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We study the correlation between the quark spin and orbital angular momentum inside the pion meson.
Similar to the case inside the nucleon, the longitudinal spin-orbit correlation Cq=π

z in the pion meson can be
expressed in terms of the corresponding generalized parton distributions (GPDs) and generalized transverse
momentum distributions (GTMDs). This provides new information about the spin structure of the pion.
Using the wave functions of the pion in the light-cone quark model and the overlap representation for GPDs
and GTMDs, we present the analytical results for the quark longitudinal spin-orbit correlation. We find
that the GPD approach and the GTMD approach lead to the same results. The numerical results are also

obtained, showing that the correlation in the pion is antialigned. In addition, we compare Cq=π
z from the

GPD approach and the GTMD approach, with x and the transverse momentum kT unintegrated.
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I. INTRODUCTION

Understanding the spin content of hadrons has been
recognized as one of the main goals in hadronic physics
[1–3]. Particularly, the correlations between the parton/
hadron spin and the orbital motion of partons inside the
hadron can bring much broader contents to the spin and
partonic structure of hadrons. For example, the correlation
between the transverse spin of the nucleon and the parton
transverse momentum leads to a novel distribution called as
Sivers function [4–6], which is the asymmetric distribution
of the unpolarized parton in the transversely polarized
nucleon. Recently, the parton longitudinal spin-orbit cor-
relation [7], sketched by hLa

zSaz i, has also received a lot of
attention. It describes the difference between the right-hand
and left-hand quark contributions to the quark longitudinal
orbital angular momentum (OAM), and provides a new
piece of independent information about the longitudinal
spin structure of hadrons. Another advantage of the parton
longitudinal spin-orbit correlation is that this correlation is
invariant under the parity transformation.
In Ref. [7], the parton spin-orbit correlation in the

nucleon has been studied in detail. In particularly, a local
gauge-invariant operator definition for the longitudinal
spin-orbit correlation is reported, and the quantitative
relations between the quark spin-orbit correlation and the
moments of the twist-2 or twist-3 (GPDs are provided. In

this way, the spin-orbit correlation can be accessed through
measurable observables. These extend the previous study
[8] that the information of spin-orbit correlations can be
deduced from the GTMDs [9–11], which are difficult to
measure experimentally so far.
In this work, we study the correlation between the

longitudinal spin and the quark orbital angular momentum
of valence quarks inside the pion. As the pion meson is a
spin-0 hadron, the knowledge of its spin structure in terms
of polarized partons is less known and seldom investigated.
Fortunately, the parton longitudinal spin-orbit correlation
does not require polarization of a hadron. Therefore, in
principle one can explore this effect inside spin-0 hadron
such as pion meson. For this purpose we apply a light-cone
quark model to provide relations for the spin-orbit corre-
lation of pion meson in terms of pion GPDs or GTMDs. It
is also interesting to verify if the GPD approach and the
GTMD approach can lead to the same result for spin-orbit
correlation. We will clarify this result for the pion as a
case study.
The rest of the paper is organized as follows: In Sec. II,

we define the quark spin-orbit correlation operator in the
pion and express the corresponding expectation value in
terms of form factors. In Sec. III, we relate the form factors
with specific moments of the pion GPDs/GTMDs. In
Sec. IV, we provide the analytic results as well as the
numerical results of the correlation using the pion wave
functions deduced from a light-cone quark model. We
summarize the paper in Sec. V.

II. DEFINITION

The gauge-invariant light-front operator for quark longi-
tudinal OAM has attracted a lot of interests because it enters
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the Ji decomposition of the longitudinal spin of the
nucleon [2]

Ĵz ¼ Ŝqz þ L̂q
z þ ĴGz : ð1Þ

Here, L̂q
z represents the operator for quark longitudinal

OAM, which is the sum of the left- and right-handed quark
contributions:

L̂q
z ¼

Z
d3x

1

2
ψ̄γþðx × iD

↔Þzψ ¼ L̂qR
z þ L̂qL

z ; ð2Þ

where D ¼ ∂⃖ − ∂⃗ − 2igA is the symmetric covariant
derivative, ψR;L ¼ 1

2
ðI � γ5Þψ , a� ¼ 1ffiffi

2
p ða0 � a3Þ with a

denoting a generic four-vector, d3x ¼ dx−d2x⊥. However,
the complete characterization of the spin structure also
requires the knowledge of quark spin-orbit correlations.
Particularly, the gauge-invariant longitudinal spin-orbital
correlation describes the difference between these left- and
right-handed quark contributions [7]:

Ĉq
z ¼

Z
d3x

1

2
ψ̄γþγ5ðx × iD

↔
Þzψ ¼ L̂qR

z − L̂qL
z : ð3Þ

This kind of quark spin-orbit correlation inside the spin-
1=2 hadron (the nucleon) was studied in Ref. [7] in detail,
but has not been investigated in the case of the spin-0
hadron, such as pion meson. Thus, the study of this effect
inside the pion meson will provide unique information on
the longitudinal-spin of the quark and orbital motion of
quarks inside a spin-0 hadron, which has seldom been
explored so far.
The matrix elements of the operator in Eq. (3) can be

parametrized in terms of form factors. To do this one can
starts from the parametrization of the matrix elements of the
energy momentum tensor T̂μν

q , since the quark OAM
operator can also be expressed in terms of T̂þi

q

L̂q
z ¼

Z
d3xðx1T̂þ2

q − x2T̂þ1
q Þ; ð4Þ

where T̂μν has the form [3]

T̂μν
q ¼ 1

2
ψ̄γμiD

↔ν
ψ ð5Þ

¼ T̂μν
qR þ T̂μν

qL ; ð6Þ

where T̂μν
qR;L ¼ 1

2
ψ̄R;Lγ

μiD
↔ν

ψR;L. Spin-0 hadrons such as the
pion meson whose quark energy momentum tensor has
been studied can be parametrized in terms of three form
factors [12–15]

hp0jT̂μν
q ð0Þjpi ¼ 2PμPνAqðtÞ þ

1

2
ðΔμΔν − gμνΔ2ÞDqðtÞ

þ 2M2
πgμνc̄qðtÞ; ð7Þ

where Mπ is the pion mass, P ¼ p0þp
2

is the average four-
momentum, and t ¼ Δ2 is the square of the four-momen-
tum transfer Δ ¼ p0 − p. Substituting Eq. (7) into Eq. (4),
one finds that Lq, the OAM of quarks inside the pion, is
actually zero.
Similarly, one can also write the quark spin-orbit

correlation operator as [7]

Ĉq
z ¼

Z
d3xðx1T̂þ2

q5 − x2T̂þ1
q5 Þ; ð8Þ

where T̂μν
q5 is the parity-odd partner of the quark energy-

momentum tensor operator and has the form

T̂μν
q5 ¼

1

2
ψ̄γμγ5iD

↔ν
ψ ð9Þ

¼ T̂μν
qR − T̂μν

qL : ð10Þ

The nonforward matrix element of the parity-odd oper-
ator T̂μν

q5 sandwiched by two pion states can be parametrized
in terms of two form factors [7]1

hp0jT̂μν
q5ð0Þjpi ¼ −

P½μiϵν�þΔP

2Pþ ðC̃qðtÞ − 2F̃qðtÞÞ
þ iϵμνΔPF̃qðtÞ þOðΔ2Þ; ð11Þ

where ϵμναβ is a totally antisymmetric tensor, with
ϵþ−12 ¼ 1.
Substituting Eq. (11) into the matrix element of Eq. (8)

and working with P⊥ ¼ 0⊥, which is the case of the light-
cone frame:

Cq=π
z ≡ hpjĈq

z jpi
hpjpi ¼ C̃qð0Þ: ð12Þ

Here, a covariant normalization of pion states has been
used: hp0jpi ¼ 2p0ð2πÞ3δ3ðp0 − pÞ. Therefore, in order to
obtain the correlation in the pion meson, one only needs to
measure the form factor C̃qðtÞ.

III. CONNECTION BETWEEN SPIN-ORBIT
CORRELATION IN THE PION AND GPDS/GTMDS

As in the case of energy-momentum tensor, there is no
fundamental probe that can couple to T̂μν

q5. Therefore, we
will re-represent T̂μν

q5 by relating the corresponding form

1Ã does not appears here since Ã is the hadron-spin dependent
form factor, while the pion is spin-0.
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factors to the specific moments of the GPDs or GTMDs.
The relation can be obtained using the QCD identity

