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By analyzing the calculated baryon number susceptibility ratios χB1 =χ
B
2 and χB3 =χ

B
1 in a two-flavor system

via the Dyson-Schwinger equation approach of QCD, we determine the chemical freeze-out temperature
and baryon chemical potential in cases of both thermodynamic limit and finite size. We calculate the center-
of-mass energy dependence of the χB4 =χ

B
2 ðκσ2Þ at the freeze-out line and find an excellent agreement with

experimental data when taking into account the finite size effect. Our calculations indicate that the κσ2

exhibits a nonmonotonic behavior in the lower collision energy region. We also predict that the collision
energy dependence of χB6 =χ

B
2 is nonmonotonic.

DOI: 10.1103/PhysRevD.105.034012

I. INTRODUCTION

Phase transitions of strong interaction matter have been
explored for more than 40 years since the research may
reveal the nature of the early Universe matter evolution
[1–3]. The transitions include chiral phase transition (from
dynamical chiral symmetry to dynamical chiral symmetry
breaking) which generates more than 98% of the mass of
visible matter and the confinement transition (hadroniza-
tion) which binds the quarks and gluons to hadrons. They
are driven by the temperature (T) and the baryon density
(ρB) or chemical potential (μB). Since the strong interaction
can be well described by quantum chromodynamics (QCD),
the above mentioned phase transitions are usually referred to
as QCD phase transitions. Moreover, many calculations (see,
e.g., Refs. [2–19]) have shown that the chiral phase transition
at low chemical potential is a crossover at physical quark
mass. Theoretical calculations (see, e.g., Refs. [3,6,8–21])
also indicate that the chiral phase transition at high chemical
potential is first order. Therefore, there would exist a critical
end point (CEP) in the T–μB plane at which the first-order

phase transition turns to crossover. The position of the CEP
or even its existence becomes thus one of a most significant
topic in both theories and experiments. Besides the efforts
in theories, the Beam Energy Scan (BES) program at
relativistic heavy ion collider (RHIC), the facility for
antiproton and ion research (FAIR) at Gesellschaft für
Schwerionenforschung (GSI), and the nuclotron-based ion
collider facility (NICA) at Dubna in Russia all take the
search of the CEP as their investigation focus (see, e.g.,
Refs. [22–24]), and some meaningful information has been
provided by the RHIC experiments [25–28].
In experiments, one can measure only the states after the

hadronization but not the phase transition directly, and thus,
the chemical freeze-out line which is defined as the set of
states ceasing the inelastic collision of the newly formed
hadrons plays an essential role. Especially, as the chemical
freeze-out line approaches the CEP, the nonmonotonic
behavior of conserved charge fluctuations could be
observed [9,29–34]. The freeze-out temperature and chemi-
cal potential have then been studied in a statistical hadro-
nization model (SHM) [35–39], hadron resonance gas
(HRG) model [40,41], lattice QCD simulations [42–45],
and other models [46,47]. In fact, the matter system
generated in the RHIC experiment has a finite size and
cools in a finite time [32,33,48,49]. The finite size and
finite time prevent the correlation length ξ from diverging
near the CEP and smoothen the fluctuations [48]. Model
calculations have shown that the finite size influences both
the phase diagram and the thermodynamical properties
drastically [50–55], and the surface of the system may also
play a role [56–61]. The effects of the finite size and the
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surface on the chemical freeze-out parameters will then
complement the information for searching for the CEP in
experiments. However, different models give contradictory
results. It is therefore imperative to investigate the finite
size and the surface effects on the chemical freeze-out
parameters with sophisticated QCD approaches.
It has been known that Dyson-Schwinger equations

(DSE), a nonperturbative approach of QCD [62–70], are
successful in describing QCD phase transitions (see, e.g.,
Refs. [8–13,66,71–76]) and hadron properties (for recent
reviews, see Refs. [66,67]). We then, in this paper, take the
DSE approach to investigate the chemical freeze-out
parameters with the finite size and surface effects taken
into account. We calculate the baryon number susceptibil-
ities in a two-light-flavor quark system. By comparing the
obtained baryon number susceptibility ratios χB1 =χ

