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A theoretical description of elastic polarized muon-electron scattering is presented. Complete one-loop
electroweak radiative corrections are calculated with taking into account the exact dependence on the
muon mass. The effects due to some higher-order corrections and the electroweak scheme dependence
are analyzed. The case of longitudinally polarized fermions in the initial state is investigated. Analytical
results are derived with the help of the SANC system. Numerical results are presented for unpolarized and
polarized cross sections. Calculations are realized in the Monte Carlo integrator MCSANCee and generator
ReneSANCe, which allow the implementation of any experimental cuts used in the analysis of elastic μ − e
scattering data.
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I. INTRODUCTION

Muon-electron scattering is one of the most pure QED
processes of elementary particle interactions. So its cross
section can be calculated perturbatively within the Standard
Model with a very high precision. On the other hand, this
process is suited for high-precision experimental measure-
ments since it has a clear detector signature. This allows
us to use this process for studies of electroweak (EW)
and strong interaction effects, given the QED part is fully
understood.
Radiative corrections in polarized electron muon elastic

scattering were considered by [1] and later fully unpolar-
ized but massive case at nest-to-leading order (NLO) was
examined by [2].
The scattering of muons off polarized electrons was

measured by SMC Collaboration at CERN in [3]. At the
request of the SMC Collaboration, the working tool for
estimating theoretical uncertainty under experimental con-
ditions was our code μela [4]. The code for elastic polarized
μ − e scattering was implemented at the QED level with the

possibility of taking into account the effects of longitudinal
polarization in variables of the experiment with necessary
cutoffs.
Recently, interest in the elastic muon-electron scattering

has increased due to high energy (μTRISTAN, KEK) and
low energy (MUonE, CERN) experiments.
The new μ − e collider experiments μTRISTAN with

the energies ðEe− ; EμþÞ ¼ ð30 GeV; 1 TeVÞ and the beam
polarizations with Pe− ¼ �0.7 and Pμþ ¼ �0.8 are cur-
rently under consideration at KEK [5]. At such high
energies, polarized μ − e scattering has not been thor-
oughly investigated.
Realistic conditions of theMUonE experiment [6,7] are the

energy of incoming muon Eμ ¼ 150 GeV in the laboratory
system, which corresponds to the center-of-mass system
(c.m.s.) energy s ¼ m2

e þm2
μ þ 2meEμ ≈ ð405 MeVÞ2

(see also proposals [8,9] for new physics searches).
Further development of the most advanced theoretical

support at the NLO and partly NNLO levels by MC codes
for this experiment is provided by three scientific groups:
([10–13]), ([14,15]), and ([16,17]). A review of the current
state of the theoretical support related to the proposed
MUonE experiment and a discussion of further required
steps can be found in [18].
The main result of this work is an independent calcu-

lation of the complete one-loop electroweak radiation
corrections (RCs) to elastic muon-electron scattering,

μþðp1; χ1Þ þ e−ðp2; χ2Þ
→ e−ðp3; χ3Þ þ μþðp4; χ4Þðþγðp5; χ5ÞÞ; ð1Þ
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μ−ðp1; χ1Þ þ e−ðp2; χ2Þ
→ e−ðp3; χ3Þ þ μ−ðp4; χ4Þðþγðp5; χ5ÞÞ; ð2Þ

with arbitrary polarizations of initial particles (χ corre-
sponds the helicity of the particles).
We perform a comparison for the hard bremsstrahlung

cross section and check the numerical dependence of Born
and corrected cross sections on the muon and electron
polarization degrees. We present results for low energy in
conditions of the MUonE experiment. To verify the effects
of weak interactions, we present numerical results also for
the c.m.s. energy

ffiffiffi
s

p ¼ 250 GeV. Here we also computed
leading higher-order (h.o.) corrections of the OðG2

μÞ and
OðGμαsÞ orders through the parameters Δρ and Δα. Our
results can be considered as a preliminary glance at
electroweak and polarization effects a new high-energy
muon-electron collider [5].
This article is organized as follows. Section II contains

preliminary remarks and the general notation. We describe
the methodology for calculating polarized cross sections
at the complete one-loop EW level within the helicity
approach. Section III gives a description of leading h.o. EW
corrections in OðG2

μÞ and OðGμαsÞ orders. In Sec. IV, we
collect numerical results with various polarization degrees
for total and differential cross sections as well as for relative
corrections for high and low energies. The last Sec. V
contains discussion and conclusions.

II. EW ONE-LOOP RADIATIVE CORRECTIONS

With the help of the computer system SANC [19], we
have calculated the complete one-loop electroweak radia-
tive corrections to a wide class of processes; see the review
[20] and references therein. Recently, the system has been
upgraded [21,22] in order to take into account possible
longitudinal polarization of the initial particles. All calcu-
lations in the system can now be performed within the
helicity amplitude formalism taking into account the initial
and final state fermion masses. So the SANC system
provides a solid framework to access polarization effects
at the one-loop level and study various effects; for example,
the system allows one to separate the effects due to QED,
weak radiative corrections, and some higher-order contri-
butions, to study radiative corrections in the αð0Þ and Gμ

EW schemes.
A covariant amplitude (CA) corresponds to the result of

the straightforward standard calculation by means of the
SANC programs and procedures of all diagrams contributing
to a given process at the tree (Born) and one-loop levels. In
the SANC approach, we exploit the fact that the calculated
one-loop form factors (FF) for the process ff̄ff̄ → 0
can be turned to any other channel. We describe the CA
for this process decomposed on a massive basis with the
so-called γ, QQ, QL, LQ, LL, LD, and QD contributions.

It corresponds to six Dirac structures; see [23]. They are
labeled according to their structures. We have the same one-
loop FFs for Bhabha scattering eþe− → e−eþ, s channel
eþe− → μ−μþðτ−τþÞ, elastic μ − e scattering μ�e− →
e−μ�, and Møller scattering e−e− → e−e−. Form factors
differ only by the corresponding permutations of their
arguments s, t, u. The description of their implementation
for Bhabha scattering and s channel annihilation processes
was presented in earlier articles [21,22].
The complete one-loop cross section of the process can

be split into four parts,

σone-loop ¼ σBorn þ σvirtðλÞ þ σsoftðλ;ωÞ þ σhardðωÞ; ð3Þ

where σBorn is the Born cross section, σvirt is the contri-
bution of virtual (loop) corrections, and σsoftðhardÞ is the soft
(hard) photon emission contribution (the hard photon
energy Eγ > ω). Auxiliary parameters λ (“photon mass”)
and ω are canceled out after summation. Note that in
calculations of one-loop RCs, we can separate QED and
pure weak interaction effects.
In SANC, all one-loop contributions, i.e., the contribu-

tions of the virtual part as well as soft and hard brems-
strahlung radiation, are realized within the helicity
amplitude (HA) approach as in several other modern codes
for theoretical support of experiments; see, e.g., [24].
In HA, we keep the full dependence on the muon masses.
As an additional bonus of the HA approach, we implement
a procedure to compute the cross section with any polari-
zation of the initial and final particles.
Typical SANC results for FF are given in terms of only

scalar Passarino-Veltman (PV) functions [25]. In FF
calculations at the one-loop level, we keep all masses
(without any approximation), but in this study, we neglect
contributions suppressed by the ratio m2

e=Q2 in the process
cross section.

