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We describe the determination of the longitudinal structure function FL at next-to-leading order (NLO)
and next-to-next-to-leading order (NNLO) approximations, using Laplace transform techniques, into the
parametrization of F2ðx;Q2Þ and its derivative with respect to lnQ2 at low values of the Bjorken variable x.
The obtained results are comparable with others by considering the effect of the charm quark mass to the
longitudinal structure function, which leads to rescaling the variable for nf ¼ 4. Numerical calculations and
comparison with H1 data demonstrate that the suggested method provides reliable FLðx;Q2Þ at small x in a
wide range of Q2 values and can be applied as well in analyses of ultrahigh energy processes with cosmic
neutrinos. The obtained longitudinal structure functions with and without the LHeC simulated uncertainties
[CERN-ACC-Note-2020-0002, P. Agostini et al. (LHeC Collaboration and FCC-he Study Group), J. Phys.
G 48, 110501 (2021).] are compared with the H1 Collaboration data [V. Andreev et al. (H1 Collaboration),
Eur. Phys. J. C 74, 2814 (2014) and F. D. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 71, 1579 (2011)]
and with the results from the CT18 [T.-J. Hou et al., Phys. Rev. D 103, 014013 (2021)] parametrization
model at NLO and NNLO approximations.

DOI: 10.1103/PhysRevD.105.034002

I. INTRODUCTION

In recent years, many attempts have been made to better
understand the longitudinal structure function experimen-
tally and theoretically [1–8]. In perturbative quantum
chromodynamics (pQCD), the longitudinal structure func-
tion contains information about the gluon distribution and
strong interaction dynamics. Thus, a measurement of the
longitudinal proton structure function provides a unique
test of parton dynamics and the consistency of QCD to the
gluon density. The longitudinal structure function can be
extracted from the inclusive cross section only in the region
of large inelasticity y. At HERA, the measurement of the
longitudinal structure function collected about 5.9 and
12.2 Pb−1 of data at reduced beam energies where data
were analyzed together with about 100 Pb−1 at nominal
HERA energies [9]. In ultrahigh energy processes, at
extremely small x, the longitudinal structure function
becomes predominant, and its behavior will be checked
in high energy processes such as the Large Hadron electron
Collider (LHeC) and the Future Circular Collider electron-

hadron (FCC-eh) projects which run to beyond a TeV in
center-of-mass energy [9]. In the future, the electron-proton
colliders will be generated and extend much lower values of
x and high values ofQ2. The simultaneous measurement of
the longitudinal structure functions is the cleanest way to
establish new gluon density at small x. An important
advantage of future colliders, compared to HERA experi-
ments, is the wide range of y values covered until 0.9.
Indeed the longitudinal structure function measurement
will cover an x range from 2 × 10−6 to above x ¼ 0.01
which the LHeC promises to provide, as it extends the
kinematic range in electron-proton (ep) scattering by nearly
four orders of magnitude of ep collisions at HERA [10].
The interest in a measurement of the longitudinal structure
function, especially at small x, is related to the uncertainty
in the determination of the gluon distribution. In this paper,
we deduce the longitudinal structure function directly to the
proton structure function uncertainty.
The longitudinal structure function is directly related to the

singlet and gluon distributions in the proton, and its behavior
has been predicted by the Altarelli and Martinelli [11]
equation. The authors in Ref. [11] derived an elegant formula
for the longitudinal structure function FLðx;Q2Þ, also an
effect of order αsðQ2Þ, as a convolution integral over
F2ðx;Q2Þ and the gluon density gðx;Q2Þ by the following
form:

FLðx;Q2Þ ¼ CL;nsþsðasðQ2Þ; xÞ ⊗ F2ðx;Q2Þ
þ he2iCL;gðasðQ2Þ; xÞ ⊗ Gðx;Q2Þ; ð1Þ
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where asðQ2Þ ¼ αsðQ2Þ
4π and the nonsinglet densities become

negligibly small in comparison with the singlet densities at
small x. Here, Gðx;Q2Þ ¼ xgðx;Q2Þ represents the gluon
distribution function, and he2i is the average of the charge
e2 for the active quark flavors. Also, he2i ¼ n−1f

Pnf
i¼1 e

2
i ,

and the symbol ⊗ denotes convolution according to the
usual prescription. CL;iði ¼ s; ns; gÞ is the coefficient func-
tion which can be written by the perturbative expansion as
follows [12]:

CðφÞ
L;i ðas; xÞ ¼

Xφ
ϕ¼0

aϕþ1
s ðQ2ÞcðϕÞL;i ðxÞ;

where ϕ denotes the order in running coupling αsðQ2Þ.
According to the DGLAP Q2-evolution equations, the

singlet distribution function leads to the following relation
of the integro-differential equation:

∂F2ðx;Q2Þ
∂ lnQ2

¼ −
asðQ2Þ

2
½PqqðxÞ ⊗ F2ðx;Q2Þ

þ he2iPqgðxÞ ⊗ xgðx;Q2Þ�; ð2Þ

where

Pa;bðxÞ ¼ Pð0Þ
a;bðxÞ þ asðQ2ÞP̃ð1Þ

a;bðxÞ þ a2sðQ2ÞP̃ð2Þ
a;bðxÞ ð3Þ

and

P̃ðnÞ
ab ðxÞ ¼ PðnÞ

ab ðxÞ þ ½C2;s þ C2;g þ � � �� ⊗ Pð0Þ
ab ðxÞ þ � � � :

The quantities P̃ab are expressed via the known splitting
and Wilson coefficient functions in the literatures [13,14].
Recently, authors in Ref. [4] revive the parametrization of
the longitudinal structure function at next-to-leading order
(NLO) approximation by using the parametrization of the
proton structure function F2ðx;Q2Þ, suggested by authors
in Ref. [15] by a fit to HERA data on deep-inelastic lepton-
nucleon scattering (DIS) at small x. The parametrization of
F2ðx;Q2Þ is relevant in investigations of ultrahigh energy
processes. Indeed the authors in Ref. [4] have obtained an
analytical relation for the longitudinal structure function at
NLO approximation with respect to the Mellin transform
method, by the following form:

FNLO
L ðx;Q2Þ ¼ τðasÞfϑðasÞFLO

L ðx;Q2Þ
− χða2sÞF2ðx;Q2Þg; ð4Þ

where

FLO
L ðx;Q2Þ ¼ ð1 − xÞn

X2
ε¼0

CεðQ2ÞLε;

τðasÞ ¼
�
1þ 1

3
asðQ2ÞLCðδ̂ð1Þsg − R̂ð1Þ

L;gÞ
�
−1
;

ϑðasÞ ¼ ½1 − asðQ2Þðδ̄ð1Þsg − R̄ð1Þ
L;gÞ�;

χða2sÞ ¼ a2sðQ2Þ
�
1

3
B̂ð1Þ
L;sLA þ B̄ð1Þ

L;s

�
; ð5Þ

and

F2ðx;Q2Þ ¼ DðQ2Þð1 − xÞn
X2
ε¼0

AεðQ2ÞLε: ð6Þ

Here L’s are the logarithmic terms. The coefficient func-
tions at LO and NLO approximations are summarized in
the Appendix, and the effective parameters are defined in
Table I.
In this article, we investigate the behavior of the

longitudinal structure function inside the proton at high
order corrections to the running coupling by using the
Laplace transform techniques at small x. Indeed, we use the
Laplace transform technique for solving the Altarelli and
Martinelli equation by employing the parametrization of
F2ðx;Q2Þ at next-to-leading order (NLO) and next-to-next-
to-leading order (NNLO) aproximations. We demonstrate
that the small x behavior of the longitudinal structure
function can be directly related to the known structure
function F2ðx;Q2Þ [i.e., Eq. (6)] and known its derivative
∂F2ðx;Q2Þ=∂ lnQ2 at the higher order approximations.

II. METHOD

Considering the variable definitions υ≡ lnð1=xÞ and
w≡ lnð1=zÞ, one can rewrite Eqs. (1) and (2) in terms of
the convolution integrals and new variables as

TABLE I. The effective parameters at small x for 0.15 GeV2 <
Q2 < 3000 GeV2 provided by the following values. The fixed
parameters are defined by the Block-Halzen fit to the real
photon-proton cross section as M2 ¼ 0.753� 0.068 GeV2,
μ2 ¼ 2.82� 0.290 GeV2, n ¼ 11.49� 0.99, and λ ¼ 2.430�
0.153 [15].

