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The worm-gear transverse momentum dependent (TMD) function g1T is one of the eight leading-twist
TMDs and has the probabilistic interpretation of finding a longitudinally polarized quark inside a
transversely polarized hadron. In this work, we present the first simultaneous extraction of g1T from all the
available experimental measurements. The study involves the analysis of COMPASS, HERMES, and
Jefferson Lab data on semi-inclusive deep-inelastic scattering using Monte Carlo techniques. We also
compare g1T obtained from this experimental data with different theoretical approaches, such as the large-
Nc approximation, the Wandzura-Wilczek-type approximation, and lattice QCD.
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I. INTRODUCTION

An important class of functions required to understand
the structure of hadrons in terms of their underlying partons
are transverse momentum dependent parton distribution
and fragmentation functions (TMD PDFs and TMD FFs,
collectively called TMDs). We use TMDs in the description
of hard scattering processes such as semi-inclusive deep-
inelastic scattering (SIDIS), Drell-Yan, and eþe− annihi-
lation into hadron pairs. The presence of both hard and soft
scales in these reactions allows one to probe the intrinsic
motion of partons. For example, in SIDIS one has the
photon virtuality q2 ≡ −Q2 and transverse momentum qT
such that if qT ≪ Q, one is sensitive to TMD physics.
While the usual collinear PDFs describe the probability to
find a parton in a fast-moving hadron with a particular
fraction x of the hadron’s longitudinal momentum, TMD
PDFs in addition encode the probability that the parton has
a specific transverse momentum k⃗⊥. The TMD PDFs can
therefore be regarded as the natural extension of collinear
PDFs from one to three dimensions in momentum space.
When the spin of the hadron and that of the quarks are

taken into account, certain constraints of QCD, such as

Hermiticity, time reversal, and parity, allow us to define
eight TMDs at leading twist (twist-2) as functions of
ðx; k⃗2⊥Þ: f1 (unpolarized function), g1L (helicity function),
h1 (transversity function), f⊥1T (Sivers function), g1T and
h⊥1L (“worm-gear” functions), h⊥1 (Boer-Mulders function)
and h⊥1T (pretzelosity function). Only three of them, f1, g1L,

and h1, survive after carrying out the k⃗⊥ integral, while the
remaining five vanish. Those five TMDs provide novel
information about spin-orbit correlations. Just like the
collinear PDFs, extracting TMDs calls for global fits of
experimental data. There has been tremendous progress in
our understanding of TMDs and their extraction from data
in the last few years, thanks to new theoretical/phenom-
enological ideas and experimental measurements at, e.g.,
Belle, COMPASS, HERMES, Jefferson Lab (JLab), and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Lab (BNL). From this perspective, one of the least
known TMDs is g1T , which is the focus of this work. This
function has the probabilistic interpretation of finding a
longitudinally polarized quark inside a transversely polar-
ized hadron [1–5]. Since the quark “spins” in one direction
while the hadron “spins” perpendicular to that, it is also
known as a “worm-gear” function.
There does exist some prior information on g1T from

various sources. Quite a few model calculations for the
function exist, e.g., in the light-cone constituent quark
model [6–10], spectator diquark model [10–13], MIT bag
model [14], and the covariant parton model [15]. All of
these calculations suggest that the up quark function gu1T is
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positive, down quark function gd1T is negative, and the peak
amplitude for gu1T is larger in magnitude than that of gd1T .
In addition, the first lattice QCD calculations of TMDs
were presented in Refs. [16–18], which demonstrated the

k⊥-moment of g1Tðx; k⃗2⊥Þ, denoted gð1Þ1T ðxÞ, gives rise to
distortions in the quark densities in the transverse momen-
tum plane. The size of the distortion was characterized by a
quantity called the “transverse momentum shift” hρxiqTL
for a quark flavor q: hρxiqTL ∼

R
1
0 dxðgð1Þq1T ðxÞ − gð1Þq̄1T ðxÞÞ,

where gð1Þq̄1T ðxÞ is the antiquark distribution. This shift was
found to be positive for up quarks and negative for down
quarks. Furthermore, this study determined that the amount
of shift was larger for the up quarks. These lattice results
certainly indicate that gu1T and g

d
1T differ in sign and possibly

also have relatively different magnitudes. Finally, there are
two existing theoretical predictions for g1T based on certain
approximations. The large-Nc approximation [19] states that
gu1T ¼ −gd1T up to 1=Nc corrections. TheWandzura-Wilczek
(WW)-type approximation [20–23] neglects quark-gluon-

quark correlators to arrive at gð1Þ1T ðxÞ ¼ x
R
1
x dyg1ðyÞ=y,

where g1 is the helicity PDF. The WW-type approximation
has been used to make predictions for the relevant asymme-
tries in SIDIS [20,24–26], single-inclusive (collinear twist-3)
reactions in lepton-nucleon collisions [27,28], and vector
boson production fromproton-proton collisions [29]. Still, to

date, there has been no proper extraction of g1T from
experimental data.
In this work, we perform for the first time, using

Monte Carlo (MC) techniques, a global QCD extraction
of the TMD g1T from all available data, namely, SIDIS
measurements from HERMES [30], COMPASS [31–33],
and JLab [34]. We also provide a quantitative comparison of
g1T obtained from experimental data to the large-Nc approxi-
mation, the WW-type approximation, and lattice QCD
calculations. Thework presented in this paper is an important
step toward fully understanding the transverse (partonic)
structure of the nucleon. We organize the manuscript as
follows. In Sec. II, we provide the definition of g1T and
discuss the large-Nc and the WW-type approximations. We
also provide a brief sketch of how SIDIS acts as a probe for
g1T . In Sec. III, we discuss the parametrization for g1T and
give an overview of the MC techniques that we use in
performing the fit. In Sec. IV, we present our results and also
make the aforementioned comparisons to other information
we have on g1T . In Sec. V, we summarize our work and
provide a brief outlook.

