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In this work we report the calculation of the total cross section for pion-production by the
dispersion of neutrinos on nucleons. We use a consistent formalism for the intermediate resonance
states of spin-3

2
, taking care on the conditions imposed by the invariance on contact transformations

and using the Sachs parametrization for the form factors. In addition, we incorporate states in the
second resonance region up to 1.6 GeV and implement different approaches for all the dressed
resonance propagators. In addition to the Δð1232Þ, we include the N�ð1440Þ, N�ð1535Þ, and
N�ð1520Þ resonance contributions, and it is shown that this inclusion improves the description of
the total cross section regarding a model where only the Δð1230Þ resonance is considered. Also,
results for antineutrinos are properly described.

DOI: 10.1103/PhysRevD.105.033008

I. INTRODUCTION

In the standard model, neutrinos are massless, but
experimental evidence shows that although small, it is not
zero. This increases interest in their study as it leads to
flavor oscillations, mixture of angles between mass states,
violation of quantum numbers, among others. The detec-
tion of neutrino masses is the first evidence of physics
beyond the standard model. Neutrino physics has been
one of the most studied topics in recent years for particle
physics. Now, as it is known that neutrinos are massive
particles that can oscillate (changing flavor), it is essential
to know precisely the cross section in the interaction of
the neutrino with nucleons or with a nucleus in the
detector. The interaction of neutrinos with nuclei and
nucleons have received considerable attention in recent
years, stimulated by the needs in the analysis of neu-
trinoexperiments giving information about the probability
of oscillation. There are several processes for the study of
the interaction of neutrinos with nucleons. The dispersion
of neutrinos by nucleons can be quasielastic or inelastic
producing additional pions together the nucleon in
charged current (CC) and neutral current (NC) inter-
actions [1]. CC quasielastic (QE) interaction of neutrinos
and antineutrinos with nucleons involves the processes
νl þ n → pþ l− and ν̄l þ p → nþ lþ respectively
where l ¼ e, ν, τ, and it is used to detect the arri-
ving of neutrinos or antineutrinos to the detectors.
The following process to be considered is the CC
single pion production (SPP) νl þ N → l− þ N0π and

ν̄l þ N → lþ þ N0π, where N;N0 ¼ p, n or the NC one
νl þ N → ν0l þ N0π and ν̄l þ N → ν̄0l þ N0π.
A good understanding of SPP by neutrinos with few-

GeVenergies is important for current and future oscillation
experiments, where pion production is either a signal
process when scattering cross sections are analyzed, or a
large background for analyses which select QE events.
At these energies, the dominant production mechanism is
via the production and subsequent decay of hadronic
resonances.
The axial form factor (FF) for pion production on free

nucleons cannot be constrained by electron scattering
data, is used normally to get the vector FF, so it relies
upon data from Argonne National Laboratory’s 12 ft
bubble chamber (ANL) [2] and Brookhaven National
Laboratory’s 7 ft bubble chamber (BNL) [3]. The ANL
neutrino beam was produced by focusing 12.4 GeV
protons onto a beryllium target. Two magnetic horns
were used to focus the positive pions produced by the
primary beam in the direction of the bubble chamber,
these secondary particles decayed to produce a predomi-
nantly νμ peaked at ∼0.5 GeV. The BNL neutrino beam
was produced by focusing 29 GeV protons on a sapphire
target, with a similar two horn design to focus the
secondary particles. The BNL νμ beam had a higher
peak energy of ∼1.2 GeV, and was broader than the ANL
beam. These experiments will be referenced below in the
results section. These datasets differed in normalization
by 30%–40% for the leading pion production process
νμp → μ−pπþ, which conduced to large uncertainties in
the predictions for oscillation experiments.
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It has long been suspected that the discrepancy between
ANL and BNL was due to an issue with the normalization
of the flux prediction from one or both experiments, and it
has been shown by other authors that their published results
are consistent within the experimental uncertainties pro-
vided [4,5]. In Ref. [6], was presented a method for
removing flux normalization uncertainties from the ANL
and BNL νμp → μ−pπþ measurements by taking ratios
with charged current quasielastic (CCQE) event rates in
which the normalization cancels. Then, it was obtained a
measurement of νμp → μ−pπþ by multiplying the ratio by
an independent measurement of CCQE (which is well
known for nucleon targets). Using this technique, they
found good agreement between the ANL and BNL νμp →
μ−pπþ datasets. Later, they extend that method to include
the subdominant νμn → μ−pπ0 and νμn → μ−nπþ channels
[7]. This is one of the reasons encourage us to return to the
calculation of SPP neutrino-nucleon cross sections. The
other reason is that there are many models to describe this
process that fail in several aspects namely:

(i) There are problems from the formal point of view.
Since the pion emission source are excitation and
decay of resonances, and many of them are of spin-3

2
,

we must keep amplitudes invariant by contact trans-
formations (see below). These transformations
change the amount of the spin-1

2
spurious contribu-

tion in the field that are present by construction.
Many works keep the simpler forms of the free and
interaction Lagrangians, and the amplitude lacks the
mentioned invariance

(ii) In addition to the resonances pole contribution
(normally referred as resonant terms) to the ampli-
tude, we have background terms coming form cross
resonance contributions and nonresonance origin
(called usually nonresonant terms). Many works
do not consider the interference between resonant
and background contributions and really it is very
important to describe the data.

(iii) Other models detach the decay process for the
resonance out of the whole weak production ampli-
tude. However, resonances are nonperturbative phe-
nomena associated to the pole of the S-matrix
amplitude and one cannot detach its production
from its decay mechanisms, omitting the details in
the propagation.

In this work we calculate the SPP cross section, where
we use a consistent formalism for the intermediate reso-
nance states of spin-3

2
. The Δð1232Þ will be described

within the complex mass scheme (CMS), obtained from its
dressed propagator (see below). In addition, we incorporate
states in the second resonance region which includes the
N�ð1440Þ; N�ð1535Þ; N�ð1520Þ resonances treated within
a constant width approach. This work is organized as
follows: In Sec. II, we summarize the general description of
weak interactions and the SPP cross section. In Sec. III we

will introduce the formalism of Rarita-Schwinger for spin-3
2

particles, the dressed propagator for them and propose the
consistent form of the vertex and the propagator. Also, we
introduce the formalism for the Δð1232Þ and resonances
of the second region [N�ð1440Þ; N�ð1520Þ; N�ð1535Þ]. In
Sec. IV we show the results obtained with our model in the
different regimes of the finalWπN invariant mass. In Sec. V
we present the form factors used in this work and the results
obtained. Finally in Sec. VI we summarize our conclusions.

II. NEUTRINO-NUCLEON SCATTERING

The CC interaction (we omit other contributions)
between a neutrino and a hadron is obtained from the
weak Lagrangian

LCC¼
−g
2

ffiffiffi
2

p ðJμlCCWμþJμhCC
ffiffiffi
2

p
ðτ or T†Þ ·WþH:c:Þ ð1Þ

being the leptonic and hadronic currents respectively

JμlCC ¼
X
l

ψ l γ
μð1 − γ5Þψνl ;

JμhCC ¼ ψh0 ðVμ − AμÞψh; ð2Þ
where the isospin operator τ, the T† N → RðI ¼ 3

2
Þ exci-

tation one, and the isospin wave functions for the bosons
W� (equal to the pions ϕ�), the nucleons N ¼ p, n and
resonances R, are defined in the Appendix A. Finally we
have the W propagator

DμνðpÞ ¼
−gμν þ pμpν

m2
W

p2 −m2
W

≈
gμν
m2

W
;

being gμν
mW2

the high mass limit since usually p2 ≪ m2
W.