ψ̄γ½μγ5iD
↔ν�

ψ ¼ 2mψ̄iσμνγ5ψ − ϵμναβ∂αðψ̄γβψÞ; ð13Þ

where m is the quark mass. Taking the nonforward matrix
elements of both sides in the above equation, the left-hand
side corresponds to the spin-orbit correlation, while we find
for the right side:

hp0jψ̄γμψ jpi ¼ Γμ
qV ð14Þ

hp0jψ̄iσμνγ5ψ jpi ¼ Γμν
qT ð15Þ

with

Γμ
qV ¼ 2Pμ

Z
Fq=π
1 ðx; ξ; tÞdx ð16Þ

Γμν
qT ¼ 2iϵμναβΔαPβ

Mπ

Z
Hq=π

1 ðx; ξ; tÞdx ð17Þ

where ξ ¼ −Δþ=2Pþ is the skewness variable, and
Fq=π
1 ðx; ξ; tÞ; Hq=π

1 ðx; ξ; tÞ are the twist-2 GPDs [9,16] of
the pion parametrizing the nonlocal axial-vector and tensor
light-front quark correlators, respectively

1

2

Z
dz−

2π
eixP

þz−hp0jψ̄
�
−
z−

2

�
γþψ

�
z−

2

�
jpi ¼ Fq=π

1 ðx; ξ; tÞ

ð18Þ

1

2

Z
dz−

2π
eixP

þz−hp0jψ̄
�
−
z−

2

�
iσjþγ5ψ

�
z−

2

�
jpi

¼ −
iϵij⊥Δi⊥
Mπ

Hq=π
1 ðx; ξ; tÞ ð19Þ

Therefore, the spin-orbit correlation can be determined
by the combination of the moments of Fq=π

1 ðx; ξ; tÞ and
Hq=π

1 ðx; ξ; tÞ

C̃q=πðtÞ¼
Z

dx
�

m
Mπ

Hq=π
1 ðx;ξ; tÞ−1

2
Fq=π
1 ðx;ξ; tÞ

�
; ð20Þ

then the expectation value of quark spin-orbit correlation
operator is given

Cq=π
z ¼

Z
dx

�
mq

Mπ
Hq=π

1 ðx; 0; 0Þ − 1

2
Fq=π
1 ðx; 0; 0Þ

�
ð21Þ

where ξ, t ¼ 0. A comparison can be made with the
correlation in the nucleon [7]

Cq=n
z ¼ 1

2

Z
dxxH̃qðx; 0; 0Þ −

1

2

�
Fq=n
1 ð0Þ − m

2M
Hq=n

1 ð0Þ
�
;

ð22Þ

where the superscript q=n represents the quark flavor q in
nucleon n, H̃ðx; ξ; tÞ is helicity-flip GPD, Fq=n

1 ðtÞ is the

Dirac form factor, and Hq=n
1 ðtÞ is a tensor form factor. In

Ref. [7], in order to estimate Cq=n
z , the light-front constitu-

ent quark model and the light-front chiral quark-soliton
model [17] have been applied to calculate the moments of
H̃qðx; 0; 0Þ, the results are compared with experimental
measurements [18] and lattice calculation [19]. The main
difference between the pion case and the nucleon case is
that the helicity-flip H̃ also contributes to the spin-orbit
correlation of the nucleon. This is because the H̃ does not
exist in the case of the pion meson.
As derived in Refs. [8,20,21], the spin-orbit correlations

can be also expressed in terms of GTMDs. Particularly, Cz
is connected to the GTMD G1;1 by the relation

Cq=π
z ¼

Z
dxd2k⊥

k2⊥
M2

Gq=π
1;1 ðx; 0; k2⊥; 0; 0Þ: ð23Þ

where Gπ
1;1ðx; ξ; k2⊥; k⊥ · Δ⊥;Δ2⊥Þ is defined as

W½γþγ5� ¼ −
iεij⊥ki⊥Δ

j
⊥

M2
π

Gπ
1;1; ð24Þ

with the notation

WΓðx; P; k⊥;ΔÞ ¼
1

2
Tr½WðP; x; k⊥;ΔÞΓ�

¼
Z

dz−d2z⊥
2ð2πÞ3 eik·zhp0jψ̄

�
−
1

2
z

�

× ΓWψ

�
1

2
z

�
jpijzþ¼0: ð25Þ

where WðP; x; k⊥;ΔÞ is the generalized parton correlation
function (GPCF) of the pion. For completeness we also
write down the decomposition of the GPCF to other twist-2
GTMDs:

W½γþ� ¼ F1;1; ð26Þ

W½iσjþγ5� ¼ −
iεij⊥ki⊥
Mπ

H1;1 −
iεij⊥Δi⊥
Mπ

H1;2; ð27Þ

Note that unlike F1 and H1 which are the GPD-limit of
more general GTMDs by k⊥ integral, there is no corre-
sponding GPD for the GTMD G1;1 since it is k⊥-odd.
Therefore, the relation Eq. (23) provides another expression
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for Cq
z from a more general structure of the parton

correlation.

