-hadron molecules will be a key tool to disentangle the nature of the
exotic states that are being discovered in experiments. Here we argue that the general features of the
molecular spectrum can be deduced from the idea that the short-range interaction between the heavy
hadrons is effectively described by scalar- and vector-meson exchange, i.e., the σ, ρ, and ω mesons. By
means of a contact-range theory, where the couplings are saturated by the aforementioned light mesons, we
are indeed able to postdict the Xð3872Þ (as a D�D̄ molecule) from the three Pcð4312Þ, Pcð4440Þ, and
Pcð4457Þ pentaquarks (as D̄Σc and D̄�Σc molecules). We predict a JPC ¼ 1−− DD̄1 molecule at
4240–4260 MeV, which might support the hypothesis that the Yð4260Þ is at least partly molecular.
The extension of these ideas to the light baryons requires minor modifications, after which we recover
approximate SU(4)-Wigner symmetry in the two-nucleon system and approximately reproduce the masses
of the deuteron and the virtual state.

DOI: 10.1103/PhysRevD.105.034028

I. INTRODUCTION

Theoretical predictions of the hadronic spectrum are
fundamental for testing our understanding of strong
interactions against experiments. SU(3)-flavor symmetry
[1,2], the quark model [3–6], and the theory behind
quarkonium [7–10] have provided valuable insights and
clear predictions about which hadrons to expect and their
approximate masses. With the experimental observation
of exotic hadrons—hadrons that are neither three-quark
states, a quark-antiquark pair, or that do not fit into
preexisting quark-model predictions [11–14]—new theo-
retical explanations have appeared, among which
molecular hadrons [15,16] are popular. However, the
spectrum of molecular hadrons is not properly under-
stood, with most theoretical applications of this idea
being explicitly customized to explain a particular hadron
or a few at most.
The present manuscript attempts to overcome this

limitation by proposing a more general explanation of
the spectrum of hadronic molecules (in the spirit of
Refs. [17,18]). The idea is as follows: first, we will describe
the interaction between two heavy hadrons in terms of a
contact-range potential. If the range of the binding

mechanism between two heavy hadrons is indeed shorter
than the size of the molecular state formed by the afore-
mentioned hadrons, then a contact-range theory will
represent a good description. Second, we will assume that
the couplings in the contact-range potential are saturated by
light-meson exchange (i.e., σ, ρ, and ω) within the
saturation procedure of Ref. [19]. Third, for effectively
combining the contribution from the saturation of scalar-
and vector-meson exchange, which happen at a different
renormalization scale as the masses of these light mesons
are different, we will follow a renormalization group
equation (RGE). This RGE will tell us what is the
importance of scalar- and vector-meson contributions to
saturation relative to each other. Fourth, the couplings
derived from saturation are expected to be valid modulo a
proportionality constant, which we fix by solving the
bound state equation for a molecular candidate, for in-
stance, the Pcð4312Þ. Finally, we can derive the predictions
of this procedure for other molecular states.

II. SATURATION

We will consider a generic two heavy-hadron system

H1H2, with Hi ¼ Dð�Þ, Σð�Þ
c , etc. for i ¼ 1, 2. Owing to

heavy-quark spin symmetry, their interaction only depends
on the light-quark spins of heavy-hadrons H1 and H2,
which we denote S⃗L1 and S⃗L2. If parity and light spin are
conserved in each vertex (i.e., the H1H2 → H2H1 tran-
sition does not happen), then we can describe the H1H2

system with a contact-range interaction that admits the
multipolar expansion,
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VC ¼ C0 þ C1
ˆS⃗L1 ·

ˆS⃗L2 þ…; ð1Þ

plus higher order terms, if present, with no momentum/

energy dependence and where ˆS⃗Li ¼ S⃗Li=SLi is a reduced
spin operator for hadron i ¼ 1; 2. Higher multipoles can
be built analogously, but in practice the monopolar and
dipolar terms are more than enough to effectively describe
the short-range interaction in most molecules, as higher
multipoles will be suppressed [19]. By using a contact
theory, we are assuming that pion dynamics and coupled
channel effects are perturbative corrections [20,21] and that
the resulting two-body bound state is not compact enough
as to resolve the short-distance details of the light-meson
exchanges binding it. Finally, this contact-range potential
has to be regularized, for which a regulator function depen-
ding on a cutoff Λ is introduced and where the couplings
become functions of this cutoff, i.e., CJ ¼ CJðΛÞ for
J ¼ 0; 1. Concrete regularization details will be discussed
later.
To determine the C0 and C1 couplings, we assume that

they are saturated with scalar- and vector-meson exchange.
We begin by writing the Lagrangians for light-meson
exchange in a suitable notation in which, instead of the
full heavy-hadron fields, we use effective nonrelativistic
fields with the quantum numbers of the light quarks within
the hadrons [19,22]. This is motivated by the observation
that in heavy-hadron interactions the heavy quarks are
spectators. For the interaction of a scalar meson with the
light-quark degrees of freedom inside a heavy hadron, the
Lagrangian reads

L ¼ gSq
†
LσqL; ð2Þ

where gS is a coupling constant, σ the scalar meson field,
and qL the aforementioned effective nonrelativistic “light-
quark subfield.” For the vector mesons, the Lagrangian can
be written as a multipole expansion,

L ¼ LE0 þ LM1 þ…

¼ gVq
†
LV0qL þ fV

2M
qL†ϵijk

ˆS⃗Li∂jVkqL þ…; ð3Þ

where the dots indicate higher order multipoles. In this
Lagrangian, gV and fV are coupling constants, ϵijk the Levi-

Civita symbol, Vμ ¼ ðV0; V⃗Þ is the vector-meson field, and
M is the characteristic mass scale for this multipolar
expansion, which for convenience we will set to be the
nucleon mass, M ¼ mN ≃ 938.9 MeV. For simplicity, we
are not writing down explicitly the isospin or flavor indices.
The number of terms depends on the spin of the light-quark
degrees of freedom, where for SL ¼ 0 (Λc) there is only the
electric term, for SL ¼ 1

2
ðDð�ÞÞ there is also the magnetic

dipole term, for SL ¼ 1 (Σð�Þ
c ) an electric quadrupole term

(which we will ignore), and so on.

In the H1H2 system the potential for the scalar meson is

VSðq⃗Þ ¼ −
gS1gS2
q⃗2 þm2

S
; ð4Þ

with q⃗ the exchanged momentum and where gSi refers to
the scalar coupling for hadron i ¼ 1; 2, while for the vector
mesons we have

VE0ðq⃗Þ ¼ þ gV1gV2
q⃗2 þm2

V
; ð5Þ

VM1ðq⃗Þ ¼ þ 2

3

fV1fV2
4M2

ˆS⃗L1 ·
ˆS⃗L2

m2
V

q⃗2 þm2
V
þ…; ð6Þ

with gVi, fVi the couplings for hadron i ¼ 1; 2 and where
the dots indicate terms that vanish for S-wave or contact-
range terms, for which the range is shorter than vector-
meson exchange. Following Ref. [19], the saturation
condition for scalar-meson exchange reads

CS
0ðΛ ∼mSÞ ∝ −

gS1gS2
m2

S
; ð7Þ

where we stress that saturation is expected to work for Λ of
the same order of magnitude as the mass of the exchanged
light meson (thus Λ ∼mS). For vector-meson exchange, we
have

CV
0 ðΛ ∼mVÞ ∝

gV1gV2
m2

V
½ζ þ ˆI⃗1 ·

ˆI⃗2�; ð8Þ

CV
1 ðΛ ∼mVÞ ∝

fV1fV2
6M2

½ζ þ ˆI⃗1 ·
ˆI⃗2�; ð9Þ

where we have now included isospin explicitly, ζ ¼ �1 is a
sign to indicate the contribution from the omega (þ1 for

DD, ΣcD̄, ΣcΣc and −1 forDD̄, ΣcD, ΣcΣ̄c), and
ˆI⃗i ¼ I⃗i=Ii

are normalized isospin operators for the rho contribution
(with I⃗i the standard isospin operator and Ii the isospin of
hadron i ¼ 1; 2).