B
2 and

χB3 =χ
B
1 with the experimental data of the net-proton dis-

tribution cumulant ratios C1=C2 and C3=C1 at different
collision energies, we determine the freeze-out parameters.
We observe that with the finite size and surface effects
being included, the calculated collision energy dependence
of the χB4 =χ

B
2 agrees with the experimental data excellently,

and the calculated κσ2 shows a nonmonotonic behavior in
the lower collision energy region. Moreover, we propose
that a hyperorder cumulant ratio such as χB6 =χ

B
2 also shows

a nonmonotonic dependence on the collision energy.
The remainder of this paper is organized as follows. In

Sec. II, we describe briefly the Dyson-Schwinger equation
approach and its relation to the chemical freeze-out
parameters. In Sec. III, we calculate the freeze-out param-
eters by adopting the DSE approach as well as the
experimental data. In Sec. IV, we give the phase diagram
in the vicinity of CEP and reveal the effect of the finite size
and surface. In Sec. V, we give a summary and discussion.

II. THEORETICAL FRAMEWORK

A. Dyson-Schwinger equation approach

TheDyson-Schwinger equations are an infinite number of
coupled equations. In this paper, we focus on the DSE for
quark propagator Sðω̃j; p⃗Þ. The corresponding equation is

S−1ðω̃j; p⃗Þ¼Z2ðiγ⃗ · p⃗þ iγ4ω̃jÞþZ4m0þZ1Σðω̃j; p⃗Þ; ð1Þ

where Z1, Z2, and Z4 are renormalization constants. m0 is
the current quark mass. ω̃j ¼ ωj þ iμq, with μq being the
quark chemical potential, and ωj ¼ ð2jþ 1ÞπT, the
Matsubara frequency for quarks. Σðω̃j; p⃗Þ is the self-energy
of quark, and reads as

Σðω̃j; p⃗Þ ¼
4

3
T

X∞
l¼−∞

Z
d3q⃗
ð2πÞ3 g

2Dμνðk⃗;Ωjl;T; μqÞ

× γμSðω̃l; q⃗ÞΓνðp⃗; ω̃j; q⃗; ω̃l;T; μqÞ; ð2Þ

where Dμν is the dressed-gluon propagator, Γν the dressed

quark-gluon vertex, k⃗ ¼ p⃗ − q⃗ the gluon momentum and
Ωjl ¼ ωj − ωl the Matsubara frequency for gluon.
In principle, the gluon propagator Dμν and the quark-

gluon vertex Γν should be solved by corresponding DSEs,
which depend on higher-order correlation functions,
and a truncation must be applied in order for numerical
solution. In this paper, for the quark-gluon vertex, we adopt
at first stage the rainbow approximation for the vertex
Γνðp⃗; ω̃m; q⃗; ω̃l;T; μqÞ ¼ γν.
The gluon propagator has the general form of

g2DμνðΩnl; k⃗Þ ¼ PT
μνDTðΩ2

nl; k⃗
2Þ þ PL

μνDLðΩ2
nl; k⃗

2Þ; ð3Þ
where PT;L

μν are the transverse and longitudinal projection
operators, respectively,

PT
μν ¼ ð1 − δμ4Þð1 − δν4Þ

�
δμν −

kμkν
k2

�
;

PL
μν ¼

�
δμν −

kμkν
k2

�
− PT

μν; ð4Þ

where k ¼ ðΩnl; k⃗Þ. DT and DL are the effective inter-
actions and can be represented using models. Note that the
coupling constant g and the renormalization constant Z1

have been absorbed into the effective interaction.
In this paper, we adopt the infrared constant model (QC

model) [9,13,70], which reads as

DðsÞ ¼ 8π2
D
ω4

e−s=ω
2 þ αpQCDðsÞ; ð5Þ

where D and ω are the parameters of the model. αpQCD is
the ultraviolet perturbation term and reads as