A. Differential cross section

To study the case of longitudinal polarization with
degrees of Peþ and Pe− , we calculate helicity amplitudes
and make a formal application of Eq. (1.15) from [26,27],

σðPeþ ; Pe−Þ ¼
1

4

X
χ1;χ2

ð1þ χ1PeþÞð1þ χ2Pe−Þσχ1χ2 ; ð4Þ

where χ1ð2Þ ¼ −1ðþ1Þ corresponds to the particle i with
left (right) helicity.
The virtual (Born) cross section of the μ�e− → e−μ�

process can be written as follows:

dσvirtðBornÞχ1χ2

d cos ϑe
¼ πα2

1

2s
jHvirtðBornÞ

χ1χ2 j2; ð5Þ
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where

jHvirtðBornÞ
χ1χ2 j2 ¼

X
χ3;χ4

jHvirtðBornÞ
χ1χ2χ3χ4 j2; ð6Þ

ϑe is the angle between the initial (anti)muon μ� and final
electron e−.
The soft photon bremsstrahlung contributions are fac-

torized at the Born cross section; they are given below.
The cross section for the hard photon bremsstrahlung

reads

dσhardχ1χ2

ds0d cos θ4dϕ4d cos θ5

¼ α3
s − s0

128πss0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs0; m2

μ; m2
eÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

μ; m2
eÞ

q jHhard
χ1χ2 j2; ð7Þ

where s0 ¼ ðp3 þ p4Þ2, λðx; y; zÞ is the Källén (triangle)
function, and

jHhard
χ1χ2 j2 ¼

X
χ3;χ4;χ5

jHhard
χ1χ2χ3χ4χ5 j2: ð8Þ

Here, θ5 is the angle between three momenta of the photon
and electron, θ4 is the angle between three momenta of the
(anti)muon μ� and photon in the rest frame of the ðμ�e−Þ
compound, ϕ4 is the azimuthal angle of the (anti)muon μ�
in the same frame.

B. Helicity amplitudes for the Born and virtual part

For both channels, there are eight nonvanishing inde-
pendent HAs which depend on kinematic variables, cou-
pling constants, and six scalar FFs in the LQD-basis for Z
boson and one for γ exchange.
The HAs for μþ channel have the following form:

H∓∓∓∓ ¼ 1

t

n
s−ð2 − cþrsÞF̃γ þ χZðtÞ

h
s−ð−2cþrsF̃LL þ ð2 − cþrsÞðF̃QQ þ F̃LQ þ F̃QLÞ − 2m2

μc−ðF̃LD þ F̃QDÞÞ

�
ffiffiffi
λ

p
μeð−2cþrsF̃LL þ ð2 − cþrsÞF̃LQ − ð2þ cþrsÞF̃QL − 2c−m2

μF̃LDÞ
io

;

H∓−−� ¼ sin ϑe
mμffiffiffi
s

p
t

n
s−F̃γ þ χZðtÞ

h
s−ð2F̃LL þ F̃QQ þ F̃LQ þ F̃QL − sþðF̃LD þ F̃QDÞÞ

þ
ffiffiffi
λ

p
μeð2F̃LL þ F̃LQ þ F̃QL − sþF̃LDÞ

io
; ð9Þ

H∓þþ� ¼ − sin ϑe
mμffiffiffi
s

p
t

n
s−F̃γ þ χZðtÞ

h
s−ð2F̃LL þ F̃QQ þ F̃LQ þ F̃QL − sþðF̃LD þ F̃QDÞÞ

−
ffiffiffi
λ

p
μeð2F̃LL þ F̃LQ þ F̃QL − sþF̃LDÞ

io
:

H∓��∓ ¼ −
c−

t

n
s−F̃γ þ χZðtÞ

h
s−ð2F̃LL þ F̃QQ þ F̃LQ þ F̃QL − 2m2

μðF̃LD þ F̃QDÞÞ

∓ ffiffiffi
λ

p
μeð2F̃LL þ F̃LQ þ F̃QL − 2m2

μF̃LDÞ
io

;

where λμe ¼ λðs;m2
μ; m2

eÞ.
The HAs for μ−—channel have the following form:

H���� ¼ −
1

t

n
s−ð2 − cþrsÞF̃γ þ χZðtÞ

h
s−ð4F̃LL þ ð2 − cþrsÞðF̃QQ þ F̃LQ þ F̃QLÞ − 2m2

μc−ðF̃LD þ F̃QDÞÞ

∓ ffiffiffi
λ

p
μeð4ðF̃QL þ F̃LLÞ þ ð2 − cþrsÞðF̃LQ − F̃QLÞ − 2m2

μc−F̃LDÞ
io

;

H−��þ ¼ − sinϑe
mμ

t
ffiffiffi
s

p
n
s−F̃γ þ χZðtÞ

h
s−ðF̃QQ þ F̃LQ þ F̃QL − sþðF̃LD þ F̃QDÞÞ ∓

ffiffiffi
λ

p
μeðF̃LQ − F̃QL − sþF̃LDÞ

io
;

Hþ��− ¼ sinϑe
mμ

t
ffiffiffi
s

p
n
s−F̃γ þ χZðtÞ

h
s−ðF̃QQ þ F̃LQ þ F̃QL − sþðF̃LD þ F̃QDÞÞ ∓

ffiffiffi
λ

p
μeðF̃LQ − F̃QL − sþF̃LDÞ

io
;

H�∓∓� ¼ −
c−

t

n
s−F̃γ þ χZðtÞ

h
s−ðF̃QQ þ F̃LQ þ F̃QL − 2m2

μðF̃LD þ F̃QDÞÞ �
ffiffiffi
λ

p
μeðF̃LQ − F̃QL − 2m2

μF̃LDÞ
io

ð10Þ
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with s− ¼ s −m2
μ; sþ ¼ sþm2

