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We consider an improved soft-wall AdS/QCDmodel coupled to an Einstein-dilaton system, which offers
a way to study the deconfining and chiral transitions simultaneously. The correlation between these two
transitions has been investigated in detail in the Einstein-dilaton-scalar system with the bulk scalar field
representing the vacuum of matters in the flavor sector of the model. We find that the effects of the scaling
dimensionΔ of the dual operator of the dilaton manifest in chiral transitions, although the equations of state
can all be matched with the two-flavor lattice results for Δ ¼ 2.5; 3; 3.5 in the decoupling case of β ¼ 0.
In the weak-coupling case with smaller β, both the equation of state and the chiral transition exhibit a
crossover behavior and turn into first-order phase transitions with the increase of β.
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I. INTRODUCTION

QCD phase transition is closely related to the evolution
of early universe and the heavy ion collisions at the
Relativistic Heavy Ion Collider (RHIC) [1]. The phase
structure of strongly interacting matters is an ongoing hot
topic that has lasted for several decades. It is well known
that the confinement and chiral symmetry breaking are two
fundamental features of low-energy QCD which are related
to the hadronic phase at low temperatures. However, with
the increase of temperature, the QCD matters will go
through the deconfining process, during which the hadronic
phase turns into a phase of quark-gluon plasma with a
number of new degrees of freedom liberated, and the chiral
symmetry will finally be restored as well. Thus, it is natural
and critical to study the properties of deconfining and chiral
transitions and also their interrelations, which are indeed
rather challenging because of the nonperturbative nature of
low-energy QCD.
The deconfining phase transition is well defined in the

heavy quark limit with the Polyakov loop serving as an
order parameter, and it should also be reflected in the
behaviors of the equation of state such as the pressure and

the energy density and so on. While the chiral phase
transition is well defined in the chiral limit with the chiral
condensate serving as an order parameter. It has been
established by lattice QCD that both deconfining and chiral
transitions are analytic crossovers at zero chemical poten-
tial with physical quark masses [1–3]. However, the nature
of the two-flavor chiral transition is still unknown in the
chiral limit, although it is generally expected to be a
second-order one in the Oð4Þ universality class [3–6].
There are usually two possible scenarios for the QCD phase
diagram in the quark-mass plane that need to be settled [7].
Another interesting issue is on the interrelations between
the deconfining and chiral transitions [8]. For instance, it is
uncertain whether these two types of QCD transitions occur
simultaneously or not [9].
There have been a large amount of works concentrating

on the issue of QCD phase transition, including lattice
QCD [10,11], Dyson-Schwinger equations [12–14], func-
tional renormalization groups [13], chiral perturbation
theory [15] and so on. Many effective models such as
the generalized Nambu Jona-Lasinio model [16] and the
quark-meson model [17] were also constructed to tackle the
relevant problems. In recent decades, the holographic
approach, based on the anti–de Sitter/conformal field
theory (AdS=CFT) correspondence [18–20], has become
a powerful tool in the study of nonperturbative QCD. Since
AdS=CFT originates from string theory, it would be
desirable that the holographic dual of QCD can be con-
structed from the string-theoretic side [21–23]. However,
this top-down approach is usually unable to provide a good
description for the low-energy hadron properties. Hence,
most of the holographic studies have adopted a bottom-up
approach which is based on the fundamental features of
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low-energy QCD [24–59]. The well-known bottom-up
AdS/QCD models are the hard-wall and soft-wall models
[25–27]. A wide range of low-energy phenomenons
have been investigated in the framework of bottom-up
AdS/QCD, such as the hadron spectrum [60–67], the
thermodynamics and particularly the phase structure of
QCD [68–70].
It has been shown that the QCD equation of state and the

deconfining transition at zero chemical potential can be
well described by the Einstein-dilaton system with a proper
dilaton potential [69–85], while the chiral transition behav-
iors can be properly characterized in the framework of
soft-wall AdS/QCD models [86–94]. This provides an
opportunity for us to study the possible interplay between
the deconfining and chiral transitions by combining the
Einstein-dilaton system with the soft-wall models. In order
to give a complete description for QCD phase transition in
the holographic framework, we have proposed an improved
soft-wall AdS/QCD model with the background fields
solved from an Einstein-dilaton system, which is able to
characterize the deconfining and chiral transitions qualita-
tively in the two-flavor case with nonzero quark masses
[95]. However, the bulk background in this model is
independent of the flavor sector, and thus the issue on
the correlation of these two transitions cannot be addressed
in that work.
To investigate the interrelations between the deconfining

and chiral transitions, we need to consider the Einstein-
dilaton-scalar system with the background fields coupled to
the vacuum of matter fields, which is indeed not that easy to
solve in numerics. In this work, we would like to give a
detailed analysis on this coupled system, in which the
backreaction of the vacuum of matters to the bulk back-
ground will be fully addressed. In addition, we will also
consider the effects of the scaling dimension Δ of the dual
operator of the dilaton on QCD phase transition. Though
there have been many discussions on the physical relevance
of the two-dimension operator related to A2 [96], it is
generally believed that the most natural candidate for the
dual of the dilaton is the local gauge-invariant gluon
operator tr F2

μν, the dimension of which should depend
on the energy scale that has been taken. Here we shall only
concern ourselves with the scaling dimensionΔ, rather than
the specific dual operator of the dilaton. Previous studies
indicate that we cannot distinguish different values of Δ in
the Breitenlohner-Freedman (BF) bound through thermo-
dynamic properties such as the equation of state obtained
from the Einstein-dilaton system, which can be attributed to
the redundant degrees of freedom embodied in the para-
mters of the dilaton potential [70–73]. However, this
situation would be changed once we take the flavor sector
into account and consider the chiral dynamics of the
Einstein-dilaton-scalar system, which naturally sets a
physical energy scale related to the low-energy hadron
physics.