III. RENORMALIZATION GROUP EVOLUTION

The saturation of the C0 coupling receives contributions
from two types of light mesons with different masses.
To combine the saturation from scalar- and vector-
meson exchange into a single coupling, we have to know
first the RGE of the couplings, which for nonrelativistic
contact-range theories is well understood and follows the
equation [23,24]

d
dΛ

�
CðΛÞ
Λα

�
¼ 0 or; equivalently∶

CðΛ1Þ
Λα
1

¼ CðΛ2Þ
Λα
2

;

ð10Þ
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with α the anomalous dimension of the coupling. From
this we can combine the scalar- and vector-meson con-
tributions as

CsatðmVÞ ¼ CVðmVÞ þ
�
mV

mS

�
α

CSðmSÞ: ð11Þ

The anomalous dimension is linked with the behavior of the
two-body wave function ΨðRÞ at distances R−1 ∼ Λ by
jΨðR ∼ 1=ΛÞj2 ∼ Λ−α [23,24] (i.e., α encodes the short-
range suppression of the wave function). We do not know
the exact form of the short-distance wave function, but
owing to the large mass of the heavy hadrons, it is sensible
to assume that the semiclassical approximation applies.
From including the Langer correction [25], we estimate
ΨðRÞ ∼ R1=2, which implies α ¼ þ1. We end up with

CsatðΛ ¼ mVÞ ¼ Csat
0 þ Csat

1

ˆS⃗L1 ·
ˆS⃗L2

∝ gV1gV2½ζ þ T̂12�
�

1

m2
V
þ κV1κV2

6M2
ĈL12

�

−
�
mV

mS

�
α gS1gS2

m2
S

; ð12Þ

where T̂12 ¼ ˆI⃗1 ·
ˆI⃗2, ĈL12 ¼ ˆS⃗L1 ·

ˆS⃗L2 and κVi ¼ fVi=gVi.
However, we do not know (yet) the proportionality con-
stant. It is worth stressing that the previous relations
implicitly assume that the contact-range interaction has
indeed been regularized and that the regularization scale
(i.e., the cutoff Λ) is of the right order of magnitude
(Λ ∼mV). In the next lines we will explain in more detail
our regularization prescription.

IV. PREDICTIONS

We now explain how to make predictions with the
saturated coupling and overcome the ambiguities in its
exact definition. First, we regularize the potential

hp0jVCjpi ¼ Csat
molðΛHÞf

�
p0

ΛH

�
f

�
p
ΛH

�
; ð13Þ

where Csat
mol is the saturated coupling of Eq. (12) particu-

larized for a given molecule, fðxÞ is a regulator function
(for which we choose a Gaussian regulator, fðxÞ ¼ e−x

2

),
and ΛH a “physical” cutoff, i.e., a cutoff which corresponds
with the natural hadronic momentum scale. The cutoff ΛH
can be either the scale at which saturation is expected to
work (from mS to mV) or the momentum scale at which we
begin to see the internal structure of the heavy hadrons, as
these two scales are of the same order of magnitude. We opt
for the later:ΛH ¼ 1 GeV. This contact-range potential can
be introduced within a bound state equation to make
predictions,

1þ 2μmolCsat
molðΛHÞ

Z
∞

0

p2dp
2π2

fðp=ΛHÞ2
p2 þ γ2mol

¼ 0; ð14Þ

where μmol is the reduced mass of the two-hadron system
under consideration and γmol the wave number of the bound
state, related to the binding energy by Bmol ¼ −γ2mol=2μmol.
The mass of the predicted molecular state will be
Mmol ¼ Mthres − Bmol, with Mthres ¼ M1 þM2 the thresh-
old of the two-hadron system and Mi the mass of
hadron i ¼ 1; 2.
The proportionality constant between the contact-range

coupling and the saturation ansatz can be determined
from a known molecular candidate. Actually, the strength
of the interaction is dependent on the reduced mass times
the coupling, μmolCsat

mol. If we take the Pcð4312Þ as the
reference molecule1 (mol ¼ Pc), then we can first deter-
mine its coupling from solving Eq. (14) for this system, and
define the ratio

Rmol ¼
μmolCsat

mol

μPc
Csat
Pc

; ð15Þ

from which we can determine the interaction strength of a
particular molecule relative to the Pcð4312Þ. Finally, we
plug Rmol and Csat

Pc
into Eq. (14),

1þ ð2μPc
Csat
Pc
ÞRmol

Z
∞

0

p2dp
2π2

fðp=ΛHÞ2
p2 þ γ2mol

¼ 0; ð16Þ

and compute γmol and Bmol for a particular molecule.
For this we need gV; κVð¼ fV=gVÞ, and gS for the heavy

hadrons; gV and κV are determined from the mixing of the
neutral vector mesons with the electromagnetic current
(i.e., Sakurai’s universality and vector-meson dominance
[26–28]), for which we apply the substitution rules,

ρ0μ →
e
2g

Aμ and ωμ →
e
6g

Aμ; ð17Þ

to Eq. (3) and match to the light-quark contribution to the
electromagnetic Lagrangian (ρ0μ and ωμ are the neutral rho
and omega fields, Aμ the photon field, μ a Lorentz index, e
the proton charge, and g ¼ mV=2fπ ≃ 2.9 the universal
vector-meson coupling constant, withmV the vector-meson
mass and fπ ≃ 132 MeV the pion weak decay constant).

For gV we obtain gV ¼ g (2g) for Dð�Þ=Dð�Þ
0ð1Þ=D

ð�Þ
1ð2Þ (Σ

ð�Þ
c );

κV is proportional to the (light-quark) magnetic moment of
the heavy hadrons, which we calculate in the nonrelativistic
quark model [29], yielding κV ¼ 3

2
ðμu=μNÞ for Dð�Þ and

Σð�Þ
c , κV ¼ 3

2
ðμu=3μNÞ (3

2
ð2μu=μNÞ) for the SPL ¼ 1

2
− (3

2
−)

1We notice that there is no ideal choice of a reference
molecule, as for no exotic meson there exists a clear consensus
of its molecular nature.
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P-wave charmed mesons Dð�Þ
0ð1Þ (Dð�Þ

1ð2Þ), where μN is the

nuclear magneton, and μu ≃ 1.9 μN the magnetic
moment of a constituent u quark (for a more detailed
account on the choice of the magneticlike couplings, we
refer to Appendix A). For gS we invoke the linear-σ model
[30] and the quark model [29], yielding gS ≃ 3.4 (6.8) for

Dð�Þ (Σð�Þ
c ). For the light-meson masses, we take mS ¼

475 MeV (the value in the middle of the Review of Particle
Physics (RPP) range of 400–550 MeV [31]) and mV ¼
ðmρ þmωÞ=2 (with mρ ¼ 770 MeV and mω ¼ 780 MeV).
At this point we find it worth mentioning that the light-

meson exchange picture is not free of theoretical diffi-
culties, the most important of which is probably the nature
and width of the σ. This happens to be a well-known issue
for which we briefly review a few of the available
solutions in Appendix B. Here it is enough to comment
that when a broad meson is exchanged, it can be
effectively approximated by a narrow one by a suitable
redefinition of its parameters [32,33]. As we are determin-
ing the couplings from phenomenological relations, which
do not take into account the width of the scalar meson and
provide a good description of a few molecular candidates,
we consider this redefinition to have already taken place
(we refer to Appendix B for further discussion and
details).
Regarding uncertainties, the RGE indicates that the value

of the saturated couplings are dominated by the scalar
meson [see Eq. (11)], which also happens to be the meson
for which theoretical uncertainties are larger. For this
reason we will generate error bands from the uncertainty
in the scalar meson mass, mS ¼ 475� 75 MeV. Besides,
the contact-range theory approximation also entails uncer-
tainties: if the molecule is compact enough, the heavy
hadrons will be able to resolve the details of the interaction
binding them, and the contact-range approximation will
cease to be valid. We include a relative uncertainty of
γmol=mV (i.e., the ratio of the characteristic molecular
momentum scale and the mass of the vector meson) to
take into account this effect, which we then sum in
quadrature with the previous error coming from mS.
With these couplings we now reproduce the Pcð4312Þ

with Eq. (14), yielding Csat
Pc

¼ −0.80 fm2 for ΛH ¼ 1 GeV.
After this we calculate Rmol and solve Eq. (16) to predict the
molecules we show in Table I:

(i) For molecules in the lowest isospin state the general
pattern is that mass decreases with light spin [19]
(i.e., opposite to compact hadrons).

(ii) The origin of the light-spin dependence is the
magneticlike vector-meson exchange term in Eqs. (6)
and (9).

(iii) For D̄ð�ÞΣð�Þ
c , we reproduce the Pcð4440=4457Þ [34]

and find the spectrum predicted in Refs. [35–39].
(iv) For Dð�ÞD̄ð�Þ, besides the X and its JPC ¼ 2þþ

partner [20,40–42], the only other configuration

close to binding is the JPC ¼ 0þþ DD̄ system
[43,44]. It should be noticed that:
(a) The isoscalar Dð�ÞD̄ð�Þ systems can mix with

nearby charmonia. This is a factor that we have
not included in our model, yet discrepancies
between our predictions and candidate states
could point towards the existence of such
mixing.

