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We study the chiral interactions of the hidden charm DD̄� system within chiral effective field theory.
Chiral Lagrangians are constructed by incorporating the chiral symmetry, heavy quark symmetry, as well as
proper charge conjugation properties of the heavy mesons. The interacting potentials of the S-wave DD̄�

system are calculated up to the second chiral order at a one-loop level, where complete two-pion exchange
interactions are included. We further investigate the behaviors of the potentials in coordinate space, and
their bound state properties. Our studies indicate that there exists an interacting strength ordering among
considered four channels: str:½0þð1þþÞ� > str:½0−ð1þ−Þ� > str:½1þð1þ−Þ� > str:½1−ð1þþÞ�, where str.
stands for the strength of the DD̄� interaction. Moreover, we find that Xð3872Þ can be treated as a
good candidate of the 0þð1þþÞ molecular state. DD̄� also tends to form 0−ð1þ−Þ and 1þð1þ−Þ molecular
states, and we expect future experiments to search for the predicted multiple structures around the DD̄�

mass region.

DOI: 10.1103/PhysRevD.105.034013

I. INTRODUCTION

In past two decades, abundant exotic hadrons have been
discovered by upgraded τ-charm and b factories, such as
BESIII, LHCb, Belle, BABAR, etc. Till now, various forms
of exotic quark matters arise in hadron spectroscopy:
pentaquarks (Pc and Pcs states), fully charmed tetraquark
candidates [recently discovered Xð6900Þ], hidden charm
tetraquark candidates (some XYZ states), etc. For example,
Xð6900Þ was discovered by LHCb recently [1], which
appears to be a nontrivial structure in the di-J=ψ invariant
mass spectrum. Subsequently, the LHCb Collaboration also
reported two structures X0ð2900Þ and X1ð2900Þ in the
Bþ → DþD−Kþ decay [2], which are supposed to have
four different flavors: c̄s̄ud. Until very recently, LHCb
observed a doubly charmed structure Tcc [3] that is
extremely close to the D0D�þ threshold (the mass differ-
ence is −273� 61� 5þ11

−14 keV). Tcc has a minimal ccūd̄
content. Therefore, it may still be an ongoing progress that
other forms of multiquark structures are prepared to be
uncovered. The rapidly growing numbers of exotic hadrons
urgently demand us to extend our knowledge about non-
perturbative QCD.

Although the studies of the exotic hadrons on exper-
imental side are in advance, their natures and inner
structures are still unclear. Theorists try to understand
them with all kinds of methods and models (see
Refs. [4–9] for reviews of theoretical as well as exper-
imental status).
For example, people still cannot truly understand the

nature of the first observed XYZ state, Xð3872Þ [also
known as χc1ð3872Þ]. Xð3872Þwas discovered by the Belle
collaboration in Bþ− → Kþ−πþπ−J=ψ [10]. It may be
regarded as a charmonium χ0c1ð2PÞ, but its mass would
be much lower than a quark model estimate (e.g., the
Godfrey-Isgur (GI) model calculation in Ref. [11]).
Furthermore, it also has a large decay ratio in the isospin
violation process Xð3872Þ → J=ψρ. It is noteworthy that
Xð3872Þ is almost located at the D0D̄�0 threshold, so it is
believed that the interaction between DD̄� is responsible
for the formation of Xð3872Þ.
Besides Xð3872Þ, there are many other XYZ states that

may be strongly related to open-charm thresholds. The
charged charmoniumlike state Zcð3900Þ was observed in
the process eþe− → J=ψπþπ− [12,13]. With the mass
slightly above the DD̄� threshold, it may originate from
the DD̄� interaction. Other states such as Zcð4020Þ [14],
Yð3940Þ [15], and Yð4140Þ [16] are close to respective
D�D̄� and D�

sD̄�
s thresholds too. There also exist some

higher XYZ states that are close to excited open-charm

thresholds: Zþ
c ð4430Þ [17] withD�D̄ð0Þ

1 , recently discovered
Yð4626Þ [18] [and Yð4620Þ [19] ] with D�

sD̄s1, and etc.
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Taking into account the interactions of these open-charm
meson pairs, people have tried to explain these XYZ states
with various phenomenological models, such as the one-
boson-exchange model [4,20].
Therefore, for understanding the XYZ states mentioned

above, it is crucial to elaborately investigate corresponding
charmed- anticharmed meson interactions within a proper
theoretical framework. Chiral effective field theory
(ChEFT) is the powerful formalism that just satisfies the
need. Other than phenomenological models, in ChEFT, the
interactions between hadrons are strictly and systematically
calculated up to a given order, while all contributions
such as the multipion exchange are contained completely.
Especially, in our case (i.e., heavy-heavy system),
Weinberg’s scheme is adopted [21,22], which has been
widely used to investigate the nucleon-nucleon interaction
[23–44] (see Refs. [45–49] for reviews). So it is natural to
extend the framework to the sector of the heavy hadron
interactions.
The authors in Refs. [50,51] have already made attempts

to study heavy meson systems with heavy meson chiral
effective field theory (HMChEFT). The authors in Ref. [50]
calculated the potentials of the doubly bottomed system
B̄B̄ with contact and two pion exchange mechanisms under
HMChEFT. Later, the authors in Ref. [51] developed
corresponding techniques and investigated the doubly
charmed system DD�, then further utilized the
Schrödinger equation to search for bound state solutions.
Following the same procedures, the authors in Refs. [52–58]
studied the interactions of other heavy hadron systems.
With the experience in the studies of the doubly heavy-

flavored systems mentioned above, it is natural to extend
them to the heavy-antiheavy flavored systems, which will be
directly linked to the charmoniumlike states talked before.
Note that this extension is not straightforward; for example,
the interactions of the heavy-antiheavy flavored systems
should be constructed by properly considering the charge
conjugation properties of the fields in the heavy quark limit.
In this work, choosing the charmed-anticharmed

system DD̄� as an example, we will try to study the
DD̄� interactions up to the second chiral order Oðϵ2Þ at
then one-loop level using Weinberg’s scheme. The con-
tribution carrying contact interactions, the contributions of
one-pion exchange (OPE) and two-pion exchange (TPE)
will be included completely. As mentioned above, different
from calculated doubly heavy-flavored systems before
[50,51], additional symmetries (the charge conjugation
symmetry) as well as proper charge conjugation states
should be concerned when constructing the DD̄� inter-
actions and DD̄� scattering amplitudes.
Following the strategy in Ref. [51], we will iterate the

obtained DD̄� potentials into the Schrödinger equation, to
see whether theDD̄� interactions are strong enough to form
bound states. It is noteworthy that under the one-boson-
exchange model, the authors in Refs. [20,59–62] also

studied the DD̄� system, they considered one boson
(π, σ, ρ, ω, etc.) exchange mechanism. They found that
DD̄� in the JPC ¼ 1þþ, I ¼ 0 channel [JPC of Xð3872Þ], as
well as some other channels, are strong enough to form
bound states. Therefore, results and conclusions presented
in this work may be a comparison to theirs. In addition, the
authors in Ref. [63] also studied the DD̄� system and
Xð3872Þ in the one-boson-exchange model. Also, the
authors in Ref. [64] studied the DD̄� hadronic molecules
in effective field theory early in 2006. Possible DD̄�
molecular states also have been studied extensively in
various methods [65–84].
This paper is organized as follows. In Sec. II we describe

the concerned DD̄� Lagrangians by considering the chiral
symmetry and heavy quark symmetry, as well as by
properly taking into account the charge conjugation proper-
ties of the heavy mesons. In Sec. III we calculate the
potentials of the DD̄� system up to the second chiral order
Oðϵ2Þ at one-loop level using Weinberg’s scheme. In
Sec. IV, after solving the Schrödinger equation with
calculated DD̄� potentials, we investigate the bound state
properties in the considered four channels. Then we discuss
the behaviors of the potentials in coordinate space to further
understand theDD̄� interactions and the mechanisms of the
bound state formations. Later we discuss the obtained
molecular states and their discovery potentials in detail.
The last section is the summary.

