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Quark spin-orbit correlations in the pion in a light-cone quark model
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We study the correlation between the quark spin and orbital angular momentum inside the pion meson.
Similar to the case inside the nucleon, the longitudinal spin-orbit correlation Cg/ " in the pion meson can be
expressed in terms of the corresponding generalized parton distributions (GPDs) and generalized transverse
momentum distributions (GTMDs). This provides new information about the spin structure of the pion.
Using the wave functions of the pion in the light-cone quark model and the overlap representation for GPDs
and GTMDs, we present the analytical results for the quark longitudinal spin-orbit correlation. We find
that the GPD approach and the GTMD approach lead to the same results. The numerical results are also

obtained, showing that the correlation in the pion is antialigned. In addition, we compare C'

97 from the

GPD approach and the GTMD approach, with x and the transverse momentum k7 unintegrated.
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I. INTRODUCTION

Understanding the spin content of hadrons has been
recognized as one of the main goals in hadronic physics
[1-3]. Particularly, the correlations between the parton/
hadron spin and the orbital motion of partons inside the
hadron can bring much broader contents to the spin and
partonic structure of hadrons. For example, the correlation
between the transverse spin of the nucleon and the parton
transverse momentum leads to a novel distribution called as
Sivers function [4—6], which is the asymmetric distribution
of the unpolarized parton in the transversely polarized
nucleon. Recently, the parton longitudinal spin-orbit cor-
relation [7], sketched by (L¢S¢), has also received a lot of
attention. It describes the difference between the right-hand
and left-hand quark contributions to the quark longitudinal
orbital angular momentum (OAM), and provides a new
piece of independent information about the longitudinal
spin structure of hadrons. Another advantage of the parton
longitudinal spin-orbit correlation is that this correlation is
invariant under the parity transformation.

In Ref. [7], the parton spin-orbit correlation in the
nucleon has been studied in detail. In particularly, a local
gauge-invariant operator definition for the longitudinal
spin-orbit correlation is reported, and the quantitative
relations between the quark spin-orbit correlation and the
moments of the twist-2 or twist-3 (GPDs are provided. In
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this way, the spin-orbit correlation can be accessed through
measurable observables. These extend the previous study
[8] that the information of spin-orbit correlations can be
deduced from the GTMDs [9-11], which are difficult to
measure experimentally so far.

In this work, we study the correlation between the
longitudinal spin and the quark orbital angular momentum
of valence quarks inside the pion. As the pion meson is a
spin-0 hadron, the knowledge of its spin structure in terms
of polarized partons is less known and seldom investigated.
Fortunately, the parton longitudinal spin-orbit correlation
does not require polarization of a hadron. Therefore, in
principle one can explore this effect inside spin-0 hadron
such as pion meson. For this purpose we apply a light-cone
quark model to provide relations for the spin-orbit corre-
lation of pion meson in terms of pion GPDs or GTMDs. It
is also interesting to verify if the GPD approach and the
GTMD approach can lead to the same result for spin-orbit
correlation. We will clarify this result for the pion as a
case study.

The rest of the paper is organized as follows: In Sec. II,
we define the quark spin-orbit correlation operator in the
pion and express the corresponding expectation value in
terms of form factors. In Sec. III, we relate the form factors
with specific moments of the pion GPDs/GTMDs. In
Sec. IV, we provide the analytic results as well as the
numerical results of the correlation using the pion wave
functions deduced from a light-cone quark model. We
summarize the paper in Sec. V.

II. DEFINITION

The gauge-invariant light-front operator for quark longi-
tudinal OAM has attracted a lot of interests because it enters

Published by the American Physical Society
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the Ji decomposition of the longitudinal spin of the
nucleon [2]

J.=81+L1+J¢. (1)

Here, L? represents the operator for quark longitudinal
OAM, which is the sum of the left- and right-handed quark
contributions:

A

1 < 5 5
L= / gyt (xx D)y = L&+ L, (2)

where D=0-0 - 2igA is the symmetric covariant

derivative, g, =3 (I £ys)y, a* \}—( a’ £+ a’) with a

denoting a generic four-vector, d°>x = dx~d’x . However,
the complete characterization of the spin structure also
requires the knowledge of quark spin-orbit correlations.
Particularly, the gauge-invariant longitudinal spin-orbital
correlation describes the difference between these left- and
right-handed quark contributions [7]:

~ 1 < N ~
Cc? = /d3x51/_/y+7/5 (x x D)y = LI* - LI, (3)

This kind of quark spin-orbit correlation inside the spin-
1/2 hadron (the nucleon) was studied in Ref. [7] in detail,
but has not been investigated in the case of the spin-0
hadron, such as pion meson. Thus, the study of this effect
inside the pion meson will provide unique information on
the longitudinal-spin of the quark and orbital motion of
quarks inside a spin-O0 hadron, which has seldom been
explored so far.