Parameters Value

a10 8.205 × 10−4 � 4.62 × 10−4

a11 −5.148 × 10−2 � 8.19 × 10−3

a12 −4.725 × 10−3 � 1.01 × 10−3

a20 2.217 × 10−3 � 1.42 × 10−4

a21 1.244 × 10−2 � 8.56 × 10−4

a22 5.958 × 10−4 � 2.32 × 10−4

a00 2.550 × 10−1 � 1.600 × 10−2

a01 1.475 × 10−1 � 3.025 × 10−2
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∂F̂ 2ðυ;Q2Þ
∂ lnQ2

¼
Z

υ

0

½F̂ 2ðυ;Q2ÞĤðφÞ
2;s ðasðQ2Þ;υ−wÞ

þhe2iĜðυ;Q2ÞĤðφÞ
2;g ðasðQ2Þ;υ−wÞ�dw; ð7Þ

F̂Lðυ;Q2Þ¼
Z

υ

0

½F̂ 2ðυ;Q2ÞK̂ðφÞ
L;sþnsðasðQ2Þ;υ−wÞ

þhe2iĜðυ;Q2ÞK̂ðφÞ
L;gðasðQ2Þ;υ−wÞ�dw; ð8Þ

where

F̂Lðυ; Q2Þ≡ FLðe−υ; Q2Þ;
∂F̂ 2ðυ; Q2Þ
∂ lnQ2

≡ ∂F2ðe−υ; Q2Þ
∂ lnQ2

;

Ĝðυ; Q2Þ≡ Gðe−υ; Q2Þ;
ĤðφÞðasðQ2Þ; υÞ≡ e−υP̂ðφÞ

a;bðasðQ2Þ; υÞ;
K̂ðφÞðasðQ2Þ; υÞ≡ e−υĈðφÞ

L;i ðasðQ2Þ; υÞ:

The Laplace transform of ĤðasðQ2Þ; υÞ and
K̂ðasðQ2Þ; υÞ are given by the following forms:

ΦðφÞ
f ðasðQ2Þ; sÞ≡ L½ĤðφÞ

2;s ðasðQ2Þ; υÞ; s�

¼
Z

∞

0

ĤðφÞ
2;s ðasðQ2Þ; υÞe−sυdυ;

ΘðφÞ
f ðasðQ2Þ; sÞ≡ L½ĤðφÞ

2;g ðasðQ2Þ; υÞ; s�

¼
Z

∞

0

ĤðφÞ
2;g ðasðQ2Þ; υÞe−sυdυ;

ΦðφÞ
L ðasðQ2Þ; sÞ≡ L½K̂ðφÞ

L;sþnsðasðQ2Þ; υÞ; s�

¼
Z

∞

0

K̂ðφÞ
L;sþnsðasðQ2Þ; υÞe−sυdυ;

ΘðφÞ
L ðasðQ2Þ; sÞ≡ L½K̂ðφÞ

L;gðasðQ2Þ; υÞ; s�

¼
Z

∞

0

K̂ðφÞ
L;gðasðQ2Þ; υÞe−sυdυ;

with the conditions ĤðυÞ ¼ 0 and K̂ðυÞ ¼ 0 for υ ¼ 0 [16].
The convolution theorem for Laplace transforms allows us
to rewrite the right-hand sides of Eqs. (7) and (8) consid-
ering the fact that the Laplace transforms of the convolution
factors are simply the ordinary products of the Laplace
transforms of the factors. Consequently, we can obtain the
equations for the structure functions in the Laplace space s
by the following forms as

∂f2ðs;Q2Þ
∂ lnQ2

¼ ΦðφÞ
f ðasðQ2Þ; sÞf2ðs;Q2Þ

þ he2iΘðφÞ
f ðasðQ2Þ; sÞgðs;Q2Þ;

fLðs;Q2Þ ¼ ΦðφÞ
L ðasðQ2Þ; sÞf2ðs;Q2Þ

þ he2iΘðφÞ
L ðasðQ2Þ; sÞgðs;Q2Þ; ð9Þ

where

L½F̂Lðυ; Q2Þ; s� ¼ fLðs;Q2Þ;
L½F̂ 2ðυ; Q2Þ; s� ¼ f2ðs;Q2Þ;

and

ηðφÞj ðasðQ2Þ; sÞ ¼
Xφ
ϕ¼0

aϕþ1
s ðQ2ÞηðϕÞj ðsÞ;

η ¼ ðΦ;ΘÞ; j ¼ ðf; LÞ;

where the superscript of the kernels represents the order in
αs. The leading-order coefficient functions Φ and Θ in the
Laplace space s are given by

Φð0Þ
L ðsÞ¼ 4CF

1

2þ s
;

Θð0Þ
L ðsÞ¼ 8nf

�
1

2þ s
−

1

3þ s

�
;

Θð0Þ
f ðsÞ¼ 2nf

�
1

1þ s
−

2

2þ s
þ 2

3þ s

�
;

Φð0Þ
f ðsÞ¼ 4−

8

3

�
1

1þ s
þ 1

2þ s
þ2ðψðsþ1Þþ γEÞ

�
; ð10Þ

where ψðxÞ is the digamma function, and γE ¼
0.5772156… is Euler constant. Defining ψðsþ 1Þ þ γE ¼
S1ðsÞ and using the notion of the so-called nested sums
[4,17], let us study the well-known function