It should be remarked that the interplays between the
gluon and chiral dynamics have also been analyzed in
the holographic models in the Veneziano limit (V-QCD)
[97,98]. Unlike the Einstein-dilaton-scalar system based on
an improved soft-wall model with a specific Einstein-
dilaton background system, the V-QCD models have
combined the improved holographic QCD for pure gluon
dynamics [99] with a tachyon Dirac-Born-Infeld action
which controls the dynamics of chiral symmetry breaking.
The thermodynamics and the chiral transition have been
considered in this framework at finite temperature and
density [100], with a rather different phase structure from
that will be displayed in this work.
The paper is organized as follows. In Sec. II, we give a

brief outline of the improved soft-wall AdS/QCD model
coupled to an Einstein-dilaton system, and then we focus
on the Einstein-dilaton-scalar system that will be mainly
addressed in this work. In Sec. III, we derive the equation of
motion (EOM) of the bulk fields from the coupled system
and specify the boundary conditions for the cases of
Δ ¼ 2.5; 3; 3.5. In Sec. IV, we investigate the behaviors
of the equation of state and chiral transition for each case
of Δ with different values of the coupling constant β.
In Sec. V, we conclude our work with a few discussions.

II. THE IMPROVED SOFT-WALL
MODEL COUPLED WITH AN
EINSTEIN-DILATON SYSTEM

A. Model action

We consider an improved soft-wall AdS/QCD model
coupled to an Einstein-dilaton system which determines the
profiles of the background fields [95]. The bulk back-
ground is dual to the pure Yang-Mills sector of QCD which
incorporates information of the gluon dynamics, while the
flavor sector of the improved soft-wall model characterizes
the low-energy hadron properties. The metric ansatz for the
background geometry can be written in the string frame as

ds2 ¼ L2e2ASðzÞ

z2

�
−fðzÞdt2 þ dxidxi þ dz2

fðzÞ
�

ð1Þ

with an asymptotic AdS structure in the ultraviolet (UV)
region (z → 0), and the AdS radius will be set to L ¼ 1 for
simplicity.
The bulk action of the whole system can be decomposed

into two parts:

S ¼ SG þ SM; ð2Þ

where the background sector SG is just the action of the
Einstein-dilaton system:

SG ¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p
e−2ϕ½Rþ 4ð∂ϕÞ2 − VðϕÞ�; ð3Þ
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where κ25 ¼ 8πG5, and a nontrivial dilaton potential VðϕÞ
needs to be specified later. An appropriate form of VðϕÞ
will generate the relevant deformations of the dual con-
formal field theory so as to reproduce the expected
thermodynamics of QCD. The flavor sector SM represents
the action of the improved soft-wall AdS/QCD model
which can be written as

SM ¼ −κ
Z

d5x
ffiffiffiffiffiffi
−g

p
e−ϕTr

�
jDXj2 þ VXðX;ϕÞ

þ 1

4g25
ðF2

L þ F2
RÞ
�
; ð4Þ

where DMX ¼ ∂MX − iAM
L X þ iXAM

R and FMN
L;R ¼

∂MAN
L;R − ∂NAM

L;R − i½AM
L;R; A

N
L;R� with the gauge fields

AM
L;R in the adjoint representation of SUð2ÞL;R, and the

potential of the bulk scalar field X takes the form

VXðX;ϕÞ ¼ m2
5jXj2 − λ1ϕjXj2 þ λ2jXj4; ð5Þ

where a cubic coupling term between the bulk scalar field X
and the dilaton ϕ has been added in order to realize the
correct behaviors of chiral transition in this improved soft-
wall AdS/QCD model [95]. The mass squared of the bulk
scalar field X is determined by the mass-dimension relation
m2

5L
2 ¼ ΔXðΔX − 4Þ with ΔX ¼ 3 being the scaling

dimension of the dual operator q̄RqL of the scalar field
X in the boundary [26].

