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We employ the recently improved description of dense baryonic matter within the Witten-Sakai-
Sugimoto model to construct neutron stars. In contrast to previous holographic approaches, the presence
of an isospin asymmetry allows us to implement beta equilibrium and electric charge neutrality. As a
consequence, we are able to model the crust of the star within the same formalism and compute the location
of the crust-core transition dynamically. After showing that a simple pointlike approximation for the
baryons fails to satisfy astrophysical constraints, we demonstrate that our improved description does
account for neutron stars that meet the current experimental constraints for mass, radius, and tidal
deformability. However, we also point out tensions in the parameter fit and large-Nc artifacts and discuss
how to potentially resolve them in the future.
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I. INTRODUCTION

Dense matter in the interior of a neutron star is
notoriously difficult to understand from first principles.
The strong coupling nature of the problem—neutron star
matter is dense, but not asymptotically dense—makes the
AdS/CFT correspondence (“holography”) [1,2] a viable
theoretical tool. While the holographic principle allows for
a rigorous strong-coupling calculation, studies are currently
and for the foreseeable future constrained to string models
whose dual is more or less different from the relevant
underlying field theory, quantum chromodynamics (QCD).
Moreover, at least in the most accessible approximations,
the results are strictly valid only in the strong-coupling limit
and for a large number of colors Nc of the dual field theory,
while Nc ¼ 3 in QCD. Nevertheless, for instance in the
context of the quark-gluon plasma in heavy-ion collisions
[3] or deep inelastic scattering in the so-called small-x
regime [4,5], considerable qualitative, and in some cases
quantitative, progress has been made with the help of
holography, in conjunction with more traditional field-
theoretical approaches.

Recently, holographic models have also increasingly
been used to understand the regime of large baryon
densities and the properties of compact stars. Several
studies use holography for a description of quark matter,
and combine it with “ordinary” nuclear matter in the outer
layers of the star, for instance within a D3/D7 approach
[6,7], which can be improved by implementing a running
coupling [8,9]. “Bottom-up” models, inspired by but not
rigorously based on a string theory, have also been
employed, for example the so-called V-QCD model. It is
valid in the Veneziano limit, which alleviates the large-Nc
artifacts, and has mostly been used for quark matter, but
also allows for a description of nuclear matter and the high-
density deconfinement phase transition. In combination
with known low-density approaches such as chiral effective
field theory it has been used to model compact stars,
including simulations of neutron star mergers [10–15].
For other holographic approaches to compact stars see for
instance Refs. [16,17].
In this paper, we employ the Witten-Sakai-Sugimoto

model [2,18,19], a “top-down” approach based on type-IIA
string theory. We go beyond the previous holographic
studies of neutron stars in the sense that our approach
allows us to implement equilibrium with respect to the
electroweak interaction and electric charge neutrality,
two essential conditions for realistic neutron stars that
are routinely implemented in field-theoretical approaches.
We can therefore construct a mixed phase of our holo-
graphic baryonic matter with a gas of leptons, which
models the crust of the star. Such a unified approach is
highly desired even beyond the realm of holography
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[20–25] and enables us to determine the location of the
crust-core boundary fully dynamically.
Baryons in the Witten-Sakai-Sugimoto model correspond

to instantons of the gauge theory in the bulk [26,27], and
dense baryonic matter has been described in approximations
of various degree of sophistication. The pioneering works
used a pointlike approximation [28] and—in a complemen-
tary approach—a homogeneous ansatz for the gauge fields
[29], later refined in Ref. [30]. Improvements to the pointlike
approach included a multilayered structure in the holo-
graphic direction [31] and the construction of quarkyonic
matter [32]. Nonpointlike instantonic matter was considered
in Refs. [33,34], including interactions of the instantons in
the bulk [35].
Here we shall, firstly, consider the pointlike approxima-

tion. It was shown already in Ref. [36] that this approxi-
mation cannot account for realistic tidal deformabilities and
masses at the same time. We confirm this conclusion and
show that the energetically more favorable 2-layered sol-
ution [31,32] leads to similar results and does not produce
realistic neutron stars either. Secondly, and mainly, we then
use the homogeneous ansatz of Ref. [29] in the improved
version of [37], where an isospin asymmetry for two-flavor
baryonic matter was introduced. This improvement provides
the setup to compute the thermodynamic properties of
baryonic matter for arbitrary baryon and isospin chemical
potentials. Thus, by adding a lepton gas we can construct
(globally or locally) neutral dense matter in beta equilibrium.
The calculation will be performed in the confined geometry
of the model with antipodally separated flavor branes, which
is the original version of the model introduced by Sakai and
Sugimoto and which only has two free parameters, the
’t Hooft coupling and the Kaluza-Klein scale. As a conse-
quence of this simple setting, our calculations will be
independent of temperature. Also, we shall not include
strangeness, quark matter, quarkyonic matter or any form
of Cooper pairing of the baryons.
With the equation of state computed from the holo-

graphic model and with the help of the Tolman-
Oppenheimer-Volkoff (TOV) equations we then compute
masses, radii, and tidal deformabilities of the resulting stars
and discuss their properties, most notably those of the
holographic crust and the comparison of our results with
the latest experimental constraints from gravitational waves
[38,39], the mass measurement of the heaviest known
neutron star [40], and the estimates for neutron star radii
from the NICER mission [41–44].
Our paper is organized as follows. Sec. II is devoted to

the pointlike approximation, including the holographic
setup in Sec. II A and the evaluation and discussion of
the results in Sec. II D. Secs. II B and II C contain the TOV
equations and collect the relevant astrophysical constraints,
which are also needed for Sec. III. Apart from these
subsections, readers only interested in our more realistic
approach may go directly to Sec. III, where we discuss the

neutron stars constructed from the homogeneous ansatz for
baryonic matter. We briefly summarize the holographic
setup in Sec. III A and discuss the addition of leptons and
the construction of the crust in Secs. III B and III C. The
numerical results for the thermodynamics are presented in
Sec. III D and for the properties of the resulting stars in
Sec. III E. A summary and an outlook are given in Sec. IV.

II. POINTLIKE BARYONS

We start with the discussion of the simplest approxima-
tion of holographic baryonic matter, where the instantons in
the bulk are approximated by delta peaks and assumed to be
noninteracting [28] (this does not mean that the baryons on
the field theory side are noninteracting). In this approxi-
mation, the number of flavors Nf simply appears as a
prefactor in the action, and thus the baryons can be thought
of as objects composed of Nc quarks of a single flavor.
Moreover, the baryon onset turns out to be of second order.
In other words, matter at a nonzero baryon density always
has nonzero positive pressure and thus cannot coexist with
the vacuum. Therefore, baryonic matter in this approxi-
mation is obviously different from ordinary nuclear matter,
which is made of neutrons and protons, and which, in the
isospin symmetric case, does have a nonzero saturation
density with zero pressure. Despite these shortcomings it is
a useful first step to start with this approximation. It allows
us to connect our results to the previous literature, and it
will be instructive to contrast our more realistic calculation
in Sec. III with the results from pointlike baryons.

A. Holographic calculation

The holographic setup needed for this section can be
found in previous works [28,32,33,45]. We shall therefore
simply collect and only briefly explain the main equations
needed to compute the equation of state, without going
through the derivations or the details of the model.
In this section, we work with the deconfined background

geometry and allow for the D8- and D8-branes (“flavor
branes”) to have an arbitrary asymptotic separation L, such
that together with the ’t Hooft coupling λ and the Kaluza-
Klein massMKK the model has 3 free parameters. (We shall
later set Nf ¼ 2 and Nc ¼ 3.) The flavor branes connect in
the bulk at the point u ¼ uc, where u is the coordinate of
the holographic direction. This is interpreted as sponta-
neous breaking of chiral symmetry since the gauge theory
on the flavor branes corresponds to the global flavor
symmetry of the field theory on the boundary. We shall
work with zero current quark masses throughout the paper
for simplicity (a nonzero mass can be included following
Refs. [32,46]). In the following we may restrict our
calculation without loss of generality to one half of the
connected flavor branes, u ∈ ½uc;∞�.
The action, composed of Dirac-Born-Infeld and Chern-

Simons terms, including the source term for the baryons, is
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S ¼ NNf
V
T

Z
∞

uc

du

�
u5=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u3fTðuÞx024 ðuÞ − â002ðuÞ

q

þ n̄B

�
u
3

ffiffiffiffiffiffiffiffiffiffiffiffi
fTðuÞ

p
− â0ðuÞ

�
δðu − uBÞ

�
; ð1Þ

where prime denotes derivative with respect to u, V is the
spatial volume, T is the temperature, and

N ≡ NcM4
KKλ

3
0

6π2
; ð2Þ

with λ0 ¼ λ=ð4πÞ, and where

fTðuÞ ¼ 1 −
u3T
u3

ð3Þ

is the blackening factor of the background metric, with
the location of the horizon uT , related to temperature
via 4πT=MKK ¼ 3u1=2T . The action is a functional of the
Abelian part of the gauge field â0ðuÞ and the embedding
function x4ðuÞ of the flavor branes. The embedding gives
the geometric shape of the branes in the x4 − u subspace
of the 10-dimensional background, where the x4 direction
is compactified with a radius given by M−1