αpQCDðsÞ ¼
8π2γm

ln ½τ þ ð1þ s=Λ2
QCDÞ2�

F ðsÞ; ð6Þ

where F ðsÞ¼½1−expð−s=4m2
t Þ�, τ¼e2−1, mt¼0.5GeV,

ΛQCD¼0.234GeV, and γm ¼ 12=ð33 − NfÞ with Nf ¼ 4.
The gluon screening mass mg is also considered in the

longitudinal part of gluon model [13,77],

DTðΩ2
nl; k⃗

2Þ ¼ DðΩ2
nl þ k⃗2Þ;

DLðΩ2
nl; k⃗

2Þ ¼ DðΩ2
nl þ k⃗2 þm2

gÞ; ð7Þ
whose value is determined by leading-order perturbative
QCD [78],

m2
g ¼

16

5

�
T2 þ 6

5π2
μ2q

�
: ð8Þ

In order to fix the renormalization constants Z2 and Z4,
we need to specify the renormalization condition. In this
paper, the renormalization condition is
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S−1ðp2Þjω2
0
þp⃗2¼ζ2 ¼ iðγ⃗ · p⃗þ γ4ω̃0Þ þ m̂; ð9Þ

where ζ is the renormalization point, and m̂ is the
renormalization-group invariant current-quark mass.
We take parameters ζ ¼ 19 GeV, m0 ¼ 3.4 MeV,
D ¼ 1.024 GeV2, and ω ¼ 0.5 GeV as in Ref. [70] in
our calculations. And the obtained renormalization-group
invariant current-quark mass is m̂ ¼ 6.0 MeV.
The quark propagator can be decomposed according to

its Lorentz structure. At finite temperature, the decom-
position is

Sðω̃j; p⃗Þ−1 ¼ iγ⃗ · p⃗Aðω̃2
j ; p⃗

2Þ
þ iγ4ω̃jCðω̃2

j ; p⃗
2Þ þ Bðω̃2

j ; p⃗
2Þ: ð10Þ

There should be, in principle, a fourth term in this
decomposition. However, its contribution to order param-
eter is extremely small and is usually omitted in practical
calculations [63,79].
The mass function of the quark propagator can then be

defined as

Mðω̃2
j ; p⃗

2Þ ¼ Bðω̃2
j ; p⃗

2Þ=Aðω̃2
j ; p⃗

2Þ: ð11Þ

In a vacuum, the physical solution to the quark DSE has a
nonzero mass function even if the current quark mass is
zero. At high temperature, the mass function gradually
approaches the current quark mass. Therefore, the mass
function at zero momentum, Mðω̃2

0; 0Þ, is often used as the
order parameter of the QCD crossover.

B. Number density and susceptibilities

Experimental observations indicate that the yields of
pions and protons are much larger than that of kaons [38];
we can then simplify the matter generated in RHIC
experiments as that including mainly two-light-flavor
quarks. In the system of u and d quarks, baryon number
density nB and electric charge density nQ can be fixed with
quark number density nu;d as

nB ¼ 1

3
nu þ

1

3
nd; nQ ¼ 2

3
nu −

1

3
nd: ð12Þ

From Eq. (12), we notice that the u and d quarks are in
exact isospin symmetry, if only the baryon number is
considered. In this sense, both the u quark and d quark hold
the same quark chemical potential μq ¼ μB=3 and the quark
number density nq ¼ 3nB.
In view of statistical physics, the quark number density