II. CHIRAL LAGRANGIANS OF THE
DD̄� SYSTEM IN HMChEFT

Like Refs. [50,51], we adopt HMChEFT, and derive the
Lagrangians and effective potentials in a strict power-
counting scheme. In this framework, the amplitudes or
potentials are arranged according to the chiral order ϵ ¼
p=Λχ (p stands for the momentum of a pion, or a residual
momentum of a heavy meson, or the D −D� mass
splitting). In this work the flavor SUð2Þ symmetry is
considered.
We first show the Lagrangians of the concerned DD̄�

system at leading order. First, the DD�π Lagrangian at
Oðϵ1Þ is needed [85–87]:

Lð1Þ
Hϕ ¼ −hðiv · ∂HÞH̄i þ hHv · ΓH̄i þ ghH=uγ5H̄i

−
1

8
δhHσμνH̄σμνi; ð1Þ

where the H field describing the ðD;D�Þ doublet is

H ¼ 1þ =v
2

ðP�
μγ

μ þ iPγ5Þ;

H̄ ¼ γ0H†γ0 ¼ ðP�†
μ γμ þ iP†γ5Þ

1þ =v
2

;

P ¼ ðD0; DþÞ; P�
μ ¼ ðD�0; D�þÞμ: ð2Þ
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v ¼ ð1; 0; 0; 0Þ stands for the four velocity of the H field.
The axial vector field u and chiral connection Γ are
expressed as

Γμ ¼
i
2
½ξ†; ∂μξ�; uμ ¼

i
2
fξ†; ∂μξg; ð3Þ

where ξ ¼ expðiϕ=2fÞ, f is the bare pion decay constant,
and

ϕ ¼
ffiffiffi
2

p  π0ffiffi
2

p πþ

π− − π0ffiffi
2

p

!
: ð4Þ

For studying the DD̄� system under HMChEFT, we also
need to describe the interaction between an anticharmed
meson and a pion. Applying charge conjugation trans-
formation to Eq. (1), the Lagrangian of the interacting part
is given by

Lð1Þ
Hcϕ

¼ −hH̄cv · ΓHci þ ghH̄c=uγ5Hci; ð5Þ

where g ¼ 0.59. In the above, Hc field represents the
anticharmed meson doublet ðD̄; D̄�Þ in the heavy quark
limit, and the subscript c stands for charge conjugation.

Note that Hc is defined as charge conjugation of H in
Eq. (1):

Hc ¼ ðP�
cμγ

μ þ iPcγ5Þ
1 − =v
2

;

H̄c ¼ γ0H†
cγ0 ¼ 1 − =v

2
ðP�†

cμγμ þ iP†
cγ5Þ;

Pc ¼ ðD̄0; D−Þ; P�
cμ ¼ ðD̄�0; D�−Þμ: ð6Þ

Then, the contact Lagrangian at Oðϵ0Þ is needed for
Oðϵ0Þ and Oðϵ2Þ amplitudes, which can be constructed as

Lð0Þ
2H2Hc

¼ DaTr½HγμH̄�Tr½H̄cγ
μHc�

þDbTr½Hγμγ5H̄�Tr½H̄cγ
μγ5Hc�

þ EaTr½Hγμτ
aH̄�Tr½H̄cγ

μτaHc�
þ EbTr½Hγμγ5τ

aH̄�Tr½H̄cγ
μγ5τaHc�; ð7Þ

where Da, Db, Ea, Eb are four independent low energy
constants (LECs).
For the loop diagrams in the potentials (or the ampli-

tudes) at order Oðϵ2Þ, we also need Oðϵ2Þ contact
Lagrangians to cancel their divergences:

Lð2;hÞ
2H2Hc

¼ Dh
aTr½HγμH̄�Tr½H̄cγ

μHc�TrðχþÞ þDh
bTr½Hγμγ5H̄�Tr½H̄cγ

μγ5Hc�TrðχþÞ
þ Eh

aTr½Hγμτ
aH̄�Tr½H̄cγ

μτaHc�TrðχþÞ þ Eh
bTr½Hγμγ5τ

aH̄�Tr½H̄cγ
μγ5τaHc�TrðχþÞ; ð8Þ

Lð2;vÞ
2H2Hc

¼ Dv
a1ðTr½ðv ·DHÞγμðv ·DH̄Þ�Tr½H̄cγ

μHc� þ C:c:Þ þDv
a2ðTr½ðv ·DHÞγμH̄�Tr½ðv ·DH̄cÞγμHc� þ C:c:Þ

þDv
a3ðTr½ðv ·DHÞγμH̄�Tr½H̄cγ

μðv ·DHcÞ� þ H:c:Þ þDv
a4ð½Tr½ððv ·DÞ2HÞγμH̄�Tr½H̄cγ

μHc� þ H:c:� þ C:c:Þ
þDv

b1ðTr½ðv ·DHÞγμγ5ðv ·DH̄Þ�Tr½H̄cγ
μγ5Hc� þ C:c:Þ þ…

þ Ev
a1ðTr½ðv ·DHÞγμτaðv ·DH̄Þ�Tr½H̄cγ

μτaHc� þ C:c:Þ þ…

þ Ev
b1ðTr½ðv ·DHÞγμγ5τaðv ·DH̄Þ�Tr½H̄cγ

μγ5τaHc� þ C:c:Þ þ…; ð9Þ

Lð2;qÞ
2H2Hc

¼ Dq
1ð½Tr½ðDμHÞγμγ5ðDνH̄Þ�Tr½H̄cγνγ5Hc� þ H:c:� þ C:c:Þ þDq

2ðTr½ðDμHÞγμγ5H̄�Tr½ðDνH̄cÞγνγ5Hc� þ C:c:Þ
þDq

3ðTr½ðDμHÞγμγ5H̄�Tr½H̄cγνγ5ðDνHcÞ� þ H:c:Þ þDq
4ð½Tr½ðDμDνHÞγμγ5H̄�Tr½H̄cγνγ5Hc� þ H:c:� þ C:c:Þ

þ Eq
1ð½Tr½ðDμHÞγμγ5τaðDνH̄Þ�Tr½H̄cγνγ5τaHc� þ H:c:� þ C:c:Þ þ…; ð10Þ

where

χ� ¼ ξ†χξ† � ξχξ; χ ¼ m2
π: ð11Þ

In the above Lagrangians, H.c. and C.c. stand for Hermitian
conjugation and charge conjugation, respectively. Notice
that the finite parts of the above Lagrangians could also
contribute to the potentials, however they will bring a large
number of LECs.