IV. MODEL RESULTS OF THE SPIN-ORBIT
CORRELATION OF THE PION MESON

In the previous section, we present two different expres-
sions for the quark spin-orbit correlation Cq

z of the pion
meson. One is in terms of GPDs [Eq. (21)], the other is in
terms of GTMD [Eq. (23)]. In this section, we will provide
the model results for Cq=π

z using these two relations. We
note that in the case of nucleon, the light-front constituent
quark model and the light-front chiral quark-soliton model
[17] were applied to calculate the quark spin-orbit corre-
lation numerically. Here, we will provide the analytic result
as well numerical result for Cq=π

z using a light-cone quark
model for the pion meson. The light-cone formalism has
been widely used in the parton distribution functions of
nucleons and mesons [22,23], and the overlap representa-
tion has also been used to study various form factors of
the nucleon [24] and the pion [25], anomalous magnetic
moment of the nucleon [26] as well as GPDs [27]. The
reliability of this model is beyond doubt, and the resulting
predicted results agree well with the experiments.
In Ref. [28], the light-cone quark model [25] was applied

to calculate the GTMDs of the pion meson, within the
overlap representation for the GPCFs. In this model, the
light-cone wave function of the minimal Fock states
ψðx; k⊥; λq; λq̄Þ of these wave functions have been derived

in Ref. [25] by considering the relativistic effect of quarks
[29,30]:

ψðx; k⊥;þ;−Þ ¼ þ mqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2

q þ k2⊥Þ
q ϕπ ðlz ¼ 0Þ;

ψðx; k⊥;−;þÞ ¼ −
mqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðm2
q þ k2⊥Þ

q ϕπ ðlz ¼ 0Þ;

ψðx; k⊥;þ;þÞ ¼ −
k⊥1 − ik⊥2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2

q þ k2⊥Þ
q ϕπ ðlz ¼ −1Þ;

ψðx; k⊥;−;−Þ ¼ −
k⊥1 þ ik⊥2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2

q þ k2⊥Þ
q ϕπ ðlz ¼ þ1Þ; ð28Þ

where þ, − denotes the helicity of the quark and antiquark,
and

ϕπðx; k⊥Þ ¼ A exp

�
−

1

8β2
k2⊥ þm2

q

xð1 − xÞ
�
: ð29Þ

As shown in Ref. [25], within the wave functions in
Eq. (28), the light-cone model can describe the transition
form factor of the pion meson fairly well.
In this work, we adopt the model results directly from

Ref. [28], in which F1;1, H1;1, H1;2, and G1;1 have the
expressions:

Fq=π
1;1 ¼ C

�
2k2⊥ −

ð1 − xÞ2
1 − ξ2=4

Δ2⊥
2

−
ξð1 − xÞ
1 − ξ2=4

Δ⊥ · k⊥ þ 2m2
q

�
ð30Þ

×exp

�
−
ð2xð1þ ξ2=4Þ − ξ2Þðk2⊥ þm2

qÞ þ xð1 − xÞ2Δ2⊥=2 − ξð1 − xÞ2k⊥ · Δ⊥
8β2ðx2 − ξ2=4Þð1 − xÞ

�
ð31Þ

Gq=π
1;1 ¼ −C

2ð1 − xÞM2
π

1 − ξ2=4
exp

�
ð2xð1þ ξ2=4Þ − ξ2Þðk2⊥ þm2

qÞ þ xð1 − xÞ2Δ2⊥=2 − ξð1 − xÞ2k⊥ · Δ⊥

8β2ðx2 − ξ2=4Þð1 − xÞ
� ; ð32Þ

Hq=π
1;1 ¼ 0 ð33Þ

Hq=π
1;2 ¼ C

2ð1 − xÞmqMπ

1 − ξ2=4
exp

�
−
ð2xð1þ ξ2=4Þ − ξ2Þðk2⊥ þm2

qÞ þ xð1 − xÞ2Δ2⊥=2 − ξð1 − xÞ2k⊥ · Δ⊥
8β2ðx2 − ξ2=4Þð1 − xÞ

�
; ð34Þ

for the valence quark, where

C ¼ A2

32π3BþB−
ð35Þ

with
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Bþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k⊥ þ 1 − x