In this work we analyze the CC νN → μ−N0π and
ν̄N → μþN0π modes. The total amplitude M can be
expressed from the Lagrangian (1) as (spin and isospin
indexes omitted)

M ¼ ig2

ð2 ffiffiffi
2

p Þ2 ūðpμÞð−Þiγλð1 − γ5ÞuðpνÞ
igλλ0

m2
W

× Vudūðp0ÞOλ0 ðp0; k; p; qÞuðpÞ; ð3Þ

where g2

ð2 ffiffi
2

p Þ2 ¼
G2

Fffiffi
2

p , GF ¼ 1.16637 × 10−5 GeV−2, jVudj ¼
0.9740, and the four-momenta are defined as

pν ¼ ðEν;pνÞ; pμ ¼ ðEμ;pμÞ; k ¼ ðEπ;kÞ;
p ¼ ðEN;pÞ; p0 ¼ ðEN0 ;p0Þ

with Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpij2 þm2

i

p
, we set mν ¼ 0, and Oλ is the

vertex generated by JμhCC in the Lagrangian (1). We will
built ūOλu for the νðν̄ÞN → μN0π process with the con-
tributions shown in Fig. 1. Clearly, all the Feynman graphs
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do not necessarily contribute to each of channels as we
will analyze.
We assume a tree-level hadronic amplitudes contributing

to the so-called background (B) that encloses the nucleon
Born terms [Figs. 1(a)–1(b)], the meson exchange ampli-
tudes (including the contact term) [Figs. 1(c)–1(f)] and
the resonance (R)-crossed term [Fig. 1(g)]; the pole
resonant contribution (R) is shown in Fig. 1(h) and as
we will show the resonance acquires a width (i.e., we do
not have only a tree-label amplitude) that avoids the
singularity in the propagator by a dressing it at different
levels of approximation. In this way, we split the
hadronic operator Oλ involved in the hadronic amplitude
in Eq. (3) as

Oλ ¼ OB þOR; ð4Þ

where as will be seen OB;R are built through the Feynman
rules obtained from the different effective Lagrangians.
The total cross section for weak SPP in terms of the νN

center mass (CM) variables for convenience, will be
calculated from (we take pν ¼ Eνk̂ along the Z axis)

σðECM
ν Þ ¼ mμm2

N

ð2πÞ4ECM
ν

ffiffiffi
s

p
Z

Eþ
μ

E−
μ

dECM
μ

Z
Eþ
π

E−
π

dECM
π

×
Z þ1

−1
d cos θ

Z
2π

0

dη
1

16

X
spin

jMj2; ð5Þ

where
ffiffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpν þ pNÞ2

p
¼ ECM

ν þ ECM
N , the angular

variable come from the integration elements dΩμ ¼
d cos θdϕ and dΩπ ¼ d cos ξdη (dϕ integration gives a
factor 2π and cos ξ is fixed by energy conservation) and

E−
μ ¼mμ; Eþ

μ ¼ sþm2
μ− ðmN þmπÞ2

2ðECM
ν þECM

N Þ ;

E�
π ¼

ð ffiffiffi
2

p
−ECM

μ Þðs−2
ffiffiffi
s

p
ECM
μ −Δ2

mÞ�A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðECM

μ Þ2−m2
μ

q
2ðs−2

ffiffiffi
s

p
ECM
μ þm2

μÞ
;

ð6Þ

with

A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs− 2

ffiffiffi
s

p
ECM
μ −Δ2

mÞ2 − 4m2
πðs− 2

ffiffiffi
s

p
ECM
μ þm2

μÞ
q

;

Δ2
m ¼m2

N −m2
μ −m2

π: ð7Þ

The neutrino energy CM energy is related to the laboratory
one as

ECM
ν ¼ mNELab

νffiffiffi
s

p mNELab
νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ELab
ν mN þm2

N

p : ð8Þ

It is well known that the hadronic currents JλhCC have a
vector-axial structure JλhCC ≡ Vλ − Aλ. In terms of the
vector current, the electromagnetic one is written as Jλelec ¼
Vλ
isoscalar þ Vλ