SaðsÞ ¼
Xs
m¼1

1

ma ;

where case a ≥ 2 is defined by the following form:

SaðsÞ ¼
�X∞
m¼1

−
X∞
m¼s

�
1

ma ¼ Sað∞Þ −
X 1

ðlþ sþ 1Þa

≡ Sað∞Þ − Ψaðsþ 1Þ: ð11Þ

Here, Sað∞Þ ¼ ζðaÞ, where ζðaÞ is the Riemann zeta

function, and Ψaðsþ 1Þ ¼ ð−1Þa
ða−1Þ!Ψ

ða−1Þðsþ 1Þ, where

ΨðaÞðsÞ is a time derivative of the Euler Ψ function.
Now let us to continue with the function
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S−aðsÞ ¼
Xs

m¼1

ð−1Þm
ma ;

where by analogy with Eq. (11) we have

S−aðsÞ ¼
�X∞
m¼1

−
X∞
m¼s

� ð−1Þm
ma

¼ S−að∞Þ −
X ð−1Þlþsþ1

ðlþ sþ 1Þa
≡ S−að∞Þ − ð−1ÞsΨ−aðsþ 1Þ; ð12Þ

with S−1ð∞Þ¼−ln2, and S−að∞Þ¼ζð−aÞ¼ð21−a−1ÞζðaÞ
[17]. By analogy with Eqs. (11) and (12), authors in Ref. [4]
show that the functions S1ðsÞ and S−1ðsÞ lead to the
following functions, respectively:

S1ðsÞ ¼ Ψðsþ 1Þ −Ψð1Þ;

S−1ðsÞ ¼ − lnð2Þ −
X∞
l¼0

ð−1Þlþ1

sþ lþ 1
: ð13Þ

The above equation indicates that for large l’s, the function is
convergent, which is well known for any values of s. In the
following, we use the procedure of analytic continuation for
the sums S1ðsÞ, which come in consideration of the parton
distribution functions.
All further theoretical details relevant for analyzing FL at

NLO and NNLO in the MS factorization scheme have been
presented in Refs. [18–21]. The explicit expressions for the
NLO and NNLO kernels in s space are rather cumbersome;
therefore, we recall that we are interested in investigation of
the kernels in small x [12,18–21]. In the Laplace space, we
consider the kernels at small s, as the two- and three-loop
kernels read

Φð1Þ
L;s→0ðsÞ ≃ nf

�
−
2.371
s

�
;

Θð1Þ
L;s→0ðsÞ ≃ nf

�
−
5.333
s

�
;

Θð1Þ
f;s→0ðsÞ ≃ CATf

�
40

9s

�
;

Φð1Þ
f;s→0ðsÞ ≃ CFTf

�
40

9s

�
; ð14Þ

and

Φð2Þ
L;s→0ðsÞ ≃ nf

�
−
885.530

s
þ 182

s2

�
þ n2f

�
40.239

s

�
;

Θð2Þ
L;s→0ðsÞ ≃ nf

�
−
2044.700

s
þ 409.506

s2

�
þ n2f

�
88.504

s

�
;

Θð2Þ
f;s→0ðsÞ ≃ nf

�
−
1268.300

s
þ 896

3s2

�
þ n2f

�
1112

243s

�
;

Φð2Þ
f;s→0ðsÞ ≃ nf

�
−
506

s
þ 3584

27s2

�
þ n2f

�
256

81s

�
: ð15Þ

The standard representation for QCD couplings in NLO
and NNLO (within the MS-scheme) approximations have
the forms

αsðtÞ ¼
4π

β0t

�
1 −

β1
β20

ln t
t

�
ðNLOÞ;

αsðtÞ ¼
4π

β0t

�
1 −

β1
β20

ln t
t

þ 1

β30t
2

�
β21
β0

ðln2t − ln t − 1Þ þ β2

��
ðNNLOÞ;

where β0, β1, and β2 are the one-, two-, and three-loop

corrections to the QCD β function, and t ¼ ln Q2

Λ2, withΛ the
QCD cutoff parameter.
Consequently, by working in the Laplace space s, we can

obtain the longitudinal structure function by solving Eq. (9)
for fLðs;Q2Þ into f2ðs;Q2Þ and ∂f2ðs;Q2Þ=∂ lnQ2 as

fLðs;Q2Þ ¼ kðφÞðasðQ2Þ; sÞf2ðs;Q2Þ

þ hðφÞðasðQ2Þ; sÞ ∂f2ðs;Q
2Þ

∂ lnQ2
; ð16Þ

where the kernels kðφÞðasðQ2Þ; sÞ and hðφÞðasðQ2Þ; sÞ
contain contributions of the s-space splitting and coefficient
functions up to the NNLO approximation. These kernels
can be evaluated from s-space results by the following
forms:

kðφÞðasðQ2Þ; sÞ ¼
Xφ
ϕ¼0

aϕþ1
s ðQ2ÞΦðϕÞ

L ðsÞ

− hðφÞðasðQ2Þ; sÞ
Xφ
ϕ¼0

aϕþ1
s ðQ2ÞΦðϕÞ

f ðsÞ;

hðφÞðasðQ2Þ; sÞ ¼
Pφ

ϕ¼0 a
ϕþ1
s ðQ2ÞΘðϕÞ

L ðsÞPφ
ϕ¼0 a

ϕþ1
s ðQ2ÞΘðϕÞ

f ðsÞ
: ð17Þ

The inverse Laplace transform of coefficients kðasðQ2Þ; sÞ
and hðasðQ2Þ; sÞ in the above equations are defined as
kernels
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η̂ðasðQ2Þ; υÞ≡ L−1½kðasðQ2Þ; sÞ; υ�

and

ĴðasðQ2Þ; υÞ≡ L−1½hðasðQ2Þ; sÞ; υ�;

respectively. Clearly, the kernels (i.e., η̂ and Ĵ) are depen-
dent on υ and the running coupling at the higher order
approximations. We generally are not able to define an
analytical form for these kernels at higher order approx-
imations, so FL is determined by the numerical integral of
the parametrization of F2 and its derivative as

F̂Lðυ; Q2Þ≡ L−1½fLðs;Q2Þ; υ�

¼
Z

υ

0

�
F̂2ðw;Q2Þη̂ðφÞðasðQ2Þ; υ − wÞ

þ ∂F̂2ðw;Q2Þ
∂ lnQ2

ĴðφÞðasðQ2Þ; υ − wÞ
�
dw: ð18Þ

Consequently, one can obtain the longitudinal structure
function as FLðx;Q2Þ. Therefore, the general analytical
expression for the longitudinal structure function in x space
is given by

FLðx;Q2Þ ¼
Z

1

x

dy
y

�
F2ðy;Q2ÞηðφÞ

�
x
y
;Q2

�

þ ∂F2ðy;Q2Þ
∂ lnQ2

JðφÞ
�
x
y
;Q2

��
: ð19Þ

So, we have an explicit solution for the longitudinal
structure function at NLO and NNLO approximations
which can be evaluated to the numerical accuracy to which
F2ðx;Q2Þ is known. Having an analytical proton structure
function and its derivative with respect to lnQ2, one can
extract the longitudinal structure function numerically at
any desired x and Q2 values.

III. RESULTS AND DISCUSSION

In order to make the effect of production threshold for
the charm quark at nf ¼ 4, one should take into account
the quark mass for small Q2. To this end, we follow the
rescaling variable χ introduced by Aivazis et al. in
Ref. [22]. Therefore, the longitudinal structure function
is defined by the rescaling variable χ where

χ ¼ x

�
1þ 4m2

c

Q2

�
:

FIG. 1. The longitudinal structure function results at the NLO approximation with respect to the Laplace transform method compared
with the H1 experimental data (up and down triangles) [2] accompanied with total errors and with the CT18 NLO [24] parametrization
model. The error bands are due to the charm-quark mass uncertainty and the statistical errors in the parametrization of F2ðx;Q2Þ and its
derivative.
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This rescaled variable is one of the ingredients used in the
general mass-variable flavor number scheme (GM-VFNS),
which is used in the global fits of parton distribution
functions of the CETQ and MRST groups. The running
charm mass is obtained as mc ¼ 1.29þ0.077

−0.053 GeV, where the
uncertainties are obtained through adding the experimental
fit, model, and parametrization uncertainties in quadrature
[1,2]. At highQ2 values (m2

c=Q2 ≪ 1), the rescaling variable
χ reduces to the Bjorken variable x as χ → x [22,23].
The QCD parameter Λ has been extracted due to
αsðM2

zÞ ¼ 0.1166, which for four numbers of active flavors
is defined byΛLO

QCD ¼ 136.8 MeVandΛNLO
QCD ¼ 284.0 MeV.

Also, we take ΛNNLO
QCD ¼ 235.0 MeV.

