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We perform an effective field theory-based coupled-channel analysis of the recent BES III data on the
eþe− annihilation into the final state KþðD−

s D�0 þD�−
s D0Þ in a wide energy range and extract the poles

responsible for the formation of the Zcsð3982Þ. We identify two scenarios which provide a similar
description of the experimental mass distributions but result in utterly different predictions for the spin
partners of the Zcsð3982Þ: although both scenarios are consistent with the Zcs as a SUð3Þ partner of the
Zcð3900Þ, the Zcð4020Þ appears naturally as a spin partner of these states only in one of them (fit 1) while
in the other (fit 2) its nature has to be different. Also, the Zcsð3982Þ has a JP ¼ 1þ spin partner near the
D̄�

sD� threshold in fit 1, while no such state exists in fit 2. We predict the D̄�
sD� invariant mass distribution

in the JP ¼ 1þ channel for the reaction eþe− → KþD�−
s D�0 and argue that this line shape can be used to

distinguish between the two scenarios once data in this channel are available.

DOI: 10.1103/PhysRevD.105.034014

I. INTRODUCTION

Since 2003 when the famous χc1ð3872Þ, also known as
Xð3872Þ, was discovered by the Belle Collaboration [1],
the number of states in the spectrum of charmonium and
bottomonium that do not fit into the simple quark-model
classification scheme grows very fast. While some of these
new hadrons might still be potentially understood as quark-
antiquark mesons, there is a whole class of states that decay
to heavy quarkonia but are charged and for this reason
contain at least four quarks. Most of them have quantum
numbers IðJPÞ ¼ 1ð1þÞ and are thus denoted as ZQ, with
Q ¼ c or b referring to the heavy Q̄Q content, according to
the PDG naming scheme. Until recently, all known Zc’s
and Zb’s, in addition to the cc̄ or bb̄ pair, respectively,
contained only the lightest u or d quarks and, therefore,
were subject to the classification according to the SUð2Þ
isospin group. In Ref. [2] the BES III Collaboration
announced a measurement of the eþe− annihilation into
the final state KþðD−

s D�0 þD�−
s D0Þ performed on a data

sample with the integrated luminosity of 3.7 fb−1 in the
energy range from 4.628 to 4.698 GeV. An enhancement
near the very close by D−

s D�0 and D�−
s D0 thresholds was

observed and fitted with an energy-dependent Breit-Wigner
distribution with the parameters ð3982.5þ1.8

−2.6 � 2.1Þ MeV
and ð12.8þ5.3

−4.4 � 3.0Þ MeV for the mass and width,
respectively. This state was given the name Zcsð3982Þ.
Theoretical predictions of such a state employing different
approaches can be found, for example, in Refs. [3–6]. The
experimental observation of this state initiated an active
discussion in the community and resulted in a number of
theoretical publications devoted to the description of this
new state, see, e.g., Refs. [7–30].
In Ref. [10] an analysis of the D̄sD�0 þ D̄�

sD0 invariant
mass spectra was performed in a theory involving only
short-range interactions between the D mesons. The con-
tact interactions between the JPC ¼ 1þ−, Dð�ÞD̄�, and
D̄sD�0 þ D̄�

sD0 channels were related using the SUð3Þ
light-quark flavor symmetry. Two mechanisms were con-
sidered for the production: (a) through a triangle Ds2D�

sD0

loop, motivated by the presence of a nearby triangle
singularity in the energy range of interest and (b) a pointlike
production directly feeding two-D-meson loops. The fit
was performed in a limited energy range below 4.03 GeV
for the invariant mass of the D̄sD�0 þ D̄�

sD0 system, that is
up to roughly 50 MeV above the threshold, and the
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exchanges by pseudoscalar Goldstone bosons were

neglected.
The analysis performed in this paper improves the one of

Ref. [10] in several aspects. Most importantly, it incorpo-
rates the whole energy range covered by the BES III
data. This became possible since we (i) extend the basis of
the channels considered to include D̄sD�0, D̄�

sD0, and
D̄�

sD�0 and incorporate coupled-channel effects between
them and (ii) find that the triangle diagrams with the
Ds2ð2573ÞD�

sD�0 and Ds1ð2536ÞD�
sD�0 intermediate states

also possess triangle singularities within the energy range
covered by the BES III data. We therefore investigate their
effect on the line shapes and, in line with Ref. [2], find that
a tree-level mechanism via Ds1 is very important for
understanding the shape of the spectra at larger invariant
masses. As a result of the fits to all data, we find two classes
of solutions which describe the data equally well but have
very different underlying dynamics. Accordingly, the spin
partners predicted within the two scenarios by employing
heavy quark spin symmetry (HQSS) are very different,
offering a lever arm to distinguish between these scenarios
by additional experiments. For each such scenario we
provide a parameter-free prediction for the line shape in
the D̄�

sD� system for JP ¼ 1þ, which is demonstrated to be
crucial in this context. It should be noted that also in a
broader context, a study of spin symmetry partners is very
valuable, since it not only allows one to disentangle
different scenarios within the molecular picture, but also
to distinguish between different interpretations of observed
structures [31].
All measurements by BES III were performed in the

energy range close to the state ψð4660Þ, also known as
Yð4660Þ (JPC ¼ 1−−), with a width of Γ ¼ 62þ9

−7 MeV.
This state is by itself quite interesting since it apparently
does not fit into the spectrum of vector charmonia predicted
by various quark models, although some adjustment of the
models might improve the situation—see the related dis-
cussion in Ref. [32]. One exotic proposal for this state is a
hadrocharmonium structure [33], where a compact ψð2SÞ
core is surrounded by excited light quarks, which at the
same time qualifies as a f0ð980Þψð2SÞ hadronic molecule
due to the proximity of the corresponding threshold [34].
Meanwhile, the state Ds2ð2573Þ plays a significant role in
the KðD̄sD� þ D̄�

sDÞ invariant mass spectra as is stressed
in the experimental analysis of Ref. [2] as well as in the
theoretical study of Ref. [10]. Also, an important role of
the Ds1ð2536Þ is pointed out in Ref. [2]. Naively, this may
look surprising because the excitation of the S-wave

DsJD̄
ð�Þ
s ðJ ¼ 1; 2Þ meson pairs in the eþe− annihilation

process violates HQSS [35]. Indeed, the light-quark spin-

parity states for this meson pair, jLðDsJÞ × jLðD̄ð�Þ
s Þ ¼

3=2þ × 1=2− ¼ 1−; 2−, see Ref. [36] for details, are at odds
with the only light-quark spin-parity state 0þ allowed in the
eþe− annihilation through a vector charmonium into a pair

of charmed mesons. Thus, a significant violation of HQSS

through large couplings of Yð4660Þ to the DsJD̄
ð�Þ
s inter-

mediate states is needed for this mechanism to be at work.

This, however, would point toward a large DsJD̄
ð�Þ
s

molecular component of the Yð4660Þ, making it a candi-
date for a SUð3Þ-flavor partner of ψð4230Þ also known as
Yð4230Þ,1 which is proposed to be a D1ð2420ÞD̄ molecule
in Ref. [37] (this claim is contrasted to the hadrocharmo-
nium picture for this state in Ref. [38]; see also the
discussion of a possibly large HQSS breaking in production
contained in this reference). This picture is especially
intriguing given that the production of the Zcð3900Þ in
the decay of Yð4230Þ is claimed to be dominated by
triangle diagrams2 [37,40] in the same way as the triangle
loops are important for the Zcsð3982Þ production in the
scenario put forward in Ref. [10] as well as this work. This
analogy already suggests a close connection between the
strange and the nonstrange Zc states.
Recently, the LHCb Collaboration announced the first

observation of exotic states produced in proton-proton
collisions and decaying into the J=ψKþ final state [41].
It remains to be seen whether or not the parameters of
the most significant from the observed resonances, the
Zcsð4000Þ, can be reconciled with those of the Zcsð3982Þ,
indicating that the two structures are manifestations of the
same object which reveals itself in both open- and hidden-
charm final states. Namely, while the resonance parameters
extracted in the experimental analyses were very different,
both structures were successfully described in Ref. [25]
within the same coupled-channel model using the formal-
ism of the chiral constituent quark model. A similar claim
that the LHCb and BES III structures may be siblings is
contained in Ref. [10]. In this paper we focus on the BES III
data and postpone an analysis of the LHCb data to a later,
more complete, study.