can be determined as

nqðμq; TÞ ¼ 2NcNfZ2

Z
d3p⃗
ð2πÞ3 f1ðjp⃗j; μq; TÞ; ð13Þ

f1ðjp⃗j; μq; TÞ ¼
T
2

X∞
j¼−∞

trD½−γ4Sðω̃j; p⃗Þ�; ð14Þ

where Z2 is the quark wave function renormalization
constant, Nc ¼ 3 the color number, and Nf ¼ 2 the flavor
number. Notice that the flavor number here represents the
flavor degeneracy and is different from the one we used in
the ultraviolet perturbation term in the gluon model.
In Eq. (14), the summation runs over an infinite number

of Matsubara frequencies. In practice, we can only carry
out the calculation with a finite number of Matsubara
frequencies, and the summation must have a cutoff, N.
However, the convergence of summation Eq. (14) is slow,
especially at low temperature. On the other hand, we
observe that the scalar functions A, B, and C defined in
Eq. (10) converge quickly to the free-quark-propagator
scalar functions A ¼ C ¼ 1, B ¼ m0, as the Matsubara
frequency grows large. For a free propagator, the distribu-
tion function is

ffreeðjp⃗j; μq; TÞ ¼
T
2

X∞
j¼−∞

trD½−γ4Sfreeðω̃j; p⃗Þ�

¼ 1

eðE−μqÞ=T þ 1
−

1

eðEþμqÞ=T þ 1
; ð15Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

0

p
.

Therefore, the contribution of missing Matsubara
frequencies that exceed the cutoff N in Eq. (14) can
be approximated using the distribution function of free
propagator,

f1 ¼
T
2

XN
j¼−N

trD½−γ4Sðω̃j; p⃗Þ�

þ ffree −
T
2

XN
j¼−N

trD½−γ4Sfreeðω̃j; p⃗Þ�: ð16Þ

Using this technique, the calculated quark number
density has better convergence at moderate and high
temperature, whose chemical potential dependence is
shown in Fig. 1.

FIG. 1. Calculated baryon chemical potential dependence of the
quark number density at some values of given temperature, in the
case of a thermodynamical limit using Eq. (16).
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After calculating the quark number density, we can
calculate the susceptibility by taking derivatives. The kth
order baryon number density susceptibility (fluctuation) is
obtained as

χB1 ¼ nB;

χBk ¼ 1

βðk−1Þ
∂ðk−1ÞnB
∂ðk−1ÞμB

; ð17Þ

where β ¼ 1=T and k ¼ 2; 3; 4;…. The susceptibilities are
related to the moments of the multiplicity distributions of
the corresponding conserved charges as

χ1
χ2

¼ M=σ2;
χ3
χ1

¼ Sσ3=M;

χ3
χ2

¼ Sσ;
χ4
χ2

¼ κσ2; ð18Þ

where M, σ2, S, and κ are the mean, the variance, the
skewness, and the kurtosis of the multiplicity distribution,
respectively. By comparing the theoretical net-baryon
number fluctuations in terms of temperature and chemical
potential with the experimental data, one can determine the
freeze-out parameters [45].

C. Finite size and surface effect

The system created in RHIC exists in finite size, rather
than thermodynamical limit. To determine the freeze-out
parameters in the experiment, one has to take the finite size
and the surface effects into account.
Consider a system with a cubic boundary of size L. This

corresponds to the antiperiodic condition on the quark field,
whose spatial momentum becomes pj ¼ ð2jþ 1Þπ=L, and
one should deal with discrete momentum values of integer j
[80]. However, for the system with a spherical or almond-
shaped boundary, which is more suitable to describe the
actual physics case of a quark-gluon plasma (QGP) fireball,

the discrete momentum approach is complicated. In this
work, the finite size effect is studied with the picture of a
quark liquid droplet, and the theory is constructed in
continuous momentum space. In the quark DSE, the
inhomogeneous effects from the surface and curvature
are neglected for simplicity. The finite volume effect of
the system with size L can then be roughly incorporated by
an infrared momentum cutoff jpjmin ¼ π=L [53,54] in the
quark DSE Eqs. (1) and (2). It is remarkable that such an L
is not the same as the size of the fireball but an effective
scale that the ingredients of the quark matter can interact
with each other.
In the calculation of quark number density, the surface