(b) In particular, the Xð3872Þ is predicted around its
experimental mass, though with moderate un-
certainties which do not exclude (but do not
require either) a charmonium component.
Though its nature is still debated [45–49],
theoretical works point out to the existence of
a nontrivial nonmolecular component (e.g.,
Ref. [50] finds a negative effective range in
the JPC ¼ 1þþ D�D̄ system, which is difficult to
explain in a purely molecular picture). The
previous could be further confirmed if the
spectroscopic uncertainties of the present model
could be reduced to the point of determining if
underbinding or overbinding exist.

(c) Had we used the Xð3872Þ as the reference
molecule, the results of Table I would have been
almost identical to the ones we obtain from
the Pcð4312Þ.

(v) Molecules involving P-wave D1=D�
2 mesons

have larger hyperfine splittings than their D=D�
counterparts.
(a) For instance, the Dð�Þ

1ð2ÞD̄
ð�Þ
1ð2Þ molecules only bind

for configurations with high light spin, while the
configurations with low light-spin content can
even become repulsive.

(b) The hyperfine splitting of the ΣcD̄1 pentaquarks
is predicted to be approximately twice as large as
for the ΣcD̄� one, about 30 MeV instead
of 15 MeV.

(vi) Molecules for which rho and omega exchange
cancel out (Zcð3900Þ [51]) or involving strangeness
(Pcsð4459Þ [52]) require additional discussion and
are not listed. We advance that:
(a) For the Zc [53–56] IGðJPCÞ ¼ 1þð1þ−ÞD�D̄

configuration, we predict a virtual state at
M ¼ 3849.6 MeV. This agrees with the effective
field theory (EFT) analysis of Ref. [57], which
suggests that if the Zc is a virtual state, then its
mass would be in the M ¼ ð3831–3844Þ MeV
range, though with large uncertainties. Mean-
while in the EFT approach of Ref. [53] the Zc is
located at ð3867–3871Þ MeVwhen a virtual state
solution is assumed (fit 1 in Ref. [53]). Recently,
Ref. [58] has proposed the inclusion of axial
meson [a1ð1260Þ] exchange to explain the Zc, in
which case we would end up with a mass in the
ð3856–3867Þ MeV range. However, this de-
pends on the assumption that Eq. (11) holds far
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away fromΛ ¼ mV , whichmight verywell not be
correct without suitable modifications (check the
discussion in Appendix B). For comparison,
Ref. [18] explains the Zc states in terms of vector
charmonia exchanges.

(b) If the scalar meson couples to q ¼ u, d, s with
similar strength [58], then this will generate Pcs-
like [59–62] I ¼ 0, J ¼ 1

2
, 3
2
ΞcD̄� bound states

at M ¼ 4466.9 MeV.
(vii) We remind that the results of Table I ignore pion

exchanges and coupled channel effects, which are
considered to be perturbative corrections. Appendi-
ces C and D explicitly check these two assumptions
in a few concrete cases, leading, in general, to
corrections that are indeed smaller than the uncer-
tainties shown in Table I. We notice that there might
be specific molecules for which these assumptions
do not hold.

Finally, we warn that though the formalism is identical to
the one used in a typical contact-range EFT, this is not EFT:
here the cutoff is not “auxiliary” but physical. It is not
expected to run freely but a parameter chosen to reproduce
the known spectrum.

V. S-TO-P-WAVE CHARMED MESON
TRANSITIONS

Now we want to explore the Yð4260Þ [65], which has
been conjectured to be a JPC ¼ 1−− DD̄1 molecule [66–
71], though its nature remains unclear [72–77].
For the Dð�Þ

1ð2ÞD̄
ð�Þ two-hadron system, the electric

dipolar and magnetic quadrupolar Dð�Þ
1ð2Þ → Dð�Þ transi-

tions are possible, i.e., there are new H1H2 → H2H1

components in the potential not present in Eq. (1), which
we write as

VC ¼ C0 þ C1σ⃗L1 ·
ˆS⃗L2 þ C0

1Σ⃗
†
L1 · Σ⃗L2 þ C0

2Q
†
L1ijQL2ij;

ð18Þ

where σ⃗L1 are the Pauli matrices and ˆS⃗L2 the spin − 3
2

matrices, as applied to the light quark within the Dð�Þ
1ð2Þ.

The dipolar and quadrupolar pieces are described
by the C0

1 and C0
2 couplings, Σ⃗L=Σ⃗

†
L are the spin

matrices for the SL ¼ 1
2
to 3

2
transition (which can be

consulted in the appendices of Ref. [21]), and
QLij ¼ ðσLiΣLj þ σLjΣLiÞ=2. For saturating C0

1 and C0
2,

we consider the Lagrangians,

LE1 ¼
f0V
2M

qL†ΣLið∂iV0 − ∂0ViÞq0L þ C:C:; ð19Þ

LM2 ¼
h0V

ð2MÞ2 qL
†QLij∂iðϵjlm∂lVmÞq0L þ C:C:; ð20Þ

where qL and q0L are the nonrelativistic light-quark sub-
fields for the S- and P-wave charmed mesons, generating
the potentials

VE1 ¼ −
f0V

2

4M2

ω2
V þ 1

3
μ2V

q⃗2 þ μ2V
Σ⃗†
L1 · Σ⃗L2 þ…; ð21Þ

VM2 ¼ −
h0V

2

16M4

1

5

μ4V
q⃗2 þ μ2V

Q†
L1ijQL2ij þ…; ð22Þ

where μ2V ¼ m2
V − ω2

V is the effective vector-meson
mass for this transition, and ωV ¼ mðD1Þ −mðDÞ,
mðD�

2Þ −mðDÞ, mðD1Þ −mðD�Þ or mðD�
2Þ −mðD�Þ for

D1D̄, D�
2D̄, D1D̄� or D�

2D̄
� molecules. The saturated

couplings read

C0sat
1 ðmVÞ∝−

f0V
2

4M2

�
mV

μV

�
α
�
ω2
V þ 1

3
μ2V

μ2V

�
½ζþ ˆ⃗I1 ·

ˆ⃗I2�; ð23Þ

C0sat
2 ðmVÞ ∝ −

h0V
2

16M4

�
mV

μV

�
α μ2V
5
½ζ þ ˆ⃗I1 ·

ˆ⃗I2�; ð24Þ

which includes the RGE correction derived in
Eqs. (10)–(12). If we define f0V ¼ κ0E1gV , we note that

κ0E1 can be determined from Eq. (17) and the Dð�Þ
1ð2Þ →

Dð�Þγ dipolar moment (extractable from the partial decay

widths [78] or the hDð�Þ
1ð2ÞjrjDð�Þi matrix elements [79]),

yielding κ0E1 ∼ ð2.6 − 3.6Þ. This provides a fairly strong
attraction in the JPC ¼ 1−− DD̄1 molecular configuration,
for which Σ⃗†

L1 ·Σ⃗L2¼−1 (whileQ†
L1 ·QL2≡Q†

L1ijQL2ij¼0),
resulting in Bmol ¼ 19–55 MeV and a mass of
4235–4271 MeV, to be compared with 4218.6� 5.2
[64] for the Yð4260Þ (κ0E1 ∼ 3.9 would reproduce the
mass), suggesting a sizable molecular component.
For the magnetic quadrupolar term, we define

h0V ¼ κ0M2gV , where κ0M2 can be extracted from κ0E1 by
the relation κ0M2 ¼ ðmN=mqÞκ0E1 ¼ 7.4–15.4, with mN=mq

the ratio of the nucleon and constituent quark masses in the
particular quark-model calculation used to obtain κ0M2 (see
Appendix A for details). This provides a modest (but
sizable) attraction in the JPC ¼ 1−− D�D̄1 system (where
Σ⃗†
L1 · Σ⃗L2 ¼ − 1

6
and Q†

L1 ·QL2 ¼ − 5
4
), resulting in a virtual

state with BV
mol ¼ 4.1 MeV for κ0E1 ¼ 3.1 and κ0M2 ¼ 10.7.