II. FORMALISM

Before we proceed to the details of the formalism, a few
general remarks are in order. Contrary to the simple Breit-
Wigner parameterization, the work presented here (see also
Ref. [10]) may be regarded as the first step toward a model-
independent understanding of the properties of the Zcs and
its spin partners in an effective-field theory (EFT)
approach. Since the D and D� mesons belong to the same
spin multiplet, HQSS implies that, if there is a state near the
lower D̄�

sD=D̄sD� threshold, there might also be a spin-
partner state near the upper D̄�

sD� one. In addition, the
channels D̄�

sD=D̄sD� and D̄�
sD� can in general couple to

1This state is more widely known as Yð4260Þ with the mass
label deduced from the discovery experiments. However,
more recent measurements by BES III called for an adaption
of its mass label.

2For a comprehensive review on triangle singularities the
interested reader is referred to Ref. [39].
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each other, which may strongly affect the properties of the
nearby states. Therefore, the energy range covered by
our approach should be given at least by the distance
between the two thresholds, δ ¼ mD� −mD ≃mD�

s
−

mDs
≃ 140 MeV with m

Dð�Þ
ðsÞ

for the Dð�Þ
ðsÞ meson mass.

This translates into the momentum scale
ffiffiffiffiffiffiffiffiffi
mDδ

p
≃

500 MeV. To allow for significant coupled-channel effects,
this scale is therefore treated as soft, in contrast to the
hard scale of the order of 1 GeV (for a detailed
formulation of the EFT approach used here we refer
to Ref. [42]).
Since we rely on the SUð3Þ symmetry of light quarks to

interrelate the contact interactions, the approach should in
general include the interactions driven by the lightest
pseudoscalar Goldstone boson exchanges—the η-meson
exchange being of relevance here—which provide the
leading SUð3Þ-breaking effect. Also, at higher orders in
this EFT, momentum-dependent contact interactions as well
as KK̄ loops start to contribute. Meanwhile, as will become
clear below, the unitary amplitude of the reaction eþe− →
KþD�−

s D�0 involves a highly nontrivial interplay of several
production mechanisms and final-state interactions (FSI).
Therefore, in this first study, we mainly focus on the
consequences of this interplay relying on the assumption
that the poles in theD-meson scattering amplitude are driven
solely by the leading-order (LO) momentum-independent
contact interactions. An extension of the analysis to incor-
porate the η-meson exchange requires an inclusion of the
tensor interactions and their appropriate renormalization
along the lines of the recent studies in the context of the
bottomoniumlike states Zbð10610Þ and Zbð10650Þ [42,43]
and the LHCb pentaquarks [44]. Meanwhile, the inclusion
of the η-meson is not expected to qualitatively change the
conclusions drawn here.Moreover, it is demonstrated below
that the present data can be well understood already at the
level of the contact interactions at LO and they are found to
be consistent with several competing solutions. Thus, a
conclusion on the role of additional terms in the potential can
be made only once higher quality data become available.
The corresponding generalization of the approach is there-
fore also delegated to future studies.

A. Contact interactions

We start from a short introduction to the light-quark
SUð3Þ flavor group. Consider a generic state of the form
jMAM̄0Bi, where M and M0 are two heavy-light mesons
which can be either pseudoscalar (P ¼ D;Ds) or vector
(V ¼ D�; D�

s) states, so that all possible combinations of

the form Dð�Þ
ðsÞD̄

ð�Þ
ðsÞ are captured this way. Here, A;B ¼ 1, 2,

and 3 refer to the SUð3Þ indices. The state jMAM̄0Bi
belongs to a reducible representation 3 ⊗ 3̄ and can be
decomposed into a sum of irreducible representations
(3 ⊗ 3̄ ¼ 1 ⊕ 8) as

jMAM̄0Bi¼ 1ffiffiffi
3

p δBAjMM̄0;Siþ 1ffiffiffi
2

p
X8
i¼1

ðλiÞBAjMM̄0;O;ii; ð1Þ

where fλig (i ¼ 1;…; 8) are the Gell-Mann matrices and
we introduced the mutually orthogonal and normalized to
unity singlet (S) and octet (O) states,

jMM̄0; Si ¼ 1ffiffiffi
3

p jMAM̄0Ai;

jMM̄0; O; ii ¼ 1ffiffiffi
2

p ðλiÞABjMAM̄0Bi; i ¼ 1;…; 8: ð2Þ

If the interaction V̂ is SUð3Þ symmetric, then its non-
vanishing matrix elements in the flavor space can be
parametrized via only two potentials as

hMM̄0; SjV̂jMM̄0; Si ¼ VS;

hMM̄0; O; ijV̂jMM̄0; O; ji ¼ VOδij; ð3Þ

so that it is straightforward to find that (no summation over
A and B is implied here)

hMAM̄0AjV̂jMBM̄0Bi ¼
(

1
3
ðVS þ 2VOÞ; A ¼ B;

1
3
ðVS − VOÞ; A ≠ B

ð4Þ

and

hMAM̄0BjV̂jMAM̄0Bi ¼ VO; A ≠ B: ð5Þ

It proves convenient to redefine the interactions such that
fVS; VOg → fVs; Vtg, where Vs and Vt correspond to the
isoscalar and isotriplet potentials, respectively. To this
end we decompose an arbitrary SUð2Þ state jMaM̄0bi
(a, b ¼ 1, 2) as

jMaM̄0bi ¼ 1ffiffiffi
2

p δbajMM̄0; ½0�i þ 1ffiffiffi
2

p
X3
i¼1

ðτiÞbajMM̄0; ½1�; ii;

ð6Þ

where fτig (i ¼ 1, 2, 3) are Pauli matrices and the total
isospin of the state is quoted in square brackets, to find

hMM̄0; ½0�jV̂jMM̄0; ½0�i ¼ 1

3
ð2VS þ VOÞ≡ Vs;

hMM̄0; ½1�jV̂jMM̄0; ½1�i ¼ VO ≡ Vt: ð7Þ

Then, it is straightforward to evaluate the potential for
the state jMM̄0; ½1=2�i, which is the central object of this
study:
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hMM̄0; ½1=2�jV̂jMM̄0; ½1=2�i
¼ hMM̄0; ½1�jV̂jMM̄0; ½1�i ¼ VO ¼ Vt: ð8Þ

This result coincides with the findings of Refs. [10,45].
Therefore, in order to build the potential in the I ¼ 1=2
sector it is sufficient to derive it in the isovector channel. To
this end we consider the HQSS Lagrangian for the D
mesons in the isovector channel which, at leading order
OðQ0Þ, reads [46]