KK. Pointlike
baryons are placed at the point u ¼ uB, which, in principle,
has to be determined dynamically. Due to the symmetry of
the two halves of the branes, uB > uc corresponds to a
configuration of two layers of baryons. We shall also
include the simplest case of a single baryon layer, where
the baryons are forced to sit at the tip of the connected
branes, uB ¼ uc, as in the original work [28]. We have
denoted the baryon number density, which is proportional
to the number density of the deltalike instantons, by n̄B.
Following Refs. [32–35,46], the action is formulated in
terms of dimensionless quantities (the only dimensionful
quantities in Eq. (1) are V, T, and N ), and the physical,
dimensionful baryon number density nB is

nB ¼ Nfλ
2
0M

3
KK

6π2
n̄B: ð4Þ

The equations of motion for â0 and x4 can be solved
algebraically for â00 and x04,

x04 ¼
k

u11=2fTðuÞ
ζðuÞ; â00 ¼

n̄BΘðu − uBÞ
u5=2

ζðuÞ; ð5Þ

where k is an integration constant, and

ζ≡
�
1 −

k2

u8fTðuÞ
þ n̄2BΘðu − uBÞ

u5

�−1=2
: ð6Þ

The on-shell action (times T=V) is identified with the free
energy density

Ω ¼ NNfΩ̄; ð7Þ

with the dimensionless version

Ω̄ ¼
Z

∞

uc

du u5=2½ζðuÞ − 1� − 2

7
u7=2c þ p0: ð8Þ

Here we have used that stationarity of the on-shell action
with respect to n̄B yields

â0ðuBÞ ¼
uB
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðuBÞ

p
; ð9Þ

and we have subtracted the infinite, medium-independent
vacuum contribution 2

7
Λ7=2 − p0, where Λ is an ultraviolet

cutoff (which is sent to infinity after the subtraction). The
finite contribution

p0 ¼
215π4

7l7

�
Γ½9=16�
Γ½1=16�

�
8

ð10Þ

has been included in the subtraction to normalize the
vacuum pressure to 0, i.e., Ω̄ ¼ 0 for uT ¼ n̄B ¼ 0.
Here, l ¼ MKKL is the dimensionless version of the
asymptotic separation of the flavor branes, and we have
used that in the vacuum k ¼ u4c and

uc ¼
16π

l2

�
Γ½9=16�
Γ½1=16�

�
2

: ð11Þ

The dimensionless (quark) chemical potential is intro-
duced as the boundary value of the Abelian part of the
gauge field, μ̄B ¼ â0ð∞Þ, and is related to its dimensionful
(baryon) counterpart by

μB ¼ Ncλ0MKKμ̄B: ð12Þ

Using Eq. (9), we can thus write the boundary conditions
for x4 and â0 as

l
2
¼

Z
∞

uc

du x04; μ̄B ¼ uB
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðuBÞ

p
þ
Z

∞

uB

du â00 : ð13Þ

For the minimization with respect to uc one has to treat
the 1-layer and 2-layer cases separately. In both cases, this
condition can be solved explicitly for k,

k2 ¼ ðu8c þ ηu3cn̄2BÞfTðucÞ − ηu3c

�
n̄B
3

�
2
�
3 − fTðucÞ

2

�
2

;

ð14Þ
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where η ¼ 1 (η ¼ 0) for 1 layer (2 layers).1 In the 2-layer
case, the additional condition of minimizing the free energy
density with respect to uB yields

n̄B ¼ 6ΔTðuBÞ
u3=2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u8BfTðuBÞ − k2

fTðuBÞ½9 − Δ2
TðuBÞ�2

s
; ð15Þ

where we have abbreviated

ΔTðuBÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðuBÞ

p �
1þ u3T

2u3B

�
: ð16Þ

One now proceeds by solving Eqs. (13) with the help
of Eqs. (14) and (15). The asymptotic separation l can be
eliminated by working with the variables ñB ¼ n̄Bl5,
μ̃B ¼ μ̄Bl2, ũc ¼ ucl2, ũB ¼ uBl2, which yields the free
energy density Ω̃ ¼ Ω̄l7. Since our choice of the dimen-
sionless variables already absorbs all other model param-
eters, Eqs. (13) only have to be solved once, without fixing
λ, MKK, and L, which only become relevant in the trans-
lation to physical results. Having in mind the “decom-
pactified limit” of the model l ≪ 1, where the confined
phase is ignored [32,45], we shall restrict ourselves to zero
temperature. In this case, the second-order baryon onset
occurs at

μ̄B ¼ uc
3
; ð17Þ

with uc from Eq. (11). This is true for both 1-layer and
2-layer configurations. In the 2-layer case the baryons sit at
uB ¼ uc at the onset and move away from this point toward
the ultraviolet as the chemical potential (and thus the
baryon density) is increased. The free energies of the
two configurations are identical only at the onset; as soon
as the chemical potential increases, the 2-layer solution is
energetically preferred. Multilayer solutions are expected to
take over at large densities [31,32], and they should be
taken into account in principle. However, we shall dem-
onstrate that the 1-layer and 2-layer solutions do not differ
much in their effect on compact star properties. And, since
we shall see that realistic constraints are far from being met
within the present approximation, we do not expect multi-
layer solutions to change this conclusion. Also, although
the pointlike approximation suggests that multilayer sol-
utions become preferred at large densities, calculations
allowing for finite-width instantons indicate that more than
2 layers are never preferred [30,34]. We therefore ignore
configurations with more than two baryon layers.

To obtain the equation of state, the solutions of Eqs. (13)
are inserted back into the free energy density (8), which
yields the pressure P̄ ¼ −Ω̄ and the zero-temperature
energy density

ϵ̄ ¼ Ω̄þ μ̄Bn̄B: ð18Þ

Dimensionless pressure and energy density are both trans-
lated to their dimensionful counterparts P and ϵ with the
factor given in Eq. (7). Finally, we will also need the speed
of sound

c2s ¼
∂P
∂ϵ ¼ nB

μB

�∂nB
∂μB

�
−1
: ð19Þ

Here, the derivative with respect to ϵ is in general taken at
fixed entropy per particle, and the right-hand side is valid at
zero temperature. We show the results for the 1-layer and
2-layer configurations in Fig. 1. In both cases the speed
of sound is nonmonotonic as a function of density and
approaches the value c2s ¼ 2=5 for asymptotically large
densities (in an asymptotically free theory such as QCD
the result approaches 1=3). Interestingly, in the 2-layer
configuration the speed of sound approaches the asymp-
totic value much faster. We have indicated the value of the
central density within the most massive compact star—to
be computed in the following subsections—for both cases,
which shows that the nonmonotonicity plays no role in the
interior of any star.

B. TOV equations and tidal deformability

We now combine the thermodynamics with gravity to
construct stars in hydrostatic equilibrium. To this end, we
employ the well-known TOVequations [47–49], restricting
ourselves to the static, spherically symmetric case,

FIG. 1. Speed of sound squared as a function of the dimension-
less baryon number density ñB ¼ n̄Bl5 for 1-layer (dashed) and
2-layer (solid) pointlike baryonic matter. The stars indicate the
density and speed of sound in the center of the most massive stars.

1For the 2-layer case see Ref. [32], and for the 1-layer case see
for instance Appendix B of Ref. [33], where Eqs. (B7) and (B8)
contain a typo: 1þ fTðucÞ has to be replaced by 3 − fTðucÞ, as in
our Eq. (14).
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∂P
∂r ¼ −

G
r2
ðM þ 4πPr3Þðϵþ PÞ

1 − 2GM
r

; ð20aÞ

∂M
∂r ¼ 4πr2ϵ; ð20bÞ

0 ¼ r
∂y
∂r þ y2 þ

4πGr2ð5ϵþ 9Pþ ϵþP
c2s
Þ − 6

1 − 2GM
r

þ y½1 − 4πGr2ðϵ − PÞ�
1 − 2GM

r

−
4G2ðM þ 4πPr3Þ2

r2ð1 − 2GM
r Þ2 ;

ð20cÞ

where G ¼ 6.709 × 10−39 GeV−2 is the gravitational
constant. The third equation (20c) is added to the TOV
equations (20a) and (20b) to compute the tidal deform-
ability [50–53]. It contains the function yðrÞ, which is
related to the metric perturbation from tidal deformations.
The equations are solved for massMðrÞ, pressure PðrÞ, and
yðrÞ as functions of the radial coordinate r after employing
an equation of state ϵðPÞ and using the boundary conditions
in the center of the star Mð0Þ ¼ 0, Pð0Þ ¼ Pc, yð0Þ ¼ 2,
where Pc is the central pressure. Varying Pc yields all
possible stars for a given equation of state. Then, PðRÞ ¼ 0
(the vacuum pressure being set to zero) defines the radius of
the star R, and the total gravitational mass of the star is
MðRÞ, which we shall simply denote byM in the following.
The tidal deformability

Λ ¼ 2k2
3c5

ð21Þ

is then computed from the compactness of the star,

c ¼ GM
R

; ð22Þ

and the so-called tidal Love number [54]

k2 ¼
8c5

5
ð1 − 2cÞ2½2 − yR þ 2cðyR − 1Þ�

× f2c½6 − 3yR þ 3cð5yR − 8Þ�
þ 4c3½13 − 11yR þ cð3yR − 2Þ þ 2c2ð1þ yRÞ�
þ 3ð1 − 2cÞ2½2 − yR þ 2cðyR − 1Þ� lnð1 − 2cÞg−1;

ð23Þ

where yR ≡ yðRÞ. We shall perform the calculation with
dimensionless quantities

r̂ ¼ r
r0
; M̂ ¼ M

M0

; P̂ ¼ P
ϵ0
; ϵ̂ ¼ ϵ

ϵ0
; ð24Þ

where we choose the scales r0, M0, ϵ0 to obey

1 ¼ GM0

r0
¼ 4πr30ϵ0

M0

: ð25Þ

The benefit of this choice is that the dimensionless version
of Eqs. (20) does not explicitly depend on r0,M0, ϵ0, which
only become relevant to transform back to the dimensionful
results. Since Eq. (25) leaves one freedom for the three
scales, we will choose ϵ0 to our convenience according to
the holographic calculation and then determine M0 and r0
from that choice.