In present work, we will adopt Weinberg’s scheme
[21,22]. Our previous works [50,51] have already applied
Weinberg’s power counting scheme to investigate the B̄B̄
and DD� systems. The scheme states that with the standard
power counting scheme, one first calculates effective
potentials [the sum of the two-particle irreducible (2PI)
diagrams], then uses them to solve the Lippmann-
Schwinger or Schrödinger equation, so complete contri-
butions containing the two-particle reducible (2PR)
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diagrams can be retrieved. Here we refer to Refs. [50,51]
for more details.

III. POTENTIALS OF THE DD̄� SYSTEM
IN HMChEFT

We will investigate four channels in the DD̄� system:
C parity C ¼ �1 and isospin I ¼ 0, 1. Therefore we
consider the following flavor wave functions [59–62]:

j0; 0i ¼ 1

2
½ðjD0D̄�0i þ jDþD�−iÞ

þ cðjD�0D̄0i þ jD�þD−iÞ�;

j1; 0i ¼ 1

2
½ðjD0D̄�0i − jDþD�−iÞ

þ cðjD�0D̄0i − jD�þD−iÞ�;

j1; 1i ¼ 1ffiffiffi
2

p ðjDþD̄�0i þ cjD�þD̄0iÞ;

j1;−1i ¼ 1ffiffiffi
2

p ðjD�0D−i þ cjD0D�−iÞ; ð12Þ

where the parameter c ¼ ∓ stands for C ¼ �1.
We first calculate the elastic scattering amplitudes in the

processes DD̄� → DD̄� with the defined DD̄� states (12).
Here the contributions up to Oðϵ2Þ are considered.
According to the chiral Lagrangians in the previous section,
there exist tree-level contact and OPE diagrams at the
lowest order Oðϵ0Þ. While at Oðϵ2Þ, there emerge one-loop
diagrams carrying contact interactions, one-loop OPE and
TPE diagrams.
Let us focus on the order Oðϵ0Þ first. At Oðϵ0Þ, there are

two tree-level diagrams which are depicted in Fig. 1.
Obviously, Fig. 1(a) stands for a contact contribution while
Fig. 1(b) stands for a OPE contribution.
Here we stress that in our depicted diagrams (such as in

Fig. 1), the (double-)solid line stands for DðD�) as well as
antiparticle D̄ðD̄�Þ, depending on the concrete term in the
expanded isospin amplitude hI; 0jTjI; 0i, where jI; 0i is
defined in Eq. (12). Notice that we label the momenta of the
external fields as p1 for initial D, p2 for initial D̄�, p3 for
final D and D̄, and p4 for final D� and D̄�.
At this order, we use the following Lagrangians: the

Oðϵ1Þ Lagrangian (1) that depicts the DD�π vertex, the

Oðϵ1Þ Lagrangian (5) describing the D̄D̄�π vertex, and the
Oðϵ0Þ contact DD�D̄D̄� Lagrangian (7). Consequently, the
contact amplitudes for the diagram of Fig. 1(a) are
calculated to be

Mð0Þ
ðaÞ ¼4ðDaþ3Ea−cDb−3cEbÞεðp2Þ ·ε�ðp4Þ for I¼0;

ð13Þ

Mð0Þ
ðaÞ ¼ 4ðDa −Ea − cDb þ cEbÞεðp2Þ · ε�ðp4Þ for I ¼ 1:

ð14Þ

The OPE contributions of Fig. 1(b) read

Mð0Þ
ðbÞ ¼ 3c

g2

f2
1

p2−m2
p · εðp2Þp · ε�ðp4Þ for I¼ 0; ð15Þ

Mð0Þ
ðbÞ ¼−c

g2

f2
1

p2−m2
p · εðp2Þp · ε�ðp4Þ for I¼ 1: ð16Þ

In the above expressions, p ¼ p1 − p4 denotes the momen-
tum transfer, the superscript (0) of M stands for the chiral
order Oðϵ0Þ. The parameter c appearing in M has been
defined in Eq. (12), which takes ∓ 1 for C ¼ �1.
Then, we consider the contributions at order Oðϵ2Þ,

which are illustrated in Figs. 2–4. We can see that there are
three types of the diagrams. The diagrams in Fig. 2 all carry
Oðϵ0Þ contact interactions, which can be treated as one-
loop corrections to Fig. 1(a). In Fig. 3, the diagrams all

(a) (b)

FIG. 1. Tree-level diagrams of the DD̄� system at Oðϵ0Þ.
The solid, double-solid, and dashed lines stand for D (or D̄),
D� (or D̄�), and π, respectively.

(a1) (a2) (a3) (a4)

(a5) (a6) (a7) (a8)

(a9) (a10) (a11) (a12)

(a13) (a14)

FIG. 2. Diagrams carrying contact interactions at Oðϵ2Þ.
The solid, double-solid, and dashed lines stand for D (or D̄),
D� (or D̄�), and π, respectively.
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contribute to OPE interactions, which are just one-loop
corrections to Fig. 1(b). Besides the above contributions,
there appears to be a new type of diagrams at this order:
TPE interactions. They are shown in Fig. 4.
Notice that Figs. 2–4 may only represent typical dia-

grams having different topologies. For example, each
diagram shown in Fig. 2 represents both direct channel
DD̄� → DD̄� and cross channel DD̄� → D̄D�. The combi-
nation of these two channels depends on the specific
isospin amplitude hI; 0jTjI; 0i, where the direct channel
and cross channel generally both appear. Formally, the
typical diagrams in Figs. 2–4 are the same as those in the
doubly charmed system DD� investigated in our previous
work [51], i.e., both the systems have the same topology in
Feynman diagrams. Although, there is no cross channel in
the DD� system.
We now focus on theOðϵ2Þ contribution carrying contact

interactions first (Fig. 2). Involved vertexes are the Oðϵ0Þ
contact interaction (7), Oðϵ1Þ DD�π interaction (1) and
Oðϵ1Þ D̄D̄�π interaction (5). Combined with the defined
flavor wave functions (12), their isospin amplitudes can be
written as

Mð2Þ
ða1Þ ¼ −4

g2

f2
gs1ðA0 − cA1ÞJg22ε · ε�; ð17Þ

Mð2Þ
ða2Þ ¼−4ð−3þdÞð−2þdÞ g

2

f2
ðA0gs1− cA1gs5ÞJg22ε · ε�;