and curvature effects are included through the multiple
reflection expansion (MRE) approximation. In the MRE
approximation, the thermodynamical quantities of the
droplet composed of quarks can be derived from a density
of states in the form [56–58,81,82]

dN
dp

¼ 6

�
p2V
2π2

þ fs

�
p
M

�
pSþ fc

�
p
M

�
Cþ � � �

�
; ð19Þ

where V is the volume of the droplet, and S and C are the
area and the extrinsic curvature of the surface of the droplet,
respectively.
For the spherical boundary condition, V ¼ 4πL3=3,

S ¼ 4πL2, and C ¼ 8πL, and the structure functions fs
and fc are given explicitly as [52,81]

fs

�
p
M

�
¼ −

1

8π

�
1 −

2

π
arctan

�
p
M

��
;

fc

�
p
M

�
¼ 1

12π2

�
1 −

3p
2M

�
π

2
− arctan

�
p
M

���
; ð20Þ

with p being the momentum, and the constituent quark
mass M ¼ ReMðω̃2

0; 0Þ is defined by the mass function
in Eq. (11).

FIG. 2. Calculated baryon chemical potential dependence of the fluctuation ratios χB1 =χ
B
2 (left panel) and χB3 =χ

B
1 (right panel) of the

system with L ¼ 2.2 fm at several values of temperature near the Tc. The dashed horizontal lines stand for the experimental values of the
efficiency-corrected C1=C2 ¼ M=σ2 and C3=C1 ¼ Sσ3=M of net-proton multiplicity distributions in the central collisions atffiffiffiffiffiffiffiffi
SNN

p ¼ 200, 62.4, 54.4, 39, 27, 19.6, 14.5, 11.5, 7.7 GeV given in Ref. [28]. The stars label our assigned freeze-out points.
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The modified density of state is then [52,82]

ρMREðp;M; LÞ ¼ 1þ 6π2

pL
fs þ

12π2

ðpLÞ2 fc; ð21Þ

and the momentum integration in Eq. (13) is converted as

Z
∞

0

p⃗2dp
2π2

→
Z

Λ

jpjmin

ρMRE
p⃗2dp
2π2

: ð22Þ

Notice that the MRE density of state becomes negative at
very low momentum; this is because it cannot be applied in
the p≲ jpjmin region due to the finite volume restriction.
We then choose jpjmin as the lower limit of integration,
Eq. (22).

III. FREEZE-OUT PARAMETERS

We have carried out calculations with L ¼ ∞ (thermo-
dynamical limit) and various finite values of L. The
calculations manifest that the fluctuations (skewness, kur-
tosis, etc.) in the T–μB plane behave qualitatively the same
as those given in Ref. [9], respectively. The obtained μB
dependence of the baryon number susceptibility ratios
χB1 =χ

B
2 and χB3 =χ

B
1 in the case of L ¼ 2.2 fm at several

values of temperature are shown in Fig. 2. It is evident that
our results agree with the lattice QCD results [45] quali-
tatively very well. In order to extract the freeze-out
parameters, we plot the experimental values of the cumu-
lant ratios C1=C2 ¼ M=σ2 and C3=C1 ¼ Sσ3=M of net-
proton multiplicity distributions in central collisions [28] as
horizontal lines.
By fitting our calculated χB1 =χ

B
2 and χB3 =χ

B
1 values in

terms of T and μB with the experimental data, we get the
freeze-out parameters ðμfB; TfÞ. The obtained results for
L ¼ ∞, 3.5, 2.8, 2.5, and 2.2 fm are listed in Table I.