II. THEORETICAL BACKGROUND

The TMD g1Tðx; k⃗2⊥Þ, for a quark with momentum k, is
defined as the following projection of the quark-quark
correlator for a transversely polarized nucleon with
momentum P and spin S⊥ ¼ ð0þ; 0−; S⃗⊥Þ [1–5],

Φ½γþγ5�ðx; k⃗⊥; S⃗⊥Þ ¼
1

2

Z
dz−d2z⃗⊥
ð2πÞ3 eik·zhP; S⊥jψ̄ð0Þγþγ5Wð0; zÞψðzÞjP; S⊥i

����
zþ¼0

¼ k⃗⊥ · S⃗⊥
M

g1Tðx; k⃗2⊥Þ; ð1Þ

where x≡ kþ=Pþ,M is the nucleon mass, andWð0; zÞ is a
Wilson line connecting the quark fields that ensures color
gauge invariance. The main outcome of this paper is the
first global fit of g1T from experimental data. There is
already some information about g1T from certain approx-
imations based on theoretical analyses:

(i) The large-Nc approximation states that, in the limit
of a large number of colors Nc, g1T for up and down
quarks are related as [19],

gu1Tðx; k⃗2⊥Þ ≈
Large-Nc − gd1Tðx; k⃗2⊥Þ; ð2Þ

where terms of relative Oð1=NcÞ have been ne-
glected.

(ii) The first k⃗⊥-moment gð1Þ1T ðxÞ can be related to an
integral of the helicity PDF g1ðxÞ and a term
involving quark-gluon-quark correlators [20–23].
The Wandzura-Wilczek (WW)-type approximation
neglects the latter to arrive at

gð1Þ1T ðxÞ≡
Z

d2k⃗⊥
�

k2⊥
2M2

�
g1Tðx; k⃗2⊥Þ

≈
WW-type

x
Z

1

x

dy
y
g1ðyÞ: ð3Þ

In Sec. IV, we will use our global fitting results from
experimental data to test for the first time these theoretical
relationships as well the calculations from lattice QCD
[16–18].
The SIDIS process is an excellent channel to probe the

transverse structure of the nucleon. We can write the
reaction as

lðl; λlÞ þ NðP; SÞ → l0ðl0; λ0lÞ þ hðPhÞ þ X; ð4Þ

where, lðl; λlÞ (l0ðl0; λ0lÞ) denotes an incoming (outgoing)
lepton, NðP; SÞ denotes a nucleon, and hðPhÞ denotes a

BHATTACHARYA, KANG, METZ, PENN, and PITONYAK PHYS. REV. D 105, 034007 (2022)

034007-2



measured hadron in the final state, with other unobserved
particles denoted by the symbol X. The momenta and
polarizations of the particles involved are indicated in
parentheses. There are six independent kinematical varia-
bles for this process,

xB ¼ Q2

2P · q
; Q2 ¼ −ðl − l0Þ2; ϕS;

zh ¼
P · Ph

P · q
; PhT; ϕh: ð5Þ

In the one-photon exchange approximation, Q2 is the
virtuality of the photon. We work at leading order, where
xB (zh) is equivalent to the fraction x (z) of the incoming
nucleon’s (fragmenting quark’s) momentum carried by the
struck quark (produced hadron), so we drop the subscripts
for brevity. In the photon-nucleon center-of-mass frame, the
azimuthal angle ϕS gives the orientation of the (transverse)
spin vector of the nucleon S⃗⊥ relative to the lepton plane
(plane formed by the incoming and outgoing lepton),
PhT ¼ ð0þ; 0−; P⃗hTÞ is the transverse momentum of the
produced hadron, and ϕh gives the orientation of P⃗hT
relative to the lepton plane. One can also work in a
reference frame where the hadron has no transverse
momentum. In that case, the virtual photon has transverse
momentum qT , and one has qT ¼ PhT=z up to Oð1=Q2Þ

corrections. The factorization of this process in terms of
TMDs requires that qT ≪ Q. One can provide a model-
independent decomposition of the (one-photon exchange)
SIDIS cross section in terms of a certain number of
structure functions FXY , with X and Y denoting the
polarization (unpolarized (U), longitudinal (L), or trans-
verse (T)) of the incoming lepton and nucleon, respectively.
The (six-fold) differential cross section reads [25,35],

dσ
dxdydϕSdzhdϕhdP2

hT

¼ α2em
xyQ2

��
1−yþ1

2
y2
�
FUU

þλljS⃗⊥jy
�
1−

1

2
y

�
cosðϕh−ϕSÞFcosðϕh−ϕSÞ

LT þ…

�
; ð6Þ

where αem is the fine structure constant, y ¼ P · q=P · l,
and … denotes terms that are irrelevant for our study. The
structure functions FXY depend on ðx; z; P2

hT; Q
2Þ, which

we did not write explicitly in the above expressions. One
can separately isolate each structure function since each has
its own unique angular modulation associated with it.
In the limit qT ≪ Q, we can use TMD factorization

[36–40] to write the cross section in terms of perturbatively
calculable hard interactions and (nonperturbative) TMDs.
The resulting expressions for the structure functions then
involve convolutions of the TMD PDFs and FFs (generi-
cally denoted fðx; k⃗2⊥Þ and Dðz; P⃗2⊥Þ, respectively) [25,35],