Lð0Þ
HH ¼ Tr

�
H†

a

�
i∂0 þ

∇2

2M̄

�
Ha

�
þTr

�
H̄†

a

�
i∂0 þ

∇2

2M̄

�
H̄a

�

þ δ

4
Tr½H†

aσiHaσ
i� þ δ

4
Tr½H̄†

aσiH̄aσ
i�

−
C10

8
Tr½H̄†

aτAaa0H
†
a0Hbτ

A
bb0H̄b0 �

−
C11

8
Tr½H̄†

aτAaa0σ
iH†

a0Hbτ
A
bb0σ

iH̄b0 �; ð9Þ

where σ and τ denote the spin and isospin Pauli matrices,
respectively, and the trace is taken in the spin space. As
before, a and b are the isospin indices, and the isospin
matrices are normalized as τAabτ

B
ba ¼ 2δAB. The mass M̄ in

the kinetic terms is the spin-averaged D meson mass,
M̄ ¼ ð3m� þmÞ=4, and δ ¼ m� −m ≈ 140 MeV. The
terms in the first line in Eq. (9) stand for the leading heavy
and antiheavy meson Lagrangian of Refs. [47–49], written
in the two-component notation of Ref. [50]. The terms
proportional to the low-energy constants (LECs) C10 and
C11 correspond to the OðQ0Þ S-wave contact interactions
[46,51]. The superfields Ha and H̄a of the heavy-light
mesons read

Ha ¼ Pa þ Vi
aσ

i; H̄a ¼ P̄a − V̄i
aσ

i; ð10Þ

where P ¼ D and V ¼ D� for mesons and, similarly, P̄ ¼
D̄ and V̄ ¼ D̄� for antimesons.
Hereinafter we refer to open-charm channels as elastic.

Then, in the JP ¼ 1þ channel with the basis elastic states3

1þ∶ fP̄Vð3S1Þ; PV̄ð3S1Þ; VV̄ð3S1Þg; ð11Þ

the HQSS-respecting S-wave order-Q0 contact potential
reads

VCT½1þ� ¼

0
BBB@

Cd þ 1
2
Cf 1

2
Cf − 1ffiffi

2
p Cf

1
2
Cf Cd þ 1

2
Cf 1ffiffi

2
p Cf

− 1ffiffi
2

p Cf 1ffiffi
2

p Cf Cd

1
CCCA; ð12Þ

where two linear combinations of the LECs from the
Lagrangian (9) were introduced as Cd ¼ 1

8
ðC11 þ C10Þ

and Cf ¼ 1
8
ðC11 − C10Þ, with the subscript d (f) referring

to the diagonal (off-diagonal) terms.
The basis vectors for JPC states in various elastic

channels with a given C-parity read

1þ−∶ fPV̄ð3S1;−Þ; VV̄ð3S1Þg;
1þþ∶ fPV̄ð3S1;þÞg;
2þþ∶ fVV̄ð5S2Þg; ð13Þ

where the sign in parentheses gives the C-parity of the
corresponding PV̄ states defined as

jPV̄;�i ¼ 1ffiffiffi
2

p ðjPV̄i � jP̄ViÞ; ð14Þ

with the C-parity transformation defined as ĈM ¼ M̄ for
any meson M. Then it is easy to find that the leading-order
contact potentials in the elastic channels read

VCT½1þ−�¼
�
Cd Cf
Cf Cd

�
; VCT½1þþ�¼VCT½2þþ�¼CdþCf:

ð15Þ

In particular, we see that once the poles in the 1þ− sector are
settled to provide a decent description of the line shapes,
those in the 1þþ and 2þþ channels are fixed and driven by
identical potentials [52,53]. The latter potentials were
previously used to success in studies of the isoscalar states
of charmonium (see, e.g., a review article [54] and
references therein) and isovector states of bottomonium
[42,43,55].
According to Eq. (8), the effective potential of Eq. (12)

will be used in what follows for the three-channel problem
fD−

s D�0; D�−
s D0; D�−

s D�0g ≔ f1; 2; 3g, where the thresh-
olds are ordered from the lowest to the highest in energy.
For a given set JPðCÞ the system of the partial-wave-
decomposed coupled-channel Lippmann-Schwinger equa-
tions reads

Tαβðm23; p; p0Þ ¼ Veff
αβ ðp; p0Þ −

X
γ

Z
d3q
ð2πÞ3 V

eff
αγ ðp; qÞ

× Gγðm23; qÞTγβðm23; q; p0Þ; ð16Þ
where α, β, and γ label the basis vectors defined in Eqs. (11)
and (13), the effective potential is defined in Eqs. (12) and

3Here, the individual partial waves are labeled as 2Sþ1LJ with
S, L, and J denoting the total spin, orbital angular momentum
and the total angular momentum of the two-meson system,
respectively.
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(15), and the scattering amplitude Tαβ is related to the
invariant amplitude Mαβ as

Tαβ ¼ −
Mαβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2m1;αÞð2m2;αÞð2m1;βÞð2m2;βÞ

p ; ð17Þ

with m1;α and m2;α (m1;β and m2;β) being the masses of the

Dð�Þ
ðsÞ mesons in the channel α (β). The two-body propagator

for the given set JPC takes the form

Gγ ¼ ðq2=ð2μγÞ þm1;γ þm2;γ −m23 − iϵÞ−1; ð18Þ

where the reduced mass is

μγ ¼
m1;γm2;γ

m1;γ þm2;γ
ð19Þ

and m23 is the invariant mass of the D-meson system.
Finally, to render the loop integrals well defined, we

introduce a sharp ultraviolet cutoff Λ which needs to be
larger than all typical three-momenta related to the coupled-
channel dynamics. For the results presented below we
choose Λ ¼ 1 GeV, but we have also verified that our
results are almost cutoff independent by repeating the fit
with cutoffs varied over a sufficiently wide range from 0.8
to 1.3 GeV.

B. Production amplitude

It is a natural assumption in the molecular approach that
a pointlike production mechanism generates first a pair of
particles in the elastic channels, which then interact
strongly in the final state to produce visible structures in
the line shapes near the elastic thresholds. For example,
such a production mechanism in the molecular picture
provides a very good description of the line shapes for the
Zbð10610Þ=Zbð10650Þ states measured by Belle [42,43,55]
and the pentaquark states discovered by LHCb [44,56].
However, since it is argued in Ref. [2] that the states
Ds2ð2573Þ and Ds1ð2536Þ provide the most important
contributions to the experimental background in the
observed KðD̄sD� þ D̄�

sDÞ invariant mass spectra, their
contributions need to be considered as they might encode
important information about the nature of the Yð4660Þ as
discussed in the introduction. Specifically, since the Ds1D̄�

s

and Ds2D̄�
s thresholds at 4.647 GeV and 4.681 GeV,

respectively, are within the energy range covered by the
BES III measurement, the amplitude which proceeds via
these intermediate states is enhanced. In addition, the
triangle singularities generated by the Ds2D�

sD,
Ds2D�

sD�, andDs1D�
sD� loops are not far from the physical

region even if the widths of the DsJ mesons are included—
see Table I for details.
Therefore, the properties of the Zcs and its spin partners

can be extracted from the current data assuming HQSS only

if an interplay of different production mechanisms is
explored in the whole energy range covered by the BES
III measurement—see also the discussion in Ref. [57]. The
diagrams considered in the current study are shown in
Fig. 1. In order to minimize the number of parameters we
follow the approach of Ref. [10] and assume that the
production proceeds solely via Yð4660Þ with the S-wave

couplings of Yð4660Þ toDsJD̄
ð�Þ
s being energy-independent

constants. This is justified since all measurements by BES
III were performed in the energy range close to this state.
Then, the parity and the total angular momentum con-
servation ensure that the Yð4660Þ can decay into the

Ds1ð2536ÞD̄ð�Þ
s and Ds2ð2573ÞD̄�

s meson pairs, with sub-
sequent decays of the Ds1 to D�K and Ds2 to Dð�ÞK,
respectively. This is encoded in the diagrams shown in the
first two rows for each of the two final states KD̄sD�

and KD̄�
sD.