μ, and χZðtÞ being the Z=γ
propagator ratio,

χZðtÞ ¼
1

4s2Wc
2
W

t
t −M2

Z
: ð11Þ

For both channels, the other six HAs are expressed
through the above ones as follows: H−−−þ ¼ Hþ−−−,
H−−þþ ¼ Hþþ−−, H−þ−− ¼ H−−þ−, H−þ−þ ¼ Hþ−þ−,
H−þþþ ¼ Hþþþ−, Hþ−þþ ¼ Hþþ−þ.
The helicity indices denote the signs of the fermion spin

projections to their momenta p1, p2, p3, p4, respectively.
The notation,

c� ¼ 1� cosϑe; ð12Þ

was introduced. The electron scattering angle ϑe is related
to the Mandelstam variables t ¼ ðp− − p4Þ2 and
u ¼ ðp2 − p3Þ2,

cosϑμ ¼ ½sðu − tÞ − ðm2
μ −m2

eÞ2�=λμe: ð13Þ

Note that the tilded form factors absorb couplings, which
leads to compactification of the formulas for the HAs. The
expressions for the tilded form factors are

F̃γ ¼ QeQμFγ;

F̃LL ¼ Ið3Þe Ið3Þμ FLL;

F̃LQ ¼ Ið3Þe δμFLQ;

F̃QL ¼ δeI
ð3Þ
μ FQL;

F̃QQ ¼ δeδμFQQ;

F̃LD ¼ Ið3Þe Ið3Þμ FLD;

F̃QD ¼ δeI
ð3Þ
μ FQD; ð14Þ

with the coupling constants,

Ið3Þf ; σf ¼ vf þ af; δf ¼ vf − af;

sW ¼ e
g
; cW ¼ MW

MZ
:

In order to get HAs for the Born level, one should set
Fγ;LL;LQ;QL;QQ ¼ 1 and FLD;QD ¼ 0.

C. The soft photon emission bremsstrahlung

The soft photon contribution contains the infrared
divergences and compensates the corresponding divergen-
ces of the one-loop virtual QED corrections. This soft
photon bremsstrahlung correction can be calculated ana-
lytically, and it is factorized at the Born cross section. In
this case, the polarization dependence is contained only in
the Born cross section σBorn,

σsoft;μ-leg ¼ −Q2
μ
α

π
σBorn

�
ln

�
4ω2

λ2

�
þ sþm2

μ

s −m2
μ
lnðrsÞ −

1þ 2rtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4rt

p
�
lnða14Þ ln

�
4ω2

λ2

�
þ Li2

�
1 −

a14xμ
v14

�
− Li2

�
1 −

xμ
v14

�
þ Li2

�
1 −

a14
v14xμ

�
− Li2

�
1 −

1

v14xμ

���
;

σsoft;ifi ¼ −QeQμ
α

π
σBorn

�
2 lnðxμxeÞ ln

�
4ω2

λ2

�
þ Li2ð1 − x2μÞ þ Li2ð1 − x2eÞ − Li2

�
1 −

1

x2μ

�
− Li2

�
1 −

1

x2e

�
− lnða13Þ ln

�
4ω2

λ2

�
− Li2

�
1 −

a13xμ
v13

�
− Li2

�
1 −

xe
v13

�
− Li2

�
1 −

a13
v13xμ

�
þ Li2

�
1 −

1

v13xe

�
− lnða24Þ ln

�
4ω2

λ2

�
− Li2

�
1 −

a24xe
v24

�
þ Li2

�
1 −

xμ
v24

�
− Li2

�
1 −

a24
v24xe

�
þ Li2

�
1 −

1

v24xμ

��
;

σsoft;e-leg ¼ −Q2
e
α

π
σBorn

�
ln

�
4ω2

λ2

�
þ ln

�
m2

e

sð1 − r2sÞ
�
− lnða23Þ ln

�
4ω2

λ2

�
− Li2

�
1 −

a23xe
v23

�
þ Li2

�
1 −

xe
v23

�
− Li2

�
1 −

a23
v23xe

�
þ Li2

�
1 −

1

v23xe

��
: ð15Þ
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With the definitions,

xμ ¼
ffiffiffi
s

p
mμ

; xe ¼
ffiffiffi
s

p
me

ð1 − rsÞ;

a14 ¼
1

2m2
μ

�
2m2

μ þ tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 4m2

μt
q �

;

v14 ¼
mμffiffiffi

s
p ð1þ rsÞ

ða14 þ 1Þ;

a23 ¼
t
m2

e
; v23 ¼

meffiffiffi
s

p ð1 − rsÞ
ða23 þ 1Þ;

a13 ¼
ðuþm2

μÞ
memμ

;

v13 ¼
a213ffiffiffi

s
p ða13ð1þ rsÞ=mμ − ð1 − rsÞ=meÞ

;

a24 ¼ a13;

v24 ¼
a224ffiffiffi

s
p ða24ð1 − rsÞ=me − ð1þ rsÞ=mμÞ

;

where rI ¼ m2
μ=I and I ¼ s, t.

D. Helicity amplitudes for hard photon bremsstrahlung

We use the SANC spinor amplitude module for the
eþe−lþl−γ → 0 (

P
pi ¼ 0) process in any of the s, t, or

u channels, where 0 stands for vacuum and all masses are
not neglected.
The full expression for the photon bremsstrahlung

amplitude of the process under investigation can be divided
into two terms,

A…χi… ¼ 2
ffiffiffi
2

p
ðQμA

μ
…χi… þQeAe

…χi…Þ: ð16Þ

Each term corresponds to a gauge-invariant diagram subset:
Aμ is the amplitude for radiation off the muon line (MSR)
and Ae for radiation off the electron line (ESR).
There exists the following crossing symmetry relation

between MSR and ESR amplitudes:

Aμ
χ1χ4χ3χ2χ5ðp1; p4; p3; p2; p5Þ
¼ Ae

χ3χ2χ1χ4χ5ðp3; p2; p1; p4; p5Þ and mμ ↔ me:

ð17Þ

The explicitly gauge invariant form of the amplitude is
obtained in [22] and implemented as a SANC module,

ffiffiffi
2

p
Ae
χ1χ2χ3χ4χ5 ¼

Tr½=p1=p2F5�
z1z2

v̄1=e34u2

−
v̄1F5=e34u2

z1
−
v̄1=e34F5u2

z2
; ð18Þ

with abbreviations zi ¼ 2pi · p5, ui ≡ uχiðpiÞ etc.
The polarization vector of a real photon appears only

in the combination F5 ¼ pμ
5ε

ν
5σμν. This is the familiar

Maxwell bivector which is gauge invariant. We introduce
also abbreviations for the following combinations of
propagators and couplings constants:

=e34 ¼
1

2

X
a;b¼�1

Dabðv̄3γμγbu4Þγμγa;

Dab ¼ QeQl

s0
þ gaegbl
s0 −M2

Z þ iMZΓZ
; ð19Þ

where g�l are the chiral couplings of the leptons l to the
vector boson Z.
We work in the chiral representation of gamma matrices

and exploit Weyl spinors. Our notation is consistent with
[28–30]. Below we use the following notation for the
decomposition of Dirac spinors into Weyl ones:

=p ¼
� pA _B

p _AB

�
¼
�

p̌

p̂

�
;

u ¼
�
uA

u _A

�
¼
 
jui
ju�

!
;

ū ¼ ð ūA; ū _A Þ ¼ ð hūj; ½ūj Þ;

F ¼
�
FA

B

F _A
_B

�
¼
�
F̌

F̂

�
: ð20Þ

Application of the Fiertz identities to the Pauli matrices
yields

ê34 ¼ jv̄3�Dþþhu4j þ ju4�Dþ−hv̄3j;
ě34 ¼ ju4iD−þ½v̄3j þ jv̄3iD−−½u4j: ð21Þ

The HAs are not Lorentz-invariant objects (they are
changed by boosts transverse to a momentum ray) and thus,
rudimentarily depend on an experimental setup. However,
one expects that the entire physical content of a reaction
should depend only on a relative configuration of particles
by analogy with the rigid body dynamics in a rotating
reference frame. This type of description usually appears to
be most economic one.
In order to factor out all information related to an

experiment configuration, we must build a spin basis in
terms of the given problem’s momenta. Our investigations
show that one of the most economic choices is to put the
polarization vector of fermion ni with i ¼ 1;…; 4 into the
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same two-plane with its momentum pi and momentum of
photon p5. Each two-plane contains two light-like vectors:
photon momentum and the other one denoted by ki. The
explicit expressions for ki can be found in [31]. Then in the
photon basis, we have

juþi i ¼ jv−i i ¼ jū−i i ¼ jv̄þi i ¼ jkii≡ jii;
ju−i � ¼ jvþi � ¼ jūþi � ¼ jv̄−i � ¼ jki�≡ ji�;
juþi � ¼ −jv−i � ¼ −jū−i � ¼ jv̄þi � ¼ −j5�ς�i ;
ju−i i ¼ −jvþi i ¼ −jūþi i ¼ jv̄−i i ¼ j5iςi; ð22Þ

with ςi ¼ mi=hij5i, where we identify k5 ≡ p5.
A Maxwell bivector has a factorized form in the spinor

notation: F̌þ
5 ¼ ffiffiffi

2
p j5ih5j, F̂−

5 ¼ ffiffiffi
2

p j5�½5j, F̌−
5 ¼ F̂þ

5 ¼ 0,
which allows us to organize the amplitude in terms of
blocks,

Ae
χ1χ2χ3χ4χ5 ¼ Sχ5Bχ1χ2χ3χ4 − C1χ1χ5G

2
χ2χ3χ4χ5 − C2χ2χ5G

1
χ1χ3χ4χ5 ;

ð23Þ

where

Bχ1χ2χ3χ4 ¼ ½v̄1jê34ju2i þ hv̄1jě34ju2�;

G1
χ1χ3χ4� ¼

� ½v̄1jê34j5i
hv̄1jě34j5�

�
;

G2
χ2χ3χ4� ¼

� h5jě34ju2�
½5jê34ju2i

�
;

Sχ5 ¼ −
� ½1j2�
½1j5�½2j5� ;

h1j2i
h1j5ih2j5i

�
;

C1χ1χ5 ¼
� ½5j1�

h5j1i

�−1
;

C2χ2χ5 ¼
� ½2j5�

h2j5i

�−1
: ð24Þ

We are going to evaluate the amplitude only for positive
photon helicity because the case of negative one can be
easily obtained with the help of the CP symmetry,

Aχ1χ2χ3χ4− ¼ −χ1χ2χ3χ4A�
−χ1−χ2−χ3−χ4þ; ð25Þ

with “þ” ↔ “−” in Dab. Below, we give all amplitudes
with positive photon helicity,

Ae
−−−þþ ¼ −Sþh4j5iðDþþ½3j1�ς2 þD−þ½3j2�ς1Þ;

Ae
−−þ−þ ¼ −Sþh3j5iðDþ−½4j1�ς2 þD−−½4j2�ς1Þ;

Ae
−þ−−þ ¼ Sþh2j5iðDþþ½3j1�ς4 þDþ−½4j1�ς3Þ;

Aeþ−−−þ ¼ Sþh1j5iðD−þ½3j2�ς4 þD−−½4j2�ς3Þ;
Ae

−−þþþ ¼ Sþ½5j1�ðDþ−h3j5iς2ς�4 þDþþh4j5iς2ς�3Þ
þ Sþ½5j2�ðD−−h3j5iς1ς�4 þD−þh4j5iς1ς�3Þ;

Aeþþ−−þ ¼ Sþh1j5iD−þ½5j3�ς�2ς4 þD−−½5j4�ς�2ς3Þ
þ Sþh2j5iðDþþ½5j3�ς�1ς4 þDþ−½5j4�ς�1ς3Þ;

Ae
−þ−þþ ¼ SþðDþþ½3j1�h2j4i −D−þh4j5i½5j3�ς1ς�2

−Dþ−h2j5i½5j1�ς3ς�4Þ þ C2þþDþþ½3j1�h4j5i;
Ae

−þþ−þ ¼ SþðDþ−½4j1�h2j3i −D−−h3j5i½5j4�ς1ς�2
−Dþþh2j5i½5j1�ς�3ς4Þ þ C2þþDþ−½4j1�h4j5i;

Aeþ−−þþ ¼ SþðD−þ½3j2�h1j4i −Dþþh4j5ij½5j3�ς�1ς2
−D−−h1j5i½5j2�ς3ς�4Þ þ C1þþD−þ½3j2�h4j5i;

Aeþ−þ−þ ¼ SþðD−−½4j2�h1j3i −Dþ−h3j5i½5j4�ς�1ς2
−D−þh1j5i½5j2�ς�3ς4Þ þ C1þþD−−½4j2�h3j5i;

Ae
−þþþþ ¼ −Sþ½5j1�ðDþ−h2j3iς�4 þDþþh2j4iς�3Þ

− C2þþ½5j1�ðDþ−h3j5iς�4 þDþþh4j5iς�3Þ;
Aeþ−þþþ ¼ −Sþ½5j2�ðD−−h1j3iς�4 þD−þh1j4iς�3Þ

− C2þþ½5j2�ðD−−h3j5iς�4 þD−þh4j5iς�3Þ;
Aeþþ−þþ ¼ Sþ½5j3�ðD−þh1j4iς�2 þDþþh2j4iς�1Þ

þ h4j5i½5j3�ðC1þþD−þς�2 þ C2þþDþþς�1Þ;
Aeþþþ−þ ¼ Sþ½5j4�ðD−−h1j3iς�2 þDþ−h2j3iς�1Þ

þ h3j5i½5j4�ðC1þþD−−ς�2 þ C2þþDþ−ς�1Þ;
Aeþþþþþ ¼ Ae

−−−−þ ¼ 0:

To obtain HA H with a definite set of helicities, the
basis-transformation matrices Cχi

ξi
should be applied inde-

pendently for each index χ of external particles whose
polarization is not averaged,

H…ξi… ¼ Cχ1
ξ1
…Cχ4

ξ4
A…χi… ð26Þ

Explicit expressions for the matrices C can be found in [32]
and for our special case in [31]. Geometrically, they realize
a Wigner rotation of the spin axis [33,34].