Now, we can proceed to extract the longitudinal structure
function FLðx;Q2Þ with the explicit form of the proton
structure function and its derivative at NLO and NNLO
approximations. In order to present more detailed discus-
sions on our findings, the results for the longitudinal
structure function are compared with the CT18 [24] para-
metrization model. It should also be mentioned that CT18
results at NLO and NNLO approximations are obtained
using a wide variety of high-precision Large Hadron
Collider (LHC) data, in addition to the combined HERA
Iþ II deep inelastic scattering data set. In Fig. 1, we present

the x dependence of the longitudinal structure function at
Q2 ¼ 5, 15, 25, and 45 GeV2 compared with H1
Collaboration data [1,2] and the results from the CT18
NLO parametrization model. The error bands illustrated in
this figure, and in the other figures, are the charm-quark
mass uncertainty and the statistical errors in the para-
metrization of F2ðx;Q2Þ and its derivative, where the fit
parameter errors are shown in Table I. As can be seen from
the related figures, the longitudinal structure function
results are consistent with the CT18 NLO and H1
Collaboration data at moderate and large values of Q2. It
is seen that, for all values of the presented Q2 with respect
to the rescaling variable, the extracted longitudinal struc-
ture functions at NLO approximation due to the Laplace
transform method are in a good agreement with data and
parametrization models.
In Fig. 2, the results for the longitudinal structure

function within the NNLO approximation are shown and
compared with the NNLO analysis of the CT18 model. We
observe that, with respect to the approximation approach
used in the coefficient functions at higher order approxi-
mation in the limit x → 0, the extracted longitudinal
structure functions within the NNLO approximation are
comparable with the experimental data and the CT18

FIG. 2. The longitudinal structure functions at the NNLO approximation with respect to the Laplace transform method extracted in
comparison with the H1 experimental data (up and down triangles) [2] accompanied with total errors. The error bands are due to the
charm-quark mass uncertainty and the statistical errors in the parametrization of F2ðx;Q2Þ and its derivative. The results are compared
with the CT18 NNLO [24] parametrization model.
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NNLO model. These results are interesting in connection
with theoretical investigations of ultrahigh energy proc-
esses with cosmic neutrinos. In Fig. 3, the longitudinal
structure function results at NLO and NNLO approxima-
tions due to the Laplace transforms method are associated
with the LHeC simulated uncertainties. These simulated
uncertainties for the longitudinal structure function meas-
urement were recently reported by the LHeC Collaboration
and FCC-he Study Group in Ref. [9]. In this figure, the
straight lines represent the CT18 NLO and CT18 NNLO
QCD analyses in different schemes, and the up and down
triangles represent our results as accompanied with the
LHeC simulated uncertainties. We compare the results for
the longitudinal structure function at NLO and NNLO
approximations with a general mass-variable flavor number
scheme (GM-VFNS) and zero mass-variable flavor number
scheme (ZM-VFNS) in the CT18 NLO and NNLO meth-
ods in this figure, respectively. As can be seen from the
related figures, the longitudinal structure function results
are consistent with different schemes in the CT18 NLO and
NNLO at moderate and large values of Q2.
In Fig. 4, we show theQ2 dependence of the longitudinal

structure function at small x at the NLO approximation. In
this figure (i.e., Fig. 4), the results of calculations and the
comparison with the H1 Collaboration data [1,2] are

FIG. 3. The longitudinal structure function FLðx;Q2Þ with respect to the LHeC simulated errors [9] in comparison with the results of
CT18 NLO and NNLO models [24] in the GM-VFNS and ZM-VFNS at Q2 values 18, 32, 86, and 200 GeV2.

FIG. 4. The extracted longitudinal structure function FLðx;Q2Þ
from the parametrization of F2ðx;Q2Þ at a fixed value of the
invariant mass W ¼ 230 GeV (solid curve) compared with the
CT18 model [24] (dashed curve) in the NLO approximation.
The error bands are due to the charm-quark mass uncertainty and
the statistical errors in the parametrization of F2ðx;Q2Þ and its
derivative. Experimental data are from the H1 Collaboration,
Refs. [1,2], accompanied with total errors.
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presented. These results have been performed at fixed
values of the invariant mass W as W ¼ 230 GeV. Over a
wide range of the variable Q2, the extracted longitudinal
structure functions at the NLO approximation are in good
agreement with experimental data and CT18 NLO analysis.
For Q2 < 1 GeV2, the extracted results have the same
CT18 NLO behavior, but there are no data to compare in
this region. The error bands illustrated in this figure are into
the charm-quark mass uncertainty and the statistical errors
in the parametrization of F2ðx;Q2Þ, where the fit parameter
errors are shown in Table I.
The longitudinal structure function behavior with the