The tree-level diagrams with the excited Ds2 and Ds1
lead to pronounced enhancements in the invariant mass
distribution of the two D-mesons—see Fig. 2 for an
illustration. The intermediate states in these diagrams, that
isDs2D̄�

s andDs1D̄s, respectively, can go on shell. The pole
from the Ds2 emerges roughly 200 MeV above the KD
threshold, which leads to an enhanced production of the
KD state in the corresponding energy range. Then, as a
cross-channel effect, the invariant mass spectrum in the
channel D̄sD�=D̄�

sD shows a very pronounced structure
near the D̄sD�=D̄�

sD threshold. The effect of the Ds1
exchange demonstrates quite an opposite pattern: since
the Ds1 mass is only about 30 MeV above the KD�
threshold, the peak in the two D-meson invariant mass
spectrum shows up at larger invariant masses. In addition to
the structures from the tree-level diagrams, the triangle
singularities from the Ds2D�

sD, Ds2D�
sD�, and Ds1D�

sD�
loops may reveal themselves in the energy region covered
by the BES III data, as illustrated in Fig. 3.
The spin-angular structure of the tree-level and triangle

contributions from Fig. 1 can be derived from the effective
Lagrangian that relates the S-wave charmonia with the S-
wave DsJD̄ð�Þ-meson pairs [36],

LJTH̄ ¼ gJTHTr½JTi
a
†H̄†

aσi� þ H:c:; ð20Þ

TABLE I. The ranges of
ffiffiffi
s

p
and the invariant mass of the final

D mesons (m23), where the triangle singularity occurs for various
intermediate states involving the Ds2 and Ds1 excited mesons, if
they had no widths. All energies are within the range measured by
BES III. The minimal value of

ffiffiffi
s

p
corresponds to the maximum

of m23 and vice versa.

Ds2D�
sD0 Ds2D�

sD�0 Ds1D�
sD�0ffiffiffi

s
p

(GeV) [4.6813, 4.7117] [4.6813, 4.6894] [4.6474, 4.6513]
m23 (GeV) [3.977, 4.003] [4.1191, 4.1262] [4.1191, 4.1226]
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and those for the subsequent decay of the DsJ meson into
Dð�ÞK in an S wave [59],

LðSÞ
THK ¼ igðSÞTHKðDs1a · D

�†
b Þ∂0ϕ

†
ab þ H:c:; ð21Þ

and D wave [60],

LðDÞ
THK ¼ gðDÞ

THKTr½Ti
aσ

jH†
b�∂i∂jϕ

†
ab þ H:c: ð22Þ

Here, J ¼ Y · σ þ ηc is the spin multiplet for the S-wave
charmonia,

Ti
a ¼ Pij

2aσ
j þ

ffiffiffi
2

3

r
Pi
1a þ i

ffiffiffi
1

6

r
ϵijkP

j
1aσ

k ð23Þ

is the spin multiplet of the heavy-light mesons with the
total angular momentum of the light quarks jPL ¼ 3=2þ (the
fields P1a and P2a annihilate the charmed mesons

FIG. 1. Diagrams contributing to the transition amplitude for the KD̄sD� and KD̄�
sD final states. The first and second rows in each

channel contain the contributions which proceed via the excitation of the Ds2ð2573Þ and Ds1ð2536Þ resonance states, respectively, the
third row shows the diagrams for the pointlike production mechanism via the D-meson loops. The dashed line denotes the kaon and the
bold grey line is for the Y(4660). All D mesons are explicitly tagged in the diagrams.
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100

200

300

400

m23 [GeV]

3.95 4.00 4.05 4.10 4.15

0

200

400

600

800
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FIG. 2. The contributions of the tree-level diagrams [see Eqs. (27) and (29)] with the Ds2ð2573Þ (left panel) and Ds1ð2536Þ (right
panel) after the integration over the angle (z) in Eq. (35) given in arbitrary units (a.u.) versus the invariant mass of the D̄sD�=D̄�

sDmeson
pairs (m23) at

ffiffiffi
s

p ¼ 4.681 GeV. The momentum factor k2 from Eq. (26) corresponding to the decay of the DsJ to Dð�ÞK in a D wave is
also included and provides a suppression of the amplitudes at large invariant masses.
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Ds1ð2536Þ and Ds2ð2573Þ, respectively), the spin multip-
lets of the jPL ¼ 1=2− heavy-light mesons are defined in
Eq. (10) above, and ϕ is the pseudoscalar field.
In addition, the effective Lagrangian connecting the

S-wave charmonia with the S-wave D-meson pairs and a
pseudoscalar field reads [46]

LHHJϕ ¼ 1

4
gHHJϕTr½JH̄†

bH
†
a�u0ab† þ H:c:; ð24Þ

where the appearance of the zeroth component of u (time
derivative in the formula below which translates into the
energy) is a consequence of chiral symmetry. The pseu-
doscalar Goldstone bosons are parametrized as

u0 ¼ iðu† _u − u _u†Þ; u ¼ exp

�
iϕffiffiffi
2

p
f

�
;

ϕ ¼

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η8 πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η8 K0

K− K̄0 − 2ffiffi
6

p η8

1
CCCA; ð25Þ

where f is the SUð3Þ Goldstone bosons decay constant;
f ¼ fπ ¼ 92.2 MeV [58].

The sum of the amplitudes corresponding to the dia-
grams shown in Fig. 1 for the final states KþD�0D−

s and
KþD0D�−

s reads

M½α� ¼ −
ffiffiffiffiffiffiffiffiffi
2mY

p X
l¼0;2

Sl½α�Ml½α�kl

¼ −
ffiffiffiffiffiffiffiffiffi
2mY

p
ðŜD½α�MD½α�k2 þ ŜS½α�MS½α�Þ; ð26Þ

with mY for the mass of the Yð4660Þ. Here, α ¼ 1 and 2
correspond to the D̄sD� and D̄�

sD states, respectively, the
appropriately normalized spin-orbit structures are ŜS½α� ¼
εY · ε½α� and ŜD½α� ¼ − 3ffiffi

2
p εYi

εj½α�nij, where nij ¼ ninj −
δij=3 with ni ¼ ki=k, and the magnitude of the kaon
momentum in the rest frame of the decaying particle is
k ¼ λ1=2ðs;m2

1; m
2
23Þ=ð2

ffiffiffi
s

p Þ with m23 being the invariant
mass of the D-meson pair. The importance of the S-wave
kaon production amplitude was stressed in Ref. [57].
Finally, for the D- and S-wave amplitudes MD½α� (see
the first two rows for each final state in Fig. 1) and MS½α�
(see the last row for each final state in Fig. 1) with α ¼ 1, 2
one has

MD½1� ¼ gDs2

�
JðDs2; D�

s ; DÞT21 þ
3

ffiffiffi
2

p

4
JðDs2; D�

s ; D�ÞT31

�

þ gDs1

�
2mDs1

t½1� −m2
Ds1

þ iΓDs1
mDs1

þ JðDs1; Ds; D�ÞT11 −
ffiffiffi
2

p

4
JðDs1; D�

s ; D�ÞT31

�
ð27Þ

FIG. 3. The triangle functions defined by Eq. (31) versus the invariant mass of the D̄sD�=D̄�
sD meson pairs. Left panel: the triangle

loops for the intermediate Ds2D�
sD (solid red) and Ds2D�

sD� (dashed red) states at
ffiffiffi
s

p ¼ 4.681 GeV. Right panel: the triangle loops for
the intermediate state Ds1D�

sD� at
ffiffiffi
s

p ¼ 4.648 GeV (solid blue), where it is in the regime of the singularity (see Table I), and at the
energies measured by BES III, namely

ffiffiffi
s

p ¼ 4.641 GeV (dotted blue) and
ffiffiffi
s

p ¼ 4.661 GeV (dashed blue). The physical widths of the
Ds2ð2573Þ and Ds1ð2536Þ are included [58].
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MS½1� ¼ λgDs1
ωðkÞ