C. Astrophysical constraints

Here and in the rest of the paper we shall have in mind
the following constraints from astrophysical data:

(i) Each mass-radius curve must allow for a mass of
about 2.1 solar masses according to the heaviest
currently known neutron star [40]; if the compact
object from the merger GW190814 with a black hole
is a neutron star, the lower limit for the maximal
mass is even 2.5 solar masses or higher [39].

(ii) The tidal deformability for a roughly 1.4 solar mass
star was constrained by the merger of two neutron
stars GW170817 to be about 70≲ Λ1.4 ≲ 580 [38].

(iii) Data from the NICER collaboration was used to
estimate the radius of the above mentioned heaviest
neutron star to be about (11.4–13.7) km [43] and
(12.2–16.3) km [44], while previous data for a
roughly 1.4 solar mass star was used to obtain
radius estimates of about (11.5–13.9) km [41] and
(12.0–14.3) km [42].

D. Absence of realistic stars with pointlike baryons

In the case of pointlike baryons, we compute the free
energy density Ω̃ ¼ Ω̄l7, with Ω̄ defined in Eq. (7).
Therefore, the obvious choice for the scale ϵ0 is

ϵ0 ¼
NfN

l7
≃ 6.214 × 104

�
K

GeV

�
4 MeV
fm3

; ð26Þ

where we have introduced the energy scale

K ≡
�

NfNcλ
3
0

9πL7M3
KK

�
1=4

: ð27Þ

With Eq. (25) we then find

M0 ≃ 0.666

�
K

GeV

�
−2

M⊙; ð28aÞ

r0 ≃ 0.984

�
K

GeV

�
−2

km; ð28bÞ

where M⊙ ¼ 1.988 × 1030 kg denotes the mass of the sun.
We observe that mass, radius, and tidal deformability of the
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star depend solely on the particular combination of the
model parameters in Eq. (27).
Solving the coupled equations (20) in their dimension-

less version numerically for different central pressures
yields the mass-radius curves shown in Fig. 2. We see
that 1-layer and 2-layer phases yield very similar results,
with the 2-layer solution allowing for a slightly smaller
maximal mass. In the plot we have extended the curves to
radii smaller than that of the maximum mass star, although
this part of the curve corresponds to unstable stars with
respect to radial oscillations [55,56]. As the central pressure
is decreased, the radius of the stars asymptotes to a finite
value of about R̂ ≃ 23.9. To understand this we observe
(numerically) that for small densities the equation of state
behaves like P ∝ ϵ2. In this regime the Lane-Emden
equation is applicable, obtained in the Newtonian limit
and with a polytropic equation of state from the TOV
equations, see for instance Ref. [57]. From this equation
one can check analytically that a quadratic equation of state
results in a fixed radius independent of the mass. Figure 2
also includes the tidal deformability as a function of
compactness. For both plots no choice of the model

parameters was necessary. To connect our results to the
astrophysical data we need to discuss their dependence on
the energy scale K.
As a first choice, let us fit our model parameters to basic

QCD vacuum properties. For instance we may use the pion
decay constant fπ ≃ 93 MeV and interpret the value of the
chemical potential at the baryon onset as the vacuum mass
of the nucleon mN ≃ 939 MeV. Using the expression for
the pion decay constant for the deconfined geometry of
the Witten-Sakai-Sugimoto model [32,58], reinstating the
dimensionful factor for the chemical potential (12) and
using Eq. (11), this yields

f2π ¼
32ðλ=lÞNc

3π2L2

�
Γ½9=16�
Γ½1=16�

�
3 Γ½11=16�
Γ½3=16� ; ð29aÞ

mN ¼ 4ðλ=lÞNc

3L

�
Γ½9=16�
Γ½1=16�

�
2

; ð29bÞ

from which we obtain K ≃ 0.842 GeV. Here we have set
Nc ¼ 3 (extrapolating down from large Nc) and Nf ¼ 2.
We find a maximal mass Mmax ≃ 3.0 M⊙ (3.2 M⊙) for 2
layers (1 layer), a tidal deformability of a 1.4 solar mass star
Λ1.4 ≃ 6.6 × 104 (8.2 × 104) and a corresponding radius
R1.4 ≃ 30 km (31 km). The results for Λ1.4 and R1.4 are far
beyond the constraints from astrophysical data, and thus
we do not even come close to reproducing vacuum and
neutron star properties at the same time within the pointlike
approximation.
We may lower our expectations and ask if there is any

parameter choice that at least fulfills the astrophysical
constraints, ignoringmN and fπ. Since the translation of the
dimensionless results into physical units only requires
the choice of the single scale K, it is easy to explore the
entire parameter space. Each K gives a maximal massMmax
and a tidal deformability Λ1.4. By varying K we can thus
construct the curves shown in Fig. 3 for 1-layer and
2-layer configurations. The shaded regions show the
constraints from the data, and we see that our curve does
not enter the area were both constraints are fulfilled
simultaneously. For instance, the largest possible mass
compatible with the realistic band for the tidal deform-
ability is about 1.62 M⊙ (1.67 M⊙) for 2 layers (1 layer), in
accordance with the conclusion for 1 layer in Ref. [36].
Since the curves capture all possibilities, we can rigorously
conclude that the present approximation, while being useful
as a first attempt due to its simplicity, cannot produce
realistic neutron stars. We therefore move on to a different
approximation of holographic baryons which shall turn out
to be more relevant for astrophysical applications.

III. BETA-EQUILIBRATED, ELECTRICALLY
NEUTRAL, HOLOGRAPHIC NEUTRON STARS

We have seen that the pointlike approximation of the
previous section can only be a first step at best toward a

FIG. 2. Mass-radius curve in dimensionless units (upper panel)
and tidal deformability as a function of compactness (lower
panel) for 1-layer (dashed) and 2-layer (solid) configurations
of pointlike baryons. Both plots are independent of the model
parameters.

KOVENSKY, POOLE, and SCHMITT PHYS. REV. D 105, 034022 (2022)

034022-6



holographic description of dense matter inside neutron
stars. More sophisticated approaches in the Witten-Sakai-
Sugimoto model based on instantons with a nonzero,
dynamically determined, width do exist in the literature.
However, so far none of these instanton-based approaches
have included isospin, except for studies of single baryons
[26]. Since an isospin asymmetry is a crucial ingredient
for neutron star matter we will use a recently developed
approach which is not explicitly built on instanton solutions
but which does account for isospin [37]. This approach
makes use of an ansatz for the non-Abelian part of the gauge
fields that is homogeneous in position space [29,30,33].
Here, we shall only use the simplest version of the

formalism developed in Ref. [37]. Namely, we work in the
confined geometry, with antipodal separation of the flavor
branes, and employ the Yang-Mills approximation for
the action. Moreover, we ignore the possibility of a pion
condensate, which has been shown to coexist with baryonic
matter in large parts of the phase diagram in the presence of
an isospin chemical potential [37]. This is an interesting
observation also for applications to compact stars since it is
still an open question whether pions form a condensate in
neutron star matter [59–61]. However, in the approach of
Ref. [37] the holographic pion condensate cannot easily be
separated from the baryonic contribution, and thus it is not
straightforward to couple the system to electromagnetism,
i.e., assign the correct electric charges to the nucleons and
pions separately. Therefore (and since Ref. [37] only
provides the necessary equations in the limit of massless
pions), we leave holographic pion condensation in neutron
stars for future studies.

Also, our restriction to the confined geometry of the
Witten-Sakai-Sugimoto model is done for simplicity.
The deconfined geometry—used in the previous section
for the pointlike baryons—has the advantage to be easily
generalizable to nonzero temperatures and to allow for
chirally symmetric phases. It may thus be used in principle
to study hybrid stars with a quark matter or quarkyonic core.
(However, the transition densities to chirally symmetric
matter appear to be very large, perhaps too large for neutron
star interiors, at least in the approximations currently
available in the literature.) For our purposes, the deconfined
geometry leads to numerically more challenging equations,
which make a systematic study very cumbersome. We
therefore work with the simpler equations from the confined
background, where in particular the antipodal separation of
the flavor branes simplifies the problem because their
embedding does not have to be calculated dynamically.
Moreover, in this section we do not include the possibility

of more than one baryon layer in the holographic direction.
As for the pointlike case of Sec. II, this possibility should,
strictly speaking, also be taken into account in the approach
of the homogeneous ansatz. It was indeed studied in
Ref. [30], albeit within a slightly different homogeneous
ansatz, made on the level of the field strengths, not the gauge
fields. A generalization of this ansatz to nonzero isospin
density, however, has not yet been performed.We recall from
Sec. II that within the pointlike approximation the results
for 2 layers are very similar to the 1-layer case. Therefore,
although a full calculation has to ultimately show the
quantitative effect of additional baryon layers, we do not
expect them to alter our main conclusions significantly.
Before collecting the relevant equations, let us point out

one important shortcoming of the approach used here.
Since it does not employ any quantization in the bulk,
which can account for finite-Nc effects and results in
discrete states for neutron and proton [26], the baryon
spectrum in the approximation used here is continuous in
the isospin direction [37]. As a consequence, symmetric
nuclear matter can be thought of as being composed of
predominantly isospin-symmetric baryons, and an isospin
asymmetry in the many-body system requires the popula-
tion of heavier, isospin-asymmetric states. This is in
contrast to the real world, where isospin-symmetric nuclear
matter is already made of baryons with nonzero isospin
number, neutrons and protons, and an isospin asymmetry
can be created by changing their population, without
creating new baryons with different masses. An important
consequence is that our holographic nuclear matter has an
unrealistically large symmetry energy [37]—of the order of
the baryon mass rather than about 30 MeV—and we shall
see that as a consequence our neutron star matter will have a
very large proton fraction, much closer to symmetric matter
than to pure neutron matter. Nevertheless, we shall see that
qualitatively, and in many aspects also quantitatively, our
approach yields realistic properties of neutron stars.