It appears that our theoretical results in the thermodynam-
ical limit (L ¼ ∞) do not fit the experimental values well at
low collision energy, whereas the deviations are smaller if
the finite size parameter L changes.
We illustrate the presently calculated relation between

the baryon chemical potential μfB and the center-of-mass
energy of the collision,

ffiffiffiffiffiffiffiffi
SNN

p
, and the comparison with

those given in lattice QCD simulations (e.g., Ref. [45]) and
model calculations (e.g., Refs. [36,41]) in Fig. 3. We see
from Fig. 3 that our freeze-out baryon chemical potential in
the case of L ¼ ∞ and when L ¼ 2.2 fm match the lattice
QCD result and model calculation results well in the region
μB < 100 MeV, while those in the case of L ¼ 2.2 fm
deviate from previous results in the μB > 100 MeV range.
With the obtained freeze-out points, the freeze-out con-
ditions are fitted as

TABLE I. Calculated freeze-out points ðμfB; TfÞ in the case of different values of L (Tf and μfB are in unit MeV and
ffiffiffiffiffiffiffiffi
SNN

p
in GeV).

L ¼ infinity L ¼ 3.5 fm L ¼ 2.8 fm L ¼ 2.5 fm L ¼ 2.2 fmffiffiffiffiffiffiffiffi
SNN

p
μfB Tf μfB Tf μfB Tf μfB Tf μfB Tf

200 23.7 155.5 22.8 150.0 21.9 144.1 21.1 138.8 19.4 127.5
62.4 69.9 155.1 67.1 150.0 64.4 144.0 62.1 138.9 57.2 128.0
54.4 77.2 155.1 74.6 150.0 70.2 144.3 69.1 139.1 63.8 128.4
39 103.3 154.2 99.5 149.2 95.5 143.5 92.0 138.5 84.8 128.1
27 154.7 150.7 143.0 147.1 135.4 141.8 129.6 137.3 118.8 127.5
19.6 189.1 148.0 191.7 143.1 195.2 137.5 178.7 134.1 155.7 126.0

�15.7 �1.9 �10.9 �1.2 �2.5 �0.2
14.5 � � � � � � � � � � � � 241.5 132.0 203.3 131.6 217.0 121.9

�21.1 �2.7 �23.8 �2.2 �5.3 �0.4
11.5 � � � � � � � � � � � � � � � � � � 255.0 127.7 229.9 121.4

�34.3 �2.3 �18.0 �1.4
7.7 � � � � � � � � � � � � � � � � � � 257.4 127.5 233.7 121.2

�39.9 �2.9 �27.0 �2.1

FIG. 3. Comparison of presently obtained
ffiffiffiffiffiffiffiffi
SNN

p
dependence of

the baryon chemical potential in cases of L ¼ ∞ and L ¼ 2.2 fm
with those given in the lattice QCD simulation [45], HRG model
[41], and parameterized one in the SHM model [36].
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μfB ¼ c
1þ d

ffiffiffiffiffiffiffiffi
SNN

p ; ð23Þ

Tf ¼ T0

�
1 − a

�
μfB
T0

�
2

− b

�
μfB
T0

�
4
�
: ð24Þ

Only the freeze-out points with small deviation between
theory and experiment in Table I are used for fitting the
freeze-out conditions, and the obtained best-fitted param-
eters are listed in Table II. The fitted μfBð

ffiffiffiffiffiffiffiffi
SNN

p Þ curve is
also displayed in Fig. 3.
With the parametrization, one can predict the freeze-out

parameters ðμfB; TfÞ of the system generated in any colli-
sion energy. For example, with L ¼ 2.2 fm,

ffiffiffiffiffiffiffiffi
SNN

p ¼ 5.8,
7.7, 11.5, and 14.5 GeV correspond to ðμfB; TfÞ ¼
ð361.7; 99.6Þ; ð305.8; 111.5Þ; ð233.6; 120.8Þ; and ð196.9;
123.6Þ MeV, respectively.