3 (Vλ
3 ¼ τ3

γλ

2
for a nucleon or R(I ¼ 1

2
Þ, and

VλT†
3 for the RðI ¼ 3

2
Þ) and the weak vector CC is obtained

through the CVC hypothesis (τ3; T
†
3 →

ffiffiffi
2

p
τ�;

ffiffiffi
2

p
T†
�) as

Vλ
�≡ ∓ ðVλ

1 � iVλ
2Þ ¼

ffiffiffi
2

p
V ·W�. In the same way it is

also possible to get information on different contributions
to the vector current inMB as the effectiveWM → π0 (with
M≡ π, ω) and the contact NWπ → N0π0 vector vertexes.
Here the FF are again obtained assuming CVC from the
electromagnetic γM → π0 and γNπ → N0π0 vertexes
obtained through the corresponding effective interaction
Lagrangians, making the replacement ðΦ0�

π × ΦπÞ3 →
∓ ½ðΦ0�

π × ΦπÞ1 � iðΦ0�
π × ΦπÞ2� ¼

ffiffiffi
2

p ðΦ0�
π × ΦπÞ� ¼p

2ðΦ0�
π × ΦπÞ · W� (the same is valid for the contact

vertex changingΦπ → τ) forM ¼ π orΦ0
π3 →

ffiffiffi
2

p
Φ0

π ·W�
forM ¼ ω. The ρ-exchange in the ρW → π vertex does not
contribute to the vector current since the ρ − π current is
isoscalar. We assume a phenomenological ρW → π axial
vertex, where the isospin factor is the same as in the
π0W → π vector case.

FIG. 1. Contributions to the scattering amplitude for the process
νðν̄ÞN → μN0π. Figures (a)-(g) are the background (B) contribu-
tions. Fig. (h) is the pole resonant contributions (R). R in the
figure indicates any of the intermediate considered resonances.
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III. RESONANCES

In this section we will show the resonance Lagrangians
to builtOR since those used to getOB are more general and
will be referenced from the Appendix B.

A. Spin 3
2 resonances

1. Δð1232Þ resonance
This IJπ ¼ 3

2
; 3
2
þ positive parity resonance has a three

quark orbital momentum and spin L ¼ 0; S ¼ 3
2
and its free

most general one-parameter Lagrangian reads

LðAÞ ¼ Ψ̄μðxÞΛμνðAÞΨνðxÞ; ð9Þ

where

ΛμρðAÞ ¼ Rμ
σ

�
1þ 3A

2

�
Λσδ

�
−
1

3

�
Rρ

δ

�
1þ 3A

2

�
;

Λμρ

�
−
1

3

�
¼ ði∂ −mΔÞgμρ þ iγμ∂γρ

− ið∂μγρ þ γμ∂ρÞ þmΔγ
μγρ; ð10Þ

and RρσðaÞ ¼ gρσ þ aγργσ. We have that Ψμ ≡ ψ ⊗ ξμ,
where ψ is a Dirac spinor field and ξμ is a Dirac four-vector
[8]. In this way, the field Ψμ will contain a physical spin-3

2

sector and a spurious spin-1
2
sector dragged by construction.

The free Lagrangian leads to an equation of motion

ΛμνðAÞΨνðxÞ ¼ 0; ð11Þ

plus certain constraints

∂μΨμ ¼ γμΨμ ¼ 0; ð12Þ

independent of A that fix the 3
2
component eliminating the

redundant 1
2
contributions. RρσðaÞ changes the proportion of

the spurious 1
2
component of the Rarita Schwinger field Ψμ

but, due to the mentioned constraints, does not affect the 3
2

sector. This is the origin of the family of Lagrangians and
LðA ¼ − 1

3
Þ, where Rρσða ¼ 0Þ ¼ gρσ , was the original

form proposed by Rarita-Schwinger [9]. Also using the
properties of Rρσ, it should be invariant under the contact
transformation

Ψν → Ψ0ν ¼ RμνðaÞΨν; A → A0 ¼ A − 2a
1þ 4a

; ð13Þ

ða ≠ − 1
4
; A ≠ − 1

2
Þ, to avoid a singularity, and we get

LðA0Þ ¼ Ψ̄μ
0ðxÞΛμνðA0ÞΨ0

νðxÞ. The invariance of the free
Lagrangian under the contact transformations means that
the physical quantities as energy and momentum should be
independent of A. The spin-3