The matrix elements of the operator in Eq. (3) can be
parametrized in terms of form factors. To do this one can
starts from the parametrization of the matrix elements of the
energy momentum tensor 7%, since the quark OAM

operator can also be expressed in terms of T;i
i / P T - 2T, (4)
where T has the form [3]
A 1 _— v
Iy =5wriDy (5)
= T4, + T4 (6)

A g4 .
where 7% = 2y 1 7*iD wg 1. Spin-0 hadrons such as the
pion meson whose quark energy momentum tensor has

been studied can be parametrized in terms of three form
factors [12—15]

A 1
(PITq (0)|p) = 2P"PA,(1) + 3 FUA*)D(1)

+2M7gT, (1), (7)

(AAY —

where M, is the pion mass, P = ’f# is the average four-
momentum, and ¢ = A? is the square of the four-momen-
tum transfer A = p’ — p. Substituting Eq. (7) into Eq. (4),
one finds that L,, the OAM of quarks inside the pion, is
actually zero.

Similarly, one can also write the quark spin-orbit
correlation operator as [7]

&r = / Px(x T2 = 2T, (8)

where T’;’; is the parity-odd partner of the quark energy-
momentum tensor operator and has the form

A 1_ v
TS = F0r'rsiD y )
= T4 — T4, (10)

The nonforward matrix element of the parity-odd oper-
ator 7* 'g sandwiched by two pion states can be parametrized
in terms of two form factors [7]

. Pljet+aP -
(P|T45(0)|p) = == 57— (Cy(1) = 2F, (1))
L iAP (1) + O(A2), (11)

where ¢** is a totally antisymmetric tensor, with
€+—12 =1.

Substituting Eq. (11) into the matrix element of Eq. (8)
and working with P, = 0, which is the case of the light-
cone frame:

cg/”z%: C,(0). (12)

Here, a covariant normalization of pion states has been
used: {p'|p) = 2p°(27)*8*(p' —p). Therefore, in order to
obtain the correlation in the pion meson, one only needs to
measure the form factor C ().

ITII. CONNECTION BETWEEN SPIN-ORBIT
CORRELATION IN THE PION AND GPDS/GTMDS

As in the case of energy-momentum tensor, there is no
fundamental probe that can couple to T . Therefore, we

will re-represent T” by relating the correspondlng form

'A does not appears here since A is the hadron-spin dependent
form factor, while the pion is spin-0.
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factors to the specific moments of the GPDs or GTMDs.
The relation can be obtained using the QCD identity

gy¥ysiD y = 2mipic™ysy — 0, (pypw),  (13)

where m is the quark mass. Taking the nonforward matrix
elements of both sides in the above equation, the left-hand
side corresponds to the spin-orbit correlation, while we find
for the right side:

(p'lor"wlp) =Tqy (14)
(P'lwic"ysw|p) = Tyr (15)
with
I, = 2P / FI (x, & 1)dx (16)
") 2i€”baﬁAaPﬁ q/x
T HY7(x, &, 1)dx (17)
where &= —AT/2P" is the skewness variable, and

FU"(x,&,1), HY™ (x,£.1) are the twist-2 GPDs [9,16] of
the pion parametrizing the nonlocal axial-vector and tensor
light-front quark correlators, respectively

;/d;ﬂ P <p|t//< 2)7/ w( >|p> FU"(x,8,1)

(18)
l K Ptz ) 2N it -
2/ 7 € (P'lw 5 |io" rsw —|lp)
le
_ IEX/I”LH"/”()C £ 1) (19)

Therefore, the spin-orbit correlation can be determined
by the combination of the moments of F i’/ "(x,&,1) and

HY™(x,&,1)