ð18Þ

Mð2Þ
ða3Þ ¼ −4

g2

f2
ðA0 − cA1Þgs5Jg22ε · ε�; ð19Þ

Mð2Þ
ða4Þ ¼ −4

g2

f2
ð−A0gs1 þ dA0gs1 − cA1gs1 þ 2cA1gs5

− cdA1gs5ÞJg22ε · ε�; ð20Þ

Mð2Þ
ða5Þ ¼ −4

g2

f2
ðA0 − cA1Þgs5Jg22ε · ε�; ð21Þ

Mð2Þ
ða6Þ ¼ −4

g2

f2
ðA0gs5 − cA1gs1ÞJh22ε · ε�; ð22Þ

Mð2Þ
ða7Þ ¼ −4

g2

f2
ðA0gs5 − cA1gs1ÞJh22ε · ε�; ð23Þ

Mð2Þ
ða8Þ ¼−4ðd−3Þðd−2Þg

2

f2
ðA0þcA1Þgs5Jh22ε · ε�; ð24Þ

Mð2Þ
ða9Þ ¼−4ðd−3Þðd−2Þg

2

f2
ðA0þcA1Þgs5Jh22ε · ε�; ð25Þ

Mð2Þ
ða10Þ ¼−4ðd−3Þðd−2Þg

2

f2
ðA0þcA1Þgs5Jg22ε · ε�; ð26Þ

Mð2Þ
ða11Þ ¼−4ðd−3Þðd−2Þg

2

f2
ðA0þcA1Þgs5Jg22ε · ε�; ð27Þ

Mð2Þ
ða12þ13Þ ¼ −

3

2

g2

f2
ðA0gs1 − cA1gs5Þ½ðd − 2Þ∂ωJb22ðω1Þ

þ ∂ωJb22ðω2Þ�ε · ε�; ð28Þ

Mð2Þ
ða14Þ ¼−

3

2
ðd−1Þ g

2

f2
ðA0gs1−cA1gs5Þ∂ωJb22ε · ε

�: ð29Þ

In the above, c still takes ∓ for C ¼ �:d is the space-
time dimension coming from the dimensional regulariza-
tion. A0 and A1 are constants depending on different
diagrams and isospin I, which are collected in Table I.
Also, in these expressions ε and ε� are the abbreviations of
the polarization vectors εðp2Þ and ε�ðp4Þ, respectively.
Each J is a loop function defined in Refs. [50,51]. For the
following OPE and TPE amplitudes these notations apply.
Notice that, one should further expand these amplitudes

(17)–(29), later the variables gsi and gfi (embed in the
constants Ai) in them have to be replaced as the following:

(b1) (b2) (b3) (b4)

(b5) (b6) (b7) (b8)

(b9) (b10) (b11) (b12)

FIG. 3. OPE diagrams at Oðϵ2Þ. The solid, double-solid, and
dashed lines stand for D (or D̄), D� (or D̄�), and π, respectively.

(c1) (c2) (c3) (c4)

(c5) (c6) (c7) (c8)

(c9) (c10)

FIG. 4. TPE diagrams at Oðϵ2Þ. The solid, double-solid, and
dashed lines stand for D (or D̄), D� (or D̄�), and π, respectively.
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gs1gf1 → Da; gs5gf1 → Db;

gs1gfλ → Ea; gs5gfλ → Eb: ð30Þ

Then we consider the OPE contribution showing in
Fig. 3. To describe the Oðϵ1Þ DD�π, DD�3π, D̄D̄�π, and
D̄D̄�3π vertexes, we utilize the chiral Lagrangians (1) and
(5). According to the flavor wave functions (12) corre-
sponding isospin amplitudes are

Mð2Þ
ðb1Þ ¼ −4cA

g4

f4
Jg22

p · εp · ε�

p2 −m2
; ð31Þ

Mð2Þ
ðb2Þ ¼ 4cðd − 3Þðd − 2ÞA g4

f4
Jg22

p · εp · ε�

p2 −m2
; ð32Þ

Mð2Þ
ðb3Þ ¼ −4cA

g4

f4
Jg22

p · εp · ε�

p2 −m2
; ð33Þ

Mð2Þ
ðb4Þ ¼ 4cðd − 3Þðd − 2ÞA g4

f4
Jg22

p · εp · ε�

p2 −m2
; ð34Þ

Mð2Þ
ðb5Þ ¼ 4cA

g2

f4
Jc0

p · εp · ε�

p2 −m2
; ð35Þ

Mð2Þ
ðb6Þ ¼ 4cA

g2

f4
Jc0

p · εp · ε�

p2 −m2
; ð36Þ

Mð2Þ
ðb7Þ ¼ 4cA

g2

f2

�
2

3f2

�
2m2Lþ 2m2

16π2
log

�
m
μ

���
p · εp · ε�

p2−m2
;

ð37Þ

Mð2Þ
ðb8Þ ¼ 0; ð38Þ

Mð2Þ
ðb9Þ ¼ 0; ð39Þ

Mð2Þ
ðb10þ11Þ ¼ −

3

2
cA

g4

f4
½ðd − 2Þ∂ωJb22ðω1Þ þ ∂ωJb22ðω2Þ�

×
p · εp · ε�

p2 −m2
; ð40Þ

Mð2Þ
ðb12Þ ¼ −

3

2
cA

g4

f4
ðd − 1Þ∂ωJb22

p · εp · ε�

p2 −m2
; ð41Þ

Mð2Þ
fð2Þ ¼ 4cA

g2

f2

�
2

f2

�
2m2Lþ 2m2

16π2
log

�
m
μ

���
p · εp · ε�

p2 −m2
;

ð42Þ

where A is a constant depending on each diagram and
isospin I, and we collect them in Table II. Note that in
Eq. (42), Mfð2Þ stands for the tree-level OPE amplitude
[Eqs. (15) or (16)] where the pion decay constant f has to
be replaced by its Oðϵ2Þ correction fð2Þ.
Final piece is the TPE contribution depicted in Fig. 4.

Here we need Oðϵ1Þ DD�π, DD�2π, D̄D̄�π, and D̄D̄�2π
vertexes. Using the chiral Lagrangians (1) and (5), the
isospin amplitudes of the TPE are written by

Mð2Þ
ðc1Þ ¼ −4

1

f4
½q20A5JF0 − q20ðA15 þ A51 − 2A5ÞJF11

þ q20ðA1 − A15 − A51 þ A5ÞJF21
þ ðA1 − A15 − A51 þ A5ÞJF22�ε · ε�; ð43Þ

TABLE I. The constants appearing in the amplitudes (17)–(29).

I ¼ 0 I ¼ 1

A0 A1 A0 A1 ω1 ω2

Aa1
3
4
ðgf1 − gfλÞ 3

4
ðgf1 − gfλÞ 3

4
gf1 þ 1

4
gfλ − 1

4
gf1 þ 5

4
gfλ δ δ

Aa2
3
4
ðgf1 − gfλÞ 3

4
ðgf1 − gfλÞ 3

4
gf1 þ 1

4
gfλ − 1

4
gf1 þ 5

4
gfλ 0 0

Aa3
3
4
ðgf1 − gfλÞ 3

4
ðgf1 − gfλÞ − 1

4
gf1 þ 5

4
gfλ

3
4
gf1 þ 1

4
gfλ δ −δ

Aa4
3
4
ðgf1 − gfλÞ 3

4
ðgf1 − gfλÞ 3

4
gf1 þ 1

4
gfλ − 1

4
gf1 þ 5

4
gfλ −δ −δ

Aa5
3
4
ðgf1 − gfλÞ 3

4
ðgf1 − gfλÞ − 1

4
gf1 þ 5

4
gfλ

3
4
gf1 þ 1

4
gfλ −δ δ

Aa6
3
4
gf1 þ 9

4
gfλ 3

4
gf1 þ 9

4
gfλ 1

4
ð−gf1 þ gfλÞ 1

4
ð−gf1 þ gfλÞ δ −δ

Aa7
3
4
gf1 þ 9

4
gfλ

3
4
gf1 þ 9

4
gfλ

1
4
ð−gf1 þ gfλÞ 1

4
ð−gf1 þ gfλÞ −δ δ

Aa8
3
4
gf1 þ 9

4
gfλ

3
4
gf1 þ 9

4
gfλ

1
4
ð−gf1 þ gfλÞ 1

4
ð−gf1 þ gfλÞ 0 −δ

Aa9
3
4
gf1 þ 9

4
gfλ

3
4
gf1 þ 9

4
gfλ

1
4
ð−gf1 þ gfλÞ 1

4
ð−gf1 þ gfλÞ −δ 0

Aa10
3
4
ðgf1 − gfλÞ 3

4
ðgf1 − gfλÞ − 1

4
gf1 þ 5

4
gfλ

3
4
gf1 þ 1

4
gfλ 0 −δ

Aa11
3
4
ðgf1 − gfλÞ 3

4
ðgf1 − gfλÞ − 1

4
gf1 þ 5

4
gfλ

3
4
gf1 þ 1

4
gfλ −δ 0

Aa12þ13 gf1 þ 3gfλ gf1 þ 3gfλ gf1 − gfλ gf1 − gfλ 0 δ
Aa14 gf1 þ 3gfλ gf1 þ 3gfλ gf1 − gfλ gf1 − gfλ −δ −
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Mð2Þ
ðc2Þ ¼ 4i