C½wfD� ¼ x
X
q

e2q

Z
d2k⃗⊥

Z
d2P⃗⊥δð2Þðzk⃗⊥ þ P⃗⊥ − P⃗hTÞwðk⃗⊥; P⃗⊥Þfqðx; k⃗2⊥ÞDqðz; P⃗2⊥Þ; ð7Þ

where w is a weight factor depending on the transverse momenta k⃗⊥, P⃗⊥. The structure functions in Eq. (6) read [25,35],

FUU ¼ C½wf0gf1ðx; k⃗2⊥ÞD1ðz; P⃗2⊥Þ�; ð8Þ

Fcosðϕh−ϕSÞ
LT ¼ C½wf1gg1Tðx; k⃗2⊥ÞD1ðz; P⃗2⊥Þ�; ð9Þ

where f1, D1 are the unpolarized TMDs, and wf0g ¼ 1, wf1g ¼ P⃗hT · k⃗⊥=ðjP⃗hT jMÞ. We will work with the leading order
(parton model) expression for the cross section and a Gaussian ansatz for the TMDs,

gq1Tðx; k⃗2⊥Þ ¼ gð1Þq1T ðxÞ 2M
2e

−k⃗2⊥
hk2⊥ij

gq
1T

πðhk2⊥ijgq1T Þ2
; fq1ðx; k⃗2⊥Þ ¼ fq1ðxÞ

e

−k⃗2⊥
hk2⊥ij

fq
1

πhk2⊥ijfq1
; Dq

1ðz; P⃗2⊥Þ ¼ Dq
1ðzÞ

e
−P⃗2⊥
hP2⊥iq

πhP2⊥iq
; ð10Þ

which has been quite successful in describing a wide
variety of reactions [41–57] and is sufficient to gain the
first information on g1T from experimental data. In Eq. (10),
hk2⊥i and hP2⊥i are the TMD PDF and the FF widths, which
can in principle be flavor dependent. Also, lattice QCD data
are compatible with the Gaussian shape for the TMDs at

small transverse momenta [16,17]. Using these, we obtain
the following expressions for the structure functions,

FUU ¼ x
X
q

e2q f
q
1ðxÞDq

1ðzÞgqf1 ; ð11Þ
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Fcosðϕh−ϕSÞ
LT ¼ x

X
q

e2qg
ð1Þq
1T ðxÞDq

1ðzÞð2MÞðzPhTÞ
gqg1T
λqg1T

; ð12Þ

with

λqf ¼ z2hk2⊥ijfq þ hP2⊥ijDq
1
; gqf ¼

e−P
2
hT=λ

q
f

πλqf
; ð13Þ

where f ¼ g1T or f1. These results agree with Refs. [3,25].

We use them to fit gð1Þ1T ðxÞ and hk2⊥ijgq1T to the experimental

data for the asymmetry Acosðϕh−ϕSÞ
LT , which is defined as

Acosðϕh−ϕSÞ
LT ¼ Fcosðϕh−ϕSÞ

LT

FUU
: ð14Þ

III. OVERVIEW OF THE FITTING
METHODOLOGY

As put forth in Eq. (10), we use a Gaussian function for
the k⊥-dependence of g1Tðx; k⃗2⊥Þ, with hk2⊥ijgq1T a free
parameter, while the x-dependence is encoded in its first

k⊥-moment gð1Þ1T ðxÞ. We parametrize this latter function,
which also depends on Q2, as

gð1Þ1T ðx;Q2Þ ¼ N

Ñ
xαð1 − xÞβf1ðx;Q2Þ; ð15Þ

where N is a normalization parameter, α and β are

parameters that determine the behavior of gð1Þ1T ðxÞ
as x → 0 and x → 1, respectively, and f1ðx;Q2Þ is the
unpolarized PDF. We normalize the function so that, at the

initial scale Q0 ≡ 2 GeV,
R
1
0 dxxg

ð1Þ
1T ðx;Q2

0Þ ¼ N. That is,
Ñ ≡ R

1
0 dxxαþ1ð1 − xÞβf1ðx;Q2

0Þ. We take the evolution

of gð1Þ1T ðxÞ to be the same as the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution of f1ðxÞ and use CT10
PDFs [58] at next-to-leading order for the latter. The same
unpolarized PDF set is used in calculating FUU. Even

though gð1Þ1T ðxÞ follows a more complicated evolution that
also mixes with quark-gluon-quark correlators, the “diago-
nal” piece does contain a term that is the same as the
unpolarized DGLAP splitting function [59]. A similar
structure occurs in the evolution of the Qiu-Sterman
function [60–62] (relevant for the Sivers effect), and
Ref. [63] found the fit of SIDIS data does not significantly
change if one includes more terms in the evolution than just

unpolarized DGLAP. Therefore, the evolution of gð1Þ1T ðxÞ
implicit in Eq. (15) is a reasonable first approximation. We
also explicitly checked that using different unpolarized
PDF sets in our fit (like CT18 [64] next-to-leading order
and CJ15 [65] leading order) causes very minimal changes

to our extracted gð1Þ1T ðxÞ.