IV. PHASE DIAGRAM AND
FURTHER PREDICTION

With the quark propagator obtained by solving the DSE,
we can get the temperature and chemical potential depend-
ence of the quark condensate and the quark dynamical
mass, which are commonly regarded as appropriate order
parameters of chiral phase transition. Taking the chiral
susceptibility criterion [8,77], we determine the upper and
lower boundaries of the chiral phase crossover region by
the full width at half maxima of the susceptibility. The
chiral susceptibility is defined as

χT ¼ −∂Mðω̃2
0; 0Þ=∂T; ð25Þ

where the constituent quark mass is defined as the real part
of Mðω̃2

0; 0Þ in Eq. (11), the same as in Sec. II C. The
obtained crossover regions in the cases of L ¼ ∞, 2.5, and
2.2 fm are shown as the shadowed regions in Fig. 4.
In the low temperature and high chemical potential

region, two separate solutions of the quark DSE are found
simultaneously, namely, the Nambu and the Wigner sol-
utions, respectively. This implies that even with a finite
system size, there exists a first-order phase transition;
hence, there is still a CEP in the ðT; μÞ plane.
With the chiral susceptibility criterion [8,77] or the

fluctuation criterion [9], we determine the boundaries of
the first-order transition region and the location of the CEP.
The obtained results in the two cases are displayed in Fig. 4.

TABLE II. Fitted freeze-out parameters c, d in Eq. (23) and
T0; a; b in Eq. (24), in case of different finite size parameter L
(c and T0 are in unit MeV and d in GeV−1).

L c d T0 a b

Infinity 1642.8 0.373 155.7 0.0162 0.0166
3.5 fm 1236.1 0.285 150.3 0.0130 0.0103
2.8 fm 1066.9 0.256 144.6 0.0184 0.0043
2.5 fm 840.9 0.205 139.2 0.0137 0.0051
2.2 fm 818.4 0.218 128.4 0.0106 0.0022

FIG. 4. Calculated QCD phase diagram in case of L ¼ ∞, 2.5 fm and 2.2 fm. The red-dashed curves are the phase boundaries defined
with the maximum of chiral susceptibility, the red-colored areas are the obtained crossover regions, and the black-solid curves are the
fitted freeze-out lines. The blue-solid angles are the co-exist region of first-order phase transition.
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We illustrate also the presently obtained chemical freeze-
out lines in these cases in Fig. 4. The figure manifests that
the chemical freeze-out happens in the obtained chiral
crossover region. Quantitatively, the freeze-out temperature
Tf ¼ 155.7 MeV is higher than the Tc ¼ 144.0 MeV in
the thermodynamical limit (i.e., with L ¼ ∞) at μB ¼ 0,
but the deviation is smaller in the case of L ¼ 2.2 fm where
Tf ¼ 128.4 MeV and Tc ¼ 121.6 MeV at μB ¼ 0. We also
notice that the finite size effect shifts the location of
the CEP to higher baryon chemical potential and lower
temperature drastically; in the cases of L ¼ ∞, 3.5, 2.8,
2.5, and 2.2 fm, ðμCEPB ;TCEPÞ¼ð296;132Þ;ð360;121Þ;
ð426;111Þ;ð510;101Þ;ð711;77.5ÞMeV, respectively. This
system-size dependence of the location of CEP is
qualitatively consistent with other theoretical studies
[20,21,50,53,61,80,83]. Since the BES program at RHIC
has not shown any clear signal of the CEP in Au-Au
collisions for collision energy down to

ffiffiffiffiffiffiffiffi
SNN

p ¼ 7.7 GeV,
which implies that μCEPB ≳ 400 MeV according to
Refs. [38,39], we infer that the finite size parameter
satisfies L≲ 2.8 fm for the QGP system produced in the
Au-Au collision. We emphasize again that this L is a
semiquantitative measure of the radius of fireball.
It is known that the κσ2 ¼ χ4=χ2 is a direct observable in

the experiment and may demonstrate the property of the
states around the CEP well. We calculate χB4 =χ