B. The Einstein-dilaton-scalar system

According to Ref. [26], the vacuum expectation value
(VEV) of the bulk scalar field X can be written as hXi ¼
χðzÞ
2
I2 with I2 denoting the 2 × 2 unit matrix, and the chiral

condensate σ is embodied in the UVexpansion of the scalar
VEV hXi. Hence, in order to investigate the properties of
chiral transition, we only need to consider the vacuum part
of matter fields represented by hXi in the bulk action (4)
and neglect the vacuum fluctuations corresponding to the
meson fields. The bulk action (2) will then be reduced to

S ¼ SG þ Sχ

¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p
e−2ϕ

�
Rþ 4ð∂ϕÞ2 − VðϕÞ

− βeϕ
�
1

2
ð∂χÞ2 þ Vðχ;ϕÞ

��
; ð6Þ

where β ¼ 16πG5κ, and the potential term of the scalar
VEV χ takes the form

Vðχ;ϕÞ ¼ TrVXðhXi;ϕÞ

¼ 1

2
ðm2

5 − λ1ϕÞχ2 þ
λ2
8
χ4: ð7Þ

The reduced action (6) is just the action of the so-called
Einstein-dilaton-scalar system which incorporates both the
information of deconfinement and that of chiral transition.
Note that the parameter β quantifies the coupling strength
between the scalar VEV χ and the bulk background, which
signifies the entanglement between the chiral and decon-
fining transitions.
For convenience, we perform the calculation in the

Einstein frame with the following metric ansatz:

ds2 ¼ L2e2AEðzÞ

z2

�
−fðzÞdt2 þ dxidxi þ dz2

fðzÞ
�
; ð8Þ

where the warp factor AE is related to AS by AE ¼ AS − 2
3
ϕ.

The action (6) in the string frame can then be transformed
into the Einstein frame with the form

S ¼ SG þ Sχ

¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffiffiffi
−gE

p �
RE −

4

3
ð∂ϕÞ2 − VEðϕÞ

− βeϕ
�
1

2
ð∂χÞ2 þ VEðχ;ϕÞ

��
; ð9Þ

where

VEðϕÞ ¼ e
4ϕ
3 VðϕÞ; VEðχ;ϕÞ ¼ e

4ϕ
3 Vðχ;ϕÞ: ð10Þ

C. The dilaton potential

Now we specify the form of the dilaton potential VEðϕÞ
which is critical to realize the thermodynamic properties of
QCD and particularly the equation of state addressed in this
work. With a rescaling of the dilaton ϕc ¼

ffiffiffiffiffiffiffiffi
8=3

p
ϕ, the

background sector of the action (9) can be recast into the
canonical form

SG ¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffiffiffi
−gE

p �
RE −

1

2
ð∂ϕcÞ2 − VcðϕcÞ

�
ð11Þ

with VcðϕcÞ ¼ VEðϕÞ. The asymptotic AdS structure of the
bulk geometry requires the following UV expansion of the
dilaton potential VcðϕcÞ:

Vcðϕc → 0Þ ≃ −
12

L2
þ 1

2
m2ϕ2

c þOðϕ4
cÞ: ð12Þ

Following Ref. [70], we will choose a dilaton potential with
exponential form in the infrared (IR) region, i.e., VcðϕcÞ ∼
V0eγϕc with V0 < 0 and γ > 0, which corresponds to the
Chamblin-Reall solution [101]. It has been shown that the
adiabatic generalization of such a solution is able to mimic
the equation of state from lattice QCD.
According to AdS=CFT, the scaling dimension Δ of the

dual operator of ϕc is connected with the bulk mass of ϕc
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through the mass-dimension relation m2L2 ¼ ΔðΔ − 4Þ
with Δ constrained in the BF bound [102]. The special
case of Δ ¼ 3 has been considered in Ref. [95], where it
was shown that the Einstein-dilaton system with a proper
dilaton potential can be used to reproduce the QCD
equation of state and other thermodynamic properties
[72,73]. In addition, the right behaviors of chiral transition
can also be realized qualitatively in the improved soft-wall
AdS/QCD model with the action (4) under the background
solved from the Einstein-dilaton system. Indeed, similar
results for the equation of state can also be obtained by
taking other values of Δ which may be regarded as the
dimension of the gluon operator tr F2

μν at different energy
scales [69]. To check this further, we will analyze three
cases with Δ ¼ 2.5, 3, 3.5 in this work.
In the light of the UV and IR asymptotic forms of

VcðϕcÞ, we just adopt the dilaton potential given in
Ref. [69] with the simpler form

VcðϕcÞ ¼
1

L2
ð−12 cosh γϕc þ b2ϕ2

c þ b4ϕ4
cÞ ð13Þ

which has the following UV expansion

Vcðϕc → 0Þ ≃ −12
L2

þ b2 − 6γ2

L2
ϕ2
c þOðϕ4

cÞ; ð14Þ

in which the parameters b2 and γ should be related to each
other by

b2 ¼ 6γ2 þ ΔðΔ − 4Þ
2

: ð15Þ

This simpler form of VcðϕcÞ will be shown to mimic the
equation of state from two-flavor lattice QCD quite well for
all the cases of Δ ¼ 2.5; 3; 3.5 in the decoupling limit
of β ¼ 0.