Our ansatz for the functional form and evolution of
g1Tðx; k⃗2⊥Þ are sufficient to work with at the present stage
since the available data is not precise enough, nor spans a
large enough range in Q2, to be sensitive to the finer details
of TMD evolution or a more flexible functional form.
If data on ALT from vector boson production in proton-
proton collisions becomes available in the future, such
issues will need to be revisited. Note that for simplicity of
notation, we have not shown the explicit flavor dependence
of the parameters in Eq. (15). For the actual fit, we do
assign flavor dependence to most of the parameters, as we

discuss below. We also assume gð1Þū1T ðxÞ ¼ gð1Þd̄1T ðxÞ ¼
gð1Þs1T ðxÞ ¼ gð1Þs̄1T ðxÞ ¼ 0 since most of the data included in
our fit is in the moderate-x region (see Fig. 1). Note that one
can also choose to work with the helicity PDF in Eq. (15)
rather than the unpolarized PDF. We have explicitly
confirmed, using g1ðxÞ from Ref. [66], that the extracted

gð1Þ1T ðxÞ remains essentially unchanged.
We start with seven free parameters: hk2⊥ijgu1T ¼

hk2⊥ijgd1T ≡ hk2⊥ijg1T and Nq, αq, βq for q ¼ u, d.
However, we find that the presently available data is
insufficient to constrain hk2⊥ijg1T , αd, βu, βd. Therefore,
for the final fit we work with three free parameters: Nu, Nd,
and αu ¼ αd ≡ α. As for hk2⊥ijg1T , we fix it according to
what is supported by the lattice QCD calculation of
Ref. [16] involving the widths of the unpolarized and
helicity PDFs (hk2⊥ijf1 and hk2⊥ijg1 , respectively),

hk2⊥ijg1
hk2⊥ijf1

≈
hk2⊥ijg1T
hk2⊥ijf1

≈ 0.76; ð16Þ

where we have assumed hk2⊥ijg1 ≈ hk2⊥ijg1T . We note the
approximation (16) was first used in Ref. [25]. In our case,

FIG. 1. The x-Q2 coverage for the HERMES [30] (squares),
COMPASS [31] (triangles), and JLab [34] (circles) datasets.
Colored (open) points are for data that do (do not) satisfy the cut
of qT=Q < 0.50.
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since we take hk2⊥ijf1 ¼ 0.53 GeV2 from Ref. [57], this
leads to hk2⊥ijg1T ¼ 0.40 GeV2. As for βu, βd, HERMES
and JLab do not provide measurements at very large x. On
the other hand, COMPASS does, but the errors increase
significantly in that region. Therefore, because of the lack
of precise data at large x, we are unable to constrain the β
parameter and instead fix it according to the WW-type
approximation (3): since g1ðxÞ ∼ ð1 − xÞβg1 at large x, the
WW-type approximation makes it reasonable to assume

that gð1Þ1T ðxÞ falls off as ð1 − xÞβg1þ1, and because βg1 ≈ βf1 ,
we set βu ¼ βd ≡ β ¼ 1. We have also explored different
values of hk2⊥ijg1T and β within the ranges 0.1 GeV2 <
hk2⊥ijg1T < hk2⊥ijf1 and 0 < β < 6. (Note that for hk2⊥ijg1T , it
is important to stay within the mentioned range in
order to be consistent with the positivity bound [6],
k⊥=Mjg1Tðx; k⃗2⊥Þj < f1ðx; k⃗2⊥Þ.) We checked explicitly that
none of the qualitative conclusions of our work change by
choosing different values for hk2⊥ijg1T and β. Certainly more
precise data will be required to better constrain the values of
these parameters in the future.
We fit the experimental data and 200 additional replicas of

the data, where each “pseudodata” point Pj in the replica is
given by Pj ¼ Dj þ Rj · ej, where Dj is the actual exper-
imental data point, Rj is a random number generated from a
Gaussian distribution centered at 0with standard deviation of
1, and ej is the quadrature sum of statistical and systematic
experimental errors. The starting parameters for the fit are
chosen from a flat sampling of the parameter space and then
Monte Carlo techniques are used to calculate the functions
and observables from the posterior distributions. Namely,
the average value E½O�, used to create a central curve
for a function or observable O, is determined by
E½O� ¼ 1

n

P
i Oðp⃗iÞ, where p⃗i ¼ fNu; Nd; αgi is the set of

parameters that minimizes the χ2 for replica i, with n being
the total number of replicas. The 1-σ confidence level (C.L.)
error band is found from the standard deviation of

O: S½O� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P
i ðOðp⃗iÞ − E½O�Þ2

q
.

IV. PHENOMENOLOGICAL RESULTS

Before presenting our final fit results, we provide an
overview of the experimental data. A set of 152 data points
were reported by the HERMES Collaboration using a
proton target with a pion (π� or π0) detected in the final
state [30]. While the asymmetries for the neutral pion were
extracted in one-dimensional kinematical bins, the ones for
the charged pions were extracted (for the first time) in
three-dimensional kinematical bins of ðx; z; PhTÞ. A set of
396 data points were reported by the COMPASS
Collaboration for a proton target with an unidentified
charged hadron (h�) in the final state [31–33]. These data
were extracted in two-dimensional kinematical bins of
ðx;Q2Þ, ðz;Q2Þ and ðPhT;Q2Þ. Furthermore, these data

were subdivided into three z intervals: z > 0.1,
0.1 < z < 0.2, and z > 0.2. Here we choose to work with
data from the z intervals 0.1 < z < 0.2 and z > 0.2 since
we found that they allow us to better constrain g1T than the
z > 0.1 dataset alone. A set of eight data points were
reported by Jefferson Lab Hall A for a neutron target, and
the measured hadrons were π� [34]. For the neutron, we
apply isospin symmetry on g1T and f1 for the up and down
quark flavors (u ↔ d; ū ↔ d̄), while leaving strange
quarks (s; s̄) unchanged.
In order to ensure the applicability of TMD factorization,