III. LEADING HIGHER-ORDER
ELECTROWEAK EFFECTS

A. The ρ parameter

The electroweak parameter ρ, introduced by Veltman
[35], measures the relative strength of charged and neutral
currents. The ρ parameter is defined as the ratio of a neutral
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current amplitude to a charged current one at the zero
momentum transfer; see, for example, [36],

ρ ¼ GNCð0Þ
GCCð0Þ

¼ 1

1 − Δρ
; ð27Þ

where GCCð0Þ ¼ Gμ is the Fermi constant defined from the
μ decay width, and the quantityΔρ is treated perturbatively,

Δρ ¼ Δρð1Þ þ Δρð2Þ þ… ð28Þ

Expanding (27) up to quadratic terms Δρ2, we have

ρ ¼ 1þ Δρþ Δρ2: ð29Þ

The leading in Gμm2
t NLO EW contribution to Δρ is

explicitly given by

Δρð1ÞjGμ ¼ 3Xt ¼
3
ffiffiffi
2

p
Gμm2

t

16π2
: ð30Þ

A large group of dominant radiative corrections can be
absorbed into the shift of the ρ parameter from its lowest
order value ρBorn ¼ 1. The major contributions of these
groups are

Δρ ¼ ΔρXt
þ Δρααs þ ΔρXtα

2
s
þ… ð31Þ

We follow the prescription introduced in Refs. [36,37] and
later well described in Refs. [38,39].
At the two-loop level, the quantity Δρ contains two

contributions,

Δρ ¼ NcXt½1þ ρð2ÞðM2
H=m

2
t ÞXt�

×
�
1 −

2αsðM2
ZÞ

9π
ðπ2 þ 3Þ

�
: ð32Þ

They consist of the following:
(i) The two-loop EW part at OðG2

μÞ, the second term in
the first square brackets [36,37,40] with ρð2Þ given in
Eq. (12) of [37] [actually, after the Higgs boson
discovery and determination of its mass, it has
become sufficient to use the low Higgs mass
asymptotics, Eq. (15), of [37]];

(ii) The mixed two-loop EW ⊗ QCD at OðGμαsÞ, the
second term in the second square brackets; see
Refs. [41,42] for further details.

B. Implementation of the Δα and Δρ parameters

The leading higher-order effects are usually parame-
trized by Δα and Δρ and their two-loop contributions can
be included in a straightforward way.
The corrections induced by the running of α can be

included by resummation the NLO EW Δα parameter,

αðQ2Þ ¼ αð0Þ
1 − ΔαðQ2Þ : ð33Þ

Here, Q2 is the scale which characterizes the evolution of
the EW coupling. In the case of elastic μ − e scattering,
Q2 ¼ t where t is the Mandelstam variable.
To implement the Δρ parameter, we introduce inter-

mediate vector boson propagators ∼1=ðQ2 þM2
VÞ, into

Eq. (27) and derive the following definition:

ρ ¼ M2
W

c̄2WM
2
Z
; ð34Þ

where we have introduced a new parameter c̄2W to distin-
guish from the usual c2W for which we maintain the meaning
c2W ¼ M2

W=M
2
Z to be valid to all perturbative orders. At the

lowest order (LO),

ρð0Þ ¼ M2
W

c2WM
2
Z
¼ 1: ð35Þ

From Eq. (34), we have

c̄2W ¼ M2
W

ρM2
Z
¼ ð1 − ΔρÞc2W; s̄2W ¼ s2W þ Δρc2W: ð36Þ

Equations (33) and (36) allow us to introduce the leading
higher-order effects via the following replacements:

αð0Þ → αðtÞ ¼ αð0Þ½1þ ΔαðtÞ þ ΔαðtÞ2�; ð37Þ

s2W → s̄2W ≡ s2W

�
1þ c2W

s2W
Δρ
�

c2W → c̄2W ≡ 1 − s̄2W ¼ ð1 − ΔρÞc2W; ð38Þ

into the Born cross section with αð0Þ EW coupling. The
obtained recipe allows one to reproduce correctly the terms
up to OðΔρ2Þ and OðΔαðtÞΔρÞ ([36,43,44]).
In the SANC we use replacements (38) at the level of form

factors. There are five Born-like form factors: one for γ
exchange F̃γ that is proportional only to the EW coupling
and four for Z exchange: F̃LL; F̃LQ; F̃QL; F̃QQ that are all
proportional to the EW coupling and to the factor ðs2Wc2WÞ−1
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from χZðtÞ Eq. (11). Also each Q form factor has an
additional s2W , Eq. (14).
We consider the replacement for the form factors in the

αð0Þ and Gμ EW schemes separately.
(i) The αð0Þ EW scheme

Let us consider the replacement for the F̃LL form
factor due to all factors listed above,

αð0Þ 1

s2Wc
2
W
F̃LL → αðtÞ 1

s̄2Wc̄
2
W
F̃LL

¼ αð0Þ 1

s2Wc
2
W
½1þ ΔαðtÞ þ ΔαðtÞ2�

×

�
1 −

c2W
s2W

Δρþ c4W
s4W

Δρ2
�
½1þ Δρþ Δρ2�:

ð39Þ

Removing the common constant from the left and
right sides, the leading two-loop form factors read

F̃γ → ½1þ ΔαðtÞ þ ΔαðtÞ2�;
F̃LL → ½1þ ΔαðtÞ þ ΔαðtÞ2�½1þ Δρþ Δρ2�

×

�
1 −

c2W
s2W

Δρþ c4W
s4W

Δρ2
�
;

F̃LQ → ½1þ ΔαðtÞ þ ΔαðtÞ2�½1þ Δρþ Δρ2�;
F̃QL → ½1þ ΔαðtÞ þ ΔαðtÞ2�½1þ Δρþ Δρ2�;
F̃QQ → ½1þ ΔαðtÞ þ ΔαðtÞ2�½1þ Δρþ Δρ2�

×

�
1þ c2W

s2W
Δρ
�
: ð40Þ

(ii) The Gμ EW scheme
In the Gμ EW scheme the coupling constant

already contains additional s2W through the following
relation:

αGμ
¼

ffiffiffi
2

p
GμM2

Ws
2
W

π
; ð41Þ

and therefore, the replacement for αGμ
could be

written as

αGμ
→ αGμs̄2W=s

2
W ¼ αGμ

�
1þ c2W

s2W
Δρ
�
: ð42Þ

Since all form factors for Z exchange have an additional
ðs2Wc2WÞ−1 factor, one can write