III. EQUATION OF MOTION AND
BOUNDARY CONDITION

A. Equation of motion

We derive the EOMs for the bulk fields of the Einstein-
dilaton-scalar system by the variation of the action (9) with
respect to these fields. The Einstein equation can be
obtained as

RMN −
1

2
gMNRþ 4

3

�
1

2
gMN∂Jϕ∂Jϕ − ∂Mϕ∂Nϕ

�

þ 1

2
gMNVEðϕÞ þ

β

2
eϕ
�
1

2
gMN∂Jχ∂Jχ − ∂Mχ∂Nχ

�

þ β

2
gMNeϕVEðχ;ϕÞ ¼ 0 ð16Þ

which contains two independent equations of the form

f00 þ 3A0
Ef

0 −
3

z
f0 ¼ 0; ð17Þ

A00
E þ 2

z
A0
E − A0

E
2 þ 4

9
ϕ02 þ β

6
eϕχ02 ¼ 0: ð18Þ

The EOMs of the dilaton ϕ and the scalar VEV χ take the
form

ϕ00 þ
�
3A0

E þ f0

f
−
3

z

�
ϕ0 −

3β

16
eϕχ02

−
3e2AE∂ϕVEðϕÞ

8z2f
−
3βe2AE∂ϕðeϕVEðχ;ϕÞÞ

8z2f
¼ 0; ð19Þ

χ00 þ
�
3A0

Eþϕ0 þf0

f
−
3

z

�
χ0−

e2AE∂χVEðχ;ϕÞ
z2f

¼ 0: ð20Þ

The profiles of the background fields AE, f, ϕ and the
scalar VEV χ can be obtained by solving the coupled
Eqs. (17)–(20) numerically with appropriate boundary
conditions, which is yet not an easy work. To further
simplify the computation, we may substitute Eq. (17) with a
first-order differential equation

f0 þ 4f4e−3AEz3 ¼ 0; ð21Þ

where f4 is an integration constant.

B. The boundary conditions

We specify the boundary conditions that will be used to
obtain reasonable solutions of the Einstein-dilaton-scalar
system. At finite temperature, the bulk geometry of the
form (8) is a black hole solution with an event horizon zh
and approaches AdS5 asymptotically in the UV limit
z → 0, which leads to the following boundary conditions
for fðzÞ:

fð0Þ ¼ 1; fðzhÞ ¼ 0: ð22Þ

The other boundary conditions will be taken from
the UV expansions of the dilaton ϕ and the scalar VEV
χ, which can be obtained from the asymptotic analysis of
Eqs. (17)–(20). Note that the UV forms of the bulk fields
depend on the scaling dimension Δ of the dual operator of
ϕðzÞ. For the case of Δ ¼ 3, the UVexpansions of the bulk
fields at z → 0 take the forms

fðzÞ ¼ 1 − f4z4 þ � � � ; ð23Þ

AEðzÞ ¼ −
1

108
ð3βm2

qζ
2 þ 8p2

1Þz2

−
1

24
βp1m2

qζ
2ð2λ1 þ 11Þz3 þ � � � ; ð24Þ

LI, LIU, LIU, and FANG PHYS. REV. D 105, 034019 (2022)

034019-4



ϕðzÞ ¼ p1zþ
3

16
βm2

qζ
2ðλ1 þ 6Þz2 þ p3z3

−
�
1

48
βp1m2

qζ
2ð9λ21 þ 111λ1 þ 286Þ

−
4

9
p3
1ð12b4 − 6γ4 þ 1Þ

�
z3 ln zþ � � � ; ð25Þ

χðzÞ¼mqζzþp1mqζðλ1þ5Þz2þσ

ζ
z3

−
�
1

96
m3

qζ
3ðβð9λ21þ108λ1þ308Þ−24λ2Þ

þ 1

18
p2
1mqζð9λ21þ111λ1þ286Þ

�
z3 lnzþ��� ; ð26Þ

while for the case of Δ ¼ 2.5, we have

fðzÞ ¼ 1 − f4z4 þ � � � ; ð27Þ

AEðzÞ ¼ −
1

36
βm2

qζ
2z2 −

1

12
p2
1z

3 þ � � � ; ð28Þ

ϕðzÞ¼p1z3=2þ
3

4
βm2

qζ
2ðλ1þ6Þz2þp3z5=2þ��� ; ð29Þ

χðzÞ ¼ mqζzþ
2

3
p1mqζð2λ1 þ 11Þz5=2 þ σ

ζ
z3

−
1

24
m3

qζ
3½βð9λ21 þ 108λ1 þ 320Þ

− 6λ2�z3 ln zþ � � � ; ð30Þ

where mq denotes the quark mass, σ denotes the chiral

condensate and ζ ¼
ffiffiffiffi
Nc

p
2π is a normalization constant [29].