one needs qT ≪ Q. In the literature, cuts qT=Q≲ 0.25 have
been used recently [67–70]. In our case, with such a cut we
lose a significant number of data points and are unable to
sufficiently constrain all the parameters in our fit.
Therefore, we apply a cut of qT=Q < 0.50 to balance
the condition for TMD factorization with the need to have
enough data points to meaningfully extract g1T . (This is
similar to the approach in Ref. [63], where a cut of qT=Q <
0.75 was used for a fit of the Sivers function.) After
applying this cut, we are left with 60 data points from
HERMES, 64 data points from COMPASS, and 4 data
points from JLab. In Fig. 1, we show the distribution in x
and Q2 of the data points along with which ones survive
our cut.
As mentioned above, for COMPASS the measured

hadrons are unidentified charged hadrons, and we make
the approximation Dh�

1 ¼ Dπ�
1 þDK�

1 . (All FFs are taken
from DSS [71] at leading order.) We assign favored widths
hP2⊥ijfav (unfavored widths hP2⊥ijunfav) to u and d̄ (ū; d; s,
and s̄) for asymmetries associated with πþ production and
employ charge conjugation for the π− FF; for π0, we use
Dπ0

1 ¼ ðDπþ
1 þDπ−

1 Þ=2. The explicit values for the widths
of the FFs, which we take from Ref. [57], are hP2⊥ijfav ¼
0.124 GeV2 and hP2⊥ijunfav ¼ 0.145 GeV2. We mention

that HERMES does have data for Acosðϕh−ϕSÞ
LT for K�.

However, since we are focused on extracting g1T for up
and down quarks, and have set antiquarks and strange
quarks to zero, we do not consider this data in our analysis.

A. Main results: Weighted χ 2 method

In this section, we present our final results for gð1Þ1T ðxÞ
extracted simultaneously from HERMES, COMPASS, and
JLab data in the so-called “weighted χ2 method.” The
reason we utilize this approach, which we describe below in
more detail, is that JLab has very few data points compared
to HERMES and COMPASS. Therefore, in the process of
fitting with the usual definition of χ2,

χ2 ¼
X
i

�
Ti −Di

ei

�
2

; ð17Þ

where Ti is the theory value for an experimental data point
Di with error ei, our description of the JLab data,
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specifically for π− (see Table II in Sec. IV D), was not as
good as the charged pion datasets from HERMES and
COMPASS. (Observing such a feature probably is not
surprising. Due to the larger number of data points from
HERMES and COMPASS, the fit tries to find solutions to
accommodate these datasets better and compromises on the
quality of the fit to the JLab data where the number of data
points is much less, and, consequently, so is their contribu-
tion to the overall χ2.) In an attempt to achieve an equally
good description of all the experimental datasets, we weight
the χ2 so as to emphasize the JLab data as much as the data
fromHERMES and COMPASS. This approach was recently
used in Ref. [63] for a fit of the Sivers function. Following
Ref. [63], we define a weighted χ2 (χ2w) as

χ2w ¼ χ2jHþC þ wχ2jJ; ð18Þ

where χ2jHþC (χ2jJ) is the χ2 for the HERMES
and COMPASS (JLab) data points using the definition
(17). In Eq. (18), we choose the weight factor w as
w≡ NHþC=NJ ¼ 124=4, where NHþC (NJ) is the total
number of points from HERMES and COMPASS (JLab).
We must also take

Npts ¼ NHþC þ wNJ; ð19Þ

where Npts is the effective number of data points in the
weighted χ2 method. In Sec. IV D, we provide a comparison
of our final fit results in the weighted χ2 method to the fit
results obtained with the usual definition of χ2 (17). (Such a
scenario corresponds to simply choosing w ¼ 1.)
In Figs. 2–9 we plot our theoretical curves against the

experimental data, with Figs. 2, 3, and 4 displaying the
HERMES data for π0, πþ, and π−, Figs. 5, 6 (7, 8) giving
the COMPASS data for the z interval 0.1 < z < 0.2
(z > 0.2) for hþ and h−, and Fig. 9 showing the JLab
data for πþ and π−. In Table I, we summarize χ2w=Npts: for
each dataset along with the global χ2w=Npts: For HERMES,
the χ2w=Npts: ¼ 1.20 for πþ and χ2w=Npts: ¼ 0.88 for π−,

thus indicating good agreement between our theory and
the data.
On the other hand, χ2w=Npts ¼ 1.94 for π0, thus implying

that the agreement with our theory is just fair for this
dataset. The reason for the larger χ2w=Npts most likely is the
few points that deviate from the overall trend of the data.
For COMPASS, χ2w=Npts ¼ 0.97 for hþ and χ2w=Npts ¼
0.71 for h− data. For JLab, χ2w=Npts ¼ 0.31 for πþ data and
χ2w=Npts ¼ 1.13 for π−. These values suggest strong com-
patibility between our theory and the data. We comment
that the theoretical uncertainty bands in certain kinematic
bins, especially for HERMES, appear to be rather small.
To explore this observation, we performed a fit exclusively
of the HERMES and JLab data and found several of the
COMPASS data points in the highestQ2 bin do not overlap
with the error bands of the theory “prediction” from such a
fit. That is, the typical g1T functions that describe HERMES
(and JLab) only are too large in certain kinematic regions to
describe COMPASS. Consequently, when we perform our
global fit, the theory calculation for HERMES falls within a
very limited range.
In Fig. 10 we show our final results for xgð1Þ1T ðxÞ for the

up quarks (left panel) and the down quarks (right panel) at
Q2 ¼ 4 GeV2. (In Appendix Awe show a plot with all the
replicas.) We emphasize that this is the very first informa-
tion on g1Tðx; k⃗2⊥Þ from experimental data, which we have
obtained from an analysis of the world SIDIS data on