g2

f4
½−q0A5JS21 þ q0ðA1 − A5ÞJS31 þ ðA1 − A5ÞJS34�ε · ε�

þ 4i
g2

f4
½−q0A5JS11 þ q0ðA1 − 2A5ÞJS22 þ ðA1 − A5ÞJS24 þ q0ðA1 − A5ÞJS32 þ ðA1 − A5ÞJS33�q · εq · ε�; ð44Þ

Mð2Þ
ðc3Þ ¼ −4iðd− 3Þ g

2

f4
½−q0q⃗2A5JS11 þ ðd− 2Þq0A5JS21 þ q0q⃗2ðA1 − 2A5ÞJS22 þ q⃗2ðA1 −A5ÞJS24 − ðd− 2Þq0ðA1 −A5ÞJS31

þ q0q⃗2ðA1 −A5ÞJS32 þ q⃗2ðA1 −A5ÞJS33 − ðd− 2ÞðA1 −A5ÞJS34�ε · ε�

− 4iðd− 3Þ g
2

f4
½−q0A5JS11 þ q0ðA1 − 2A5ÞJS22 þ ðA1 −A5ÞJS24 þ q0ðA1 −A5ÞJS32 þ ðA1 −A5ÞJS33�q · εq · ε�; ð45Þ

Mð2Þ
ðc4Þ ¼ −4i

g2

f4
½−q0q⃗2A5JT11 þ ðd − 1Þq0A5JT21 þ q0q⃗2ðA1 − 2A5ÞJT22 þ q⃗2ðA1 − A5ÞJT24 − ðd − 1Þq0ðA1 − A5ÞJT31

þ q0q⃗2ðA1 − A5ÞJT32 þ q⃗2ðA1 − A5ÞJT33 − ðd − 1ÞðA1 − A5ÞJT34�ε · ε�; ð46Þ

Mð2Þ
ðc5Þ ¼ −4A1

g4

f4
½q⃗2JB31 − ðdþ 1ÞJB41 þ q⃗2JB42�ε · ε�

þ 4A
g4

f4
½JB21 − q⃗2JB22 þ ðdþ 3ÞJB31 − 2q⃗2JB32 þ ðdþ 3ÞJB42 − q⃗2JB43�q · εq · ε�; ð47Þ

Mð2Þ
ðc6Þ ¼ 4A1ðd − 3Þ g

4

f4
½−q⃗2JB21 þ q⃗4JB22 − ð2dþ 1Þq⃗2JB31 þ 2q⃗4JB32 þ ðd − 2Þðdþ 1ÞJB41 − ð2dþ 1Þq⃗2JB42 þ q⃗4JB43�ε · ε�

− 4Aðd − 3Þ g
4

f4
½JB21 − q⃗2JB22 þ ðdþ 3ÞJB31 − 2q⃗2JB32 þ ðdþ 3ÞJB42 − q⃗2JB43�q · εq · ε�; ð48Þ

Mð2Þ
ðc7Þ ¼ −4cA1ðd − 3Þ g

4

f4
JB21ðp⃗2ε · ε� þ p · εp · ε�Þ; ð49Þ

Mð2Þ
ðc8Þ ¼ −4A1

g4

f4
½q⃗2JR31 − ðdþ 1ÞJR41 þ q⃗2JR42�ε · ε�

þ 4A
g4

f4
½JR21 − q⃗2JR22 þ ðdþ 3ÞJR31 − 2q⃗2JR32 þ ðdþ 3ÞJR42 − q⃗2JR43�q · εq · ε�; ð50Þ

Mð2Þ
ðc9Þ ¼ 4A1ðd − 3Þ g

4

f4
½−q⃗2JR21 þ q⃗4JR22 − ð2dþ 1Þq⃗2JR31 þ 2q⃗4JR32 þ ðd − 2Þðdþ 1ÞJR41 − ð2dþ 1Þq⃗2JR42 þ q⃗4JR43�ε · ε�

− 4Aðd − 3Þ g
4

f4
½JR21 − q⃗2JR22 þ ðdþ 3ÞJR31 − 2q⃗2JR32 þ ðdþ 3ÞJR42 − q⃗2JR43�q · εq · ε�; ð51Þ

TABLE II. The constants A (as well as ω1;2) appearing in the OPE amplitudes (31)–(42).

Ab1 Ab2 Ab3 Ab4 Ab5 Ab6 Ab7 Ab8 Ab9 Ab10þ11 Ab12 Afð2Þ

I ¼ 0 − 3
16

− 3
16

− 3
16

− 3
16

− 1
4

− 1
4

3
4

− − 3
4

3
4

3
4

I ¼ 1 1
16

1
16

1
16

1
16

1
12

1
12

− 1
4

− − − 1
4

− 1
4

− 1
4

ω1 δ 0 −δ −δ − − − − − 0 −δ −
ω2 −δ −δ δ 0 − − − − − δ − −
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Mð2Þ
ðc10Þ ¼ 4cA1ðd − 3Þ g

4

f4
JR21ðp⃗2ε · ε� þ p · εp · ε�Þ; ð52Þ

where A1, A5, A15, and A51 are constants collected in
Table III.
Notice that in the above amplitudes (17)–(52), the loop

functions Ja=bij ðm;ωÞ, Jg=hij ðm;ω1;ω2Þ, JFijðm1; m2; qÞ,
JT=Sij ðm1; m2;ω; qÞ, and JR=Bij ðm1; m2;ω1;ω2; qÞ are abbre-
viated as Ja=bij , Jg=hij , JFij, J

T=S
ij , and JR=Bij , respectively. The

corresponding constants ω1 and ω2 for different diagrams
are listed in Tables I–III. These loop functions J are
calculated using dimensional regularization, with the
modified minimal subtraction scheme.
Besides the one loop diagrams in Figs. 2–4, at this order

Oðϵ2Þ tree-level amplitudes also emerge. For example,
there are Oðϵ2Þ contact contributions that come from
the Oðϵ2Þ contact Lagrangians (8)–(10). The LECs in
Eqs. (8)–(10) actually consist of two parts: the finite parts
that will induce large amounts of unknown parameters, and
the divergent parts which are used to renormalize theOðϵ2Þ
one-loop diagrams. In this work, the finite parts of the
LECs in Eqs. (8)–(10) are ignored due to the lack of fitting
data available.
In our work, we consider S-wave interactions, therefore

we have the following substitutions for the terms related to
the polarization vectors:

ε⃗ · ε⃗� ↣ 1; ð53Þ

ε⃗ · p⃗ε⃗� · p⃗ ↣
1

d − 1
p⃗2: ð54Þ

After calculating the scattering amplitudes of the DD̄�

system in the four channels, the DD̄� potentials in
momentum space can be obtained via the relation:

V ¼ −
MffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

2Mi
Q

2Mf

p : ð55Þ

Note that in Eqs. (17)–(52), we did not show the fac-
tor
Q

Mi
Q

Mf.
In this work, we aim to investigate whether the DD̄�

interactions are strong enough to form molecular states,
therefore we are interested in the DD̄� potentials at
coordinate space. With the help of Fourier transformation
we can get the potential VðrÞ:

VðrÞ ¼
Z

dp
ð2πÞ3 VðpÞe

ip·r: ð56Þ

Because VðpÞ is a polynomial of p, the integral will be
highly divergent with the increasing of the order. Here we
renormalize the potential by introducing a Gaussian cutoff
expð−p⃗2n=Λ2nÞ with n ¼ 2 as in Ref. [51].

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we substitute the calculated potentials
into the Schrödinger equation and explore whether theDD̄�
interactions are strong enough to form bound states. Later
we discuss the behaviors of the DD̄� potentials VðrÞ in
detail.
In this work, we use the following parameters: mπ ¼

0.139 GeV, the D −D� mass splitting δ ¼ 0.142 GeV, the
decay constant fπ ¼ 0.086 GeV, the renormalization scale
μ ¼ 4πf, and the bare coupling constant g ¼ 0.65 as in
Ref. [51]. In our paper we ignore the isospin breaking in the
isospin doublet ðDð�Þ0; Dð�ÞþÞ.
For the LECs Da, Db, Ea, and Eb in Eq. (7), we lack

available data that can be fitted, so we use the resonance
saturation to estimate them. With the expressions in
Appendix, we obtainDa ¼ −13.23, Ea ¼ −11.49,Db ¼ 0,
and Eb ¼ 0.

TABLE III. The constants appearing in the TPE amplitudes (43)–(52). Note that we have A51 ¼ A15.

I ¼ 0 I ¼ 1

A1 A5 A15 A1 A5 A15 ω1 ω2

Ac1
3
16

3
16

−3
16

−1
16

−1
16

1
16

− −
Ac2

−3i
8

3i
8

− i
8

−i
8

− δ −
Ac3

−3i
8

3i
8

− i
8

−i
8

− 0 −
Ac4

3i
8

−3i
8

− −i
8

i
8

− −δ −
Ac5

9
16

− − 1
16

− − −δ δ

Ac6
9
16

− − 1
16

− − −δ 0
Ac7

9
16

− − 1
16

− − −δ 0
Ac8

−3
16

− − 5
16

− − −δ δ

Ac9
−3
16

− − 5
16

− − −δ 0
Ac10

−3
16

− − 5
16

− − −δ −δ
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A. Bound state properties of the DD̄� system

We first investigate whether the DD̄� interactions are
strong enough to form bound states. The DD̄� system has
the quantum numbers C ¼ �1 and I ¼ 0, 1; i.e., there are
four channels: IGðJPCÞ ¼ 0þð1þþÞ, 0−ð1þ−Þ, 1−ð1þþÞ,
and 1þð1þ−Þ.
For the reliability of our investigation, we will leave the

cutoff parameter Λ undetermined. Generally, Λ is adopted
below the ρ meson mass in nucleon-nucleon ChEFT [32].
Also, in our previous work, we used Λ ¼ 0.7 GeV [51].
In this paper, we will vary the cutoff at the vicinity of
0.7 GeV to search for the bound state solutions, where a
relatively wide range will be adopted.
We solve the Schrödinger equations with the DD̄�

potentials VðrÞ (56). We present the Λ dependences of
calculated masses, binding energies and root-mean-square
(rms) radii in Table IV. In Table IV, withΛ ranging from 0.3
to 1.1 GeV, we can see that there are various bound state
solutions appearing in the considered channels.
We now discuss the bound state properties in the

0þð1þþÞ, 0−ð1þ−Þ, 1−ð1þþÞ, and 1þð1þ−Þ channels.

1. 0+ ð1+ + Þ
For the 0þð1þþÞ channel, the bound state solution

appears at Λ ¼ 0.4 GeV, its binding energy then becomes
deeper with increasing Λ. However it disappears at
1.0 GeV. The binding energy varies from 0.1–8.1 MeV
which is within one order of magnitude. As for the rms
radius, we can see that except a large radius (9.0 fm) at
Λ ¼ 0.4 GeV, the radius is basically around 2 fm.
In a word, in our HMChEFT calculations, the DD̄�

interaction in the 0þð1þþÞ channel is strong enough to form
a bound state. In this channel we have a loosely bound state
with the mass around 3872 MeV, the binding energy
4–5 MeV and the rms radius about 2 fm. This solution
just corresponds to Xð3872Þ, so our estimates indicate that
Xð3872Þ indeed can be treated as a good candidate of
0þð1þþÞ DD̄� molecular state, or we can say the DD̄�
interaction is strongly responsible for Xð3872Þ.

2. 0− ð1+ − Þ
We now focus on the 0−ð1þ−Þ channel. In Table IV, there

exists a shallow bound state solution within only a narrow
cutoff range Λ ¼ 0.7–0.8 GeV. The binding energy E is
0.2–0.3 MeV which is quite small. Consequently, the
solution has a large radius with around 7 fm. So we
conclude that in the 0−ð1þ−Þ channel, the binding between
DD̄� is relatively weaker comparing to the 0þð1þþÞ
discussed above, but their interaction is still strong enough
to form a shallow bound state.

3. 1− ð1+ + Þ
In this channel, there is no bound state solution in the all

range (Λ ¼ 0.3–1.1 GeV). Combining with the bound state
property in the channel 1þð1þ−Þ that will be discussed
below, we conclude that theDD̄� interaction in the 1−ð1þþÞ
channel is the weakest among all four channels.

4. 1+ ð1+ − Þ
For the 1þð1þ−Þ channel, we can find a bound state

solution beginning with a relatively large cutoff
Λ ¼ 1.0 GeV. Different from the solutions in previous
channels, in this channel, the binding energy just becomes
deeper and deeper with increasing Λ. At Λ ¼ 1.0 GeV, we
have the binding energy E ¼ 13.3 MeVwith the rms radius
rrms ¼ 1.0 fm. Because of the large cutoff needed to
produce the bound state, we can say that the binding in
the 1þð1þ−Þ channel is weaker than that in the 0þð1þþÞ or
0−ð1þ−Þ channel. In general, we find that the strongest
binding of the DD̄� system is in the 0þð1þþÞ channel, the
next is in the 0−ð1þ−Þ channel, then in the 1þð1þ−Þ
channel, the final is in the 1−ð1þþÞ channel.

B. The behaviors of the DD̄� potentials

In the previous subsections, we explore the bound state
properties in the four DD̄� channels. We find that, with
some reasonable cutoffs, there will emerge bound state
solutions. In this section, to give a deep understandings of

TABLE IV. The bound state solutions in the four DD̄� channels. The cutoff parameter Λ, calculated mass M, binding energy E, and
rms radius rrms are in units of GeV, MeV, MeV, and fm, respectively.