FIG. 3. Relation between maximal masses and tidal deform-
abilities for 1.4 solar mass stars using the pointlike approximation
for baryons. The curve is parametrized by the energy scale K,
containing the only relevant combination of the three model
parameters, from small K at the upper right to largeK to the lower
left; if K ≳ 1.24 GeV (1.27 GeV) for 2 layers (1 layer) all stars
have masses below 1.4 solar masses. The grey bands indicate the
astrophysical constraints, see Sec. II C, and we see that in the
pointlike approximation no choice of the model parameters can
meet them simultaneously.
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A. Holographic setup

In this subsection, we collect and briefly comment on the
relevant equations of the holographic setup. More details
and derivations can be found in Ref. [37]. The action in the
Yang-Mills approximation is

S ¼ NNf
V
T

Z
∞

uKK

�
u5=2

2
ffiffiffi
f

p ðg1 − fâ002 − fa020 þ g2 − g3Þ

−
9

4
λ0â0h2h0

�
du; ð30Þ

with the abbreviations

g1 ≡ 3fh02

4
; g2 ≡ 3λ20h

4

4u3
; g3 ≡ 2λ20h

2a20
u3

: ð31Þ

As in Sec. II, prime denotes derivative with respect to u.
The structure of the action is similar to the one used for the
pointlike baryons in the deconfined geometry (1). Besides
the absence of the square root due to the Yang-Mills
expansion, the different background geometry leads to a
different, temperature-independent, metric factor

f ¼ 1 −
u3KK
u3

; ð32Þ

where uKK is the location of the tip of the cigar-shaped
u − x4 subspace, i.e., u ∈ ½uKK;∞�, again working on
one half of the connected flavor branes. In our units,
uKK ¼ 4=9. The action depends on the temporal compo-
nent of the abelian Uð1Þ gauge field â0 with boundary
condition μ̄B ¼ â0ð∞Þ and the temporal component of the
non-Abelian SUð2Þ part aa0σa, where σa are the Pauli
matrices. The isospin chemical potential acts as a boundary
value for a0 ≡ a30, μ̄I ¼ a0ð∞Þ, and it is consistent to set
a10 ¼ a20 ¼ 0, at least in the chiral limit employed here. The
spatial components of the non-Abelian part are written
as ai ¼ −λ0hσi=2, with a single function hðuÞ that gen-
erates nonzero baryon number through a discontinuity at
u ¼ uKK. We work with the same dimensionless units as in
Sec. II, such that the physical chemical potentials are
obtained via Eq. (12).
The equation of motion for â0 can easily be integrated

to give

â00 ¼
n̄BQ

u5=2
ffiffiffi
f

p ; ð33Þ

where QðuÞ≡ 1 − h3ðuÞ=h3c with the boundary value
hc≡hðuKKÞ¼−½4n̄B=ð3λ0Þ�1=3. The dimensionless baryon
density n̄B and the isospin density n̄I (given below) are
related to their dimensionful versions via Eq. (4). The
equations of motion for h and a0 are

ðu5=2
ffiffiffi
f

p
a00Þ0 ¼

2λ20h
2a0

u1=2
ffiffiffi
f

p ; ð34aÞ

3

2
ðu5=2

ffiffiffi
f

p
h0Þ0 − 9λ0h2n̄BQ

2u5=2
ffiffiffi
f

p ¼ λ20hð3h2 − 4a20Þ
u1=2

ffiffiffi
f

p : ð34bÞ

These equations have to be solved numerically for a0ðuÞ
and hðuÞ with the boundary conditions already given
above, together with hð∞Þ ¼ 0 and a00ðuKKÞ ¼ 0. From
the solutions we then compute baryon chemical potential
and isospin number density

μ̄B ¼ u2KKhð1Þ
2

ffiffiffi
3

p
λ0h2c

þ
Z

∞

uKK

du
n̄BQ

u5=2
ffiffiffi
f

p ; ð35aÞ

n̄I ¼ 2λ20

Z
∞

uKK

du
h2a0

u1=2
ffiffiffi
f

p ; ð35bÞ

where hð1Þ is numerically extracted from the behavior
close to the tip of the connected branes, hðuÞ ¼ hcþ
hð1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u − uKK

p þ � � �. Inserting the solutions back into the
action yields the (dimensionless) free energy density

Ω̄B ¼
Z

∞

uKK

du
u5=2

2
ffiffiffi
f

p
�
g1 þ g2 þ

ðn̄BQÞ2
u5

þ 2λ20μ̄Ih
2a0

u3

�
− μ̄Bn̄B − μ̄In̄I: ð36Þ

The divergent part of the action is absent from the
beginning due to the use of the Yang-Mills approximation,
and the vacuum pressure is automatically normalized to
zero, Ω̄Bðn̄B ¼ n̄I ¼ 0Þ ¼ 0, i.e., no further vacuum sub-
traction is necessary. We have added a subscript B to the
free energy density to indicate that this is the baryonic part,
to which the leptonic part is added now.

B. Adding leptons

In order to account for realistic neutron star matter we
need to add leptons, which will serve to neutralize the
system. The total (dimensionless) free energy density is
thus the sum of baryonic and leptonic contributions,

Ω̄ ¼ Ω̄B þ Ω̄l; ð37Þ

where

Ω̄l ¼ Ω̄ðme; μeÞ þ Ω̄ðmμ; μμÞ ð38Þ

is the free energy density of noninteracting electrons and
muons with masses me ¼ 511 keV, mμ ¼ 106 MeV, with
the zero-temperature Fermi gas expression
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Ω̄ðm; μÞ≡ −
Θðμ −mÞ
24π2NfN

�
ð2μ2 − 5m2Þμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

q

þ 3m4 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
þ μ

m

�
: ð39Þ

Here we have divided by the factor NfN to use the same
dimensionless form as dictated by the holographic setup.
The corresponding (dimensionful) lepton density is

nl ¼ nðme; μeÞ þ nðmμ; μμÞ; ð40Þ

with

nðm; μÞ≡ Θðμ −mÞ ðμ
2 −m2Þ3=2
3π2

: ð41Þ

We shall require equilibrium with respect to the electro-
weak processes of beta decay and electron capture,
n → pþ eþ ν̄e, eþ p → nþ νe and the purely leptonic
processes e → μþ ν̄μ þ νe, μ → eþ ν̄e þ νμ. At zero tem-
perature this implies the following conditions for the
chemical potentials (“beta equilibrium”),

μμ ¼ μe; μe þ μp ¼ μn þ μν; ð42Þ

where the neutron and proton chemical potentials are given
in terms of baryon and isospin chemical potentials by

μn ¼ μB þ μI; μp ¼ μB − μI: ð43Þ

We shall assume that neutrinos leave the system once they
are created, i.e., their mean free path is of the order of or
larger than the size of the star, which is a good approxi-
mation except for the very early stages in the life of the
star or for mergers. Therefore we set μν ¼ 0, and beta
equilibrium yields

μe ¼ 2μI: ð44Þ

In writing down the neutron and proton chemical potentials
(43) we have interpreted the two isospin components in
the space spanned by 1 and σ3 as neutron and proton
contributions. This seems natural, but we should keep in
mind that our formalism does not exhibit actual neutron and
proton states, as discussed at the beginning of this section.
Within this identification, the proton and neutron densities
are given by

nB ¼ nn þ np; nI ¼ nn − np: ð45Þ

Then, assigning the electric charges 0 and þ1 to the
neutron and proton components, local charge neutrality
np ¼ ne þ nμ can be written as

n̄B − n̄I
2

− n̄l ¼ 0; ð46Þ

where the dimensionless lepton density n̄l is related to nl
also by the factor given in Eq. (4).
So far, the entire setup is taken—with some notational

adjustments for our purposes—from Ref. [37]. For our
application to compact stars we also need to compute the
energy density,

ϵ ¼ Ωþ μnnn þ μpnp þ μene þ μμnμ

¼ Ωþ μnðnn þ npÞ
¼ ϵ0ϵ̄; ð47Þ

where, in the second line, beta equilibrium and charge
neutrality have been used, and in the third line we have
introduced the dimensionless energy density

ϵ̄ ¼ Ω̄þ ðμ̄B þ μ̄IÞn̄B; ð48Þ

and the corresponding dimensionful factor

ϵ0 ¼ NfN ≃ 1.319 × 104λ30

�
MKK

GeV

�
4 MeV

fm3
: ð49Þ

With the help of the equations from the previous subsection,
we can compute the energy density and the resulting
equation of state: for instance, for a given μ̄I we solve
Eqs. (34), compute the corresponding μ̄B, n̄B, Ω̄B via
Eqs. (35), (36), and the leptonic part from Eqs. (38) and (44).