�
2mDs1

t½1� −m2
Ds1

þ iΓDs1
mDs1

þ JðDs1; Ds; D�ÞT11 −
ffiffiffi
2

p

4
JðDs1; D�

s ; D�ÞT31

�

þ gωðkÞ½−1þ J0ðDs;D�ÞT11 − J0ðD�
s ; DÞT21 þ

ffiffiffi
2

p
J0ðD�

s ; D�ÞT31�; ð28Þ

MD½2� ¼ gDs2

�
2mDs2

t½2� −m2
Ds2

þ iΓDs2
mDs2

þ JðDs2; D�
s ; DÞT22 þ

3
ffiffiffi
2

p

4
JðDs2; D�

s ; D�ÞT32

�

þ gDs1

�
JðDs1; Ds; D�ÞT12 −

ffiffiffi
2

p

4
JðDs1; D�

s ; D�ÞT32

�
; ð29Þ

MS½2� ¼ λgDs1
ωðkÞ

�
JðDs1; Ds; D�ÞT12 −

ffiffiffi
2

p

4
JðDs1; D�

s ; D�ÞT32

�

þ gωðkÞ½1 − J0ðD�
s ; DÞT22 þ J0ðDs;D�ÞT12 þ

ffiffiffi
2

p
J0ðD�

s ; D�ÞT32�; ð30Þ

where t½1� ¼ m2ðKD�Þ and t½2� ¼ m2ðKDÞ, with m2ðXYÞ referring to the invariant mass of the XY system, and the kaon
energy is ωðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

K

p
. The relative coefficients in the brackets are fixed by HQSS.

The integrals Jða; b; cÞ and J0ðb; cÞ are the triangle and scalar loop functions defined as

Jða; b; cÞ ¼
Z

d4l
ð2πÞ4

8mambmci
½ðlþ pabÞ2 −m2

a þ iΓama�½l2 −m2
b þ iϵ�½ðl − pbcÞ2 −m2

c þ iϵ� ; ð31Þ

J0ðb; cÞ ¼
Z

d3l
ð2πÞ3

θðΛ − lÞ
l2=ð2μbcÞ þmb þmc −

ffiffiffi
s

p
− iϵ

; μbc ¼
mbmc

mb þmc
; ð32Þ

where pXY is the outgoing four-momentum in the vertex
with the particles X and Y in the loop. Finally, the constant
λ which governs the ratio of the S- and D-wave contribu-
tions reads

λ ¼ k20
ωðk0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BrðDþ

s1 → D�þK0ÞS-wave
BrðDþ

s1 → D�þK0ÞD-wave

s
; ð33Þ

where k0 ¼ 149 MeV is the final-state momentum in the
decay Dþ

s1 → D�þK0. Given sizeable uncertainties in the
data on the S- and D-wave branchings of the Ds1 decay
contained in the PDG tables [58] and assuming that these
elastic decays fully saturate the width of theDs1, we use the
following representative values

BrðDþ
s1 → D�KþÞS-wave ¼ 0.61;

BrðDþ
s1 → D�KþÞD-wave ¼ 0.39; ð34Þ

which give λ ≈ 53 MeV.
In principle, the coupling constants introduced in the

amplitudes (27)–(30) can be expressed through the cou-
plings from the Lagrangians (20)–(22) and (24). We,
however, refrain from using these explicit relations and
introduce coupling constants in the above-mentioned
amplitudes to be fitted to the data directly for two reasons.

First, to simplify notations, all constant factors can be
absorbed in the overall normalization of the production rate
which is a fitting parameter. Second, while the bare
coupling constants connecting both fields Ds1 and Ds2

with Yð4660Þ can indeed be related with gJTH and gðS;DÞ
THK

from Eqs. (20)–(22), the corresponding dressed couplings
may be different. Therefore, instead of one common
constant we introduce two independent couplings gDs1

and gDs2
for the amplitudes proceeding through the Ds1

and Ds2, respectively. Then, although the strengths of the
production mechanisms via the Ds1, Ds2 and pointlike
source are fixed independently, the Lagrangian densities
from Eqs. (20)–(22) and (24) are used to provide the
relevant momentum dependence of the vertices and the
HQSS-based relations between the individual terms in
the square brackets in Eqs. (27)–(30).
We note also that, while the triangle loop is finite, the

scalar loop is divergent and regularized by a sharp cutoff Λ
with the regulator dependence largely absorbed in the bare
production constant g≡ gðΛÞ.

C. Invariant mass distribution of the
D̄sD�=D̄�

sD meson pairs

Given the energy range measured by BES III, it is natural
to assume that the reaction eþe− → KþðD−

s D�0 þD�−
s D0Þ

proceeds dominantly through the excitation of the Yð4660Þ
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resonance in the intermediate state. Then, with the ampli-
tudes defined in the previous section, the D̄�

sD0 þ D̄sD�0
the differential cross section reads

dσ
dm23

¼ N

���� 2mY

s −m2
Y þ imYΓY

����2 X2
α¼1

kqð23Þ½α�
s

×
Z

1

−1

dz
2
½k4jMD½α�j2 þ jMS½α�j2�; ð35Þ

whereMY ¼ 4.633 GeV, ΓY ¼ 64 MeV [58], andN is the
overall normalization factor which subsumes the unknown
coupling Yð4660Þ → eþe− as well as all other irrelevant
constants. TheMandelstam invariant t in the center ofmass of
the final D mesons [center of mass of the system (23)] reads

t½α� ¼ m2
K þm2

3 þ 2Eð23Þ
1 Eð23Þ

3 ½α� − 2pð23Þ
1 qð23Þ½α�z;

z ¼ cos θ; ð36Þ

where θ is the helicity angle; themomenta and energies of the

kaon (pð23Þ
1 ½α� and Eð23Þ

1 ½α�) and D mesons (qð23Þ½α� and
Eð23Þ
3 ½α�) are given by

pð23Þ
1 ¼

ffiffiffi
s

p
m23

k; Eð23Þ
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Kþðpð23Þ
1 Þ2

q

qð23Þ½α�¼λ1=2ðm2
23;m

2
2;m

2
3Þ

2m23

; Eð23Þ
3 ½α�¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3þðqð23Þ½α�Þ2
q

;

ð37Þ

where, for channel 1 the masses entering the amplitudes
MS½1� and MD½1� as well as the kinematical variables in
Eqs. (36)–(37) are m2 ¼ mD̄s

and m3 ¼ mD�0 while for
channel 2—m2 ¼ mD̄s

� and m3 ¼ mD0 , and for the masses
we use the values given by the PDG review [58].
The function minimized in the fit (L is the likelihood) is

defined in a standard way [58],

−2 logL ¼ 2
X
i

�
μi − ni þ ni log

ni
μi

�
; ð38Þ

where the sum runs over all data points in the analyzed
invariant mass distribution for all values of

ffiffiffi
s

p
used in the

BES III measurements; ni is the number of events and μi is
the value of the theoretical signal function from Eq. (35) at
the ith data point in m23, corrected for the detector
efficiency (ϵ̄), integrated luminosity (Lint), and correction
factor (fcorr) taken directly from Ref. [2],

dN
dm23

¼ dσ
dm23

ϵ̄Lintfcorr: ð39Þ

The combinatorial background from Ref. [2] is also added
incoherently.