αGμ

1

s2Wc
2
W
→ αGμ

1

s2Wc̄
2
W
¼ αGμ

1

s2Wc
2
W
ð1þ Δρþ Δρ2Þ:

ð43Þ

Therefore, the form factors at NNLO order read

F̃γ →

�
1þ c2W

s2W
Δρ
�
;

F̃LL → ½1þ Δρþ Δρ2�;

F̃LQ → ½1þ Δρþ Δρ2�
�
1þ c2W

s2W
Δρ
�
;

F̃QL → ½1þ Δρþ Δρ2�
�
1þ c2W

s2W
Δρ
�
;

F̃QQ → ½1þ Δρþ Δρ2�
�
1þ c2W

s2W
Δρ
�
2

:

The replacements (39) and (44) should be introduced
into helicity amplitudes. After squaring the HAs, all terms
higher than Δρ2, ΔρΔα, and Δα2 should be omitted. To
avoid double counting, one should also remove the leading
NLO EW contribution (30) from the terms linear in Δρ:
Δρ → ðΔρ − Δρð1Þjαð0ÞÞ and drop the ΔαðtÞ contribution.
We have verified analytically that the results obtained in

this way agree with the corresponding expressions derived
in [45].

IV. NUMERICAL RESULTS AND COMPARISONS

In this section, we present the numerical results for EW
RCs to the μþ and μ− channels of elastic μ − e scattering at
the one-loop level obtained by means of the SANC system.
Numerical results are evaluated for two energy points

and the following helicity states of the antimuon/muon
(Pμ�) and electron (Pe−) beam polarization,

ðPμ� ;Pe−Þ¼ð0;0Þ;ð−1;−1Þ;ð−1;þ1Þ;ðþ1;−1Þ;ðþ1;þ1Þ;
ð44Þ

in the αð0Þ and Gμ schemes. Obviously, results for any
set of polarizations can be obtained from these cross
sections.
A comparison of our results for specific contributions at

the tree level with CalcHEP [46] and WHIZARD codes [24]
is given.
We used the following set of input parameters taken from

the PDG (2020) [47]:
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α−1ð0Þ ¼ 137.035999084;

Gμ ¼ 1.1663787 × 10−5 GeV−2

αsðMZÞ ¼ 0.1179;

MZ ¼ 91.1876 GeV; ΓZ ¼ 2.4952 GeV;

MW ¼ 80.379 GeV MH ¼ 125.25 GeV;

me ¼ 0.51099895 MeV;

mμ ¼ 0.1056583745 GeV;

mτ ¼ 1.77686 GeV;

mu ¼ 0.062 GeV; md ¼ 0.083 GeV;

mc ¼ 1.5 GeV; ms ¼ 0.215 GeV;

mt ¼ 172.76 GeV: mb ¼ 4.7 GeV:

We show the results for the polarized Born, hard
bremsstrahlung, one-loop cross sections (pb) and relative
corrections (%).

A. Comparisons with other codes

The polarized Born and hard bremsstrahlung cross
sections were cross-checked with the corresponding results
of the WHIZARD [24] and CalcHEP [46] programs.
The results are given in the αð0Þ EW scheme with fixed

100% polarized initial states for
ffiffiffi
s

p ¼ 250 GeV and
angular cuts j cosϑμj ≤ 0.9 and j cos ϑej ≤ 0.9. For the
hard bremsstrahlung cross sections, an additional cut on the
photon energy Eγ ≥ ω ¼ 10−4

ffiffiffi
s

p
=2 is applied.

The results of comparisons are shown in Tables I and II.
Very good agreement within 4–5 digits with the above
mentioned codes is found.

B. One-loop cross sections and relative corrections

1. The case of
ffiffi
s

p
= 250 GeV c.m.s. energy

In Tables III–IV, we present the values of the Born cross
sections (in pb) as well as the relative corrections,

δY ¼ σY

σBorn
;%

for reactions (1–2) for the c.m.s. energy
ffiffiffi
s

p ¼ 250 GeV
with angular cuts j cosϑμj ≤ 0.9 and j cosϑej ≤ 0.9. We
consider the unpolarized and fully (100%) polarized initial
beams (44) in the αð0Þ and Gμ EW schemes.
In the tables, particular contributions of the NLO EW

relative corrections as well as the leading h.o. corrections
are shown.We split the complete one-loop contribution into
two gauge-invariant subsets of the diagrams δQED and δweak,
where δweak includes vacuum polarization (vp) as well as
pure weak-interaction contributions; δweak-vp ¼ δweak − δvp.
It is convenient to discuss both tables in the same

manner. A comparison of the cross sections with different
values of polarization has demonstrated the significance of
polarization effects. Namely, for the μþ channel the cross
section σþ− is about 1.5 times larger than σ−−;þþ and about
1.2 times larger than the unpolarized cross section. As for
the μ− channel, the cross section σ−− is about 2.5 times
larger than σ−þ;þ− and about 1.5 times larger than the
unpolarized cross section.
The QED part of the relative RCs for the unpolarized

and fully polarized cases in the αð0Þ and Gμ EW schemes
is negative and has a maximum of about 3% in the μþ

channel for δQEDþ−;−þ (the same situation is in the μ− channel;

TABLE II. The same as in Table I but for μþe− → e−μþγ
scattering.

Pμþ ; Pe− 0, 0 −1;−1 −1; 1 1;−1 1, 1

S 91.63(1) 77.27(1) 99.88(1) 112.12(1) 77.28(1)
W 91.63(1) 77.28(1) 99.90(1) 112.12(1) 77.28(1)
C 91.63(1) 77.27(1) 99.89(1) 112.11(1) 77.27(1)

TABLE I. The tuned triple comparison between SANC (the first
line), WHIZARD (the second line), and CalcHEP (the third line) results
for the hard bremsstrahlung cross section (pb) for 100% polarized
μ−e− → e−μ−γ scattering and for c.m.s. energy

ffiffiffi
s

p ¼ 250 GeV.
For comparison of the real photon emission, we applied an addi-
tional cut on the photon energy Eγ ≥ ω ¼ 10−4

ffiffiffi
s

p
=2. The angular

cuts are j cosϑμj ≤ 0.9 and j cosϑej ≤ 0.9.

Pμ− ; Pe− 0, 0 −1;−1 −1; 1 1;−1 1, 1

S 102.42(1) 157.64(1) 56.53(1) 56.52(1) 139.05(1)
W 102.43(1) 157.62(1) 56.53(1) 56.54(1) 139.05(1)
C 102.43(1) 157.63(1) 56.53(1) 56.52(1) 139.06(2)

TABLE III. Integrated Born cross sections and relative correc-
tions for μþe− → e−μþðγÞ scattering for the c.m.s. energy

ffiffiffi
s

p ¼
250 GeV and the set (44) of polarization degrees of the initial
particles in the αð0Þ and Gμ EW schemes.