The coefficient f4 is connected with the event horizon zh
which is further related to the temperature T. The UV
asymptotic forms of ϕðzÞ contain two other independent
coefficients p1 and p3 which should also be specified. The
values of mq and p1 prescribe the remaining two boundary
conditions for solving Eqs. (17)–(20). As for the case of
Δ ¼ 3.5, the UV forms of the bulk fields are not presented
here due to the lengthy expressions, and only the case of
mq ¼ 0 will be addressed for Δ ¼ 3.5 since the chiral
condensate cannot be extracted with enough degree of
accuracy in the case of mq ≠ 0 by the numerical method
used in this work.
In the numerical calculation, we define another two

fields in place of the dilaton ϕ and the scalar VEV χ by

ϕ̃≡ zh
z
ϕ; χ̃ ≡ zh

z
χ for Δ ¼ 3;

ϕ̃≡
�
zh
z

�3
2

ϕ; χ̃ ≡ zh
z
χ for Δ ¼ 2.5;

ϕ̃≡
�
zh
z

�1
2

ϕ; χ̃ ≡ zh
z
χ for Δ ¼ 3.5; ð31Þ

the values of which at z ¼ 0 will then be taken as the UV
boundary conditions:

ϕ̃ð0Þ ¼ p1zh; χ̃ð0Þ ¼ mqζzh for Δ ¼ 3;

ϕ̃ð0Þ ¼ p1z
3
2

h; χ̃ð0Þ ¼ mqζzh for Δ ¼ 2.5;

ϕ̃ð0Þ ¼ p1z
1
2

h; χ̃ð0Þ ¼ mqζzh for Δ ¼ 3.5: ð32Þ

To simplify the calculation, we also replace the variable z
by a new variable t with the relation

z ¼ zh
tþ 1

2
; −1 ≤ t ≤ 1: ð33Þ

IV. EQUATION OF STATE
AND PHASE TRANSITION

Now we consider the equation of state and the phase
transition in the Einstein-dilaton-scalar system with the
action (9). Specifically, we will calculate the entropy
density, the pressure, the energy density and the trace
anomaly, and investigate the behaviors of these thermody-
namic observables with respect to temperature, which
reflect the properties of deconfinement. For the coupled
system, the vacuum of matters represented by the scalar
VEV χ will have a backreaction to the background fields,
and thus has an unignorable influence on QCD thermo-
dynamics. This backreaction effect of the flavor part on the
bulk background will be investigated in detail, along with
the properties of chiral transition that is embodied in
the scalar VEV χ, which allows us to probe into the issue
on the correlations between the deconfining and chiral
transitions.
As aforementioned, the bulk geometry is a black hole

with an event horizon zh such that fðzhÞ ¼ 0. According to
AdS=CFT, the temperature T of the system is given by the
Hawking formula

T ¼ jf0ðzhÞj
4π

; ð34Þ

and the entropy density s of the system is given by the
formula

s ¼ 2πe3AEðzhÞ

κ25z
3
h

: ð35Þ
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The pressure p of the system can then be obtained from the
thermodynamic relation s ¼ ∂p=∂T with fixed chemical
potential:

p ¼ −
Z

zh

∞
sðz̃hÞT 0ðz̃hÞdz̃h; ð36Þ

through which the energy density ε ¼ −pþ sT and the
trace anomaly ε − 3p can also be obtained.
These thermodynamic observables will be computed

separately for the cases of Δ ¼ 2.5; 3; 3.5. As a remark,
one of the reasons to choose three values of Δ in our case is
to check that such an Einstein-dilaton-scalar system can
reproduce almost equally well the QCD equation of state
and other thermodynamic quantities for different values of
Δ in the BF bound 2 < Δ < 4 as long as the parameters of
the dilaton potential VðϕÞ are adjusted appropriately. Thus
we cannot determine the most proper one of Δ by only
considering the equation of state in the framework of our
model and many other ones. However, once the bulk
backgrounds were fixed by the QCD equation of state,
the effect of the scaling dimension Δ on chiral transition
would be shown manifestly, as will be seen below.

A. Δ= 3

We first investigate the case of Δ ¼ 3 which has been
addressed in Ref. [95] without consideration of the back-
reaction of the scalar VEV to the background, which just
corresponds to the decoupling case of β ¼ 0 in this work.
With the boundary conditions (22) and (32), we are able to
solve Eqs. (17)–(20) numerically to obtain the profiles of
the bulk fields, and thereby the equation of state can be
computed. It is reasonable to assume that the backreaction
effect will not be large, so that we only consider three cases
with the coupling constant β ¼ 0,0.2,0.4. We fit the
equation of state obtained from the model with the two-
flavor lattice results in the decoupling case of β ¼ 0 with
mq ¼ 5 MeV, as in Ref. [95]. The parameters in the dilaton
potential (13) are set to γ ¼ 0.55 and b4 ¼ −0.125, and the
parameter p1 in the UV form of the dilaton ϕ is set to
p1 ¼ 0.675 GeV. The coupling constants in the scalar
potential (7) will be taken as λ1 ¼ −1.2 and λ2 ¼ 1
throughout the paper. The influences of λ1 and λ2 on chiral
transition behaviors have been investigated in Ref. [95]. In
addition, all the observables will be computed for both the
case of mq ¼ 0 and the case of mq ¼ 5 MeV.
The temperature T as a function of the horizon zh for

β ¼ 0; 0.2; 0.4 has been shown in Fig. 1, where we can see
that T decreases monotonically with the increase of zh in
the decoupling case of β ¼ 0, while this monotonicity
changes in some range of zh when β increases to larger
values, which, as a result, will change the order of phase
transition, as will be shown later.
The rescaled entropy density s=T3 and pressure 3p=T4

as functions of the temperature T are presented in Fig. 2,

and the rescaled energy density ϵ=T4 and trace anomaly
ðϵ − 3pÞ=T4 are presented in Fig. 3, where the case of
mq ¼ 0 has been denoted by the dashed curves which
almost coincide with the solid ones of the case of
mq ¼ 5 MeV. We can see that the equation of state

FIG. 1. The variations of temperature T with respect to the
horizon zh for β ¼ 0; 0.2; 0.4 in the case of Δ ¼ 3.