C. Constructing a holographic crust

The construction described so far accounts for homo-
geneous nuclear matter in the interior of a neutron star. The
outer layers are, however, expected to have a crystalline
structure, which requires a different equation of state. Many
previous holographic studies employed crust equations of
state (plus a low-density layer of the core) from “tradi-
tional” methods and added the holographic part for high
densities. This is a sensible way to proceed because the
underlying low-density microscopic physics are well
understood. Therefore, at least for the outer part of the
crust, one might argue that holography is not needed.
Nevertheless, here we construct the entire star from
holography, which has the advantage of using a single
microscopic approach for the entire star. As a consequence,
the crust-core transition—where uncertainties in the more
traditional approaches already become sizable—can be
determined dynamically.
To this end, we construct the crust as follows. Firstly, we

observe that our beta-equilibrated, neutral matter shows a
first-order transition from the vacuum to nuclear matter.
This allows us to construct a mixed phase in the vicinity of
this phase transition, where nuclear matter (plus leptons) is
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spatially separated from a lepton gas. The construction we
use here is often employed at the transition between nuclear
matter and quark matter in the core, see for instance
Refs. [56,62–64]. The resulting structure of the crust is
somewhat simplistic. Most notably, our construction is,
at best, an approximation for the outer crust—clusters of
nucleons immersed in an electron gas—while we shall not
attempt to construct an inner crust, where the nucleon
clusters coexist with a pure neutron phase, see Ref. [65] for
a review of the physics of the neutron star crust. Another
simplification we will make is the use of a single geometric
structure, namely spherical bubbles of nuclear matter
immersed in the lepton gas. Again, this is realistic for
the outer crust, but in the inner crust more complicated
structures are expected, in particular in the vicinity of the
crust-core transition (“nuclear pasta” [23,66–68]). It is
possible within the given holographic model to make
further refinements along these directions in future studies.
However, given the crude approximation our nuclear matter
represents to begin with, it seems questionable to refine the
details of the inner crust and include different geometric
structures before more fundamental improvements have
been made.
Let us now turn to the calculation of the equation of state

of our crustal mixed phase. We denote the volume fraction
occupied by the leptonic phase with χ ∈ ½0; 1�, such that
the volume fraction of the baryonic phase (nucleons
plus leptons) is 1 − χ. Then, the conditions for the mixed
phase read

0 ¼ Ω̄B; ð50aÞ

0 ¼ ð1 − χÞ
�
n̄B − n̄I

2
− n̄l

�
− χn̄l: ð50bÞ

The first equation is the condition that the pressure—and
thus the free energy density—of the baryonic phase,
Ω̄B þ Ω̄l, be identical to that of the leptonic phase, Ω̄l,
where, by construction, both phases must have the same
electron chemical potential and thus the same μ̄I .
Consequently, the pressure in both constituents of the
mixed phase is identical to the leptonic pressure, and the
pressure of the baryonic component must be zero for any
baryon density and any proton fraction that occurs in the
crust. The second equation (50b) is the global neutrality
condition (allowing each phase on its own to be electrically
charged).
In order to solve these coupled equations for χ and n̄B,

we first fix a value for μ̄I. Then, with the help of (35b)
and (36) we write n̄I and Ω̄B as results of a numerical
routine that involves solving the differential equations (34),
which in turn also depend on n̄B. Inserting this routine into
Eqs. (50) then allows us to solve them for χ and n̄B.
Afterwards, we can compute μ̄B from Eq. (35a), the
pressure P̄mix ¼ −Ω̄l, and the energy density

ϵ̄mix ¼ ð1 − χÞ½Ω̄l þ ðμ̄B þ μ̄IÞn̄B� þ χΩ̄l: ð51Þ

Repeating this procedure for many values of μ̄I , we find the
equation of state.
So far our equations know nothing about the particular

geometric structure of the mixed phase. This structure
becomes important if surface and Coulomb effects are
taken into account. We shall do so in the Wigner-Seitz
approximation, where the shape of the unit cell is chosen
according to the geometric structure of the mixed phase,
e.g., spherical for bubbles. For a given volume fraction χ,
the size of the Wigner-Seitz cell is then determined by the
competition between surface tension (preferably large unit
cells) and electrostatic Coulomb energy (preferably small
unit cells). In principle, these effects can be included fully
dynamically if the interface profiles are calculated, which
also includes screening effects automatically [64,69]. Here
we proceed with a simple approximation that assumes
the interfaces to be sharp surfaces, with spatially uniform
charge density in either phase, as often used for the quark-
hadron mixed phase [56]. A brief summary and derivation
of this approximation can be found in Ref. [64]; here we
simply quote the relevant results.
The cost in free energy from surface and Coulomb

effects in Heaviside-Lorentz units is

ΔΩ ¼ 3

2
ðρ1 − ρ2Þ2=3Σ2=3ð1 − χÞ½d2fdð1 − χÞ�1=3; ð52Þ

with the charge densities of the baryonic and leptonic
phases, respectively,

ρ1 ¼
eλ20M

3
KK

3π2

�
n̄B − n̄I

2
− n̄l

�
; ρ2 ¼ −

eλ20M
3
KK

3π2
n̄l;

ð53Þ

where e ¼ ffiffiffiffiffiffiffiffi
4πα

p
≃ 0.3 is the elementary charge, and with

fdðχÞ≡

8>><
>>:

ðχ−1Þ2
3χ for d ¼ 1

χ−1−ln χ
4

for d ¼ 2

2þχ−3χ1=3
5

for d ¼ 3

; ð54Þ

where d is the codimension of the geometric structure,
d ¼ 1 for slabs, d ¼ 2 for rods, and d ¼ 3 for bubbles. We
have chosen χ in Eq. (52) such that it corresponds to the
volume fraction of the phase in the outer region of the
Wigner-Seitz cell, i.e., if we are interested in bubbles of
the baryonic phase immersed in the lepton gas, χ is the
volume fraction of the lepton gas, as in Eq. (50). Moreover,
Σ in Eq. (52) is the surface tension, which, in the given step-
like approximation of the interface profiles, is simply an
external parameter. For simplicity we shall assume Σ to
be independent of baryon and isospin density. As a
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benchmark, it is useful to keep in mind that the empirical
value for symmetric nuclear matter at saturation is about
Σ ≃ 1 MeV=fm2 [70,71] and that the surface tension in the
inner crust is expected to become smaller with increasing
neutron excess [72]. Due to our simple construction of the
crust and since we shall not adopt a density-dependent
surface tension, it makes sense for us to vary Σ around its
empirical value and check the dependence of our results on
this variation.
For the practical calculation we write the dimensionless

free energy cost as

ΔΩ̄ ¼ 3

4Nc

�
6π2A4e2ðn̄B − n̄IÞ2

λ50

�
1=3

ð1 − χÞ

× ½d2fdð1 − χÞ�1=3
�

Σ
MeV=fm2

�
2=3

�
MKK

MeV

�
−2
;

ð55Þ

with the numerical constant A ≃ 197.327. This expression
can be used to insert the holographic results from Eqs. (50).
Then, the equation of state including surface and Coulomb
effects is obtained from the pressure P̄mix;sur ¼ P̄mix − ΔΩ̄
and the energy density ϵ̄mix;sur ¼ ϵ̄mix þ ΔΩ̄.

D. Thermodynamics and equation of state

We now evaluate the equations of the previous sub-
sections numerically and discuss the thermodynamic prop-
erties of our system. The coupling with gravity and the
resulting properties of the holographic stars will be dis-
cussed separately in Sec. III E.
For an explicit evaluation we need to choose values for

λ and MKK. In the present approach—and in contrast to
the pointlike approximation—the equations of motion (34)
already depend on λ explicitly; there is no rescaling of the
variables that eliminates λ. The equations of motion do not
depend explicitly on MKK, but this scale enters when we
add the lepton gas (due to the lepton masses) and when we
compute the surface effects in the mixed phase (due to the
surface tension). In the present section we shall work with
λ ¼ 10 andMKK ¼ 949 MeV. This particular choice is not
very crucial for now because the main purpose of this
section is to point out qualitative properties and establish
our construction of the crust. In Sec. III E we shall discuss
several parameter sets and also present a systematic study
in the λ −MKK plane. To put our parameter choice into
context, we have listed three parameter fits in Table I, two
of which are taken from the literature and one that is
obtained by computing the saturation properties of sym-
metric nuclear matter within the present setup. This table
shows that already without any astrophysical constraints
the current version of the model is too simplistic to account
for correct QCD vacuum properties and properties of
nuclear matter at the same time. We will further discuss
this tension in the parameter space in Sec. III E.