Pμþ , Pe− 0,0 −1;−1 −1;þ1 þ1;−1 þ1;þ1

αð0Þ EW scheme
σBorn, pb 66.487(1) 55.333(1) 73.186(1) 82.097(1) 55.333(1)
δQED;% −1.936ð1Þ −0.481ð1Þ −2.933ð1Þ −3.013ð1Þ −0.482ð1Þ
δVP;% 11.466(1) 13.729(2) 10.151(1) 9.586(1) 13.729(2)
δweak-VP% −0.396ð1Þ −1.758ð1Þ 2.297(1) −0.962ð1Þ −1.758ð1Þ
δho;% 1.032(1) 0.929(1) 0.895(1) 1.295(1) 0.929(1)

Gμ EW scheme

σBorn, pb 71.458(1) 59.470(1) 78.658(1) 88.234(1) 59.470(1)
δQED;% −1.935ð2Þ −0.481ð2Þ −2.930ð2Þ −3.007ð2Þ −0.482ð2Þ
δVP;% 5.568(1) 6.705(1) 4.899(1) 4.630(1) 6.705(2)
δweak-VP;% −0.391ð1Þ −0.626ð1Þ 1.656(1) −1.891ð1Þ −0.626ð1Þ
δho;% −0.456ð1Þ −0.512ð1Þ −0.520ð1Þ −0.322ð1Þ −0.512ð1Þ
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i.e., the maximum is about 2.7% for the same polarization
values), and has a minimum of about −0.5% in the μþ

channel for δQED−−;þþ [about (1.8–1.9)% in the μ− channel].
The main contribution to the weak correction is due to

the vacuum polarization δvp, which is positive and gives
about 10%–13% in the αð0Þ EW scheme (5%–7% in theGμ

scheme) for both μþ and μ− channels.
The rest of the weak correction δweak−vp is also negative,

and it can reach up to 1.5%–2% and even can change
the sign.
The leading higher-order corrections are positive and

equal to about 1% in the αð0Þ EW scheme while in the Gμ

one they are negative and equal to about 0.5%.
All weak and h.o. corrections strongly depend on the

choice of the EW scheme, and the total weak corrections
in Gμ scheme are smaller by about 5%–6% than in the
αð0Þ one.
In Tables V and VI, the integrated cross sections for the

weak and leading higher-order corrections are shown for
both μþ and μ− channels. The results are calculated in the
αð0Þ and Gμ schemes, their difference,

δGμ=αð0Þ ¼
σGμ

σαð0Þ
− 1;% ð45Þ

is also shown. Ratio (45) shows the stabilization of the
results and can be considered as an estimation of the
theoretical uncertainty of the weak and h.o. contributions.
As it is well known, the difference between two EW
schemes in the LO is just the ratio of the EW couplings
and gives about δLOGμ=αð0Þ ¼ 7%. As it is seen from the tables,

the weak contribution reduces the difference almost by one
half to about δweakGμ=αð0Þ ¼ 2% − 3%. Even more, the sum of

the weak and h.o. contributions reduces the difference
almost by one half or one third to about δweakþh:o:

Gμ=αð0Þ ¼
0.05% − 0.5% depending on the value of polarization
degrees and the reaction channel. We consider 0.5%
as a rather big difference which is caused by using the
Mandelstam variable t as a scale of the ΔαðtÞ (33) quantity
in calculations of the h.o. contributions within the αð0Þ
EW scheme.
Figures 1–4 show the differential cross sections for LO

and NLO EW and relative corrections as functions of the
cos θe and cos θ�μ , respectively. The maxima for the LO and

TABLE IV. The same as in Table III but for μ−e− → e−μ−ðγ)
scattering.

Pμþ , Pe− 0,0 −1;−1 −1;þ1 þ1;−1 þ1;þ1

αð0Þ EW scheme
σBorn, pb 75.231(1) 115.076(1) 42.157(1) 42.157(1) 101.538(1)
δQED;% −2.085ð1Þ −1.912ð1Þ −2.682ð1Þ −2.683ð1Þ −1.781ð1Þ
δVP;% 10.849(1) 9.602(1) 13.305(1) 13.305(1) 10.220(1)
δweak-VP;% −0.161ð1Þ −1.476ð1Þ −1.540ð1Þ −1.540ð1Þ 2.474(1)
δho;% 1.089(1) 1.365(1) 0.907(1) 0.907(1) 0.926(1)

Gμ EW scheme

σBorn, pb 80.855(1) 123.679(1) 45.309(1) 45.309(1) 109.128(1)
δQED;% −2.082ð2Þ −1.911ð1Þ −2.685ð2Þ −2.685ð2Þ −1.780ð1Þ
δVP;% 5.295(1) 4.729(1) 6.393(1) 6.393(1) 5.027(1)
δweak-VP;% −0.501ð1Þ −2.495ð1Þ −0.519ð1Þ −0.519ð1Þ 1.775(1)

δho;% −0.436ð1Þ −0.306ð1Þ −0.511ð1Þ −0.511ð1Þ −0.522ð1Þ

TABLE V. Weak and higher-order corrected cross sections for
μþe− → e−μþðγ) scattering for the c.m.s. energy

ffiffiffi
s

p ¼ 250 GeV
and the set (44) of polarization degrees of the initial particles in
the αð0Þ and Gμ EW schemes.

Pμþ ; Pe− 0,0 −1;−1 −1;þ1 þ1;−1 þ1;þ1

σweakαð0Þ , pb 73.846(1) 61.956(1) 82.295(1) 89.175(1) 61.956(1)

σweakGμ
, pb 75.156(1) 63.084(1) 83.812(1) 90.642(1) 63.084(1)

δweakGμ=αð0Þ;% 1.77 1.82 1.84 1.65 1.82

σweakþho
αð0Þ , pb 74.533(1) 62.471(1) 82.951(1) 90.240(1) 62.471(1)

σweakþho
Gμ

, pb 74.830(1) 62.779(1) 83.405(1) 90.359(1) 62.779(1)

δweakþho
Gμ=αð0Þ ;% 0.40 0.50 0.55 0.13 0.50

TABLE VI. The same as in Table V but for μ−e− → e−μ−ðγÞ
scattering.