If we consider the uncertainties in the M1 and E2
couplings, then the end result ranges from a shallow bound
state (Bmol ¼ 1.1 MeV) to a virtual state moderately away
from threshold (BV

mol ¼ 16.4 MeV), while for κ0E1 ¼ 3.9
[which reproduces the Yð4260Þ] and κ0M2 ¼ 24.6, the
location of the Yð4360Þ as recently measured by BESIII
[64] would be reproduced. Yet, the previous explanation
does not consider the possible D�D̄1 −D�D̄�

1 coupled
channel effects (the D1 and D�

1 charmed mesons have
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about the same mass), which would make binding more
likely and explain the larger width of the Yð4360Þ, check
Appendix D 4 for details. Thus, while a pure molecular
explanation of the Yð4360Þ is less natural than for the
Yð4260Þ, a molecular component is nonetheless possible
and maybe even expectable.
Two other interesting configurations are the JPC ¼

2−− DD̄�
2 and 3−− D�D̄�

2 systems: the first depends on
the coupling C0

2, but not on C0
1 (Σ⃗†

L1 · Σ⃗L2 ¼ 0 and
Q†

L1 ·QL2 ¼ −1), which means that if observed it could
be used to determine κ0M2. For κ

0
M2 ¼ 7.4–15.4, we predict a

binding energy and mass of Bmol ¼ ð0.1–9.1Þ MeV and
M ¼ ð4319.3–4327.5Þ MeV. The second happens to
be the most attractive configuration (Σ⃗†

L1 · Σ⃗L2 ¼ −1 and
Q†

L1 ·QL2 ¼ − 1
2
), with a state predicted somewhere in the

M ¼ ð4349–4401Þ MeV window. In Table I we list the
central value predictions (i.e., κ0E1 ¼ 3.1 and κ0M2 ¼ 10.7)
for the four S- and P-wave molecules considered here.

VI. LIGHT BARYONS

For baryons containing only light quarks, the previous
ideas can also be applied. However, there is a tweak
which has to do with the relative sizes of light baryons in
comparison with heavy hadrons: light hadrons are larger
than heavy hadrons. For instance, the electromagnetic
radius

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2ie:m:

p
of the charged pion and kaon are

about 0.66 and 0.56 fm, respectively [31], with size
decreasing once the heavier strange quark is involved.
This pattern also applies to the charmed mesons, for
which

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2ie:m:

p
∼ ð0.40–0.55Þ fm [80–83]. For baryons,

the electromagnetic radius of the proton is 0.84 fm [31].
Lattice QCD calculations of the electromagnetic form
factors of the singly and doubly charmed baryons yield
figures of the order of 0.5 and 0.4 fm, respectively
[84,85], half the proton radius, where it is curious to
notice that the doubly charmed baryons are about the
same size as the charmed mesons and only slightly
smaller than the singly charmed ones (from which the
hypothesis of using the same cutoff for all heavy hadrons
seems a sensible choice).
Of course, the problem is how to take this effect into

account. The easiest idea is to use a softer physical cutoff
(which effectively amounts to the introduction of a new
parameter) in the light baryon sector,

hp0jVCjpi ¼ Csat
molf

�
p0

ΛL

�
f

�
p
ΛL

�
; ð25Þ

where ΛL will be close to ΛH=2, with Csat
mol still determined

as a ratio of Csat
Pc
. For nucleons gS ¼ 10.2, 1

3
gω ¼ gρ ¼ g

and κρ ¼ 3.7, κω ¼ −0.1 [86], from which we get

Rsinglet ¼ 1.77; Rtriplet ¼ 1.86; ð26Þ

which are really similar, reproducing Wigner’s SU(4)
symmetry [87–89]. For ΛL ¼ 0.5 GeV, we predict shallow
singlet/triplet bound states

Bsinglet ¼ 0.20 MeV; Btriplet ¼ 0.94 MeV; ð27Þ

i.e., close to reality, where the singlet/triplet is a virtual/
bound state located at 0.07=2.22 MeV below threshold. It
is intriguing how reproducing the deuteron forces us to
choose a ΛL that basically coincides with the scale at which
Wigner’s symmetry is expected to manifest [90–94]. Even
though our choice of ΛL follows from a phenomenological
argument, in practice, this is a new parameter required for
the correct description of systems containing a light
baryon, and it could have as well been determined from
the condition of reproducing the deuteron or the vir-
tual state.
Another system to consider is ΔΔ, with gρ ¼ gω ¼ 3g

and κρ ¼ κω ¼ 3
2
μu. The most attractive configuration is

I ¼ 0 and S ¼ 3 (BΔΔ ¼ 15 MeV and MΔΔ ¼ 2405 MeV
for MΔ ≃ 1210 MeV [31]), which might be identified with
the hexaquark predicted six decades ago [95], the d�ð2380Þ
observed in [96] (which, however, has recently been argued
to be a triangle singularity [97]) or the ΔΔ state computed
in the lattice [98].

VII. LIGHT-HEAVY SYSTEMS

Finally, for a two-hadron system with a light and
heavy hadron, we simply use different cutoffs for each
hadron,

hp0jVCjpi ¼ Csat
molf

�
p0

ΛL

�
f

�
p
ΛH

�
: ð28Þ

If we apply this idea to the ND� system, we find a bound
state with IðJPÞ ¼ 0ð3

2
−Þ that might correspond to the

Λcð2940Þ, which has been theorized to be molecular
[99–104]. We also find it worth mentioning the prediction
of a virtual state in the ND system with IðJPÞ ¼ 1ð1

2
−Þ,

BV
mol ¼ 4.3 MeV and M ¼ 2806.6 MeV, which might be

identified with the Σcð2800Þ (also theorized to be molecular
[104,105]). However, owing to the Σcð2800Þ having being
observed in the Λcπ spectrum [106], this interpretation is
questionable unless it is only partially molecular or there
are other factors increasing the attraction in the I ¼ 1 ND
system. We notice though that Ref. [104] finds a Σcð2800Þ
resonance as a pole in ND scattering. In contrast, the ND̄ð�Þ

system (i.e., singly charmed pentaquark candidates) shows
less attraction than the NDð�Þ, owing to omega exchange
becoming repulsive. Yet, the IðJPÞ ¼ 0ð3

2
−Þ ND̄� configu-

ration happens to be close to binding, with a virtual state
at BV

mol ¼ 1.8 MeV.
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VIII. CONCLUSIONS

We propose a description of heavy- (and light-)hadron
molecules in terms of an S-wave contact-range potential.
The couplings of this potential are determined from

light-meson exchange by means of a saturation procedure,
which incorporates a few RG ideas to effectively combine
together the contribution from scalar and vector mesons. In
turn the light-meson exchange parameters are set from a

TABLE I. Selection of the molecular states predicted from saturation: “System” is the two-hadron system, IðJPðCÞÞ refers to the
isospin, angular momentum, parity, and C-parity (if applicable) of the state, Rmol is the relative interaction strength with respect to the
Pcð4312Þ [see Eq. (15)], Bmol the binding energy in MeV (where ð…ÞV indicates a virtual state), Mmol the mass of the molecule,
“Candidate” refers to known resonances that might be identified with the predicted molecule, andMcandidate is the candidate’s mass (“1S0
pole” refers to the virtual state in singlet nucleon-nucleon scattering). The binding energies are calculated from Eqs. (14)–(16), where for
light- (heavy-) hadrons vertices we use the cutoff ΛL ¼ 0.5 GeV (ΛH ¼ 1.0 GeV). The uncertainty in Rmol is obtained from varying the
mσ within the 400–550 MeV range, while for Bmol we combine the previous uncertainty with a γmol=mV relative error by summing them
in quadrature. For the hadron masses, we use the isospin averages of the RPP values [31]. The masses for the Λcð2765Þ, Λcð2940Þ,
Σcð2800Þ, and Xð3872Þ are taken from the RPP [31] (we notice though that the Λcð2765Þ is not well established and could even be a Σc-
type state or a superposition of two states instead, though Ref. [63] considers it to be a Λc); for the Yð4260Þ and Yð4360Þ, we use the
recent BESIII measurements [64], and for the Pcð4312=4440=4457Þ, we refer to the original LHCb observation [34].