2
propagator Gðp; AÞβν should

satisfy (in momentum space, we replace i∂ → p),

ΛðpΔ; AÞβμGΔðpΔ; AÞβν ¼ gμν;

for any value of A and to keep consistence, it should be
transformed as

GΔðpΔ; AÞμν ¼ R−1
�
1þ 3A

2

�
μα

GΔαβ
�
pΔ;−

1

3

�
R−1

�
1þ 3A

2

�
βν

¼ R−1
�
−
1

2
ð1þ AÞ

�
μ

α

GΔðpΔ;−1ÞαβR−1
�
−
1

2
ð1þ AÞ

�
ν

β

: ð14Þ

It can be put in terms of the spin-3
2
; 1
2
projectors defined in the Appendix A, as (omitting Dirac indexes)

GΔ
0 ðpΔÞ≡GΔ

�
pΔ;−

1

3

�
¼ −

�
pΔ þm
p2
Δ −m2

Δ
P

3
2 þ 2

m2
Δ
ðpΔ þmΔÞP

1
2

11 þ
ffiffiffi
3

p

mΔ

�
P

1
2

12 þ P
1
2

21

��
ð15Þ

GΔðpΔ;−1Þ ¼ −
�
pΔ þm
p2
Δ −m2

Δ
P

3
2 −

2

3m2
Δ
ðpΔ þmΔÞP

1
2

22 þ
1ffiffiffi
3

p
mΔ

�
P

1
2

12 þ P
1
2

21

��
; ð16Þ

where we put in terms of A ¼ − 1
3
;−1 since will be the cases to discuss below, or alternatively the developed form

GΔ
αβðpΔ; AÞ ¼ −

1

p2
Δ −m2

Δ

�
ðpΔ þmΔÞ

�
−gαβ þ

1

3
γαγβ þ

1

3mΔ
ðγαpΔβ − γβpΔαÞ þ

2

3mΔ
pΔαpΔβ

�

−
2ðp2

Δ −m2
ΔÞbðAÞ

3m2
Δ

�
γαpΔβ − ðbðAÞ − 1ÞγβpΔα −

�
bðAÞ
2

pΔ þ ðbðAÞ − 1ÞmΔ

�
γαγβ

��
; ð17Þ
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where bðAÞ ¼ Aþ1
2Aþ1

. Note that (17) is singular at p2 ¼ m2
Δ,

that is when the resonance is on-shell, but we know that it
must be dressed through a self-energy and thus this
singularity is avoided as we will discuss below. It is
interesting to note that the second A-dependent contribu-
tion in brackets disappears for the Δ on shell, i.e., when the
constraints filter the 1

2
contribution. Nevertheless, the

resonance appears always off-shell in the presence of

interactions, and (12) do not hold. The amplitudes can
be defined uniquely, independent of A, when the inter-
actions with the spin-3

2
field are properly chosen. Con-

sequently, we demand the interaction Lagrangian for the 3
2

field coupled to a nucleon (ψ) and a pseudoscalar meson
(ϕ) or boson (W), as usually appears in a resonance
production-decay, be invariant under (13). The most gen-
eral interaction Lagrangian satisfying such requirement is

LintðA; ZÞ ¼ gintΨ̄μR

�
1

2
ð2Z þ ð1þ 4ZÞAÞ

�
μν

Fνðψ ;ϕ;W;…Þ þ H:c:; ð18Þ

where Fν is a function of the fields and its derivatives, gint is the coupling constant and Z a new arbitrary parameter. Using
the property RðaÞμνRðbÞνλ ¼ Rðaþ bþ 4abÞμλ it is possible to demonstrate