The coupling constant gDs2
is set to unity since it can be

absorbed by N . Therefore, we have 5 parameters to be
fitted to the invariant mass distributions provided by BES
III, namely, two parameters in the elastic D-meson poten-
tials, Cd and Cf, two ratios of the coupling constants for the
production through the Yð4660Þ, g=gDs2

and gDs1
=gDs2

, and
the overall normalization factor N .

III. RESULTS AND DISCUSSIONS

There are two classes of solutions which provide the best
overall fits to the BES III data, which are shown in Fig. 4.
The parameters of the fits are listed in Table II. In what
follows, we refer to them as fit 1 and fit 2, respectively.
Although they yield almost equally good description of the
data, the corresponding physical pictures and the predic-
tions from HQSS are very different, as discussed below.
The poles of the amplitude for all the fits are given in
Tables III and IV.
We start from the common features of the both types

of fits:
(i) In both cases, there are poles near the D̄sD�=D̄�

sD
threshold which reveal themselves in the enhanced
production rate right above this threshold.

(ii) The rate near the D̄sD�=D̄�
sD threshold is further

enhanced by the triangle singularity from the
Ds2D�−

s D0 loop.
(iii) All line shapes demonstrate a kind of plateau in the

middle of the energy interval followed by a signifi-
cant enhancement around 4.05–4.11 GeV, as re-
quired by the data at various production energies.
This enhancement is driven by the tree-level Ds1
mechanism (see the plot in the right panel of Fig. 2).

Now we come to the differences between fits 1 and 2. In
Fig. 4 we present the results for fit 1 (left column). This
solution demonstrates properties typical for a molecular
picture. Specifically, in this case, the contact interaction
potential in Eq. (12) is dominated by the elastic potential Cd
(see Table II for the values of the parameters) which equally
contributes to all the diagonal transitions including the
D̄�

sD�0 → D̄�
sD�0 one. Therefore, for this type of solution,

if there is a molecular state near the D̄sD�=D̄�
sD threshold

associated with the Zcsð3982Þ, there should also be a spin-
partner state near the D̄�

sD�0 threshold. The possibility to
observe a structure corresponding to such a state in the
D̄sD�=D̄�

sD line shape and its actual position depends on
the strength of the coupled-channel transition potential Cf.
If it is consistent with zero, no signature of the upper-
threshold state will be seen in the lower channels. An
example of such a scenario is the Zbð10650Þ as a B�B̄�
molecule which does not show any clear peaking structures
in the BB̄� spectrum [43,61] measured by Belle. For fit 1,
the coupled-channel effects do generate a visible structure
in the line shapes near the D̄�

sD�0 threshold. Meanwhile,
although some data points may indeed be enhanced in the
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relevant energy range, it is not possible to make a robust
conclusion on the existence of such a structure in the BES
III data at least for the experimental accuracy available now.
The results of fit 1 for the poles of the Zcsð3982Þ and its
spin partners in the D̄�

sD�0 and D̄ð�ÞD�0 channels are given
in Table III. Due to the coupled-channel effects, there are

two relevant poles4 near theD−
s D�0 threshold in this fit: (i) a

bound state at 31 MeV below the threshold, and (ii) a

FIG. 4. The line shapes corresponding to the best fits for the reaction eþe− → KþðD−
s D�0 þD�−

s D0Þ by BES III [2] as functions of
RMðKþÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpeþ þ pe− − pKþÞ2

p
. The results of fits 1 and 10 are shown as the red bands in the left and middle panels, respectively; the

result of fit 2 is shown by the blue band in the right panel. The black dotted line stands for the combinatorial background from Ref. [2],
while the thin gray vertical lines indicate the D−

s D�0, D�−
s D0, and D�−

s D�0 thresholds, in the order of the increasing energy. The green
dot-dashed line shows the result of Ref. [10].

4The poles on more remote Riemann sheets, which do not have
an impact on the line shapes, are not shown.
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virtual state at 4 MeV below the threshold. The amplitude
in the spin-partner channel with JPC ¼ 1þ−, where the
Zcð3900Þ resides, possesses a similar bound state with a
comparable binding energy. Furthermore, in this fit, the
Z0
cs and Zcð4020Þ are shallow quasibound states in the

D̄�
sD� and D̄�D� channels, respectively, with the imaginary

parts of the pole locations dominated by their coupling to
the low-lying elastic (open-charm) channels. Meanwhile,
the JPC ¼ 1þþ and 2þþ spin-partner states, named here as
Wc1 and Wc2, appear to be virtual states.
Note thatwhile fit 1 corresponds to theglobalminimumof

the function −2 logL defined in Eq. (38), there exist also
multiple local minima which yield a similar description of
the data and which cannot be disentangled unambiguously
based on the current data only. As an example, we present fit
10 in Table II (middle column in Fig. 4). In this alternative fit
of type 1, the coupled-channel transition potential Cf almost
vanishes, so that the entire family of the fits of the first type
can be characterized by the strong inequality

jCfj ≪ jCdj: ð40Þ

The situation with the poles in fit 10 is in general similar to
that in fit 1, apart from the fact that now all the poles appear
to be virtual states with respect to the corresponding nearby
thresholds (see Table III). Therefore, while from the current
data alone it appears impossible to conclude whether the
Zcsð3982Þ is a bound or virtual state, if the scenario as
outlined above for fits of type 1 is realized, theZcsð3982Þ is a
spin partner of the Zcð3900Þ and Zcð4020Þ states.
The results for the global-minimum fit 1 and especially

fit 10 are consistent with those reported in Ref. [10]—the
corresponding line shapes are shown in Fig. 4 with the
green dashed line which terminates at approximately
4.06 GeV (see the results for the cutoff 1 GeV in
Figs. 3 and 4 of this Ref.). The lack of the Ds1 mechanism
and coupled-channel effects does not allow one to employ
the approach of Ref. [10] beyond this range. Since these
effects are included in the current study, here the BES III

TABLE III. Pole positions extracted from fits 1 and 10. The table shows the names of the states, their dominant decay channels and the
corresponding thresholds, the Riemann sheet (RS) where they lie and the pole positions for the fits 1 and 10 (in MeV), in order. For each
Riemann sheet, the signs of the imaginary parts of momenta in all coupled channels are quoted in parentheses. For further details on the
nomenclature of poles and the procedure of their extraction in a coupled-channel problem we refer to Ref. [42].

JPðCÞ State Threshold (MeV) RS Poles fit 1 RS Poles fit 10

1þ Zcsð3982Þ D̄sD�=D̄�
sD 3975.2=3977.0 ðþ þ þÞ 3942� 11 ð− −þÞ 3937þ5

−29
1þ Zcsð3982Þ D̄sD�=D̄�

sD 3975.2=3977.0 ð− −þÞ 3971� 2 ð− −þÞ 3972� 2

1þ Z0
cs D̄�

sD� 4119.1 ð− −þÞ 4115� 2 − ð10� 2Þi ðþ þ −Þ 4087þ10
−10 þ 0þ45

−0 i
1þ− Zcð3900Þ ðDD̄�;−Þ 3871.7 (þþ) 3841� 11 (−þ) 3832þ25

−36
1þ− Zcð4020Þ D̄�D� 4013.7 (−þ) 4009� 18 − ð9� 2Þi (þ−) 3975þ15

−10 þ 0þ43
−0 i

1þþ Wc1 ðDD̄�;þÞ 3871.7 (−) 3864� 2 (−) 3866� 2

2þþ Wc2 D̄�D� 4013.7 (−) 4009� 2 (−) 4011� 2

TABLE IV. Same as Table III but for fit 2. The dots mean that such а spin-partner state does not exist.