System IðJPðCÞÞ Rmol Bmol Mmol Candidate Mcandidate

np 0 ð1þÞ 1.66þ0.12
−0.14 0.9þ1.2

−0.8 1876.9þ0.8
−1.2 Deuteron 1875.6

np 1 ð0þÞ 1.54þ0.16
−0.20 0.2þ1.1

−0.4 1877.7þ0.2
−1.1

1S0 pole 1877.8

ND 0 (1
2
−) 1.01þ0.06

−0.05 ð0.7þ0.6
−0.5 ÞV 2805.5þ0.5

−0.6 Λcð2765Þ 2766.6

ND� 0 (3
2
−) 1.19þ0.12

−0.11 0.1þ0.9
−0.2 2947.4þ0.1

−0.9 Λcð2940Þ 2939.6

ND 1 (1
2
−) 0.84þ0.02

−0.02 ð4.3þ0.7
−0.6 ÞV 2801.9þ0.6

−0.7 Σcð2800Þ ∼2800
ND� 1 (1

2
−) 0.97þ0.03

−0.02 ð1.2þ0.4
−0.4 ÞV 2946.3þ0.4

−0.4 … …

ND̄� 0 (3
2
−) 0.94þ0.01

−0.01 ð1.8þ0.3
−0.2 ÞV 2945.7þ0.2

−0.3 … …

DD̄ 0 (0þþ) 0.63þ0.08
−0.07 ð1.5þ3.5

−1.5 ÞV 3733.0þ1.5
−3.5 … …

D�D̄ 0 (1þþ) 0.89þ0.20
−0.16 4.1þ11.6

−4.1 3871.7þ4.1
−11.6 Xð3872Þ 3871.69

D�D̄� 0 (2þþ) 0.93þ0.20
−0.17 5.5þ12.6

−5.8 4011.6þ5.5
−12.6 … …

D1D̄ 0 (1−−) 1.33þ0.36
−0.31 34þ30

−26 4255þ26
−30 Yð4260Þ 4218.6

D2D̄ 0 (2−−) 0.87þ0.15
−0.13 2.7þ7.3

−2.8 4325.6þ2.8
−7.3 … …

D1D̄� 0 (1−−) 0.56þ0.02
−0.02 ð4.1þ1.1

−1.1 ÞV 4425.6þ1.1
−1.1 Yð4360Þ 4382.0

D2D̄� 0 (3−−) 1.89þ0.60
−0.51 90þ90

−73 4380þ73
−90 … …

D1D̄1 0 (2þþ) 1.66þ0.47
−0.40 58þ57

−45 4786þ45
−57 … …

D2D̄1 0 (3þ−) 1.64þ0.46
−0.39 56þ55

−43 4829þ43
−55 … …

D2D̄1 0 (3þþ) 2.04þ0.65
−0.58 97þ95

−81 4788þ81
−95 … …

D2D̄2 0 (3þ−) 0.83þ0.11
−0.09 1.4þ3.6

−1.5 4924.7þ1.4
−3.6 … …

D2D̄2 0 (4þþ) 2.06þ0.65
−0.54 98þ96

−82 4828þ82
−96 … …

ΣcD̄ 1
2
(1
2
−) 1.00 8.9 4311.9 Pcð4312Þ 4311.9

Σ�
cD̄ 1

2
(3
2
−) 1.04 9.4þ1.7

−1.7 4376.0þ1.7
−1.7 … …

ΣcD̄� 1
2
(1
2
−) 0.85þ0.06

−0.12 2.3þ2.6
−1.9 4459.8þ2.3

−2.9 Pcð4457Þ 4457.3

ΣcD̄� 1
2
(3
2
−) 1.13þ0.04

−0.03 16.9þ5.1
−4.7 4445.2þ4.7

−5.1 Pcð4440Þ 4440.3

Σ�
cD̄� 1

2
(1
2
−) 0.82þ0.09

−0.04 1.3þ2.7
−1.3 4525.4þ1.3

−2.7 … …

Σ�
cD̄� 1

2
(3
2
−) 0.96þ0.03

−0.04 6.4þ2.0
−2.0 4520.3þ2.0

−2.0 … …

Σ�
cD̄� 1

2
(5
2
−) 1.19þ0.06

−0.05 21.0þ7.5
−6.8 4505.7þ6.8

−7.5 … …

ΣcD̄1
1
2
(1
2
þ) 0.81þ0.14

−0.15 1.0þ3.8
−1.4 4874.6þ1.0

−3.8 … …

ΣcD̄1
1
2
(3
2
þ) 1.32þ0.07

−0.06 29þ12
−11 4847þ11

−12 … …

ΣcD̄�
2

1
2
(3
2
þ) 0.75þ0.14

−0.18 0.1þ3.3
−3.4 4916.5þ0.1

−3.3 … …

ΣcD̄�
2

1
2
(5
2
þ) 1.43þ0.12

−0.10 37þ18
−17 4879þ17

−18 … …
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series of well-known phenomenological ideas, and a cutoff
ΛH ∼ 1 GeV is included. This procedure takes thePcð4312Þ
as input, from which it is able to reproduce the other two
LHCb pentaquarks, the Xð3872Þ and predict a few new
molecular candidates. If applied to the light sector (with a
few modifications), it reproduces Wigner-SU(4) symmetry
and the deuteron as a shallow bound state. Of course, the
question is whether the theoretical ideas contained in this
manuscript do really represent a good approximation to the
spectrum of molecular states. Future experiments will tell,
particularly the discovery of different spin configurations of
a given two-hadron system, as the hyperfine splittings are
very dependent on their origin,whichwe conjecture to be the
magneticlike couplings of the vector mesons.
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Note added.—After the acceptance of this manuscript, the
ALICE collaboration has presented the first experimental
study of the ND̄ interaction [107]. They extract the
isoscalar (I ¼ 0) ND̄ inverse scattering length (f−10 in their
notation), resulting in f−10 ðI ¼ 0Þ ∈ ½−0.4; 0.9� fm−1. Our
own calculation yields f−10 ðI ¼ 0Þ ¼ 0.64þ0.19

−0.15 fm
−1 (indi-

cating the presence of a virtual state), or ½0.49; 0.83� fm−1, a
range which falls within the ALICE estimation.

APPENDIX A: DETERMINATION OF THE M1,
E1, AND M2 COUPLINGS

Here we briefly explain how we derive the vector-meson
couplings of higher polarity, beginning with the magnetic
M1 κV couplings. These are given by κV ¼ 3

2
μuðj; lÞ=μN,

with μuðj; lÞ the magnetic moment of a light u quark with
total and orbital angular momentum j and l (which also
characterize its parent heavy meson). Within the quark
model we expect the light-quark magnetic moment operator
to be

μ̂q ¼
eq
2mq

½σ⃗q þ ⃗lq� ¼ μq½σ⃗q þ ⃗lq�; ðA1Þ

where μq is the magnetic moment of the q ¼ u; d quarks in
the quark model (μu ≃ 1.9 μN and μd ≃ −0.9 μN), σ⃗q the
Pauli matrices as applied to the intrinsic spin of the light
quark, and ⃗lq the light-quark orbital angular momentum
operator. For a light quark with j and l quantum numbers, its
magnetic moment is given by the matrix element

μqðj; lÞ ¼ hðslÞjjjμ̂qjðslÞjji; ðA2Þ

with jðslÞjji a state in which a light quark with spin s ¼ 1
2

and orbital angular momentum l couples to total angular
momentum j and third component j. The calculation of this
matrix element is trivial, yielding

μq

�
j ¼ lþ 1

2
; l

�
¼ μq

�
jþ 1

2

�
; ðA3Þ

μq

�
j ¼ l −

1

2
; l

�
¼ μq

j
jþ 1

�
jþ 1

2

�
; ðA4Þ

which translates into μuð12 ; 1Þ ¼ μu=3 and μuð32 ; 1Þ ¼ 2μu
for the D0=D�

1 and D1=D�
2 P-wave charmed mesons.