R

�
1

2
ð2Z þ ð1þ 4ZÞA

�
αβ

¼ R

�
1þ 3A

2

�
αμ

R−1
�
1

2
ð1 − 6Z=ð1þ 4ZÞ

�
μ

β

ð19Þ

that would be replaced in Eq. (18). Note that the A-dependence introduced by the propagator (14) in the Wψ → ϕψ
amplitude is canceled by the Rð1þ3A

2
Þ in the vertex generated from (18). That is, for any value of Z we get an A-independent

amplitude. Then, the value for Z must be chosen for each interaction and fixed by a criteria independent from contact
transformations.
For the strong ΔπN interaction Lagrangian we adopt the usual chiral invariant one derivative in the pion field

LΔNπ

�
A ¼ −

1

3
; Z ¼ 1

2

�
¼ fπNΔ

mπ
ψ̄∂½ΦðxÞμ�† · TΨμ þ

fπNΔ

mπ
Ψ̄μψ̄∂ΦðxÞμ · T†ψ ; ð20Þ

where the choosing in Z will be explained below, and this
Lagrangian enables the definition of the Δ → πN vertex

VΔπN ¼ −
fπNΔ

mπ
kμN†ðϕ� · TÞΔ; ð21Þ

where we use the prescription Γ̂ ¼ iL, ∂μϕ ¼ −ikμϕ, and
i × propagator, and a global i in the total amplitudes.
The weak interaction Lagrangian L̂WNΔ compatible with

the free L̂Δ and the strong interacting Lagrangian L̂ΔπN
that makes possible also a definition of the weak WNΔ
excitation vertex, is [10] (we choose the same Z value)

LWNΔ

�
A ¼ −

1

3
; Z ¼ 1

2

�

¼ iΨ̄μðxÞŴμν

ffiffiffi
2

p
ðT† ·WνðxÞ†ÞψðxÞ þ H:c:;

with a vertex WWNΔ ¼ ðVWNΔ þ AWNΔÞ ffiffiffi
2

p
W� · T† being

the same VWNΔ vector vertex as in pion-photo (Q2 ¼ 0Þ
[11] and electroproduction applying CVC

VWNΔ
νμ ðq; pÞ ¼ ½ðGMðQ2Þ −GEðQ2ÞÞKM

νμ þGEðQ2ÞKE
νμ

þ GCðQ2ÞKC
νμ�; ð22Þ

with Q2¼−q2¼−mlþ2ElEνðpl=ElcosθνlÞ>0, being
q ¼ pl − pν, and where

KM
νμ ¼ −

3ðmN þmΔÞ
2mNðmN þmΔÞ2 þQ2

ϵνμαβ
ðpþ pΔÞα

2
qβ;

KE
νμ ¼

4

ðmΔ −mNÞ2 þQ2

3ðmN þmΔÞ
2mNðmN þmΔÞ2 þQ2

× ϵνλαβ
ðpþ pΔÞα

2
qβϵλμγδp

γ
Δq

δiγ5

KC
νμ ¼

2

ðmΔ −mNÞ2 þQ2

3ðmN þm1520Þ
2mNðmN þmΔÞ2 þQ2

× ½−q2gαμ þ qαqμ�qν
ðpþ pΔÞα

2
iγ5: ð23Þ

For the FF we adopt

GiðQ2Þ ¼ Gið0ÞGVðQ2Þ; ð24Þ

and for the axial contribution we use the model given in
Ref. [10], which is compatible with VWNΔ

νμ (it could be, in
principle, obtained by using −VWNΔ

νμ γ5) and reads
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AWNΔ
νμ ðq;pÞ¼−i

�
−D1ðQ2Þgνμþ

D2ðQ2Þ
m2

N
ðpþpΔÞαðgνμqα−qνgαμÞ−

D3ðQ2Þ
m2

N
pνqμþ i

D4ðQ2Þ
m2

N
ϵμναβðpþpΔÞαqβγ5

�
: ð25Þ

The GiðQ2Þ and DiðQ2Þ FF will also be described below.