In the upper panel of Fig. 4 we present various free
energy densities as a function of the neutron chemical
potential (Eqs. (12) and (49) have been used to obtain the
physical units for the given parameter set). The black, two-
valued curve is the result for the pure nuclear matter phase,
i.e., homogeneous, beta-equilibrated, locally charge neutral
matter, including a metastable/unstable branch with pos-
itive free energy density. The other black line is the
vacuum, Ω ¼ 0. If we were to ignore the other curves,
there would be a first-order phase transition from the
vacuum to nuclear matter. The blue curve, with endpoints
indicated by the dots, is the free energy density for the
mixed phase without surface and Coulomb effects. Where it
exists it has lower free energy than the pure phases and thus
it replaces the first-order transition with two transitions
where the baryon density is continuous—vacuum/mixed
phase and mixed phase/nuclear matter. The low-density end
of the mixed phase consists of a lepton gas whose volume
fraction χ approaches 1 and whose density approaches 0
and a baryonic phase whose volume fraction 1 − χ
approaches 0 with nB remaining nonzero (such that the
spatially averaged density hnBi ¼ ð1 − χÞnB goes to 0).
The high-density end of the mixed phase can be found by
solving Eqs. (50) at χ ¼ 0 for n̄B and μ̄I .
The blue curve represents the unphysical form of the

mixed phase because surface and Coulomb effects are not
included. The result of these effects is shown by the red
curve, which is computed with the help of the energy
cost (55), where we have set d ¼ 3—considering spherical
nuclear matter bubbles immersed in a lepton gas—and
Σ ¼ 1 MeV=fm2. Since the red curve is barely distinguish-
able from the blue curve in the upper panel, we plot the
difference of all free energy densities relative to the blue
curve in the lower panel. As expected, the added energy
cost decreases the interval in μn where the mixed phase is
preferred, but it still survives. We also see that the transition
between the vacuum and the mixed phase as well as
between the mixed phase and homogeneous baryonic
matter is now of first order again (the slope of the
free energy curves changes at the transition points).
Anticipating our application of these results to compact

TABLE I. Parameter fits in the confined geometry with max-
imally separated flavor branes, using pion decay constant fπ and
rho meson mass mρ (original work by Sakai and Sugimoto
[18,19]), including the QCD string tension σ for a fit with large-
Nc lattice data (used in a study of glueball decay rates [73]), and
using saturation density n0 ¼ 0.153 fm−3 and binding energy
EB ¼ −16 MeV within the homogeneous ansatz for baryonic
matter employed in this paper.

Fit to λ MKK

fπ , mρ 16.63 949 MeV
σ; mρ 12.55 949 MeV
n0, EB 7.09 1000 MeV
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stars, the low-density transition point corresponds to the
surface of the star, while the high-density transition point
corresponds to the crust-core transition inside the star. We
have indicated these transitions by vertical dashed lines.
The corresponding equation of state is shown in the upper

panel of Fig. 5. The fact that the realisticmixed phase (red) has
nonzero energy density at zero pressure confirms that there
is a (very weak) first-order transition between the vacuum
and our crust. Also, the (small) jump in ϵ at the crust-core
transition clearly shows that this transition is of first order.
The speed of sound squared and the adiabatic index

γ ¼ ϵ

P
∂P
∂ϵ ð56Þ

are shown in the lower panel. The adiabatic index has been
used as a criterion for the distinction between nuclear and

quark matter [74]. Since weakly interacting quark matter
has a smaller γ than low-density nuclear matter, the value
γ ¼ 1.75 was, somewhat arbitrarily, chosen as a value for
the transition in Ref. [74], where a set of parametrized
equations of states are used and thus there is no micro-
scopic criterion for this potentially smooth transition. We
find that our holographic nuclear matter persists down to
the conformal value γ ¼ 1 and even in the center of the star
we find values as small as γ ≃ 1.4.
In the low-density regime, we see that both c2s and γ

show a curious structure within the mixed phase (with a
close look a corresponding cusplike structure can be seen in
the equation of state). This is due to the onset of muons,
i.e., at that point the electron chemical potential becomes
larger than the muon mass. Translated to the stars we shall
discuss in the next subsection, this means that muons do
appear in the inner part of the crust within our approxi-
mation, and not only in the core. The reason of this
surprisingly “early” appearance of muons is the large

FIG. 4. Upper panel: free energy densities as a function of the
neutron chemical potential: pure beta-equilibrated, locally charge
neutral baryonic matter (black), globally neutral mixed phase
of baryonic matter and a lepton gas without (blue) and with
(red) surface and Coulomb effects, where the surface tension is
set to Σ ¼ 1 MeV=fm2. The horizontal black line Ω ¼ 0 is the
free energy density of the vacuum. Lower panel: free energy
densities relative to that of the mixed phase without surface and
Coulomb effects Ωmix. The mixed phase (“crust”) is the favored
phase between the two dashed lines. The model parameters used
for this plot are λ ¼ 10, MKK ¼ 949 MeV.

FIG. 5. Equation of state (upper panel), speed of sound squared,
and adiabatic index (lower panel) for the parameters of Fig. 4,
showing the same phases, i.e., homogeneous nuclear matter
(black), mixed phase with (red), and without (blue) surface
and Coulomb effects. The vertical dashed line indicates the
crust-core transition, and the star indicates the center of the most
massive possible star, computed in Sec. III E. The cusp in the
curves for the mixed phases is due to the onset of muons.
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proton fraction xp ¼ np=nB, which can be traced back to
the large symmetry energy of our holographic matter, as
discussed at the beginning of Sec. III. Since, within our
holographic approach, it is energetically very costly to
move far away from symmetric nuclear matter, the system
decides to keep the proton fraction high, which results in a
large electron chemical potential and thus in an early onset
of muons. In Sec. III E we shall, for comparison, also
consider the case where muons are omitted altogether and
we find that our main conclusions are not very sensitive to
their presence.
It is thus instructive to compute the proton fraction

directly. We show the result as a function of baryon density
in Fig. 6. Here we have normalized the baryon density by
the saturation density n0 of symmetric nuclear matter.
Within the given parameters, we find n̄0 ≃ 0.089, which
corresponds to n0 ≃ 0.21 fm−3 (as discussed above, the
present parameters are not chosen to reproduce the physical
saturation density exactly). While the overall magnitude of
the proton fraction is larger than expected in real-world
neutron stars, it is worth noticing the qualitative behavior:
as expected from a realistic crust, we start off with nearly
symmetric matter at very low (spatially averaged) densities
and produce more neutron-rich matter as we move toward
the core. Within the core, the proton fraction increases
before it starts to decrease again at ultrahigh densities. This
decrease is relevant for the most massive stars, as we have
indicated in the figure.

E. Holographic neutron stars

1. Mass and radius

We now insert the equation of state and the speed of
sound into the TOV equations and the equation needed
for the tidal deformability (20). The natural choice of the
dimensionless pressure and energy density from Eq. (24) is
P̂ ¼ P̄, ϵ̂ ¼ ϵ̄, such that the scale for the energy density ϵ0
in Eqs. (24) and (25) is given by Eq. (49). (This scale differs
from the one used in the pointlike approximation by the
factor l7; in the present approach l does not appear
explicitly because the asymptotic separation of the flavor
branes is fixed to be antipodal from the beginning.)
From this scale and Eq. (25) we determine the scales for
mass and radius

M0 ≃ 1.445 λ−3=20

�
MKK

GeV

�
−2

M⊙; ð57aÞ

r0 ≃ 2.135 λ−3=20

�
MKK

GeV

�
−2

km: ð57bÞ

For now we continue with the parameters of the previous
subsection, λ ¼ 10,MKK ¼ 949 MeV. Several mass-radius
curves with these parameters are shown in Fig. 7. In this
and the following plots, segments of the curves represent-
ing stars unstable with respect to radial oscillations have
been omitted, each curve terminates at its maximal mass.
Let us first focus on the black curves, which are all for

beta-equilibrated, charge neutral matter, but which are
obtained with different descriptions for the crust. All curves
give almost the same maximal mass, and this maximal mass
is consistent with astrophysical constraints if we assume
that the 2.5 solar mass object in the merger GW190814 is
not a neutron star (see Sec. II C for the list of astrophysical

FIG. 6. Proton fraction as a function of baryon density
normalized to the onset density of symmetric nuclear matter,
for the parameters of Figs. 4 and 5. In the mixed phases (red and
blue), the baryon number used here is the spatially averaged
number hnBi ¼ ð1 − χÞnB (not the baryon number within the
clusters). The result of the homogeneous baryonic phase
(black solid) approaches the analytic low-density result from
Ref. [37] (thin horizontal line). At the surface of the star,
hnBi ≃ 4.4 × 10−3n0, while at the crust-core transition the density
jumps from hnBi ≃ 0.74n0 in the mixed phase to nB ≃ 0.97n0 in
the uniform phase (close to but not exactly at the intercept of
black and blue curves). As in Fig. 5, the star corresponds to the
center of the most massive star, where we find nB ≃ 3.45n0.