The E1 and M2 couplings κ0E1 and κ
0
M2, which determine

the strength of the P-to-S-wave charmed meson transitions,
can be determined in turn from the electric dipolar
and magnetic quadrupolar moments of these transitions.
A comparison with the E1 and M2 electromagnetic
Lagrangians,

LE1 ¼ heqid0Eq†LΣ⃗L · ð∂0A⃗ − ∂⃗A0Þq0L þ C:C:; ðA5Þ
LM2 ¼ Qq

Mq
†
LQLij∂iBjq0L þ C:C:; ðA6Þ

together with Eq. (17) yields κ0E1 ¼ 2M 3
2
heuid0E and

κ0M2 ¼ ð2MÞ2 3
2
Qu

M, where in the Lagrangians above qL,

q0L, Σ⃗L and QLij are defined as below Eqs. (19) and (20),
heqi ¼ ðmQeq −mqeQ̄Þ=ðmq þmQÞ is the effective charge
of the qQ̄ system (heui ¼ 2

3
for charmed antimesons),Qq

M is
the quadrupolar magnetic moment for the light quark,
q ¼ u, d, Aμ ¼ ðA0; A⃗Þ the photon field, and Bj ¼
ϵjlm∂lAm the magnetic field.
If we begin with the E1 transitions, heqid0E is the electric

dipolar moment of the u quark in the Dð�Þ
1ð2Þ → Dð�Þ

transition. The dipolar moment can in turn be obtained
in two different ways: (i) from the matrix elements of the
dipolar moment operator or (ii) from the D�

1ð2Þ → Dð�Þγ
decays. In the first case we consider the operator

d̂E
q ¼ heqir⃗; ðA7Þ

where we define the dipolar moment in relation with the
matrix element

hDð�Þ
1ð2Þjd̂qEjDð�Þi ¼ heqid0EΣ⃗L: ðA8Þ

We calculate d0E from the quark-model wave functions of
the SL ¼ 1

2
or 3

2
charmed meson, which can be expanded as

jDðSL; JMÞi ¼
X
MLMH

ΨSLML
ðr⃗ÞjSHMHihSLMLSHMHjJMi;

ðA9Þ
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ΨSLML
ðr⃗Þ ¼

X
μlμs

ulðrÞ
r

Ylμlðr̂ÞjsμsihlμlsμsjSLMLi; ðA10Þ

where J, M refer to the total angular momentum of the
charmed meson and its third component, SL, ML and
SHð¼ 1

2
Þ,MH to the light- and heavy-quark spin, ΨSLML

the
wave function of the light quark, l, μl and sð¼ 1

2
Þ, μs the

orbital and intrinsic angular momentum of the light quark,
ul the reduced wave function, Ylμl a spherical harmonic,
and jjmi and hj1m1j2m2jjmi refer to spin wave functions
and Clebsch-Gordan coefficients. After a few manipula-
tions, we arrive at

d0E ¼ −
hPjrjSiffiffiffi

3
p ; ðA11Þ

where

hPjrjSi ¼
Z

∞

0

dr uPðrÞruSðrÞ; ðA12Þ

with uS and uP the l ¼ 0, 1 reduced wave functions. We
find that κ0E1 ¼ −2mNd0E (for M ¼ mN and charmed
mesons, i.e., heui ¼ − 2

3
) and from hPjrjSi ¼ 2.367 GeV

in Ref. [79], we obtain κ0E1 ¼ 2.6.
In the second case, we use the electromagnetic decays of

the Dð�Þ
1ð2Þ charmed mesons, which are described by the

nonrelativistic amplitude

AðDð�Þ
1ð2Þ → Dð�ÞγÞ ¼ heqid0EΣ⃗L · ð∂0A⃗ − ∂⃗A0Þ; ðA13Þ

from which the D�0
2 → D�0γ decay reads

ΓðD�0
2 → D�0γÞ ¼ 4α

3

mðD�0Þ
mðD�0

2 Þ q
3jd0Ej2; ðA14Þ

with α the fine structure constant and q the momentum of
the photon. If we use this decay width as calculated in
Ref. [78] (Γ ¼ 895 keV, q ¼ 410 MeV), then we will
arrive at κ0E1 ¼ 3.6.
For the magnetic quadrupolar moment (Qq

M), it
can be obtained from the matrix elements of the M2
operator [108],

Q̂q
M ¼ eq

2mq

�
1

2
ðσqirj þ σqjriÞ þ

2

3
ðlqirj þ lqjriÞ

�
; ðA15Þ

with μq, σ⃗q and ⃗lq as defined below Eq. (A1). The matrix
element of this operator will be proportional to Qq

M,

hDð�Þ
1ð2ÞjQ̂q

MjDð�Þi ¼ Qq
MQLij; ðA16Þ

from which we obtain

Qq
M ¼ −

eq
2mq

hPjrjSiffiffiffi
3

p ¼ eq
2mq

d0E: ðA17Þ

If we use the quark-model calculations of Ref. [79], where
mu ¼ 0.22 GeV and hPjrjSi ¼ 2.367 GeV, we arrive to
κ0M2 ¼ 10.3. Instead, if we determine d0E from Ref. [78]
(where mu ¼ 0.33 GeV) as below Eq. (A14), we obtain
κ0M2 ¼ 11.1. In this case, these two determinations yield
similar results (with the average being κ0M2 ¼ 10.7), but this
agreement is probably fortuitous, and the uncertainties
should be of the same relative size as for κ0E1. Indeed, if we
simply rewrite κ0M2 ¼ ðmN=muÞκ0E1 and vary mu independ-
ently of κ0E1, we will obtain instead the κ0M2 ¼ 7.4–15.4
window, which is more in line with what to expect
from κ0E1.

APPENDIX B: DIFFICULTIES WITH THE
LIGHT-MESON EXCHANGE MODEL

Here we consider a few theoretical difficulties with the
light-meson exchange picture. The first is the nature of the
scalar meson, which is not a pure qq̄ state and contains
tetraquark and molecular components as well (e.g., the σ
appears as a wide resonance in ππ scattering, check the
recent review [109] and references therein). The part of the
σ which is expected to manifest at the scale we are
saturating the couplings (i.e., Λ ∼mV) is the qq̄, with
the tetraquark components playing a more important role at
longer distances and manifesting themselves as the two-
pion exchange potential. Dealing with this issue actually
requires to also consider the large width of the σ (check the
discussion below), yet the previous observation suggests
treating the σ that appears in the meson exchange model as
a standard meson, though with properties that might differ
from the physical σ (a point of view which is, for instance,
followed in the meson theory of nuclear forces [32,33]).
The second is the width of the scalar meson, which raises

the issue of how this affects its exchange potential. Several
solutions exist in the literature, of which we underline the
following three: (i) to treat the exchanged σ as a narrow
effective degree of freedom, where its mass and coupling
within light-meson exchange models are not necessarily the
ones corresponding to a physical σ [32,33], (ii) the two-
pole approximation of Binstock and Bryan [110], in which
the integral of the σ propagator over its mass distribution is
approximated as the sum of two narrow particles, one
lighter and one heavier than the physical σ, and (iii) the
treatment by Flambaum and Shuryak [111], in which the
previous integral is approximated as the sum of several
contributions, of which the two most important ones are the
one corresponding to the σ pole (equivalent to the exchange
of a narrow σ, but with a weaker coupling) and another
corresponding to the exchange of its decay products (two-
pion exchange). Here we choose the effective σ solution,
which is the simplest and the one originally adopted in the
meson theory of nuclear forces. Yet, we notice that the RG
equation, as applied to saturation, actually relates these
three solutions, as a decrease in the mass of the sigma
increases its effective strength, while the presence of
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medium range two-pion exchange effects can be in turn
substituted by a stronger sigma exchange. Indeed this is
what actually happens in the meson exchange theory of the
nuclear force, where models in which there is no two-pion
exchange require a stronger σ coupling [32,33] than models
which include it [112].
A third problem is the exchange of heavier light mesons

with the same quantum numbers as the scalar and vector
mesons (e.g., the σ can mix with the f0ð1370Þ, scalar
glueballs, and other 0þþ mesons). Again, RG-improved
saturation indicates that the heavier light mesons can be
included via the formula

CsatðmVÞ ¼
X
M

fsup

�
mV

mM

�
CMðmMÞ; ðB1Þ

where M and mM denote a given meson and its mass, and
fsup is a suppression (or, if mM < mV , enhancement)
factor. For mesons with a mass similar to the saturation
scale (i.e., Λ ∼mV), the suppression factor is expected to
be fsupðxÞ ¼ xα with α ¼ 1, as previously explained below
Eq. (11). However, if the mass is dissimilar, then this
suppression factor should deviate more and more from the
previous ansatz. Besides, fsupðxÞ ¼ xα is only valid for
light mesons with a mass not too different from the vector
mesons and eventually the finite size of the hadrons has to
be taken into account, which will probably lead to a
considerably larger suppression factor. The previous
discussion suggests nonetheless that heavier light mesons
can actually be accounted for by a redefinition of the
effective couplings of the σ, ρ, and ω mesons, though
the modifications are expected to be small owing to the
aforementioned suppression of heavier meson contribu-
tions. Owing to the phenomenological nature of the
relations we have used to obtain the couplings and the
aforementioned suppression, we consider that this redefi-
nition is not necessary.