FIG. 2. The behaviors of the rescaled entropy density s=T3

(upper panel) and pressure 3p=T4 (lower panel) with respect to
the temperature T for β ¼ 0; 0.2; 0.4 in the case of Δ ¼ 3. The
green bands represent the lattice interpolations of two-flavor
QCD [103]. The dashed curves denote the case ofmq ¼ 0 and the
solid ones denote the case of mq ¼ 5 MeV.
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obtained from the model exhibits a crossover behavior in
the decoupling case of β ¼ 0 with mq ¼ 5 MeV, which
mimics the lattice results of two-flavor QCD quite well.
While for the case of β ¼ 0.4, the behaviors of the equation
of state indicate a first-order phase transition, which can be
seen clearly from the swallow-tailed structure of the free
energy F ¼ −p shown in Fig. 4. As a result, we cannot
expect a strong coupling between the flavor sector and the
background sector in our setup in order to match with the
crossover transition implied by lattice QCD. This makes
reasonable the study in Ref. [95] with only the decoupling
case of β ¼ 0 being addressed.
To investigate the properties of chiral transition, we fit

the numerical solution of the scalar VEV χðzÞ with the UV
asymptotic form (26) near the boundary z ¼ 0, so that the
chiral condensate σ can be extracted for each temperature
T. The chiral transition behaviors with respect to temper-
ature have been shown in Fig. 5, where we can see that for
the decoupling case of β ¼ 0 the chiral transition is a
crossover at mq ¼ 5 MeV and becomes a second-order
phase transition in the chiral limit with mq ¼ 0, which is
consistent with the lattice indications [3]. With the increase
of the coupling constant β, the chiral transition finally turns

into a first-order phase transition, which is exactly the same
as that happens in the equation of state, as shown in Figs. 2
and 3. Since we address the coupled system of the back-
ground fields and the scalar VEV, the behaviors of the
equation of state and the chiral transition should be
entangled with each other.
We would like to consider the effect of the coupling

constant β on the transition temperature Tc which may be
defined as the extremum point of the curve of ∂σ=∂T for
the crossover case with smaller values of β, while for the
case of first-order transitions with larger values of β the
transition temperature Tc can be easily read from the free
energy F as a function of T, which has been shown in Fig. 4
for the cases of β ¼ 0; 0.2; 0.4. The dependence of Tc on
the coupling constant β is shown in Fig. 6, where we can
see that in the decoupling case of β ¼ 0 the transition
temperature Tc ≃ 264.5 MeV at mq ¼ 0 and Tc ≃
266.3 MeV at mq ¼ 5 MeV. We also find that Tc is almost
invariant in the range of β ≃ ð0; 0.2Þ, and then it begins to
rise linearly with the increase of β. The distinctions of Tc as
a function of β are very small for the cases of mq ¼ 0 and
mq ¼ 5 MeV. We should remark that the transition
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FIG. 3. The rescaled energy density ϵ=T4 (upper panel) and
trace anomaly ðϵ − 3pÞ=T4 (lower panel) for β ¼ 0, 0.2, 0.4 in
the case of Δ ¼ 3, which are compared with the lattice results of
two-flavor QCD represented by the green bands [103]. The
dashed curves denote the case of mq ¼ 0 and the solid ones
denote the case of mq ¼ 5 MeV.

FIG. 4. The free energy F as a function of the temperature T for
β ¼ 0; 0.2; 0.4 in the case of Δ ¼ 3. The dashed and solid curves
denote the cases of mq ¼ 0 and mq ¼ 5 MeV separately.

FIG. 5. The chiral transition behaviors with respect to the
temperature T for β ¼ 0; 0.2; 0.4 in the case of Δ ¼ 3. The
dashed and solid curves denote the cases of mq ¼ 0 and
mq ¼ 5 MeV separately.
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temperature Tc defined in the crossover case is only apt for
chiral transitions, and we can also introduce another Tc
which is defined as the extremum point of the first
derivative of the equation of state with respect to

temperature, which is indeed smaller than the chiral
transition temperature in our case. However, this difference
will disappear when β increases beyond some point such
that the transition turns into a first-order one.

B. Δ= 2.5 and 3.5

We have shown that the QCD equation of state and chiral
transition in the two-flavor case can be properly described
by the Einstein-dilaton-scalar system with Δ ¼ 3 and a
smaller coupling between the background and matters. An
important issue is how does the scaling dimension Δ affect
the thermodynamic properties in this coupled system.
Previous studies indicate that many aspects of thermal
QCD can be characterized by the Einstein-dilaton system
with some value of Δ [71–73]. If the scaling dimension has
a significant influence on the equation of state and chiral
transition, we may use this effect to determine the proper
values of Δ, which actually cannot be done only by
theoretical analysis. Therefore, we also consider another
two cases with Δ ¼ 2.5 and 3.5 in the BF bound with the
aim to investigate the effects of the scaling dimension Δ on
thermodynamics in the Einstein-dilaton-scalar system.