B
2 in the

T–μB plane and pick out the value along the freeze-out line
to get the

ffiffiffiffiffiffiffiffi
SNN

p
dependence of χB4 =χ

B
2 . The obtained results

in the case of a thermodynamical limit and finite size of
L ¼ 2.8, 2.5, and 2.2 fm are depicted in Fig. 5. In the case
of L ¼ 2.2 fm, the lowest collision energy calculated is

5.8 GeV. It is apparent that, without considering the finite
size effect, our calculated χB4 =χ

B
2 decreases more rapidly

than the experimental data as the
ffiffiffiffiffiffiffiffi
SNN

p
descends. With the

finite size effect being taken into account, we can reproduce
the experimental data excellently. In the lower collision
energy region, the κσ2 exhibits a nonmonotonic behavior,
whose minimum is reached at

ffiffiffiffiffiffiffiffi
SNN

p
≈ 10 GeV, and then

increases drastically as
ffiffiffiffiffiffiffiffi
SNN

p
further decreases.

Since the calculated kurtosis fit the experimental data
best in the case of L ¼ 2.2 fm, we further calculate theffiffiffiffiffiffiffiffi
SNN

p
dependence of χB6 =χ

B
2 from our fitted freeze-out line

under this finite size parameter. The obtained result is
illustrated in Fig. 6. This shows that the numerical
uncertainties are much larger than the results of κσ2.
At

ffiffiffiffiffiffiffiffi
SNN

p ¼ 200 GeV, we obtain a negative value of
χB6 =χ

B
2 ¼ −0.97� 0.36, which is qualitatively consistent

with the experimental results [84–86] and lattice calcula-
tion [87]. For

ffiffiffiffiffiffiffiffi
SNN

p ≳ 10 GeV, our result shows a non-
monotonic behavior with a shallow minimum, in agreement
with the functional renormalization group calculation [88].
We also show that χB6 =χ

B
2 may have a large maximum along

with a sharp and deep minimum when
ffiffiffiffiffiffiffiffi
SNN

p ≲ 10 GeV.
As a result, we predict a complex nonmonotonic behavior
of χB6 =χ

B
2 as a function of collision energy.

V. SUMMARY

In summary, we have calculated in this work the baryon
number susceptibilities in a two-flavor quark system via the
DSE approach of QCD in the case of not only the
thermodynamic limit but also the finite size. By comparing
the calculated ratios χB1 =χ

B
2 and χB3 =χ

B
1 with the exper-

imental data of the net-proton multiplicity distribution in
BES at RHIC, we obtained the temperature and the baryon

FIG. 5. Calculated collision energy
ffiffiffiffiffiffiffiffi
SNN

p
dependence of

κσ2 ¼ χB4 =χ
B
2 at the freeze-out line. The black circles are the

experimental values [28]. The gray triangles stand for our results
in case of infinite volume. The blue, green, and red points denote
our results in the case of L ¼ 2.8, 2.5, and 2.2 fm, respectively.
The shadowed regions display the numerical uncertainties.

FIG. 6. Calculated collision energy
ffiffiffiffiffiffiffiffi
SNN

p
dependence of

χB6 =χ
B
2 (in logarithmic scale) at the freeze-out line. The black

circles and gray squares are the experimental values [84] for
0–10% and 30–40% centralities, respectively, and the red points
denote our results in the case of 2.2 fm. The shadowed regions
display the numerical uncertainties.
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chemical potential at the chemical freeze-out states. We
calculated also the collision energy dependence of the κσ2

at the freeze-out line and observed an excellent agreement
with experimental data when taking into account the finite
size effect. It shows that the finite size effect is significant in
studying the QCD phase transitions with RHICs. The
obtained collision energy

ffiffiffiffiffiffiffiffi
SNN

p
dependence of the κσ2

exhibits a nonmonotonic behavior in a lower collision
energy region. We also predict that the collision energy

dependence of hyperorder cumulant ratios such as χB6 =χ
B
2

may also be nonmonotonic.
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