Pμþ ; Pe− 0,0 −1;−1 −1;þ1 þ1;−1 þ1;þ1

σweakαð0Þ , pb 82.272(1) 124.427(1) 47.117(1) 47.117(1) 114.427(1)

σweakGμ
, pb 84.732(1) 126.441(1) 47.969(1) 47.969(1) 116.551(1)

δweakGμ=αð0Þ;% 2.99 1.62 1.81 1.81 1.86

σweakþho
αð0Þ , pb 84.091(1) 125.999(1) 47.499(1) 47.499(1) 115.368(1)

σweakþho
Gμ

, pb 84.379(1) 126.062(1) 47.738(1) 47.738(1) 115.981(1)

δweakþho
Gμ=αð0Þ ;% 0.34 0.05 0.05 0.50 0.53

FIG. 1. The LO and NLO EW cross sections (upper panel) and
relative corrections (lower panel) of the μþe− → e−μþðγÞ process
for the c.m.s. energy

ffiffiffi
s

p ¼ 250 GeV as a function of cos θe.
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NLO EW cross section are at the t → 0 (cos θe ≃ −1 of the
final electron and cos θ�μ ≃ 1 of the final (anti)muon). At
the same time, the relative corrections have maxima at
opposite values of angles where real photon contribution
dominates [48].

2. The case of the laboratory system energy
Eμ = 150 GeV, Ee =me

In order to validate the code, we have calculated NLO
EW and h.o. corrections for the setup of the MUonE
experiment proposed in [10]. Namely, we have used setup
1: Eμ ¼ 150 GeV, Ee ¼ me (

ffiffiffi
s

p
≃ 0.405541 GeV),

θe; θμ ≤ 100 mrad, Ee ≥ 0.2 GeV.
The results are shown in Tables VII and VIII for both

muon channels and for the set of polarization degrees (44)
of the initial particles in the αð0Þ EW scheme. In the tables,
we show the integrated Born cross sections and the relative
corrections for the QED part, the vacuum polarization part
of the weak contribution, and the part of h.o. corrections
proportional to ΔαðtÞ2. The rest of the weak contribution
δweak−vp which is about 10−4% and the rest of h.o.
corrections [not proportional to ΔαðtÞ2] is about 10−8%,
they are omitted in the tables.
Tables VII and VIII show that the effect of the initial

particle polarization changes the third digits in δQED and
δvp. The integrated cross section σ−−;þþ is larger than σunp
by about 0.8% for both μþ and μ− channels. The h.o.
contribution from ΔαðtÞ2 is about 6 × 10−3%.
Figures 5 and 6 show the differential cross for LO and

NLO QED and relative corrections as functions of the
variables tee ¼ ðp2 − p3Þ2 and tμμ ¼ ðp1 − p4Þ2, respec-
tively. In Figs. 7 and 8, the distributions on the final

FIG. 2. The same as in Fig. 1 but for cos θμþ.

FIG. 3. The LO and NLO EW cross sections (upper panel) and
relative corrections (lower panel) of the μ−e− → e−μ−ðγÞ process
for the c.m.s. energy

ffiffiffi
s

p ¼ 250 GeV as a function of cos θe.

FIG. 4. The same as in Fig. 3 but for cos θμ−.

TABLE VII. Integrated Born cross section and relative correc-
tions for μþe− → e−μþðγ) scattering for the laboratory system
energy Eμ ¼ 150 GeV and the set (44) of the initial particle
polarization degrees in the αð0Þ EW scheme.

Pμþ ; Pe− 0, 0 −1;−1 −1;þ1 þ1;−1 þ1;þ1

σBorn; μb 1265.1(1) 1275.3(1) 1254.8(1) 1254.8(1) 1275.3(1)
δQED;% 4.762(1) 4.766(1) 4.757(1) 4.759(1) 4.765(1)
δVP;% 0.940(1) 0.943(1) 0.936(1) 0.936(1) 0.943(1)
δhoðΔα2Þ;% 0.006(1) 0.006(1) 0.006(1) 0.006(1) 0.006(1)

TABLE VIII. The same as in Table VII but for μ−e− →
e−μ−ðγÞ scattering.
Pμ− ; Pe− 0, 0 −1;−1 −1;þ1 þ1;−1 þ1;þ1

σBorn; μb 1265.1(1) 1275.3(1) 1254.8(1) 1254.8(1) 1275.3(1)
δQED;% 4.624(1) 4.608(1) 4.640(1) 4.639(1) 4.608(1)
δVP;% 0.940(1) 0.940(1) 0.940(1) 0.940(1) 0.940(1)
δhoðΔα2Þ;% 0.006(1) 0.006(1) 0.006(1) 0.006(1) 0.006(1)
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electron Ee and muon Eμ energies are presented. All
distributions look very similar to those given in [10].

V. CONCLUSIONS

In this paper, we have described the implementation of
complete one-loop EW corrections to elastic μ − e scatter-
ing within the SANC system framework. The relevant
contributions to the cross section are calculated analytically
using the helicity amplitude approach, which allows us to
take into account any polarization. The helicity amplitudes
were used for Born and virtual parts as well as for the soft
and hard photon bremsstrahlung, taking into account the
masses of the initial and final fermions.
The numerical results are also presented. The effects

of initial beam polarization were analyzed for fully
polarized states. Two energy points were considered: the
c.m.s. energy

ffiffiffi
s

p ¼ 250 GeV and the laboratory system
energy Eμ ¼ 150 GeV.
The calculated polarized cross sections at the tree level

for Born and hard photon bremsstrahlung were thoroughly
compared with the results of CalcHEP and WHIZARD, and
very good agreement with the above-mentioned codes was
observed.
It was found that cross sections strongly depend on

polarization degrees of initial beams. As a result, the
polarization effects are significant and give increase in
the cross sections at definite polarization degrees.
The complete one-loop and leading higher-order correc-

tions were analyzed. Higher-order terms were introduced
by using the parameters Δα and Δρ.
For the c.m.s. energy

ffiffiffi
s

p ¼ 250 GeV calculations in
αð0Þ, and Gμ EW schemes were performed. The sum of
weak and higher-order contributions reduces the difference
between the results in two EW schemes to about
0.05%–0.5% depending on the polarization values and
the reaction channel. This part of our study can be
considered as a preliminary step in preparation of a

FIG. 6. The same as in Fig. 5 but for tμμ ¼ ðp1 − p4Þ2.

FIG. 7. The same as in Fig. 5 but for electron energy Ee.

FIG. 5. The LO and NLO QED cross sections (upper panel)
and relative corrections (lower panel) of the μþe− → e−μþðγÞ
process for the laboratory system energy Eμ ¼ 150 GeV as a
function of tee ¼ ðp2 − p3Þ2.

FIG. 8. The same as in Fig. 5 but for muon energy Eμ.
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contribution to the physical program of the proposed
μTRISTAN experiment [5].
For the laboratory system energy Eμ ¼ 150 GeV, we

present cross sections and distributions calculated with up
to date input parameters.
The forthcoming part of our work on this process will be

devoted to calculation of leading and next-to-leading large

logarithmic corrections in higher orders αnLn and αnLn−1,
where L ¼ lnðQ2=m2

eÞ and n ≥ 3.
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