. x |y
Cq/”(t>:/dX<MlﬂH(1]/ (x,é,t)_EF?/ (x’§7t)>7 (20)

then the expectation value of quark spin-orbit correlation
operator is given

1
cy = / dx<ﬂ”yﬂ’f/”<x,o,o> —2F‘f/”<x,0,0>> (21)

where &, + =0. A comparison can be made with the
correlation in the nucleon [7]

n 1 7 1 q/n m n
con =1 / dxnfl (x.0,0) - 3 <F11/ (0) 5 1Y (0)),
(22)

where the superscript ¢/n represents the quark flavor ¢ in
nucleon n, H(x, &, t) is helicity-flip GPD, F‘l’/ "(¢) is the
Dirac form factor, and H%'" (1) is a tensor form factor. In
Ref. [7], in order to estimate C¥/", the light-front constitu-
ent quark model and the light-front chiral quark-soliton
model [17] have been applied to calculate the moments of
H 4(x,0,0), the results are compared with experimental
measurements [18] and lattice calculation [19]. The main
difference between the pion case and the nucleon case is
that the helicity-flip A also contributes to the spin-orbit
correlation of the nucleon. This is because the H does not
exist in the case of the pion meson.

As derived in Refs. [8,20,21], the spin-orbit correlations
can be also expressed in terms of GTMDs. Particularly, C,
is connected to the GTMD G ; by the relation

k2
il = / dxdzklﬁéG?fl”(x,O,ki,O, 0). (23)
where G, (x, &, k% .k - A, A7) is defined as

ik A
# Gl (24)

wlrirsl = —
with the notation

1
WF(.X:,P,kl, A) = ETI'{W(P,X,kl, A)F]

- [Satee(-3)

xFWw(l >|p>|z+o (25)

where W(P, x,k |, A) is the generalized parton correlation
function (GPCF) of the pion. For completeness we also
write down the decomposition of the GPCF to other twist-2
GTMDs:

wlirl = Fi1. (26)
- ik i Al
Wil = - S =S e (2T)

Note that unlike F; and H; which are the GPD-limit of
more general GTMDs by k, integral, there is no corre-
sponding GPD for the GTMD G, since it is k -odd.
Therefore, the relation Eq. (23) provides another expression
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for C? from a more general structure of the parton
correlation.

IV. MODEL RESULTS OF THE SPIN-ORBIT
CORRELATION OF THE PION MESON

In the previous section, we present two different expres-
sions for the quark spin-orbit correlation C? of the pion
meson. One is in terms of GPDs [Eq. (21)], the other is in
terms of GTMD [Eq. (23)]. In this section, we will provide

the model results for C%/" using these two relations. We
note that in the case of nucleon, the light-front constituent
quark model and the light-front chiral quark-soliton model
[17] were applied to calculate the quark spin-orbit corre-
lation numerically. Here, we will provide the analytic result

as well numerical result for CZ/ " using a light-cone quark
model for the pion meson. The light-cone formalism has
been widely used in the parton distribution functions of
nucleons and mesons [22,23], and the overlap representa-
tion has also been used to study various form factors of
the nucleon [24] and the pion [25], anomalous magnetic
moment of the nucleon [26] as well as GPDs [27]. The
reliability of this model is beyond doubt, and the resulting
predicted results agree well with the experiments.

In Ref. [28], the light-cone quark model [25] was applied
to calculate the GTMDs of the pion meson, within the
overlap representation for the GPCFs. In this model, the
light-cone wave function of the minimal Fock states
w(x, k.4, ;) of these wave functions have been derived

in Ref. [25] by considering the relativistic effect of quarks
[29,30]:

m
w(kaLv +9 _) - +7q¢7[ (lz = 0)’

2(m3 +k3_)

m

l//(x’kj_v ) +) = _—q¢ﬂ' (lz = O)’

2(mg +k7)

ki —ik
vk, +,+) = —Milufﬁn (IF=-1),

2(mi +k7)

k ik
wlek - —) = ——HEL o) (28)

2(mg +k7)

where +, — denotes the helicity of the quark and antiquark,
and

2 2
1kt m, mq} . (29
86° x(1 —x)
As shown in Ref. [25], within the wave functions in
Eq. (28), the light-cone model can describe the transition
form factor of the pion meson fairly well.

In this work, we adopt the model results directly from
Ref. [28], in which Fy;, H,;, H,,, and G;; have the
expressions:

— )2 A2 _
FUr — c(zki - 1(1_ gf}f; - ‘15(_1 52731 ALk + 2m§,> (30)
(2x(1 + &/4) = £)(k3 +m2) +x(1 = x)?A1 /2= &(1 - x)k - A,

<o~ 0~ 2/4)(1 - ) .