JPðCÞ State Threshold (MeV) RS Poles fit 2

1þ Zcsð3982Þ D̄sD�=D̄�
sD 3975.2=3977.0 ðþ þ þÞ 3954� 2

1þ Zcsð3982Þ D̄sD�=D̄�
sD 3975.2=3977.0 ð− −þÞ 3959� 7 − ð47� 16Þi

1þ Z0
cs D̄�

sD� 4119.1 � � �
1þ− Zcð3900Þ ðDD̄�;−Þ 3871.7 (−þ) 3864� 7 − ð58� 13Þi
1þ− Zcð4020Þ D̄�D� 4013.7 � � �
1þþ Wc1 ðDD̄�;þÞ 3871.7 (þ) 3852� 2

2þþ Wc2 D̄�D� 4013.7 (þ) 3990� 2

TABLE II. The parameters of the best fits. The quality of each fit can be assessed through the value quoted in the last column. Fit 1
corresponds the global minimum while fits 10 and 2 are selected local minima.

Fit Cd (fm2) Cf (fm2) gDs1
=gDs2

g=gDs2 N (10−2 pb
GeV) −2 logL

Fit 1 −0.51� 0.02 0.18� 0.02 0.26� 0.02 −2.5� 0.3 0.46� 0.05 138
Fit 10 −0.24� 0.05 −0.1� 0.05 0.37� 0.03 −2.8� 0.6 0.35� 0.04 144
Fit 2 0.50 −1.04� 0.01 −0.44� 0.03 −6.5� 2.5 0.28� 0.03 146
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data are consistently described in the whole available
energy interval, including the D̄�

sD� threshold—see the
text below for a discussion of the line shapes predicted for
the D̄�

sD� channel and the information which can be
extracted from them.
However, a quite different scenario allows one to

describe the data almost equally well, although the corre-
sponding fit (fit 2 in Table II) has a slightly larger value of
−2 logL than fits 1 and 10. The line shapes for fit 2 are
shown in Fig. 4 (right column) and the poles of the
amplitude are given in Table IV. Typical features of fit 2
include

(i) strong coupled-channel effects with the potentials in
Eq. (12) satisfying the condition

ΔC ¼ Cd þ Cf < 0 with jΔCj ≃ jCdj ≪ jCfj
or jΔCj ≪ jCdj ≃ jCfj; ð41Þ

(ii) a strongly fine-tuned D̄sD�=D̄�
sD bound state.

Like for the fits of type 1, we find a class of solutions of
similar quality to that of fit 2 which correspond to very
different individual values of Cd and Cf however with
almost the same ΔC defined in (41).
To better understand the two classes of solutions pro-

vided by the fits of types 1 and 2, consider, for simplicity,
coinciding thresholds of the channels D̄sD� and D̄�

sD.
Then, the poles of the multichannel amplitude—solution of
the coupled-channel system (16)—are defined by the
equation

det jI þ G · Vj ¼ ½ðCd þ CfÞJ0 þ 1�
× ½ðCdJ0 þ 1ÞðCdJ00 þ 1Þ − C2fJ0J

0
0� ¼ 0;

ð42Þ

where I is the unit matrix, the matrix of the potentials V is
given by Eq. (12), and G ¼ diagðJ0; J0; J00Þ with J0 ¼
J0ðDs;D�Þ ¼ J0ðD�

s ; DÞ and J00 ¼ J0ðD�
s ; D�Þ.

For the solutions of the first type we set Cf ¼ 0 [see
Eq. (40)], so that all coupled-channel effects vanish, and
Eq. (42) reduces to

ðCdJ0 þ 1Þ2ðCdJ00 þ 1Þ ¼ 0: ð43Þ

The poles of the amplitude are generated by the zeros of the
expressions in the first and second parentheses in the
expression above. Clearly, the existence of a pole as
solution of the equation CdJ0 þ 1 ¼ 0 entails the existence
of a similar partner pole near the D̄�

sD� threshold from the
equation CdJ00 þ 1 ¼ 0.
For the solutions of the second type we express Eq. (42)

in terms of ΔC introduced in Eq. (41) to arrive at

ðΔCJ0þ1ÞðCdðJ0þJ00þ2ΔCJ0J00Þ−ΔC2J0J00þ1Þ¼0:

ð44Þ

Suppose the expression in the first parentheses vanishes,
namely,

ΔCJ0 þ 1 ¼ 0; J0 ≈
μ

π2

�
Λþ iπ

2

ffiffiffiffiffiffiffiffiffi
2μE

p �
þO

�
E
Λ

�
;

ð45Þ

where μ is the reduced mass of the Ds and D�. The
amplitude then provides a bound state solution in the
physically relevant region near the D̄sD� threshold, with
E ¼ −EB ¼ −γ2=ð2μÞ and the binding momentum

γ ≈
2π

μ

�
1

ΔC
þ μ

π2
Λ
�
: ð46Þ

In other words, this scenario corresponds to a bound state
controlled by the small parameter ΔC which appears as a
result of severe cancellations between strongly correlated
contact potentials Cd and Cf. For ΔC ≈ −0.55 fm2 from fit
2 (see Table II) one finds a bound state about 18 MeV
below the D̄sD�=D̄�

sD threshold. This rough estimate
agrees well with the exact result for the poles for fit 2
given in Table IV.5 When the two thresholds are separated
by the physical mass difference and the function J0 from
Eq. (31) is utilized, this bound state is just somewhat shifted
away from the threshold. In addition, there is a resonance
pole in this fit, as shown in Table IV, emerging as a result of
strong coupled-channel effects.6

If this second scenario is realized, it entails very different
consequences for the spin partner states compared to the fits
of type 1 discussed above. In particular, since the inter-
action in the D̄�

sD� channel is controlled by the contact term
Cd (see the expression for the potential in Eq. (12), which is
positive in fit 2 (see Table II), no spin-partner states exist in
this channel. To see this directly from Eq. (44), we notice
that in the regime of the bound state given by Eq. (45), the
expression in the second parenthesis in Eq. (44) reduces, up
to a nonvanishing prefactor, to CdJ0 þ 1, which cannot
vanish as long as Cd is positive. The absence of the D̄�

sD�
spin partners can be clearly seen from the line shape
depicted in Fig. 4 which does not show any signal of a state
near the D̄�

sD� threshold in spite of strong coupled-channel
effects (jCfj > jCdj). Note that this case is completely

5Since the results of fit 2 are almost insensitive to the other
linear combination, Cd − Cf, when estimating the uncertainties in
Table IV and in Fig. 4 the magnitude of this difference is fixed to
the value which corresponds to the parameters for fit 2 quoted in
Table II.