FIG. 7. The rescaled entropy density s=T3 (upper panel) and
pressure 3p=T4 (lower panel) for β ¼ 0; 0.2; 0.4 in the case of
Δ ¼ 2.5. The green bands represent the lattice interpolations
of two-flavor QCD [103]. The dashed curves denote the case of
mq ¼ 0 and the solid ones denote the case of mq ¼ 5 MeV.

FIG. 6. The variations of the transition temperature Tc with
respect to the coupling constant β in the case of Δ ¼ 3 with
mq ¼ 0 and mq ¼ 5 MeV.

FIG. 8. The rescaled energy density ϵ=T4 (upper panel) and
trace anomaly ðϵ − 3pÞ=T4 (lower panel) for β ¼ 0; 0.2; 0.4 in
the case of Δ ¼ 2.5, which are compared with the lattice
simulations of two-flavor QCD represented by the green bands
[103]. The dashed curves denote the case ofmq ¼ 0 and the solid
ones denote the case of mq ¼ 5 MeV.
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We first consider the case of Δ ¼ 2.5 and compute the
equation of state that will be matched with the lattice results
of two-flavor QCD for the decoupling case of β ¼ 0 with
mq ¼ 5 MeV. The fitting parameters are taken as γ ¼ 0.5,
b4 ¼ −0.125 and p1 ¼ 0.95 GeV. The model results of the
rescaled entropy density s=T3 and pressure 3p=T4 are

shown in Fig. 7, and the rescaled energy density ϵ=T4 and
trace anomaly ðϵ − 3pÞ=T4 are shown in Fig. 8. It can be
seen that the equation of state obtained in the decoupling
case can also fit the lattice results well, and the crossover
transition changes into a first-order one with the increase of
the coupling constant β in the same manner as that in the
case of Δ ¼ 3. Thus it seems impossible to distinguish
different values of Δ only through the equation of state, as
indicated in the previous studies [69,71]. This is one of the
reasons why we resort to considering the Einstein-dilaton-
scalar system, which allows us to investigate both the
equation of state and the chiral transition. We show the
chiral transition behaviors for the case of Δ ¼ 2.5 in Fig. 9,
where we find that they have the similar dependence on the
coupling constant β as that in the case of Δ ¼ 3. However,
the chiral transition temperature and also the absolute value
of the chiral condensate become smaller in this case, as
compared to the case of Δ ¼ 3.
We then repeat the computation for the equation of state

and chiral transition in the case ofΔ ¼ 3.5, but only restrict
to the chiral limit with mq ¼ 0. The model parameters are
set to γ ¼ 0.2, b4 ¼ −0.175 and p1 ¼ 0.6 GeV in order to
match with the two-flavor lattice results in the decoupling
case of β ¼ 0. Note that the quark mass does not affect the

FIG. 9. The chiral transition behaviors with respect to the
temperature T for β ¼ 0; 0.2; 0.4 in the case of Δ ¼ 2.5.
The dashed and solid curves denote the cases of mq ¼ 0 and
mq ¼ 5 MeV separately.

FIG. 10. The rescaled entropy density s=T3 (upper panel) and
pressure 3p=T4 (lower panel) for β ¼ 0; 0.2; 0.4 in the case of
Δ ¼ 3.5 with mq ¼ 0. The green bands represent the lattice
interpolations of two-flavor QCD [103].

FIG. 11. The rescaled energy density ϵ=T4 (upper panel) and
trace anomaly ðϵ − 3pÞ=T4 (lower panel) for β ¼ 0; 0.2; 0.4 in
the case of Δ ¼ 3.5 with mq ¼ 0, which are compared with the
lattice results of two-flavor QCD represented by the green
bands [103].
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equation of state for β ¼ 0. We present the model results of
the rescaled entropy density s=T3 and pressure 3p=T4 in
Fig. 10 and the rescaled energy density ϵ=T4 and trace
anomaly ðϵ − 3pÞ=T4 in Fig. 11. We also show in Fig. 12
the behaviors of chiral transition which changes from a
second-order phase transition into a first-order one with the
increase of β, just as in the cases of Δ ¼ 2.5 and Δ ¼ 3
with mq ¼ 0. An apparent difference is that the chiral
transition temperature in the case of Δ ¼ 3.5 is much larger
than those in the former cases. Moreover, we also find that
the influence of the coupling constant β on the equation of
state and chiral transition becomes more and more signifi-
cant with the increase of the scaling dimension Δ, which
cannot be shown in the Einstein-dilaton system or in the
decoupling case of β ¼ 0 [95].
As we have seen, when the background of the coupled

system is fixed by the QCD equation of state, the effects of
the scaling dimension Δ are manifested in chiral transition.
In Fig. 13, we show for clarity the chiral transition
behaviors in terms of the rescaled chiral condensate for
Δ ¼ 2.5; 3; 3.5 in the decoupling case of β ¼ 0 with zero
quark mass, from which we can see obviously that the

chiral transition temperature increases with the increase of
the scaling dimension Δ. Hence, in contrast to the Einstein-
dilaton system, the Einstein-dilaton-scalar system can be
used to distinguish different values of Δ that correspond to
the dimensions of the dual operator of the dilaton at
different energy scales. This is sensible, considering that
the flavor sector of the coupled system characterizes the
low-energy hadron physics which must be related to some
specific energy scale like the chiral scale, and the chiral
dynamics should come in to select such a scale that plays a
significant role in the holographic framework of the
Einstein-dilaton-scalar system.