_ 2x(1+ &/4) = E)(K2 +m2) + x(1 - x)*A% /2 = &(1 —x)%k, - A
Gi,’/f:_cz(l_?Mgexp(< S8/ -0 ) b1 -xPA 2 A

-/ 8(x2 — £/4)(1 - x)

HYF =0 (33)

HT =C
1,2 1_52/4

for the valence quark, where

c

with

 3272°B.B_

21— x)m M, <—<2x(1+z52/4>—52><ki+m%>+x@‘x>2A1/2'§(1_X)2kl'AL) (34)

84%(x? — &2/4)(1 — x)

A~ (35)
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—x a2\ FI%(x,£.1) = / Pk F . (38)

1—x Azl 2 5 Hq/ﬂ<xft>_/d2k (kJ_AJ_H )
_ _ 21 6. 1) = L t+Hip ) (39)
B_ \/(kL 1_5/22> + my. (37) I A2
The k,-even GTMDs can be reduced to GPDs after  Thus, using Eq. (21), in the GPD approach for the spin-
integrating over k  : orbit correlation,
|

T m !
C¥" e = /dx<ﬁqH1A(x’0’0) _EFI(X’0’0)>

T

2(1 —x)ym2 — (k% +m2) K +m?
:Az/dx‘ﬂh 2 U ) (_4;—1—q>
(ki +mg) #x(1 = x)

- / dxC2(x) (40)

In the above equation, we have used c?/ "(x) to denote the integrand.
Since the integration over x satisfies the relation:

k2 2 k2 2
/dxdzklz(l —x)exp (-t M ) _ /dxdzkL exp [~ Lt M ) (41)
46°x(1 — x) 45°x(1 — x)
Eq. (41) can be rewritten as
—k? kK 4+ m?
ci' :Az/d d*k L -t 42
< larp M RAw +m2) TP\ T a1 - x) (42)

after integrating over k|, the correlation has the form

/ A2 2 mg 2 mg
cir =——— /| d 1- - | —mI'|0,————| |, 43
o = =3 [ as(50 -0 (- i) = mir o gt )
where I'[0, x] is the zeroth order incomplete I" function
o dt
170, x] :/ Te". (44)

The integral in over x can be performed numerically.
On the other hand, as shown in Eq. (23), C?/ " can be also calculated from the GTMD G ; directly:

7z k3
c¥/ lGT™D _/dXdzklﬁ'zGif,(X,O,ki,O’ 0)

1 — x)k? k3 +m?
— ot [, IR (e
/ M Ter 2 +m2) TP\ apx(1 - x)

A2 g g
— _W/dx<ﬂ%(1 — X)exp <—4ﬂ2x(1q_x)) - mzr{o’élﬁzx(lq—x)])

= /dxC?/”(x). (45)
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FIG. 1. The x-dependence of the quark longitudinal spin-orbit

correlations C#/*(x) in the pion meson.

We find that the above expression is the same as that in
Eq. (43). Thus, within the light-cone quark model, we find
that the GPD approach and the GTMD approach for the
correlation indeed can lead to the same results for CZ/ T

In the following, we can obtain the numerical results for
CZ/ " by adopting the values for the parameters and
performing the x integral in Eqs. (43) or (45). We follow
the choice in Refs. [31] for the parameter values: A =
31.30 GeV™! = 0.41 GeV, m = 0.2 GeV. The numeri-
cal result of the quark spin-orbit correlation inside the pion
meson in the light-cone quark model is

ci* = —0.32 (46)

1.0 FPr—rr—/m———r——rrrr

0.8F x=0.1]

. - - -x=03| }

06k N x=0.5| 3

—~ 04 —-—--x=0.7| 3
=

%0.0 N —
£ \ o
6“‘-02_— ) \\ ’,;’-, E
04F ‘\__,/:,Z_-_’?'" E
0.6 ;__\\ ~___._;'_)_,‘._. _
08fF =T 3
- -u|||I||||I||||I||||I||||I||||I||||I||||I||||I||||:
00 01 02 03 04 05 06 07 0.8 09 1.0

where ¢ denotes the valence quarks inside pion (e.g., u and
d in 7). Similar to the case in the nucleon [7], the sign of
this correlation is negative, which means that the quark
longitudinal spin and the quark OAM tend to be anticorre-
lated inside the pion meson. The absolute value is smaller

than those of the nucleon (C*/" ~ —0.9 and C¥/" ~ —0.53
[7]), implicating a weaker correlation in the pion meson
than that in the nucleon.