1þ ξ=2
Δ2⊥
2

�
2

þm2
q

s
ð36Þ

B− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k⊥ −

1 − x
1 − ξ=2

Δ2⊥
2

�
2

þm2
q

s
: ð37Þ

The k⊥-even GTMDs can be reduced to GPDs after
integrating over k⊥:

Fq=π
1 ðx; ξ; tÞ ¼

Z
d2k⊥F1;1; ð38Þ

Hq=π
1 ðx; ξ; tÞ ¼

Z
d2k⊥

�
k⊥ · Δ⊥
Δ2⊥

H1;1 þH1;2

�
: ð39Þ

Thus, using Eq. (21), in the GPD approach for the spin-
orbit correlation,

Cq=π
z jGPD ¼

Z
dx

�
mq

Mπ
HΔ

1 ðx; 0; 0Þ −
1

2
F1ðx; 0; 0Þ

�

¼ A2

Z
dxd2k⊥

2ð1 − xÞm2
q − ðk2⊥ þm2

qÞ
32π3ðk2⊥ þm2

qÞ
exp

�
−

k2⊥ þm2
q

4β2xð1 − xÞ
�

¼
Z

dxCq=π
z ðxÞ ð40Þ

In the above equation, we have used Cq=π
z ðxÞ to denote the integrand.

Since the integration over x satisfies the relation:

Z
dx d2k⊥2ð1 − xÞ exp

�
−

k2⊥ þm2
q

4β2xð1 − xÞ
�

¼
Z

dx d2k⊥ exp

�
−

k2⊥ þm2
q

4β2xð1 − xÞ
�
; ð41Þ

Eq. (41) can be rewritten as

Cq=π
z jGPD ¼ A2

Z
dxd2k⊥

−k2⊥
32π3ðk2⊥ þm2

qÞ
exp

�
−

k2⊥ þm2
q

4β2xð1 − xÞ
�

ð42Þ

after integrating over k⊥, the correlation has the form

Cq=π
z jGPD ¼ −

A2

32π2

Z
dx

�
β2xð1 − xÞ exp

�
−

m2
q

4β2xð1 − xÞ
�
−m2

qΓ
�
0;

m2
q

4β2xð1 − xÞ
��

; ð43Þ

where Γ½0; x� is the zeroth order incomplete Γ function

Γ½0; x� ¼
Z

∞

x

dt
t
e−t: ð44Þ

The integral in over x can be performed numerically.
On the other hand, as shown in Eq. (23), Cq=π

z can be also calculated from the GTMD G1;1 directly:

Cq=π
z jGTMD ¼

Z
dxd2k⊥

k2⊥
M2

Gπ
1;ðx; 0; k2⊥; 0; 0Þ

¼ −A2

Z
dxd2k⊥

ð1 − xÞk2⊥
16π3ðk2⊥ þm2

qÞ
exp

�
−

k2⊥ þm2
q

4β2xð1 − xÞ
�

¼ −
A2

32π2

Z
dx

�
β2xð1 − xÞ exp

�
−

m2
q

4β2xð1 − xÞ
�
−m2

qΓ
�
0;

m2
q

4β2xð1 − xÞ
��

¼
Z

dxCq=π
z ðxÞ: ð45Þ
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We find that the above expression is the same as that in
Eq. (43). Thus, within the light-cone quark model, we find
that the GPD approach and the GTMD approach for the
correlation indeed can lead to the same results for Cq=π

z .
In the following, we can obtain the numerical results for

Cq=π
z by adopting the values for the parameters and

performing the x integral in Eqs. (43) or (45). We follow
the choice in Refs. [31] for the parameter values: A ¼
31.30 GeV−1 β ¼ 0.41 GeV, m ¼ 0.2 GeV. The numeri-
cal result of the quark spin-orbit correlation inside the pion
meson in the light-cone quark model is