0þð1þþÞ 0−ð1þ−Þ 1−ð1þþÞ 1þð1þ−Þ
Λ M E rrms M E rrms M E rrms M E rrms

0.3 − − − − − − − − − − − −
0.4 3.875.7 0.1 9.0 − − − − − − − − −
0.5 3874.4 1.4 3.2 − − − − − − − − −
0.6 3872.2 3.6 2.1 − − − − − − − − −
0.7 3870.0 5.8 1.8 3875.6 0.2 8.0 − − − − − −
0.8 3868.6 7.2 1.6 3875.5 0.3 6.4 − − − − − −
0.9 3867.7 8.1 1.5 − − − − − − − − −
1.0 − − − − − − − − − 3862.5 13.3 1.0
1.1 − − − − − − − − − 3813.0 62.8 0.6
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the bound state properties and the DD̄� interactions, we
further discuss the behaviors of the DD̄� potentials VðrÞ.
Back to Table IV, we see around Λ ¼ 0.6 GeV the

solution in the 0þð1þþÞ channel is close to the location of
Xð3872Þ most. For a more delicate investigation, here we
set the cutoff to be Λ ¼ 0.62 GeV after fitting the mass of
Xð3872Þ. With this cutoff we now present VðrÞ of all
channels in Fig. 5.
For the 0þð1þþÞ channel, we see that the OPE contri-

bution and the contribution carrying contact interactions are
attractive, where the former is relatively weak. And the TPE
contribution provides a strong repulsive force. Our numeri-
cal estimate reveals that with the increase of the cutoff Λ,
the attractive contributions as well as the repulsive TPE
contribution all become stronger, however their cancella-
tion just leads to a stable total potential VðrÞ.
In the 0−ð1þ−Þ channel, the behaviors of the TPE

contribution and the contribution carrying contact inter-
actions do not differ from those in the 0þð1þþÞ channel
discussed above, whereas the OPE contribution changes to
be repulsive. Thus, they lead to a weaker attraction
comparing to the 0þð1þþÞ channel. That explains why

the binding energy in this channel is always smaller than
that in the 0þð1þþÞ channel (see the binding energies in
Table IV).
For the 1−ð1þþÞ channel, the OPE contribution is

repulsive while the TPE contribution and the contribution
carrying contact interactions are attractive. The cancellation
between them makes the line shape of the total VðrÞ
basically follow the line shape of the potential carrying
contact interactions. Observing the amount of the total
VðrÞ, we see that, although attractive, it is not strong
enough comparing to the amount in the 0þð1þþÞ or
0−ð1þ−Þ channel.
At the 1þð1þ−Þ channel in Fig. 5, all the contributions

are attractive. However at the middle range
r ¼ 6–12 GeV−1, the total VðrÞ is repulsive, which orig-
inates from the repulsion of the TPE. This causes the
attraction of the 1þð1þ−Þ channel to be weakened. Indeed,
there is no bound state solution at Λ ¼ 0.62 GeV. Actually,
when looking at Table IV we need a considerably high Λ to
obtain a bound state solution.
In general, through analyzing the potentials VðrÞ

depicted in Fig. 5, we have understood the specific

FIG. 5. The potentials VðrÞ of the DD̄� system at Λ ¼ 0.62 GeV. The label “contact” stands for the contribution carrying contact
interactions. Here the 0þð1þþÞ channel has a bound state solution with a mass around 3872 MeV.
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mechanism of the bound state formation in each channel.
Depend on the distinct behaviors of the contribution
carrying contact interactions, OPE and TPE contributions
in the four channels, the total potentials VðrÞ all present
attractive line shapes but with different strengths. We find
that the most attractive potential is in the 0þð1þþÞ channel,
then in the 0−ð1þ−Þ channel, then in the 1þð1þ−Þ channel,
the final is in the 1−ð1þþÞ channel.
Combining with the discussions of the bound state

properties in Sec. IVA, we conclude that there is a
hierarchy of the strengths in the DD̄� interactions:

str:½0þð1þþÞ� > str:½0−ð1þ−Þ� > str:½1þð1þ−Þ�
> str:½1−ð1þþÞ�; ð57Þ

where str. stands for the strength of the DD̄� interaction.
Note that despite discrepancies in details, this conclusion is
consistent with the one-boson-exchange model calculations
[20,60,62].

C. 0− ð1+ − Þ and 1+ ð1+ − Þ molecular states

In previous two sections, we point out the strength
ordering in the DD̄� interactions. But that does not mean
they can all produce bound states. From Table IV we
already found that only the 0þð1þþÞ, 0−ð1þ−Þ, and
1þð1þ−Þ channels have bound state solutions. In this
section we focus on the 0−ð1þ−Þ and 1þð1þ−Þ channels
that have no direct experimental indications.
As discussed in Sec. IVA, the solution with the mass

around 3872 MeV in the 0þð1þþÞ channel just corresponds
to Xð3872Þ. That means Xð3872Þ has a strong relation to
the DD̄� interaction, in other words, Xð3872Þ is a good
candidate of the 0þð1þþÞ molecular state. In other two
channels 0−ð1þ−Þ and 1þð1þ−Þ, DD̄� also tends to form
molecular states.
From Sec. IVA, we have learned that, in the 0−ð1þ−Þ

channel, the shallow bound state solution has the binding
energy 0.2–0.3 MeV with Λ ¼ 0.7–0.8 GeV. Hence we
plot the potential VðrÞ at Λ ¼ 0.8 GeV in Fig. 6. From
Fig. 6, the OPE and TPE contributions are repulsive, so the
binding of the calculated 0−ð1þ−Þmolecular state is mainly
provided by the potential carrying contact interactions.
Also, we can see that the attraction is mainly provided in a
range round 2–8 GeV−1.
In other channel 1þð1þ−Þ, we have a molecular state with

a considerable binding energy at Λ ¼ 1.0 GeV. Its poten-
tial VðrÞ is depicted in Fig. 7. All the contributions are
attractive, but the binding is mainly provided by the TPE
contribution. Also, it is basically a short range attraction.
In general, the 0−ð1þ−Þ and 1þð1þ−Þ molecular states

have different binding mechanisms under the competitions
of the contribution carrying contact interactions, OPE and
TPE contributions. As we know, the experiment has not
observed any possible structures that can fit into our

predicted 0−ð1þ−Þ and 1þð1þ−Þ molecular candidates
yet, so we briefly discuss their discovery potentials in
the following.
We first focus on their decay patterns. The 0−ð1þ−Þ state

has possible two body hidden charm decay channels ηcω
and J=ψη. It can also have three body strong decays such as
J=ψπ0π0 and hcð1PÞππ. In other possible channels such as
D0D̄�0, J=ψπþπ−, and D0D̄0π0, the signal can be over-
whelmed by Xð3872Þ. It may also have a baryonic decay
channel pp̄, radiative decay channels γηc, γχc0 γχc1, γχc2,
and γηcð2SÞ.
The 1þð1þ−Þ state has possible two body hidden charm

decay channels ηcρ, J=ψπ, hcð1PÞπ, and ψð2SÞπ, three
body decay channels ηcππ, χc0ππ, χc1ππ, χc2ππ, a baryonic
decay channel pp̄, and radiative decay channels γηc, γχc0
γχc1, γχc2, and γηcð2SÞ. So it has more decay channels than
the 0−ð1þ−Þ state.
These two possible molecular states can be produced in

various production mechanisms. For example, they can be
searched in the eþe− collisions at the BESIII and Belle II
experiments. It is also promising to collect them in the b
decay processes, such as B → Xð0−ð1þ−Þ=1þð1þ−ÞÞ þ K.
In fact, some decay channels listed above have already

been measured in experiment. For example, J=ψπ is the
discovery channel of famous Zcð3900Þ [12,13,88,89]. It is
possible that our predicted 1þð1þ−Þ state is the neutral
component of isovector Zcð3900Þ, although there exists a
discrepancy in mass. On the other hand, if the 1þð1þ−Þ
state is different from Zcð3900Þ, there may exist more than
one enhancement around 3.8–3.9 GeV in the J=ψπ invari-
ant mass spectrum. Because of the limited resolution in the
invariant mass distributions of Refs. [12,13,88–91], we
cannot pin down this issue now. We hope more sophisti-
cated studies in the future can clarify this problem. As for