FIG. 7. Mass-radius curves for pure neutron matter (red),
symmetric nuclear matter (blue) (both without crust), and
beta-equilibrated, neutral matter (black) without crust and with
crust where the surface tension is Σ ¼ 0; 1; 2 MeV=fm2. For all
curves, λ ¼ 10, MKK ¼ 949 MeV.
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constraints we discuss here and in the following). If the
crust is completely ignored, the mass-radius curve bends
back to the origin, resulting in a relatively small radius for,
say, a 1.4 solar mass star. This behavior is easy to explain
since without the crust there is a first-order transition
between our holographic nuclear matter and the vacuum.
In other words, nuclear matter at a certain nonzero density
can coexist with the vacuum, and that is what happens at
the surface of the thus constructed star. This allows for
arbitrarily small and light chunks of matter, where gravity
does not play any role, close to the origin of theM-R plane,
and the curve assumes the typical shape of self-bound stars
often encountered for quark stars in simple models (if the
crust of the quark star is neglected) [53].
The other extreme, giving rise to much larger radii, is

shown by the curve labeled by Σ ¼ 0, meaning we have
included the crust but neglected surface and Coulomb effects
(blue curves in Figs. 4–6). This results in unphysically large
crusts and overall radii. As we have seen in the previous
subsection, surface and Coulomb effects reduce the regime
where the mixed phase is favored (red curves in Figs. 4–6),
and as a consequence give rise to smaller, more realistic
crusts. Examples are the two mass-radius curves in between
the two extremes. While the surface tension Σ¼1MeV=fm2

is close to the empirical value for symmetric nuclear matter,
we have also included a curve for Σ ¼ 2 MeV=fm2 to
illustrate the effect of a variation in the surface tension,
which for simplicity we keep constant throughout the crust
for each star of a given curve. We already see that our
holographic construction not only reproduces reasonable
maximal masses but also, in the most realistic version of the
crust, is able to reproduce realistic radii. We will come back
to this observation below in a more systematic survey of
our parameter space. Strictly speaking, the curves with
realistic crust also bend back to the origin for extremely
small central pressures. The reason is that even in the
presence of the crust (if surface and Coulomb effects are
taken into account) there is a (weak) first-order transition to
the vacuum, see Figs. 4 and 5. However, this segment of the
mass-radius curves is irrelevant for our purposes and thus not
included in the figure.
As discussed above, our holographic nuclear matter is

plagued by the large-Nc artifact of a very large proton
fraction. To get an idea of the size of this effect, we have
added two more mass-radius curves in Fig. 7 where we fix
the proton fraction by hand. We show the result for pure
neutron matter (red)—defined in our holographic calcu-
lation by nB ¼ nI—and for isospin-symmetric nuclear
matter nI ¼ 0 (blue). Both cases are artificial in the sense
that the resulting stars are not electrically neutral and not in
beta equilibrium.
We see that, as expected, our isospin-asymmetric stars

with neutrality and beta equilibrium are better approxi-
mated by isospin-symmetric matter than by pure neutron
matter. The plot suggests that improvements of the

holographic model to account for quantized isospin states
will move our mass-radius curve more toward the pure
neutron matter curve. This would imply that our current
approximation somewhat overestimates the maximal mass.
It is also worth noticing that the mass-radius curve for pure
neutron matter shows the same qualitative behavior of
reaching back to the origin as the other cases without crust.
The reason is that within our holographic approach even
pure neutron matter has a nonzero saturation density at
which the pressure is zero. This is in contradiction with
results from chiral effective theory, which show that pure
neutron matter has positive nonzero pressure for all
densities [75]. Given the large-Nc artifacts of our isospin
spectrum, this discrepancy is not surprising.
In Fig. 8 we only keep the most realistic version of

our model, i.e., including a crust with surface tension
Σ ¼ 1 MeV=fm2, but now we study the dependence of our
results on the model parameters λ and MKK. For this
discussion we recall the results from Table I, which defines
a parameter window where we expect the model to
approximately reproduce properties of the QCD vacuum
and QCD matter. The choice of the previous plots λ ¼ 10,
MKK ¼ 949 MeV lies within this regime, and in Fig. 8 we
include the mass-radius curves for three additional param-
eter pairs chosen such that all curves show more or less
realistic maximal masses (one of the curves gives a
maximal mass slightly below 2 solar masses). The step
size of the variation in λ and MKK is chosen such that the
variation in either variable has a similar effect. For instance,
starting from the parameter set used in the previous plots
(blue curve), the maximal mass is decreased by roughly the
same amount by either increasing λ by 1 or increasingMKK
by about 50 MeV.

2. Tidal deformability and crust thickness

Wemay also check the corresponding tidal deformability
Λ against the known constraints. This is done in the upper

FIG. 8. Mass-radius curves for four different parameter sets
ðλ;MKKÞ, all for beta-equilibrated, neutral matter including a
crust with surface tension Σ ¼ 1 MeV=fm2.
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panel of Fig. 9, where we plot Λ as a function of the
compactness c. Here we see that for all four parameter sets
Λ1.4 lies in the band given by estimates deduced from the
merger GW170817. Given that they also produce realistic
masses, this is in stark contrast to the pointlike approxi-
mation of Sec. II. Remarkably, all curves ΛðcÞ are indis-
tinguishable on the given scale (while the value for Λ1.4
does depend visibly on the parameters). This apparent
universal behavior is not obvious since here, in contrast to
the pointlike approximation, the equation of state even in
its dimensionless version explicitly depends on λ (via the
holographic equations of motion) and on MKK (via the
lepton masses and the surface tension). We have checked
that for ’t Hooft couplings of about λ ¼ 50 variations of the

curve are visible on the chosen scale, although they are
still small. It is known that different equations of state
show an approximately universal behavior if certain
observables are set in relation. We have, for comparison
to our results, included a simple parametrization of the
function ΛðcÞ (dashed curve) taken from Eq. (78) in
Ref. [76] that is believed to approximate a wide class of
equations of states. (See also Ref. [77] for a very similar
parametrization.)
A similar universal behavior is seen in the lower panel

of Fig. 9, which shows ΔR=R, where ΔR ¼ R − Rcc is the
thickness of the crust, Rcc being the radial location of the
crust-core transition. Again, the values forM ¼ 1.4 M⊙ are
marked by dots. The absolute values for crust thicknesses
and radii for the four cases in the order (blue, red,
black, green) are ΔR1.4 ≃ ð2.48; 2.06; 2.06; 1.69Þ km and
R1.4 ≃ ð12.9; 11.8; 11.7; 10.7Þ km. These crust thicknesses
are somewhat larger than the usually assumed values
centered around 1 km, which, however, are subject to
significant uncertainties [21,25,79]. For the most massive
stars in each case, also marked by dots, we find the absolute
values ΔR ¼ ð0.88; 0.82; 0.83; 0.77Þ km. Again we show a
simple parametrization, taken from Eqs. (B6) and (B8)
of Ref. [78], that is believed to be a good approximation
independent of the exact behavior of the equation of state.
We see that although the qualitative behavior is the same,
our results for ΔR=R are significantly larger than those
given by this parametrization.
In Fig. 10, in order to further put our results into context,

we compare the four equations of state used for Figs. 8
and 9 with the “allowed” band of Ref. [80].2 At low
densities, nB ≲ 1.1n0, this band contains the results for
homogeneous, beta-equilibrated, charge neutral nuclear
matter, obtained from a phenomenological extrapolation
of pure neutron matter from chiral effective field theory
[75,81], and shown to behave similarly to a widely used
equation of state for the crust [82,83]. At extremely high
densities, nB ≳ 40n0, the band represents the predictions
from perturbative QCD [84,85]. The intermediate regime
is constructed from an interpolation using piecewise poly-
tropic equations of state obeying thermodynamic consis-
tency, causality, and the astrophysical constraints
Mmax > 2 M⊙ and Λ1.4 < 580. We see that our crust
deviates from the low-density band, while the intermediate
and high-density parts are mostly within the allowed
region. The curve that slightly violates the band at
intermediate densities corresponds precisely to the param-
eter set that does not produce stars above two solar masses,
i.e., this behavior is in agreement with the findings of
Ref. [80]. All our curves continue within the allowed region
even beyond the highest densities in the most massive stars,

FIG. 9. Upper panel: tidal deformability Λ as a function of
compactness c for the same four parameters sets as in Fig. 8 (all
curves are indistinguishable on the given scale). The grey band
indicates the constraints from the merger GW170817 for a 1.4
solar mass star and the dots within the band correspond to the
tidal deformability of a 1.4 solar mass star Λ1.4, with colors
corresponding to the colors in Fig. 8. The dots at the endpoints
(hardly distinguishable) mark the most massive stars. The dashed
curve is a parametrization constructed to approximate a large
number of equations of state taken from Ref. [76]. Lower panel:
ratio of the crust thickness ΔR over the radius R of the star as a
function of compactness, for the same four parameter sets, again
with dots indicating the 1.4 solar mass stars and the most massive
stars. Again, the dashed line shows a simple parameterization,
taken from Ref. [78].

2We thank the authors of Ref. [80] for providing the data of
this band.
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before they deviate from the band at ultra-high densities
(our curves stop where the numerical evaluation becomes
problematic). Since our holographic model does not
account for asymptotic freedom, it is no surprise that the
weak-coupling results are not reproduced. More impor-
tantly, we conclude that the asymptotic constraints do not
invalidate our results: it is conceivable that our holographic
equation of state approximates real-world QCD up to (and
even somewhat past) the highest densities in neutron stars,
and beyond that, where we do not intend to apply our
results anyway, it is possible to connect them to the first-
principle QCD calculation without violating any theoretical
or astrophysical constraints.

3. Discussion of the parameter space

Finally, let us discuss our parameter space more sys-
tematically. To this end, we determine the regions in the
λ −MKK plane where astrophysical constraints on mass
and tidal deformability are obeyed, see Fig. 11. Before we
discuss the results let us briefly explain how this figure
was produced. For simplicity, here we have neglected the
electron mass (which makes almost no difference for any
observables we discuss) and ignored muons (which does
make a small difference, but does not affect the main
conclusions). With these simplifications, the holographic
calculation itself, which is the most time-consuming part
of our numerics, becomes independent of MKK, and we
only have to do it once for each λ. The energy cost from
Coulomb and surface effects unavoidably induces a
dependence on MKK. Adding this cost within our approxi-
mation to obtain the equation of state is trivial, but we have
to solve the TOV equations—which is numerically less
demanding than the holographic part of the calculation—on
a suitably fine grid in the λ −MKK plane for each grid point
separately. In this way we can, for each λ, determine the
value MKK needed to obtain a given maximal mass and a
given tidal deformability of a 1.4 solar mass star.
As a result, we can identify the windows where the

maximal mass is larger than 2.1 solar masses (shaded red)
and where the tidal deformability is within the bounds
70 < Λ1.4 < 580 (shaded blue). For completeness we have
also added the contour for the maximal mass of 2.5 solar
masses (red dashed curve), having in mind the possibility of
an ultra-heavy neutron star in the merger event GW190814
(although a general upper bound for the maximal mass
below that value was suggested [86]). We have also used
three different values of the surface tension. This creates a
small variation in the deformability and essentially no
change in the maximal mass, see right panel for a zoom-in,

FIG. 10. Equations of state corresponding to the four parameter
sets of Figs. 8 and 9, compared with the “allowed” band of
Ref. [80], defined by low-density chiral effective theory, high-
density perturbative QCD, and polytropic interpolations between
them, constrained by astrophysical observations. The dots mark
the 1.4 solar mass stars and the most massive stars for each
equation of state.