V. CONCLUSION AND DISCUSSION

In this work, we consider an improved soft-wall AdS/
QCD model coupled to an Einstein-dilaton system which
can be seen as a dual of the boundary QCD with both the
pure Yang-Mills sector and the flavor sector. The correla-
tion between the deconfining and chiral transitions was
investigated in detail in the so-called Einstein-dilaton-scalar
system with the bulk scalar field representing the vacuum
of matters in the improved soft-wall model. There have
been many researches on the interrelation between these
two kinds of QCD transitions, and our work provides a
preliminary attempt to address this issue in the framework
of bottom-up AdS/QCD.
The equation of state and the chiral transition have been

studied for the cases of Δ ¼ 2.5; 3; 3.5, and in each case we
take three values of the coupling constant β for computa-
tion, that is, β ¼ 0; 0.2; 0.4. We find that for each value ofΔ
the equation of state can be well matched with the lattice
results of two-flavor QCD in the decoupling case of β ¼ 0,
which implies that the scaling dimension Δ is not unique
for the description of the properties of deconfinement in the
Einstein-dilaton system. Essentially, this is due to the
redundant degrees of freedom in the dilaton potential
which cannot be determined from the first principle. As
a phenomenological model, we then resort to other proper-
ties of QCD phase transition in order to handle this issue.
We consider the Einstein-dilaton system integrated with the
soft-wall AdS/QCD model, which allows us to address the
deconfining and chiral transitions simultaneously. We find
that these two transitions are tightly correlated with each
other under the influence of the coupling constant β in this
coupled system of background and matters.
In contrast to that of the Einstein-dilaton system, the

scaling dimension Δ plays a significant role in the
description of QCD phase transition in the Einstein-
dilaton-scalar system. We find that the value of Δ has a
prominent effect on the behaviors of the deconfining and
chiral transitions, especially in the situation with nonzero
coupling constant β. Although the equation of state can all
be matched with the lattice results in the decoupling case of
β ¼ 0, the chiral transition behaviors show distinctions
for different values of Δ, and particularly the transition

FIG. 13. The behaviors of the rescaled chiral condensate with
respect to the temperature T for Δ ¼ 2.5; 3 and 3.5 in the
decoupling case of β ¼ 0 with mq ¼ 0.

FIG. 12. The chiral transition behaviors with respect to the
temperature T for β ¼ 0; 0.2; 0.4 in the case of Δ ¼ 3.5 with
mq ¼ 0.
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temperature Tc increases with the increase of Δ, which is
more obvious for larger values ofΔ in the BF bound, as can
be seen in Fig. 13. This is a merit of the Einstein-dilaton-
scalar system which offers a way to specify the scaling
dimension of the dual operator of the dilation from
phenomenology. As we know, the scalar VEV embodies
the information of the low-energy hadron physics and thus
sets a special energy scale at which the scaling dimensionΔ
should be computed.
In the weak-coupling case with nonzero quark mass,

both the equation of state and the chiral transition exhibit a
crossover behavior and turn into first-order phase transition
with the increase of β. Hence, the coupling between the
background fields and the scalar VEV cannot be strong in
order to match with the lattice results of two-flavor QCD. In
other words, the backreaction of the flavor sector to the
background should be as small as possible, which supports
the previous studies of AdS/QCD based on a fixed bulk
background with no backreaction effects. One character-
istic of the Einstein-dilaton-scalar system is that the chiral
transition temperature Tχ is higher than the deconfinement
temperature Td implied by the equation of state, and the
discrepancy between these two transition temperatures
becomes larger and larger with the increase of Δ. There
are still many debates on the relation between Tχ and Td

[104]. General arguments from bag models support that

Tχ > Td [105], while lattice QCD seems to imply the
inverse result [103]. On the other hand, there are also lattice
simulations indicating that these two transition temper-
atures are very close to each other [106], which, though,
does not exclude the possibility to separate the scales of
chiral symmetry breaking and confinement [107].
Many issues need to be clarified in the further study. We

shall proceed to investigate the QCD phase diagram at
finite chemical potential in the Einstein-dilaton-scalar
system. We may also need to consider other forms of
the dilaton potential in order to reproduce the realistic phase
structure of QCD. As we know, the pure Yang-Mills
theory admits a first-order phase transition, while for
QCD with physical quark masses this is more likely a
crossover transition. Moreover, how to realize the linear
confinement and to give a consistent description for hadron
spectra is still an inconclusive issue in this holographic
framework.
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