APPENDIX C: PION EXCHANGE EFFECTS

Here we revisit the assumption that pion exchanges are a
perturbative effect for the two-hadron systems we are
considering. For this we will explicitly include the one-
pion exchange (OPE) potential in a few selected molecules
and calculate the binding energy shift ΔBOPE

mol that it entails.
As we will see, ΔBOPE

mol lies, in general, within the binding
uncertainties we have previously calculated.
For including the OPE potential, we will do as follows:

as we are limiting ourselves to the S-wave approximation,
we will only consider the spin-spin component of OPE,
which is given by

VOPEðq⃗Þ ¼ ζT̂12ĈL12
g1g2
6f2π

μ2π
μ2π þ q⃗2

þ…; ðC1Þ

with μπ the effective pion mass, i.e., μ2π ¼ m2
π − Δ2, where

mπ ≃ 138MeV is the pion mass in the isospin symmetric
limit, and Δ is the mass difference between the hadrons
emitting (or absorbing) the virtual pion in each of the
vertices, in case they are different (e.g., the D�D̄ → DD̄�
case, check, for instance, Ref. [20] for a more detailed
discussion); the dots have the same meaning as in Eq. (6),
and T̂12, ĈL12 were already defined below Eq. (12). We
project this potential into S waves, yielding

hp0jVOPEjpi ¼ ζT̂12ĈL12
g1g2
24f2π

μ2π
pp0 log

�
μ2π þ ðpþ p0Þ2
μ2π þ ðp − p0Þ2

�
:

ðC2Þ

To obtain the molecular potential, we add OPE to the
contact-range potential and regularize

hp0jVmoljpi ¼ ðCsat
molðΛHÞ þ hp0jVOPEjpiÞf

�
p0

ΛH

�
f

�
p
ΛH

�
;

ðC3Þ

where fðxÞ is the regulator function (specifically, the
Gaussian regulator fðxÞ ¼ e−x

2

). This potential is plugged
into the bound state equation

ϕðkÞ þ 2μmol

Z
∞

0

p2dp
2π2

hkjVmoljpi
p2 þ γ2mol

ϕðpÞ ¼ 0; ðC4Þ

where, contrary to the purely contact-range case, the
previous equation cannot be solved analytically or semi-
analytically when OPE is included. The solution is obtained
numerically instead by discretizing the bound state equa-
tion, after which it becomes a linear system that can be
solved by standard means, where γmol is calculated by
finding the zeros of the determinant of the matrix repre-
senting the linear system.
If we now define

ΔBOPE
mol ¼ BOPE

mol − Bmol; ðC5Þ

for the D�D̄ and D�D̄� systems (g1 ¼ g2 ¼ 0.6), then we
obtain

ΔBOPE
mol ≈þ0.0 MeV for 1þþD�D̄; ðC6Þ

ΔBOPE
mol ¼ −1.8 MeV for 2þþD�D̄�; ðC7Þ

which lies within the uncertainties we already have and
where for the D�D̄ system we have approximated the
effective pion mass to zero asmðD�Þ −mðDÞ ≈mπ. For the
ΣcD̄� and Σ�

cD̄� systems (g1 ¼ 0.84, g2 ¼ 0.6), we obtain

ΔBOPE
mol ¼ −1.6 MeV for

1

2

−
D̄�Σc; ðC8Þ
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ΔBOPE
mol ¼ þ1.6 MeV for

3

2

−
D̄�Σc; ðC9Þ

ΔBOPE
mol ¼ −1.3 MeV for

1

2

−
D̄�Σ�

c; ðC10Þ

ΔBOPE
mol ¼ −1.2 MeV for

3

2

−
D̄�Σ�

c; ðC11Þ

ΔBOPE
mol ¼ þ2.5 MeV for

5

2

−
D̄�Σ�

c; ðC12Þ

which again lies within the estimated uncertainties of the
model. Finally, for the NN system (g1 ¼ g2 ¼ 1.29), the
effect of OPE happens to be larger,

ΔBOPE
mol ¼ þ1.8 MeV for the 1S0 channel; ðC13Þ

ΔBOPE
mol ¼ þ2.5 MeV for the deuteron; ðC14Þ

which is about twice the size of the uncertainties we
previously estimated for these two systems. This suggests
that the present model could be improved in the light
baryon sector by explicitly including OPE in the future.

APPENDIX D: COUPLED CHANNEL EFFECTS

Here we consider a few examples of how coupled
channel effects might affect the predictions we have made.
The selected systems are (i) ΣcD̄� − Σ�

cD̄�, (ii) Ξ0
cD̄ − ΞcD̄�

andΞcD̄� − Ξ�
cD̄, (iii)DD̄ −DsD̄s, and (iv)D�D̄1 −D�D̄�

1.
In general, these effects are smaller than the uncertainties
we have already estimated. Yet, there might be exceptions
in which coupled channel effects could play an impor-
tant role.

1. The ΣcD̄� −Σ�
cD̄

� states

We begin with the Pcð4440Þ and Pcð4457Þ pentaquark
states, which in our molecular model are J ¼ 3

2
and 1

2
ΣcD̄�

bound states. It happens that the ΣcD̄� and Σ�
cD̄� thresholds

are close, where the mass gap is 64.6 MeV, and thus it
might be sensible to explicitly check whether this coupled
channel effect could play a significant role in the descrip-
tion of the Pcð4440=4457Þ. The mechanism by which the

two channels mix is the M1 interaction term, i.e., C1
ˆS⃗L1 ·

ˆS⃗L2 in Eq. (1). The evaluation of the spin-spin operator for
ΣcD̄� − Σ�

cD̄� yields

ˆS⃗L1 ·
ˆS⃗L2 ¼

 
− 4

3
−
ffiffi
2

p
3

−
ffiffi
2

p
3

− 5
3

!
for J ¼ 1

2
ðD1Þ

and

 
þ 2

3
−
ffiffi
5

p
3

−
ffiffi
5

p
3

− 2
3

!
for J ¼ 3

2
; ðD2Þ

from which we can solve the coupled channel version of the
bound state equation, resulting in

M

�
ΣcD̄�;

1

2

�
¼ 4459.6ð4458.9Þ MeV; ðD3Þ

M
�
Σ�
cD̄�;

1

2

�
¼ 4525.5 − i0.1ð4525.4Þ MeV; ðD4Þ

M

�
ΣcD̄�;

3

2

�
¼ 4444.3ð4445.2Þ MeV; ðD5Þ

M

�
Σ�
cD̄�;

3

2

�
¼ 4520.7 − i0.4ð4520.2Þ MeV: ðD6Þ

These masses are close to the central value of the single
channel calculation (i.e., the values in parentheses), from
which we are driven to the conclusion that coupled channel
effects are small in the pentaquark case.

2. The Ξ0
cD̄−ΞcD̄

� and ΞcD̄� −Ξ�
cD̄ states

A second example is the Pcsð4459Þ pentaquark, which in
the single channel approximation is considered a ΞcD̄�
bound state. Owing to the strange content of the Ξc
charmed baryon, it is not clear what its coupling to the
scalar meson is. On the one hand, the naive expectation is
that the σ does not contain a large ss̄ component (if we
assume it to be a qq̄ state, which is not clear to begin with).
If we combine this observation with the OZI (Okubo-
Zweig-Iizuka) rule, the coupling of the σ to the strange
quarks within a baryon should be smaller than to the u and
d quarks. On the other hand, the OZI rule is known to fail in
the 0þþ sector [113–116], which implies that the σ should
not be constrained by it. From this we might expect a
similar coupling for all the u, d, and s light quarks. We will
adopt this second view, which implies gS ¼ 6.8 for the Ξc.
With this choice we obtain degenerate J ¼ 1

2
, 3
2
bound states

with a mass of

MðΞcD̄�Þ ¼ 4466.9 MeV; ðD7Þ
which is to be compared with the experimental mass
MðPcsÞ ¼ 4458.8�2.0þ4.7

−1.1 MeV [52].
However, there are two nearby thresholds to be taken

into account, the Ξ0
cD̄ and Ξ�

cD̄ for the J ¼ 1
2
and 3

2
cases,

respectively. The Ξc → Ξð0=�Þ
c transition can be described by

the Lagrangian

LM1 ¼
fV
2M

d†L0ϵijkϵLi∂jVkdL1 þ C:C:; ðD8Þ

where dL0 and dL1 are fields representing the S ¼ 0 and 1
light diquarks within the Ξc and Ξ0

c=Ξ�
c baryons, res-

pectively, and ϵ⃗L is the polarization vector of the S ¼ 1
light diquark. This Lagrangian can be matched to the
electromagnetic one,
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LM1 ¼ μð1 → 0Þd†L0ϵijkϵLi∂jAkdL1 þ C:C:; ðD9Þ

with the diquark transition magnetic moment given by
μð1 → 0Þ ¼ μðq1Þ − μðq2Þ, with q1 ¼ u, d and q2 ¼ s in
the case at hand. The actual Ξ0

cD̄ − ΞcD̄� and ΞcD̄� − Ξ�
cD̄

transitions only involve the ρ and ω vector mesons, and
thus we can ignore the contribution from the strange
meson to the magnetic moment when applying vector-
meson dominance. This leads to κV ¼ 2.9 for the tran-
sition. The saturation of the coupling for the transition
yields