FIG. 11. Constraints on maximum mass (shaded red for Mmax > 2.1 M⊙, dashed red line Mmax ¼ 2.5 M⊙) and deformability of a
1.4 M⊙ star (shaded blue for 70 < Λ1.4 < 580Þ in the plane of the model parameters λ and MKK on logarithmic scales for surface
tensions in the crust Σ ¼ 0.5; 1; 2 MeV=fm2 (differences for different surface tensions only become visible in the zoom-in of the right
panel). The dots mark the parameter choices given in Table I: fit to mρ and fπ (circle), to mρ and σ (diamond), and to the saturation
properties of nuclear matter (square). In this plot, muons are neglected for simplicity.
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where the (blue) lines for the three different values of Σ
become distinguishable. The main observation of this
figure is that there is a region in the parameter space
where the constraints of the 2.1 solar masses and the
tidal deformability can be met, as already seen for
selected parameters in the previous plots. However, a
2.5 solar mass star is more difficult to reconcile with the
constraint for Λ1.4, as the red dashed line barely enters
the blue area.
We have indicated the three particular parameter choices

of Table I in the plot. We see that none of them lies in the
overlap region of the red and blue areas. For the inter-
pretation of this result we should keep in mind that they
already disagree with each other, i.e., had we looked for a
parameter set within the given approximation that can fit
“everything” it would not have been necessary to calculate
properties of compact stars. On the other hand, we may use
Table I to define a window in parameter space in which
QCD properties of the vacuum and of nuclear matter at
saturation can be reproduced simultaneously at least in an
approximate way. It is reassuring that this window overlaps
with the one defined by the astrophysical constraints in
Fig. 11. We thus conclude that the Witten-Sakai-Sugimoto
model—even in its simplest version and by fitting only two
parameters—can account approximately for observables
in regimes as diverse as the vacuum, nuclear matter at
saturation, and basic properties of neutron stars. Moreover,
the small number of parameters distinguishes our approach
from many phenomenological models used for dense
matter in neutron stars. This allows us also to ask whether
we can make some parameter-independent observations, as
we shall discuss next.
It is striking that the curves in Fig. 11 appear to be

straight lines to a good approximation on the doubly
logarithmic plot (one can check that the allowed region

is roughly approximated by MKK

ffiffiffi
λ

p
∼ ð3.0–3.2Þ GeV).

In particular, lines of constant maximal mass appear to
be also lines of constant tidal deformability Λ1.4. To further
quantify this observation, in Fig. 12 we show Λ1.4 and the
corresponding radius R1.4 as a function of the ’t Hooft
coupling along the lines of constant maximal mass 2.1 M⊙
and 2.5 M⊙, i.e., moving along the red solid and red dashed
lines in Fig. 11. We see clearly that Λ1.4 and R1.4 are not
exactly constant, but their variation is intriguingly small,
at least in the shown range, omitting values of the
’t Hooft coupling which are orders of magnitude larger
or smaller than λ ∼ 10, which we know is the regime
where the model reproduces properties of QCD. We can
thus use these plots to make approximate parameter-
independent predictions of the model. For instance, the
model predicts that an equation of state whose most
massive star has a mass of 2.1 solar masses will produce
a 1.4 solar mass star with tidal deformability Λ1.4 ∼
230–350 and radius R1.4 ∼ ð11.4–13.5Þ km (upper and
lower limits of the blue bands shown in Fig. 12).
Interestingly, this radius prediction is in very close agree-
ment with the range given in one of the two interpretations
of the NICER data [41]. Since we know from astrophysical
observations that 2.1 M⊙ is the lower limit for the maximal
mass, the plot also demonstrates that the lower boundaries
of the blue bands are absolute lower bounds predicted by
our model. It is interesting to note that the lower bound for
the tidal deformability, Λ1.4 ≳ 230, is identical to the lower
bound found in the V-QCD approach [15]. The figure also
illustrates once more the tension of producing stars above
2.5 solar masses: as the left panel shows, it is possible to
produce them in a certain regime in λ, but with values for
Λ1.4 at the very upper end of the allowed window and only
with sufficiently large, perhaps unrealistic, values of the
surface tension.

FIG. 12. Tidal deformability (left panel) and radius (right panel) for a 1.4 solar mass star as a function of the ’t Hooft coupling λ with
MKK adjusted for each λ such that the maximal mass is 2.1 M⊙ (blue) and 2.5 M⊙ (red). In each band, the surface tension is
Σ ¼ 0.5; 1; 2 MeV=fm2 from top to bottom. The grey bands indicate the estimates from the merger GW170817 (left panel) and the
(combined) interpretations from the NICER data (right panel).
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IV. SUMMARY AND OUTLOOK

We have constructed neutron stars from the holographic
Witten-Sakai-Sugimoto model. Our approach employs the
same holographic formalism from the densest matter in
the center of the star up to the low-density surface. This
includes a construction of the crust, which had not been
done before within holography. Our holographic nuclear
matter is based on a spatially homogeneous ansatz for the
non-Abelian gauge fields in the bulk, which yields an
approximation for a many-baryon system that is expected
to work best at high densities. In particular, we have used a
recent extension of this approach to isospin-asymmetric
matter. After adding a noninteracting lepton gas to our
holographic setup, this allows us to incorporate equilibrium
with respect to the electroweak interaction and electric
charge neutrality. The crust is then constructed in the
Wigner-Seitz approximation as a mixed phase of the lepton
gas and nuclear matter, assuming sharp, steplike interfaces
between the two phases. The comparison of the free
energies of pure and mixed phases is used to determine
the crust-core transition dynamically.
After showing that a simple pointlike approximation

of the holographic baryons is not in agreement with
astrophysical data, we have computed mass-radius relations
and tidal deformabilities of the neutron stars constructed
from the homogeneous ansatz. Our calculation is per-
formed in the confined geometry of the model with
antipodal separation of the flavor branes. In this scenario,
the model only has two parameters, the ’t Hooft coupling λ
and the Kaluza-Klein mass MKK, supplemented in our
approach by the surface tension of nuclear matter, which
we treat as an external parameter. We have shown that using
a realistic surface tension the model parameters can be
chosen to meet the known astrophysical constraints on
maximal mass, tidal deformability and radius of the star.
We have systematically studied the parameter space

to compute the astrophysically allowed window in the
λ −MKK plane. In this simple version of the model, the
corresponding parameters reproduce approximately, but
not exactly, the vacuum properties used in the original
works as a fit. This tension in fitting to different properties
is already apparent if the saturation properties of nuclear
matter are taken into account. We have also extracted
parameter-independent predictions of the model. For in-
stance, we have shown that any parameter set that produces
a maximum mass of 2.1 solar masses or higher produces a
radius for a 1.4 solar mass star larger than 11.4 km and a
tidal deformability larger than 230. More, and more
stringent, bounds can be obtained by a more exhaustive
analysis of our holographic results together with the
experimental constraints, also making use of the
NICER data for the radius of a 2.1-solar-mass star. This
was done in our follow-up study [87].

In constructing the entire neutron star from a single
model our work goes beyond previous holographic—
and most traditional—approaches. Nevertheless, several
improvements are desirable. Most notably, as discussed in
the main part of the paper, we know that our approach
shows large-Nc artifacts in the isospin spectrum. While we
can define neutron and proton number and assign electric
charges to them, additional states in the continuous isospin
spectrum unavoidably become relevant in the simple
approximation used here. A very large symmetry energy
and a resulting large proton fraction are manifestations of
this artifact and an important step would be to improve
the treatment of isospin, for instance by including the
quantization in the bulk of the holographic setup [26],
which however is difficult to generalize to dense matter.
Moreover, our construction of the crust is simplistic in the
sense that we did not include an inner crust, which contains
a mixture of near-symmetric nuclear matter and a pure
neutron fluid. One can try to construct such an inner crust
within the setup used here. Other extensions would be to
compute the surface tension dynamically within the given
model, or to include pion condensation, which may coexist
with nuclear matter in the relevant part of the phase diagram
within the present approximation [37]. It is also possible to
extend our approach to include strangeness and check
whether hyperons appear in the stars constructed from our
holographic model. Also, one can straightforwardly—but
with more numerical effort—extend our study to the
deconfined geometry of the model. The advantage would
be that a nontrivial temperature dependence can be
included, relevant for the simulation of neutron star
mergers, and that the transition to a chirally restored phase
could be included. This would be interesting for a hybrid
star containing quark matter (or quarkyonic matter [32]) in
the core. However, in currently employed approximations
the chiral phase transition occurs at relatively large den-
sities, perhaps too large to be relevant for the interior of
neutron stars. One could also consider computing transport
properties of our neutron star matter. Finally, it would be
interesting to see if our construction of the holographic
crust is also applicable to similar holographic models.
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