6Because of the Schwarz reflection principle this pole always
has a mirror counterpart with an opposite sign of the Im part,
which is not shown in Table IV.
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different to the one shown in Fig. 4 for fit 10 in which
jCfj ≪ jCdj and, even though the D̄�

sD� spin partner exists,
it is not seen in the D̄sD� line shape because of almost
vanishing coupled-channel-driven transitions. On the other
hand, the enhancement near the D̄sD�=D̄�

sD threshold in fit
2 is still reproduced quite well.
If Zcs is governed by a bound state pole, the spin partners

in the 1þþ and 2þþ channels driven by the same linear
combination of the contact terms ΔC [see Eq. (15)] should
exist and have roughly the same binding energy as that for
the Zcsð3982Þ. However, similarly to the D̄�

sD� case, no
fine-tuned states in the coupled channel with JPC ¼ 1þ−

exist near the D�D̄� threshold. Nevertheless, a resonance
state above the DD̄� threshold may be generated by the
strong coupled-channel dynamics in full analogy with
the resonance poles near the D̄sD�=D̄�

sD threshold.
This picture, therefore, does not preclude the Zcð3900Þ
from being a spin partner of the Zcsð3982Þ, if both are
treated as resonances. However, in this case, the state
Zcð4020Þ is not their spin partner and should be of a
different nature.
We note that for fits 1 and 10 both the pointlike and

resonance (through DsJ) production mechanisms provide
equally important contributions to the line shapes, with
their relative importance depending on the energy. In
particular, for the smallest

ffiffiffi
s

p
the pointlike production

mechanism dominates at least at low invariant masses while
for the largest two energies provided by BES III, the
resonance mechanism is much more important. This pattern
is generally consistent with the results shown in Fig. 5 of
Ref. [10]. Contrary to fit 1, the results of fit 2 for all
energies are almost completely dominated by resonance
production through the DsJ. However, these results are in
conflict with the findings of Ref. [57], where S-wave kaon
production was found to be more important at the single
energy

ffiffiffi
s

p ¼ 4.68 GeV.

In Fig. 5 we plot the total cross of the reaction eþe− →
KþðD−

s D�0 þD�−
s D0Þ evaluated as given in Eq. (35) for

the mechanisms shown in Fig. 1. This cross section exhibits
two clear peaks near 4.64 and 4.69 GeV governed by the
resonance mechanisms via the Ds1 and Ds2, that clearly
illustrates their importance. In Ref. [2], the BES III
Collaboration listed the values of the product σBðeþe− →
KþZcsð3982ÞÞ × BFðZcsð3982Þ → ðD−

s D�0 þD�−
s D0ÞÞ of

the Born cross section of the Zcsð3982Þ− production and
the sum of BFs of its decays into D−

s D�0 þD�−
s D0

measured at several selected points in
ffiffiffi
s

p
. These values

appear to be significantly smaller than those we plot in
Fig. 5, although a peak near 4.69 GeV is also seen by BES
III. A direct comparison of these two results is, however,
not possible since in Ref. [2] all contributions to the cross
section from theDs1 andDs2, treated as a background, were
subtracted. Meanwhile, it follows from the current analysis
as well as from the analysis of Ref. [10] that especially the
Ds2 not only provides a background but also strongly
enhances the production of the Zcsð3982Þ.
Additional information that could be very useful to

discriminate between different scenarios supported by
the present BES III data and impose additional constraints
on the parameters of the contact interactions can be gained
from the reaction eþe− → KþD�−

s D�0. To illustrate this
point, in Fig. 6, we give the D̄�

sD� invariant mass
distributions in the JP ¼ 1þ channel predicted for the
parameters from Table II. It is remarkable that the shape
and the strength of this spectrum changes significantly from
fit to fit. Indeed, although all three line shapes possess a
structure near 4.133 GeV which comes from the tree-level
diagram viaDs1, the curve for fit 2 (blue dotted line), which
has no poles near the D̄�

sD� threshold, grows smoothly
from the threshold while those for fits 1 and 10 demonstrate

FIG. 5. Total cross section of the reaction eþe− →
KþðD−

s D�0 þD�−
s D0Þ predicted for the reaction mechanisms

shown in Fig. 1. The red solid, red dashed, and blue dashed lines
correspond to the global fit 1, fit 10, and fit 2, respectively.

FIG. 6. Invariant mass distributions of theD�-meson pair in the
reaction eþe− → KþD�−

s D�0 for
ffiffiffi
s

p ¼ 4.681 GeV predicted
based on the best fits to the BES III data in the DsD�=D�

sD
channel. See the caption of Fig. 5 for the color scheme for the
lines. The thin gray vertical line indicates the position of the
D�−

s D�0 threshold.
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a significant enhancement in the near-threshold region that
is a clear manifestation of an interplay of the near-threshold
poles in the D̄�

sD� channel and the nearby triangle
singularity.

IV. SUMMARY

A coupled-channel analysis of the reaction eþe− →
KþðD−

s D�0 þD�−
s D0Þ is presented for the whole energy

range measured by BES III. Two reaction mechanisms are

involved: (a) production of the D̄ð�Þ
s Dð�Þ-meson pairs from a

pointlike source and (b) excitation of theDsJD̄
ð�Þ
s (J ¼ 1, 2)

with the subsequent decay DsJ → KDð�Þ. The final-state

interaction within the D̄ð�Þ
s Dð�Þ-meson pairs is included in

the contact effective field theory involving leading momen-
tum-independent potentials between coupled channels
D�−

s D0, D−
s D�0, and D�−

s D�0 while the influence of the
SUð3Þ meson exchanges on the results is to be clarified in
future studies.
The production process via the excitedDsJ states is found

to play an important role for the invariant mass spectra: The
tree-level amplitudes via Ds2 and Ds1 provide visible
enhancements in the spectra at low and relatively large
invariant masses, respectively, which are consistent with
the data. The triangle loop with the Ds2D�

sD intermediate
state amplifies the pole contribution in the D̄�

sD scattering
amplitude which reveals itself in a pronounced enhancement
of the production rate right above the D̄�

sD threshold. This
conclusion is consistent with the findings of Ref. [10].
Therefore, the peak seen in the data just above the D̄�

sD
threshold and associated inRef. [2] with theZcsð3982Þ, using
a simple Breit-Wigner parametrization, within our scheme
has highly nontrivial dynamical origins. The nearby singu-
larities from the Ds2D�

sD� and Ds1D�
sD� triangle loops are

found to be less important although they still support a spin
partner state near the D̄�

sD� threshold, when it exists. This
suppression can be explained by the fact that the momentum
of the kaon produced in a D-wave decay DsJ → Dð�ÞK
provides a relative suppression of the triangle diagrams at
larger invariant masses of the twoDmesons, where the peaks
from the Ds2D�

sD� and Ds1D�
sD� triangles are located.

We find two classes of solutions which describe the data
almost equally well, but strongly differ in the underlying
dynamics and, therefore, also in the predictions for the spin

partner states. One class is characterized by a clear
dominance of the diagonal transitions in the effective
potential (fits 1 and 10). The Zcsð3982Þ in this case is
identified as a molecular bound or virtual state below the
D�−

s D0 threshold which (i) appears naturally as a SUð3Þ
partner of the Zcð3900Þ and Zcð4020Þ states and (ii) has a
spin partner near the D�−

s D�0 threshold. The other class of
solutions, which is only slightly less preferred by the
maximum-likelihood fits, corresponds to a very strong
coupled-channel dynamics with the off-diagonal transitions
being larger or comparable with the diagonal ones. In this
case, the Zcsð3982Þ can still be a spin partner of the
Zcð3900Þ but only if both show up as resonance states with
sizeable imaginary parts of the poles generated by the
significant coupled-channel effects. While this is still
consistent with the BES III data on the eþe− annihilation
into the final state KþðD−

s D�0 þD�−
s D0Þ it remains to be

seen if such a pole is consistent with the line shapes
measured for the Zcð3900Þ. If this scenario is realized, the
Zcð4020Þ cannot be a spin partner of the Zcð3900Þ and
Zcsð3982Þ and should have a different nature. Also, no spin
partner of the Zcsð3982Þ near the D�−

s D�0 threshold exists
in this case. In order to distinguish between the two
solutions, we predict the form of the JP ¼ 1þ D̄�

sD�
invariant mass distribution to be measured in the reaction
eþe− → KþD�−

s D�0 and argue that the corresponding data
should shed light on the nature of the Zcsð3982Þ and its spin
partners.
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