FIG. 6. The potential VðrÞ of the DD̄� system in the 0−ð1þ−Þ
channel at Λ ¼ 0.8 GeV. The label “contact” stands for the
contribution carrying contact interactions. Here this channel has a
bound state solution.
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the hcð1PÞπ and ψð2SÞπ channels, no structure is found
around 3.8–3.9 GeV so far.
The J=ψη decay channel of the 0−ð1þ−Þ molecular state

has also been studied in some experiments. In 2004,
BABAR measured the invariant mass spectrum of the
J=ψη in the process B → J=ψηK [92]. In Fig. 8, we can
see that there seems to be a peak around theDD̄� threshold.
In the measurement of Ref. [93], a small enhancement also
can be seen in their J=ψη invariant mass spectrum. These
enhancements may be related to our predicted 0−ð1þ−Þ
molecular state. In addition, a hint appears in the ηcω
invariant mass spectrum in Ref. [94] too. However, in these
experiments the number of the events around this region is
limited, we hope experiments can pay more attention on
these channels, especially the J=ψη in the future.
In addition, BABAR measured a kaon momentum spec-

trum in B → Xðcc̄Þ þ K [95]. The Xð3872Þ signal is
located around 3.8–3.9 GeV. With more refined data in

the future, we hope there will emerge fine structures if our
predicted 0−ð1þ−Þ and 1þð1þ−Þ states exist.
Other production mechanisms such as the low energy pp̄

collision at P̄ANDA are also promising. The 0−ð1þ−Þ and
1þð1þ−Þ states can be produced through the s or t channel
in the pp̄ scattering process.

V. SUMMARY

In our previous paper [51], we studied the doubly
charmed system DD� in the framework of HMChEFT.
We applied the obtained DD� chiral interactions to inves-
tigate possible exotic states. The predicted molecular state
is consistent with the latest finding Tcc [3]. In the present
work, we extend it to investigate the charmed-anticharmed
system DD̄�. As we mentioned in Sec. I, various XYZ
states were observed around open-charm thresholds, there-
fore the elaborate heavy-meson interactions studied here
may help us to reveal the natures and inner structures of
these charmoniumlike states.
The generalization of the previous work is not straight-

forward. In this work, we first construct DD̄� interacting
Lagrangians by properly considering the charge conjuga-
tion properties of the fields in the heavy quark limit. We
then calculate S-wave DD̄� potentials up to Oðϵ2Þ order at
one-loop level using Weinberg’s scheme. Complete con-
tact, OPE and TPE interactions are included. For a deeper
understanding of theDD̄� interactions, we further solve the
Schrödinger equations to find the bound state solutions
using the calculated potentials.
Behaviors of the DD̄� potentials as well as bound state

properties are analyzed in detail. In considered four
channels, i.e., IGðJPCÞ ¼ 0þð1þþÞ, 0−ð1þ−Þ, 1−ð1þþÞ,
and 1þð1þ−Þ, distinct behaviors appear depending on the
competitions of the contribution carrying contact inter-
actions, OPE and TPE contributions. This leads to a
specific mechanism of the bound state formation in each
channel. For example, in the 0þð1þþÞ and 0−ð1þ−Þ
channels, relatively large repulsions of the TPE contribu-
tions cause them to have weak bindings.
Combining the potential behaviors and the bound state

properties, we conclude that there exists a strength ordering
of theDD̄� interactions in the four channels that would lead
to different binding abilities:

str:½0þð1þþÞ� > str:½0−ð1þ−Þ� > str:½1þð1þ−Þ�
> str:½1−ð1þþÞ�; ð58Þ

where str. stands for the strength of the interaction.
Further, our investigation reveals that the DD̄� inter-

action in the 0þð1þþÞ channel is strongly responsible for
experimentally discovered Xð3872Þ, so Xð3872Þ can be a
good candidate of the 0þð1þþÞmolecular state. In addition,
DD̄� also tends to form molecular states in the 0−ð1þ−Þ and
1þð1þ−Þ channels.

FIG. 7. The potential VðrÞ of the DD̄� system in the 1þð1þ−Þ
channel at Λ ¼ 1.0 GeV. The label “contact” stands for the
contribution carrying contact interactions. Here this channel has a
bound state solution.

FIG. 8. The J=ψη invariant mass distribution in the process
B → J=ψηK, where the data comes from the BABAR measure-
ment [92].
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We also examine the potential behaviors of the 0−ð1þ−Þ
and 1þð1þ−Þ molecular states in detail, and point out their
formation mechanisms. Their discovery potentials are also
discussed. We hope future experiments such as BESIII,
LHCb, and Belle II can further study them in the eþe−
productions and b decays, to search for the predicted
multiple structures around the DD̄� mass region.
Besides, we also expect that they can be searched in future
P̄ANDA experiment.
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APPENDIX: DETERMINATION OF THE
UNKNOWN LECS

Assuming contact contributions from Eq. (7) are equiv-
alent to the ρ, ω, and σ exchanges, we will be able to extract
Da, Db, Ea, and Eb.
For the ρ, ω, and σ exchanges, we need corresponding

interacting Lagrangians for the Dð�ÞDð�ÞV and Dð�ÞDð�Þσ
vertexes:

LHV ¼ iβhHvμð−VμÞH̄i þ iλhHσμνFμνðρÞH̄i; ðA1Þ

LHσ ¼ gshHσH̄i; ðA2Þ

as well as their charge conjugations:

LHcV¼−iβhH̄cvμð−VμÞHciþiλhH̄cσμνFμνðVÞHci; ðA3Þ

LHcσ ¼ gshH̄cσHci; ðA4Þ

where FμνðVÞ ¼ ∂μVν − ∂νVμ þ ½Vμ; Vν� and

V ¼ igVffiffiffi
2

p

0
B@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p

1
CA: ðA5Þ

In above, H and Hc has been defined in Eqs. (2) and (6),
gV ¼ 5.8, β ¼ 0.9, λ ¼ 0.56 GeV−1 [96], gs ¼ 3.73

2
ffiffi
6

p [97].

By matching the DD̄� → DD̄� amplitudes in the two
ways, we get

Da ∼ −
g2s
m2

σ
−
β2g2v
4m2

ω
; Ea ∼ −

β2g2v
4m2

ρ
;

Db ∼ 0; Eb ∼ 0: ðA6Þ
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