Acosðϕh−ϕSÞ
LT . Figure 10 indicates that g1T for the up quark is

positive and for the down quark is negative, although with
large error bands for the latter. This is most likely because,
even though JLab does have neutron data, the πþ errors are
larger compared to those for π− (see Fig. 9), so one cannot
achieve as precise an extraction for the down quark g1T .
Additional data from JLab on a neutron target, or
COMPASS on a deuteron target, would be needed to
obtain a better flavor separation. Nonetheless, the first
prominent qualitative feature that we observe here is that
our results are compatible (to some extent) with the large-
Nc approximation (2), which implies that gu1T and gd1T have

FIG. 2. HERMES data for π0 compared with our theory curves at 1-σ C.L. The dark (open) points are data that were (were not)
included in our fit after the qT=Q < 0.5 cut.
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FIG. 3. HERMES data for πþ compared with our theory curves at 1-σ C.L. The dark (open) points are data that were (were not)
included in our fit after the qT=Q < 0.5 cut.

FIG. 4. HERMES data for π− compared with our theory curves at 1-σ C.L. The dark (open) points are data that were (were not)
included in our fit after the qT=Q < 0.5 cut.
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FIG. 5. COMPASS data for hþ for the bin 0.1 < z < 0.2 compared with our theory curves at 1-σ C.L. The dark (open) points are data
that were (were not) included in our fit after the qT=Q < 0.5 cut.

FIG. 6. COMPASS data for h− for the bin 0.1 < z < 0.2 compared with our theory curves at 1-σ C.L. The dark (open) points are data
that were (were not) included in our fit after the qT=Q < 0.5 cut.
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FIG. 7. COMPASS data for hþ for the bin z > 0.2 compared with our theory curves at 1-σ C.L. The dark (open) points are data that
were (were not) included in our fit after the qT=Q < 0.5 cut.

FIG. 8. COMPASS data for h− for the bin z > 0.2 compared with our theory curves at 1-σ C.L. The dark (open) points are data that
were (were not) included in our fit after the qT=Q < 0.5 cut.
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relative signs. Recall that such was the conclusion also from
lattice QCD as well as calculations in constituent quark
models. Note that we mention “to some extent” because of
the relative sizes of the two distributions. The values
of the parameters from our fit are Nu ¼ 0.026� 0.007,
Nd ¼ −0.012� 0.010, andα ¼ 1.9� 0.6, so themagnitude
of gu1T does slightly overlap with that for gd1T. We will
present results for a fit that imposes the large-Nc constraint
gu1T ¼ −gd1T in the next subsection.

B. Large-Nc and WW-type approximation results

In this subsection, we study how well the experimental
data support the large-Nc and WW-type approximations for
g1T (see Sec. II) by separately imposing these constraints
and analyzing the χ2w=Npts for each case.
To perform the fit in the large-Nc approximation, we set

gð1Þd1T ðxÞ ¼ −gð1Þu1T ðxÞ. Therefore, this analysis involves fitting
two free parameters, Nu and α, and we also carry this out
using the weighted χ2 method. In Fig. 11, we provide a
comparison of our final fit from the previous subsection with
the large-Nc results. We find that the large-Nc curves and our
final results overlap rather well within error bands. In Table I,
we also compare the χ2w=Npts for the two cases. We observe
that our main fit gives a better global χ2w=Npts than the

large-Nc fit. However, one must keep in mind that these
χ2w=Npts values correspond to the central curves of the theory.
Since every replica has its own χ2w=Npts value, it is actually
more informative tomake a comparisonbetween the χ2w=Npts-
distribution for our main fit and the large-Nc fit to determine
which of the two approaches produces better results (if at all).
In Fig. 13,we showhistogramsof χ2w=Npts for each dataset for
the two cases. We observe a significant overlap of the
χ2w=Npts-distributions, especially for (but not limited to) the
COMPASS datasets for h� and for the JLab dataset for πþ.
This implies that, although there is a slight preference for g1T
to violate the large-Nc approximation, there is actually no
statistically significant difference between the two fits (main
and large-Nc). That is, the large-Nc approximation is con-
sistent with the experimental data.
In Fig. 12, we provide a comparison of our main fit with

a calculation of gð1Þ1T ðxÞ using the WW-type approximation
(3) with g1ðxÞ taken from NNPDF [72], JAM [66], and
DSSV [73]. Overall, we observe a qualitative agreement
with the WW-type approximation in terms of the general
behavior of g1T . However, there are slight differences that
may hint at a violation of the WW-type approximation
for the up quark. As for the down quark, there seems to be
an agreement between our main fit and the WW-type

TABLE I. Summary of the χ2w=Npts: for our main fit and for the large-Nc and the WW-type approximation results in the
weighted χ2 method. For the latter, we separately give results using g1ðxÞ from NNPDF, JAM, and DSSV.

Summary of χ2w=Npts:

Data set χ2w=Npts:jMain χ2w=Npts:jLarge-Nc
χ2w=Npts:jNNPDF χ2w=Npts:jJAM χ2w=Npts:jDSSV

HERMES πþ 1.20 1.23 1.19 1.19 1.19
HERMES π− 0.88 0.88 0.85 0.85 0.85
HERMES π0 1.94 2.01 1.98 1.95 1.96
COMPASS hþ 0.97 0.51 0.71 1.02 0.89
COMPASS h− 0.71 0.53 0.71 0.81 0.80
JLabπþ 0.31 0.06 0.81 0.78 0.96
JLabπ− 1.13 2.23 1.15 0.93 0.93
Global 0.86 0.99 0.95 0.94 0.97

FIG. 9. JLab data for πþ (left) and π− (right) compared with our theory curves at 1-σ C.L. The dark (open) points are data that were
(were not) included in our fit after the qT=Q < 0.5 cut.
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FIG. 12. Comparison of our main extraction of xgð1Þ1T ðxÞ at Q2 ¼ 4 GeV2 for up quarks (left) and down quarks (right) with the results
obtained from the calculation of xgWW

1T ðxÞ using Eq. (3) with g1ðxÞ taken from NNPDF [72], JAM [66], and DSSV [73].