In order to show the contribution to the quark spm -orbit
correlation in the different x region, we keep C?™ unin-

tegrated. That is, we calculate Cg/ (x) appearing in Eq. (43)
or Eq. (45) and show the plot vs x in Fig. 1. We find that in
our model the largest contribution comes from the region x
around 0.5.

In the following, we also explore the contribution in
different region of transverse momentum. Before doing
this, we would like to point out that there is another method
to calculate the spin-orbit correlation directly from the
wave function of the pion meson, instead of GPD or
GTMD. As C, is the difference of the orbital angular
momenta from left-hand and right-hand quarks. Using the
wave functions in Eq. (28), C4/7 can be also expressed as

C;]/”'JM _ iqk _ zfﬂ
1
1o [ & [ @l
— (k= =) )]
1 — x)k?
- x / dxdl, — =KL
167° (k% + m2)
K +m2
xexp( ——5——1). (47)
45°x(1 — x)
O-2''''I"''|'"'|''"|'"'I""I""I""I""IIIII
0.0 O T s=E e
[\ /_,-”’;:_’- ~E
— [ \ /_/' ’__’
x02F Y% P ]
X S\ RN /,/'/ ’
[a} 3 \ N - y’
Z E \ y J
_‘3'0'4 r \ - -
® [ VA .//
o N / x=0.1
-06F \ g R
i \ A R x=0.5
0.8} AN —--—--x=0.7| ]
) 0 0 01 02 03 04 05 06 07 08 09 10

is

FIG. 2. Left panel: the k| -dependence of the unintegrated quark correlation C?/ (x, ki) from the GPD approach at x = 0.1, 0.3, 0.5,
and 0.7 respectively. Right panel: similar to the left panel, but for that from the GTMD approach.
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We find that the results are consistent with the result from
the GTMD approach. We point out that this method is
similar to the Jaffe-Manohar approach for the quark OAM
[1]. We also comment that in this approach, the quark OAM
inside the pion meson vanishes, as

1
_—3/dx/dsz[(—|y/(x,kL,+,+|2)
167
+ (Hy (e k= =) (48)

Using the wave function in Eq. (28), we find that L7 is
zero. It comes from the cancelation of the contributions
from the left-handed and right-handed quark.

In Fig. 2, we plot the k ; dependence of C,(x,k, ), which
is C, keeping both x and k, unintegrated. The left panel
shows C.(x,k ) atx = 0.1,0.3, 0.5 and 0.7 from the GPD
approach, while the right panel shows that from the GTMD
approach. Our results show that, although C_ (x) is the same
in the two approaches, the k| -dependence of C,(x,k, ) can
be actually different. In the GTMD approach, C,(x,k, ) is
negative in the whole region, while in the GPD approach,
C.(x,k,) is positive in the small k; when x is not large.

V. CONCLUSIONS

We studied the correlation between the longitudinal spin
and the quark orbit motion of valence quarks inside the
pion meson. We started from the parity-odd partner
of the quark energy-momentum tensor operator T’;g and

decompose it into form factors, among which the quark
spin orbit correlation is determined by the form factor C?.
We provided two expressions for this correlation C7. One
is in terms of the GPDs of the pion meson, from which
the expectation value of the correlation is given by the

combination of the first-x moments of F¥"(x,& 1) and

HY™(x,&.1) at & = 0, 1 = 0 GeV2. The other is in terms of
the GTMD G ;. Using the overlap representation for the
pion GPDs and GTMDs derived from a light-cone quark

model, we then calculated the analytic result of c?™ We
found that the results from the GPD approach are the same
as that from the GTMD approach. This verifies from the
model aspect that these two approaches can be used to
access the spin-orbit correlation. In addition, the numerical
result of the quark spin-orbit correlation in the model was

calculated as Cg/ " = —0.32. Similar to the case of the
nucleon, the negative sign indicates that the quark spin and
OAM is tend to be anticorrelated. We also present the
results for the x-dependence and the k| -dependence of the
longitudinal spin-orbit correlation, that is, the unintegrated
C?/". Our study about the quark longitudinal spin provides
new information for the spin correlation inside the pion
meson, further experimental measurements are needed to
accurately determine this correlation.
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