Cq=π
z ¼ −0.32 ð46Þ

where q denotes the valence quarks inside pion (e.g., u and
d̄ in πþ). Similar to the case in the nucleon [7], the sign of
this correlation is negative, which means that the quark
longitudinal spin and the quark OAM tend to be anticorre-
lated inside the pion meson. The absolute value is smaller
than those of the nucleon (Cu=n

z ≈ −0.9 and Cd=n
z ≈ −0.53

[7]), implicating a weaker correlation in the pion meson
than that in the nucleon.
In order to show the contribution to the quark spin-orbit

correlation in the different x region, we keep Cq=π
z unin-

tegrated. That is, we calculateCq=π
z ðxÞ appearing in Eq. (43)

or Eq. (45) and show the plot vs x in Fig. 1. We find that in
our model the largest contribution comes from the region x
around 0.5.
In the following, we also explore the contribution in

different region of transverse momentum. Before doing
this, we would like to point out that there is another method
to calculate the spin-orbit correlation directly from the
wave function of the pion meson, instead of GPD or
GTMD. As Cz is the difference of the orbital angular
momenta from left-hand and right-hand quarks. Using the
wave functions in Eq. (28), Cq=π can be also expressed as

Cq=π
z jJM ¼ L̂qR

z − L̂qL
z

¼ 1

16π3

Z
dx

Z
d2k⊥½ð−jψðx; k⊥;þ;þj2Þ

− ðþjψðx; k⊥;−;−Þj2Þ�

¼ −A2

Z
dxd2k⊥

ð1 − xÞk2⊥
16π3ðk2⊥ þm2

qÞ

× exp

�
−

k2⊥ þm2
q

4β2xð1 − xÞ
�
: ð47Þ

FIG. 2. Left panel: the k⊥-dependence of the unintegrated quark correlation Cq=π
z ðx; k2⊥Þ from the GPD approach at x ¼ 0.1, 0.3, 0.5,

and 0.7 respectively. Right panel: similar to the left panel, but for that from the GTMD approach.

FIG. 1. The x-dependence of the quark longitudinal spin-orbit
correlations Cq=π

z ðxÞ in the pion meson.
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We find that the results are consistent with the result from
the GTMD approach. We point out that this method is
similar to the Jaffe-Manohar approach for the quark OAM
[1]. We also comment that in this approach, the quark OAM
inside the pion meson vanishes, as

Lq=π
z jJM ¼ L̂qR

z þ L̂qL
z

¼ 1

16π3

Z
dx

Z
d2k⊥½ð−jψðx; k⊥;þ;þj2Þ

þ ðþjψðx; k⊥;−;−Þj2Þ�: ð48Þ

Using the wave function in Eq. (28), we find that Lq=π
z is

zero. It comes from the cancelation of the contributions
from the left-handed and right-handed quark.
In Fig. 2, we plot the k⊥ dependence of Czðx; k⊥Þ, which

is Cz keeping both x and k⊥ unintegrated. The left panel
shows Czðx; k⊥Þ at x ¼ 0.1, 0.3, 0.5 and 0.7 from the GPD
approach, while the right panel shows that from the GTMD
approach. Our results show that, althoughCzðxÞ is the same
in the two approaches, the k⊥-dependence of Czðx; k⊥Þ can
be actually different. In the GTMD approach, Czðx; k⊥Þ is
negative in the whole region, while in the GPD approach,
Czðx; k⊥Þ is positive in the small k⊥ when x is not large.

V. CONCLUSIONS

We studied the correlation between the longitudinal spin
and the quark orbit motion of valence quarks inside the
pion meson. We started from the parity-odd partner
of the quark energy-momentum tensor operator T̂μν

q5 and

decompose it into form factors, among which the quark
spin orbit correlation is determined by the form factor Cq

z.
We provided two expressions for this correlation Cq

z . One
is in terms of the GPDs of the pion meson, from which
the expectation value of the correlation is given by the
combination of the first-x moments of Fq=π

1 ðx; ξ; tÞ and

Hq=π
1 ðx; ξ; tÞ at ξ ¼ 0, t ¼ 0 GeV2. The other is in terms of

the GTMD G1;1. Using the overlap representation for the
pion GPDs and GTMDs derived from a light-cone quark
model, we then calculated the analytic result of Cq=π

z . We
found that the results from the GPD approach are the same
as that from the GTMD approach. This verifies from the
model aspect that these two approaches can be used to
access the spin-orbit correlation. In addition, the numerical
result of the quark spin-orbit correlation in the model was
calculated as Cq=π

z ¼ −0.32. Similar to the case of the
nucleon, the negative sign indicates that the quark spin and
OAM is tend to be anticorrelated. We also present the
results for the x-dependence and the k⊥-dependence of the
longitudinal spin-orbit correlation, that is, the unintegrated
Cq=π
z . Our study about the quark longitudinal spin provides

new information for the spin correlation inside the pion
meson, further experimental measurements are needed to
accurately determine this correlation.
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