NNLO approximation is shown in Fig. 5 for a wide range of
Q2. These results in Fig. 5 are compared with the H1
Collaboration data [1,2] and CT18 NNLO. As can be seen
in this figure, these results based on the Laplace transforms
method are comparable with the CT18 NNLO analysis.
However, at extremely low momenta, Q2 < 1 GeV2, the
extracted FL within the NNLO approximation is below the
experimental data. In this region, the depletion and
enhancement of FL have the same behaviors in comparison
with the CT18 NNLO model. One wishes to improve
substantially the precision of the FL data with extension of
the kinematic range at the LHeC and FCC-eh for testing
theory at small x and small Q2 values. As commented in
Refs. [9,25], resummation of the large lnð1=xÞ terms restore
the dominance of the gg splitting over the qg one. The
resummation of the ðαs ln sÞn series in the leading loga-
rithmic order is a differential equation in lnð1=xÞ for a small
x-evolution equation. The leading logarithmic (LLx) results
yielded a growth of the gluon density, and the next-to-
leading logarithmic (NLLx) calculation yielded some
instability in the cross sections. The appearance of the
large negative corrections at NLLx motivated the longi-
tudinal structure functions for the appropriate resummation
which would stabilize the results. It was demonstrated that

the resummed fits provide a better description of the
longitudinal structure function data than the pure method
based fits at the fixed NNLO approximation. Such effects
will be strongly magnified at the LHeC, as it was shown
that the description of the longitudinal structure function
from HERA data is improved in the fits with a small x
resummation. This analysis suggests that the small x
resummation effects will be visible in the small x and
small Q2 region. Indeed the longitudinal structure function
in this region at the NNLO approximation increases due to
the resummation predictions as x decreases.
InFig. 6, the longitudinal structure function results atNLO

and NNLO approximations are compared with the Regge-
like behavior of the parton distribution functions. In
Ref. [26], the authors extracted a formula for the longitudinal
structure function FL as a function of F2 and its derivative at
small x at LO andNLO approximations based on the Regge-
like behavior. The Regge-like behavior for the singlet and
gluon distribution functions at small x is given by

Gðx;Q2Þ ¼ x−δG̃ðx;Q2Þ; F2ðx;Q2Þ ¼ x−δs̃ðx;Q2Þ;

where the δ value obtained by fixed coupling LLx BFKL
gives δ ≃ 0.5, which is the so-calledhard-Pomeron exponent.
This valuewas obtained in the studies performed in Ref. [27]
as the sum of the leading powers of lnð1=xÞ in all orders of
perturbation theory. In the tensor-Pomeron model [28],
where in addition to the soft tensor Pomeron a hard
tensor Pomeron and Reggeon exchange including, the
hard-Pomeron intercept was determined to be δ ≃ 0.3.
In Fig. 6, our results are compared with the longitudinal
structure function extracted in Ref. [26] based on the
parameterization of F2 [i.e., Eq. (6)]. We compared
these results with the H1 Collaboration data [1,2] and the

FIG. 5. The same as Fig. 4 for the longitudinal structure
function in the NNLO approximation at W ¼ 230 GeV.

FIG. 6. The longitudinal structure functions at NLO and NNLO
approximations (solid curves) by the Laplace transform method
and by the Regge-like behavior [26] at LO and NLO approx-
imations (dashed and dotted curves) for δ ¼ 0.5 and 0.3 at Q2 ¼
20 GeV2 compared with the H1 Collaboration data taken from
Refs. [1,2] accompanied with total errors.
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Regge-like behavior in Ref. [26] at Q2 ¼ 20 GeV2. The
results at NLO and NNLO approximations are comparable
with the H1 Collaboration data.
Finally, we analyze the coefficient functions at NLO and

NNLO approximations for the behavior of the longitudinal
structure functions at small x in Fig. 7. The authors in
Refs. [18,29] considered the dynamical and standard
distributions at small x. The gluon distribution at the
dynamical model has a steeper behavior at small x in
comparison with the standard model. Also the sea distri-
bution has a similar behavior at the standard and dynamical
models. The authors have shown that at the NLO approxi-
mation the longitudinal structure function in the dynamical
distribution is larger than the NNLO one for Q2 ≥ 5 GeV2

at small x. A similar behavior prevails for the longitudinal
structure function in Fig. 3 at moderate and large Q2 due to
the results of the CT18 NLO and NNLO approximations in
the GM-VFNS and ZM-VFNS. The coefficient functions in
(14) and (15) are shown in Fig. 7 at s space. The behavior of
the coefficient functions is considered at NLO and NNLO
approximations for s ≥ 0. It is evident from these behaviors
in Fig. 7 that at NNLO the longitudinal structure function
values are less then the FL values at NLO. Also the leading
twist-2 predictions are necessary to illustrate of the longi-
tudinal structure function behavior at Q2 < 5 GeV2.