Csat ¼ gV1gV2½ζ þ T̂12�
κV1κV2
6M2

ϵ⃗L1 · σ⃗L2; ðD10Þ

where the index i ¼ 1; 2 represents the Ξc=Ξ0
c=Ξ�

c charmed
baryons and D̄ð�Þ charmed antimeson, respectively. The
evaluation of the light spin-spin operator yields jϵ⃗L1 ·
σ⃗L2j ¼ 1 for both J ¼ 1

2
and 3

2
. From this, we solve the

coupled channel bound state equation and obtain

M

�
ΞcD̄�;J¼ 1

2

�
¼ 4468.4− i1.4ð4466.9ÞMeV; ðD11Þ

M

�
ΞcD̄�; J ¼ 3

2

�
¼ 4464.4ð4466.9Þ MeV; ðD12Þ

where the value in parentheses is the previous
single channel calculation. In this latter case, the J ¼ 3

2

state is close to the experimental single peak solution,
but it also compares well with the two peak solution
considered in Ref. [52], M1 ¼ 4454.9� 2.7 MeV and
M2 ¼ 4467.8� 3.7 MeV, suggesting that the spin of
the lower (higher) mass state should be J ¼ 3

2
(1
2
).

3. The DD̄−DsD̄s states

A second example is the DD̄ system, for which a bound
state has been predicted in the lattice [117] with
Bmol ¼ 4.0þ5.0

−3.7 . Here we predict a virtual state instead
(which could bind within uncertainties), but we did not
include the DD̄ −DsD̄s coupled channel dynamics of
Ref. [117]. Thus it is worth the effort to explore the
importance of this channel.
For the coupled channel dynamics, the DD̄ −DsD̄s

transition potential is given by vector-meson (K�ð890Þ)
exchange

VðHH̄ −HsH̄sÞ

¼ −2
ffiffiffi
2

p g2V
q2 þm2

K�

�
1þ κ2V

m2
K�

6M2

ˆS⃗L1 ·
ˆS⃗L2

�
; ðD13Þ

with H ¼ D,D� and Hs ¼ Ds,D�
s and V ¼ K�, where gV

and κV are the standard couplings for this system, and the
2
ffiffiffi
2

p
factor originates from SU(3)-flavor symmetry. For the

DsD̄s diagonal potential, it will be given by scalar- and
vector-meson (ϕð1020Þ) exchange

VðHsH̄sÞ¼−
g0S

2

q2þm2
S
−2

g2V
q2þm2

ϕ

�
1þ κ2V

m2
ϕ

6M2

ˆ⃗SL1 ·
ˆ⃗SL2

�
;

ðD14Þ

where g0S refers to the coupling of the σ to the Dð�Þ
s meson,

and mϕ ¼ 1020 MeV is the mass of the ϕð1020Þ.
Regarding g0S and the Dð�Þ

s , we follow the same line of
argumentation as for the Ξc in Appendix D 2 and take
g0S ¼ 3.4. The saturated couplings read

CðHH̄−HsH̄sÞ

¼−2
ffiffiffi
2

p �
mV

mK�

�
α g2V
m2

K�

�
1þ κ2V

m2
K�

6M2

ˆ⃗SL1 ·
ˆ⃗SL2

�
; ðD15Þ

CðHsH̄sÞ

¼−
�
mV

mS

�
α g0S

2

m2
S
−2

�
mV

mϕ

�
α g2V
m2

ϕ

�
1þ κ2V

m2
ϕ

6M2

ˆ⃗SL1 ·
ˆ⃗SL2

�
;

ðD16Þ

and concrete calculations yield

MðDD̄Þ ¼ 3733.5Vð3733.0VÞ MeV; ðD17Þ

MðDsD̄sÞ ¼ 3920.9V − i1.7Vð3921.7VÞ MeV; ðD18Þ

where the superscript V indicates a virtual state solution,
and the masses in parentheses represent the prediction of
the single channel calculation. That is, this coupled channel
effect indeed provides an attractive contribution to the DD̄
system (about half a MeV), but it is still small in
comparison with the uncertainties we have for the location
of the DD̄.

4. The D�D̄1 −D�D̄�
1 states

The mass difference between the D1 (SL ¼ 3
2
) and D�

1

(SL ¼ 1
2
) charmed mesons is small,

mðD1Þ −mðD�
1Þ ¼ ð10� 9Þ MeV; ðD19Þ

where most of the uncertainty comes from the broad D�
1

charmed meson. As a consequence, if we try to explain the
Yð4360Þ as a D�D̄1 molecule, it will be difficult not to
consider too the possible mixing with the D�D̄�

1 system.
Indeed, if both the Yð4260Þ and Yð4360Þ were to be DD̄1

and D�D̄1 molecules, respectively, the possible mixing of
the Yð4360Þ with the D�D̄�

1 channel might very well
explain why it is considerably broader than the Yð4260Þ.
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In the following lines we will explain how to include the
D�D̄1 −D�D̄�

1 coupled channel dynamics.
We begin with the M1 D1 → D�

1 vector-meson transi-
tions, for which the Lagrangian reads

LM1 ¼
fV
2M

q00L
†ϵijkΣLi∂jVkq0L þ C:C:; ðD20Þ

where q0L and q00L refer to the light-quark subfield for the
SL ¼ 3

2
and SL ¼ 1

2
P-wave charmed mesons, respectively.

By matching with the electromagnetic Lagrangian,

LM1 ¼ μq

�
3

2
→

1

2

�
q00L

†ϵijkΣLi∂jAkq0L þ C:C:; ðD21Þ

we obtain κV ¼ 3
2
μuð32 → 1

2
Þ, where the transition magnetic

moment can be extracted from the matrix elements of the
magnetic moment operator in Eq. (A1), yielding
μuð32 → 1

2
Þ ¼ μu=

ffiffiffi
3

p
. The next is the E1D → D�

1 vector-
meson transition, which can be obtained from the matrix
elements of

hDð�Þ
0ð1Þjd̂qEjDð�Þi ¼ heqid00Eσ⃗L; ðD22Þ

with d00E ¼ −hPjrjSi=3, i.e., 1= ffiffiffi
3

p
smaller than for theD →

D1 family of transitions. This gives us κ00E1 ¼ κ0E1=
ffiffiffi
3

p
.

The saturated coupling for the D�D̄1 −D�D̄�
1 transition

reads

Csat ∝ CM1ðσ⃗L1 · Σ⃗L2ÞD þ CE1ðσ⃗L1 · Σ⃗L2ÞE; ðD23Þ

where the D and E subscripts stand for “direct”
(D�D̄1 → D�D̄�

1) and “exchange” (D�D̄1 → D�
1D̄

�) terms,
the difference being that the sign of the exchange term
depends on the C-parity of the system under consideration
(for JPC ¼ 1−− the exchange and direct terms have the
same sign). The CM1 and CE1 contributions read

CM1 ¼ þg2V ½ζ þ T̂12�
κM1κ

0
M1

6M2
; ðD24Þ

CE1 ¼ −g2V ½ζ þ T̂12�
κ0E1κ

00
E1

4M2

�
mV

μV

�
α
�
ω2 þ 1

3
μ2V

μ2V

�
; ðD25Þ

where for JPC ¼ 1−− the M1 and E1 terms end up
interfering destructively, leading to relatively weak coupled
channel dynamics (despite the two thresholds being so
close). If we use M ¼ mN , κM1 ¼

ffiffiffi
3

p
κM1

0 ¼ 2.9 and
κ0E1 ¼

ffiffiffi
3

p
κ00E1 ≃ 3.1, then we end up with a weakly bound

D�D1 −D�D�
1 state with a mass of 4420� 9 MeV.

However, if we employ κ0E1 ¼
ffiffiffi
3

p
κ00E1 ≃ 3.9 [the value of

the E1 coupling that reproduces the Yð4260Þ] and the
higher end value of the M2 coupling for this choice of κ0E1,
i.e., κ0M2 ≃ 16.7, then we will predict a bound state with
mass of 4417þ6

−8 MeV.
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