FIG. 10. Main global fit results for xgð1Þ1T ðxÞ at Q2 ¼ 4 GeV2 for up quarks (left) and down quarks (right) obtained in the weighted χ2

method.

FIG. 11. Comparison of our main extraction of xgð1Þ1T ðxÞ at Q2 ¼ 4 GeV2 for up quarks (left) and down quarks (right) with the results
obtained by imposing the large-Nc approximation on the fit. Both functions were obtained using the weighted χ2 method.
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approximation, admittedly because of the presence of
large uncertainties in our extraction. More precise data
will certainly be needed to affirm the degree of violation
(if any) of the WW-type approximation. This is especially
important to resolve since a clear breaking of the WW-type
approximation would be a direct signal of quark-gluon-
quark correlations in the nucleon [20–23]. In Table I, we
compare the χ2w=Npts for our main fit with that from

calculating Acosðϕh−ϕSÞ
LT in the WW-type approximation.

(We note that the WW-type approximation results are

not from a fit since gð1Þ1T ðxÞ is fixed by using Eq. (3) with
g1ðxÞ taken from NNPDF, JAM, or DSSV, and the width
hk2⊥ijg1T is fixed to be the same as the one used in our main
fit.) We not only obtain the same or somewhat better χ2 for
each of the datasets as the WW-type approximation, but the
global χ2w=Npts for our main fit is better than that for the
WW-type approximation. However, as before, this does not
imply that our fit is favored over the WW-type approxi-
mation. As shown in Fig. 13, the statistical spread of the
χ2w=Npts-distribution for our fit results are rather large and
hence overlaps significantly with the χ2w=Npts-distribution

FIG. 13. Distribution of χ2w=Npts: for our main fit results with those obtained in the large-Nc and the WW-type approximations. For the
latter, we have shown as the representative case results using NNPDF. The results do not qualitatively change with using JAM or DSSV.

FIG. 14. Comparison of the worm-gear shift hkxiTL calculated
using our main fit (blue circle) with those obtained in the
WW-type approximation (red squares) as well as lattice QCD
(green triangle). The latter is the rightmost data point from Fig. 13
of Ref. [18] in the domain-wall fermion (DWF) scheme. The
phenomenological results are at Q2 ¼ 4 GeV2.

BHATTACHARYA, KANG, METZ, PENN, and PITONYAK PHYS. REV. D 105, 034007 (2022)

034007-12



from the WW-type approximation. This confirms that at
present the WW-type approximation is compatible with the
experimental data.

C. Comparison with lattice QCD

In this section, we explore the so-called worm-gear shift
hkxiTL for g1T,

½hkxiTL�ðQ2Þ≡M

R
1
0 dx½gð1Þu1T ðx;Q2Þ − gð1Þd1T ðx;Q2Þ�R

1
0 dx½fu1ðx;Q2Þ − fd1ðx;Q2Þ� : ð20Þ

The motivation for calculating this quantity is that it has
also been computed using lattice QCD [16–18]. The results
are shown in Fig. 14 for our main fit, the WW-type
approximation, and a lattice point from Ref. [18] (namely,
the rightmost data point from Fig. 13 of Ref. [18] in the
domain-wall fermion (DWF) scheme). We find consistency
between lattice and our main fit as well as the WW-type
approximation and our main fit, but a slight discrepancy
between lattice and the WW-type approximation, again
perhaps hinting at a breaking of the latter. A similar value
for the worm-gear shift in the WW-type approximation was
found in Ref. [23]. We also note that from the large-Nc fit

(Fig. 11), hkxiTL ¼ 0.14� 0.05, similar to that of our main
fit. We mention some caveats in making a direct comparison
between phenomenology and lattice for theworm-gear shift.
The scale for themain fit andWW-type approximation points
isQ2 ¼ 4 GeV2. For lattice, there is not a definitive scale, but
it can be approximated by the inverse lattice spacing, from
which one finds Q2 ≈ 5.52 GeV2 from the spacing a ¼
0.084 fm used in Ref. [18] for the DWF scheme. In addition,
the full correspondence between the theoretical and lattice
calculations of hkxiTL occurs in the ζ̂ → ∞; bT → 0 limit of
the lattice result, where ζ̂ is a Collins-Soper type parameter
and bT is the separation between the quark fields [18]. The
specific lattice point we compare with in our Fig. 14 has
ζ̂ ≈ 0.42 and bT ¼ 0.34 fm, which were the closest values
used in Ref. [18] to the aforementioned limit. Nevertheless,
the dependence of hkxiTL on these lattice parameters seems
very mild [18]. It is encouraging at this stage that exper-
imental data and lattice are in reasonable agreement.

D. Results in the unweighted χ 2 method

In this section, we discuss what happens to g1T if we do
not weight the JLab data at all, which corresponds to w ¼ 1
in Eq. (18). In Fig. 15, we compare our main fit results to

TABLE II. Same as Table I but for the unweighted χ2 method.