In conclusion, we have presented a certain theoretical
model at NLO and NNLO approximations to describe the
longitudinal structure function based on the Laplace trans-
forms method at small values of x. Indeed, there are various
methods to solve the Altarelli and Martinelli equation to
obtain the longitudinal structure function, and in this paper,
we have shown that the method of the Laplace transform
technique is also the reliable and alternative scheme to
solve the Altarelli and Martinelli equation, analytically. A
detailed analysis has been performed to find an analytical
solution of the longitudinal structure function into the
parametrization of F2ðx;Q2Þ and its derivative of the
proton structure function with respect to lnQ2 at high
order corrections. The calculations are consistent with the
H1 data from the HERA collider, and they are comparable
with the CT18 at NLO and NNLO approximations. Also,
we compared the longitudinal structure functions with
respect to the LHeC simulated uncertainties with the
CT18 at NLO and NNLO approximations due to the
GM-VFN and ZM-VFN schemes. This persuades us that
the obtained results can be extended to a high energy
regime in new colliders (like in the proposed LHeC and
FCC-eh colliders). These results indicate that the obtained
solutions from the present analysis at NLO and NNLO
approximations based on the Laplace transform technique

FIG. 7. The coefficient functions [i.e., Eqs. (14) and (15)] plotted at small x at NNLO and NLO approximations in s space. The first,
second, and third terms at the NNLO approximation are shown and also the total approximation coefficients at NLO (dotted curve)
compared with NNLO (solid curve) in s space.
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are comparable with the ones obtained by global QCD
analysis of the CT18 from the parton distribution functions.
All of the figures clearly demonstrate that the extraction
procedure provides correct behaviors of the extracted
longitudinal structure function in both NLO and NNLO
approximations. At intermediate and highQ2, the extracted
longitudinal structure functions at NLO and NNLO approx-
imations are in a good agreement with experimental data.
Indeed, for very small Q2 values, the NNLOþ NNLx
resummation will improve the longitudinal structure func-
tion behavior at the NNLO approximation in the future
colliders. We also showed that the obtained results from the
longitudinal structure function analysis are in good agree-
ment with those from the literature.
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APPENDIX: THE COEFFICIENT FUNCTIONS

The coefficient functions read as

C2 ¼ Â2 þ
8

3
asðQ2ÞDA2;

C1 ¼ Â1 þ
1

2
Â2 þ

8

3
asðQ2ÞD

�
A1 þ

�
4ζ2 −

7

2

�
A2

�
;

C0 ¼ Â0 þ
1

4
Â2 −

7

8
Â2 þ

8

3
asðQ2ÞD

�
A0 þ

�
2ζ2 −

7

4

�
A1

þ
�
ζ2 − 4ζ3 −

17

8

�
A2

�
; ðA1Þ

Â2 ¼ Ã2; Â1 ¼ Ã1 þ 2DA2

μ2

μ2 þQ2
;

Â0 ¼ Ã0 þDA1

μ2

μ2 þQ2
; Ãi ¼ D̃Ai þDĀi

Q2

Q2 þ μ2
;

D̃ ¼ M2Q2½ð2 − λÞQ2 þ λM2�
½Q2 þM2�3 ;

Āε ¼ aε1 þ 2aε2L2; a02 ¼ 0; ðA2Þ

and

B̂ð1Þ
L;s ¼ 8CF

�
25

9
nf −

449

72
CF

þ ð2CF − CAÞ
�
ζ3 þ 2ζ2 −

59

72

��
;

B̄ð1Þ
L;s ¼

20

3
CFð3CA − 2nfÞ;

δ̂ð1Þsg ¼ 26

3
CA;

δ̄ð1Þsg ¼ 3CF −
347

18
CA;

R̂ð1Þ
L;g ¼ −

4

3
CA;

R̄ð1Þ
L;g ¼ −5CF −

4

9
CA;

LA ¼ Lþ A1

2A2

;

LC ¼ Lþ C1

2C2

;

L ¼ lnð1=xÞ þ L1;

L1 ¼ ln
Q2

Q2 þ μ2
;

L2 ¼ ln
Q2 þ μ2

μ2
;

AiðQ2Þ ¼
X2
k¼0

aikLk
2; ði ¼ 1; 2Þ;

A0 ¼ a00 þ a01L2;

D ¼ Q2ðQ2 þ λM2Þ
ðQ2 þM2Þ2 ; ðA3Þ

with the color factors CA ¼ 3 and CF ¼ 4
3
associated

with the color group SUð3Þ and nf being the number of
flavors.
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