Summary of χ2=Npts:

Data set χ2=Npts:jMain χ2=Npts:jLarge-Nc
χ2=Npts:jNNPDF χ2=Npts:jJAM χ2=Npts:jDSSV

HERMES πþ 1.24 1.23 1.19 1.19 1.19
HERMES π− 0.89 0.88 0.85 0.85 0.85
HERMES π0 2.03 2.03 1.98 1.95 1.96
COMPASS hþ 0.39 0.40 0.71 1.02 0.89
COMPASS h− 0.54 0.53 0.71 0.81 0.80
JLabπþ 0.42 0.15 0.81 0.78 0.96
JLab π− 1.88 2.23 1.15 0.93 0.93
Global 0.83 0.83 0.93 1.02 0.99

FIG. 15. Global fit results for xgð1Þ1T ðxÞ at Q2 ¼ 4 GeV2 for up quarks (left) and down quarks (right) obtained in the unweighted χ2

method (light brown) compared with our main fit (light blue).
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the ones with w ¼ 1. We see that the impact is significantly
larger on the up quark, while for the down quark the two
cases overlap rather well within error bands. We also
notice that the JLab data for π− is not described particularly
well if we do not weight the χ2 (cf. the relevant entry on the
second column of Table II with that of Table I). Since JLab
data are for neutrons, the π− channel, which has somewhat
precise data, has the most impact on the proton g1T for an
up quark (which is the function plotted in the left panel of
Fig. 15). We therefore conclude that what we currently have
in Fig. 10 is the best fit that one can provide at this stage,
certainly because of the strong compatibility that we obtain
simultaneously with all the datasets. (In Appendix B we
compare the fit results obtained in the unweighted χ2

method with the results obtained in the (unweighted)
large-Nc fit and the WW-type approximation.)

V. SUMMARY AND OUTLOOK

In this work, we have performed the first global
extraction of the TMD g1Tðx; k⃗2⊥Þ using all experimental
measurements available, namely data from HERMES,

COMPASS, and JLab on the SIDIS asymmetry Acosðϕh−ϕSÞ
LT .

We have used a so-called weighted χ2 method in order to
allow the JLab data, which has few data points, to also
contribute on the same footing as the HERMES and
COMPASS datasets. Our main fit indicates that the up
quark g1T is positive and the down quark is negative, with
the up quark g1T being somewhat larger in magnitude than
the down quark. Such a feature is qualitatively compatible
with the large-Nc approximation and several model calcu-
lations. Actually, the current experimental data cannot
rule out the strict large-Nc approximation, namely that
gu1T ¼ −gd1T , as we confirmed by conducting a fit imposing
this constraint. Furthermore, we have provided for the first
time a quantitative comparison of g1T from the experimen-
tal data with the WW-type approximation and a lattice
QCD calculation. Our final fit yields a value for the so-
called worm-gear shift that is compatible with lattice QCD.
The agreement between experiment and lattice is encour-
aging and motivates continued comparisons in the future.
Moreover, our results give a slight indication of a breaking
of the WW-type approximation, even though the approxi-
mation is still compatible with experimental data. More
precise data will be needed to reliably determine how much
(if at all) g1T violates the WW-type approximation. Since
such a breaking is directly connected to quark-gluon-quark
correlations in the nucleon, it is of great interest to
rigorously address this question. This includes not only
further theoretical improvements but also additional mea-
surements of ALT from JLab and COMPASS in SIDIS as
well as complimentary measurements at RHIC of vector
boson production, which will allow one to study evolution
effects in more detail. In the future, we plan to explore the
impact of TMD evolution on the present results.
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APPENDIX A: MAIN FIT RESULTS WITH
REPLICAS

In this Appendix, we show the xgð1Þ1T ðxÞ plot with the
error band and all replicas to give the reader a better sense

of how the functional form of gð1Þ1T ðxÞ varies as well as
justify our method of error calculation. From Fig. 16, we

notice in particular that there are some replicas for gð1Þd1T ðxÞ
which are positive. The error bands for gð1Þ1T ðxÞ do appro-
priately account for ∼68% of the replicas as they should
even though the distributions of χ2 themselves are not
strictly Gaussian (see Fig. 13).

APPENDIX B: ADDITIONAL PLOTS FROM FITS
IN THE UNWEIGHTED χ 2 METHOD

In this Appendix, we compare the fit results obtained in
the unweighted χ2 method (Fig. 15) with the large-Nc
(Fig. 17) and the WW-type approximations (Fig. 18). We
notice that the large-Nc results overlap rather well with
these fit results. (Here the large-Nc fit has been carried out
using the unweighted χ2.) Furthermore, the results for the
WW-type approximation are very interesting. There seems
to be a consistent hint for a slight violation of the WW-type
approximation for the up quark in the moderate-to-small-x
region, both in the weighted and unweighted χ2

approaches. However, the differences in the large-x region
seems to be relatively stronger in the weighted χ2 set up.
One can speculate that such a feature is driven by the JLab
data. The qualitative conclusion for the down quark
remains unchanged from the main fit.
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FIG. 16. Comparison of our error bands (blue bands) for xgð1Þ1T ðxÞwith the actual replicas (gray curves). The results have been shown at
Q2 ¼ 4 GeV2 for up quarks (left) and down quarks (right). These results correspond to the weighted χ2 set up.

FIG. 18. Comparison of our unweighted χ2 extraction of xgð1Þ1T ðxÞ atQ2 ¼ 4 GeV2 for up quarks (left) and down quarks (right) with the
results obtained from the calculation of xgWW

1T ðxÞ using Eq. (3) with g1ðxÞ taken from NNPDF [72], JAM [66], and DSSV [73].

FIG. 17. Comparison of our main extraction of xgð1Þ1T ðxÞ at Q2 ¼ 4 GeV2 for up quarks (left) and down quarks (right) with the results
obtained by imposing the large-Nc approximation on the fit. Both functions were obtained using the unweighted χ2 method.
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