The bare propagator (17) being singular at p2
Δ ¼ m2

Δ
should be dressed by the inclusion of a self-energy (Σ)
giving to it a width corresponding to an unstable particle.
This self-energy (where usually only Born interaction terms
are considered) could include the lowest order πN one-loop
contribution as well as other higher order πN irreducible
scattering nonpole contributions consistent with the πN
scattering amplitude.
The expression for the dressed propagator GΔμνðpΔÞ can

be obtained by solving the Schwinger-Dyson equation
satisfied by its the inverse

½ðGΔÞμν�−1ðpΔÞ ¼ ½ðGΔ
0 Þ�−1μν ðpΔÞ − ΣμνðpΔÞ; ð26Þ

where ΣμνðpÞ denotes the self-energy correction of Δ as
shown in Fig. 2, and GΔ

0 is given in Eq. (15).
In the following we will consider only the absorptive

(imaginary) parts of the self-energy correction, i.e., we will
assume as in Ref. [12] that the parameter mΔ represents
the “renormalized” mass of Δ. We place quotation marks
as a reminder that the Lagrangian is not renormalizable;
only the absorptive corrections are finite in this case.
Nevertheless, we have analyzed the effect of the real
energy dependent self-energy contribution through disper-
sive relations and we found that the effect is small [13]. If
we compute the one-loop absorptive corrections in Fig. 2
by applying the cutting rules, we obtain (gint ¼ fπNΔ

mπ
)

Σμν
absðpΔÞ¼ i

g2int
2ð2πÞ2

Z
d3k
2k0

1

2
ffiffiffi
s

p δ

�
k0þ

sþm2
π −m2

N

2
ffiffiffi
s

p
�

×θðs− ðmN þmπÞ2ÞðpΔþ=kþmNÞkμkν; ð27Þ

being s ¼ p2
Δ and when developed in terms of the projec-

tors we can get the corresponding coefficients by solving
Eq. (26), and the dressed propagator can be finally obtained
(for details see Ref. [12]). Now, we discuss some approx-
imations commonly adopted. If neglected terms of Oðg3intÞ
and OððmΔ −

ffiffiffi
s

p Þg2intÞ in the dressed propagator expres-
sion (see Ref. [13]), since these terms are expected to very

small in the in the resonance region ð ffiffiffi
s

p
≈mΔÞ, we

get again GΔ
0 with the replacement mΔ → mΔ − i ΓΔðsÞ

2
;

with

ΓΔðsÞ ¼
g2int
4π

�ð ffiffiffi
s

p þmNÞ2 −m2
π

48s5=2

�
λ
3
2ðs;m2

N;m
2
πÞ;

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz: ð28Þ

For the sake of completeness, we mention that up to this
moment we have considered only the dressing of the Δ
propagator. Nevertheless, analyzing the formal scattering
T-matrix calculations [11], one can realize that the ΔπN
vertex should be also dressed by the rescattering. This of
course generates a dependence on s in the vertex, or
equivalently an effective coupling constant gintðsÞ, due to
the decay in nonresonant amplitudes [11] mediated by the
intermediate πN propagator.
Now, we consider the formal limit of massless N and π

in the loop contribution to Σ and in the dressed πNΔ
vertex, this is the so-called complex-mass scheme (CMS)
[14]. It assumes within this formal limit that the dressing

gives a dependence gintðsÞ ¼ κg0intffiffi
s

p , [13] with g0int being the

bare πNΔ coupling constant and κ a constant of dimen-
sion MeV−1 to fit, avoiding the direct calculation of the
momentum integral in the vertex correction. Thus, we
derive from (28) the following approximated expression
for the width

ΓΔðsÞ ¼
�
1 −

ffiffiffi
s

p
−mΔ

mΔ

�
ΓCMS
Δ ;

ΓCMS
Δ ¼ κ2ðg0intÞ2

192π
mΔ: ð29Þ

In the s ≃m2
Δ region we have a constant width ΓΔðsÞ≈

ΓCMS
Δ , where now ΓCMS

Δ is fitted in place of κ together
gint and mΔ to reproduce πþp scattering [15]. Note that
we have the isospin coefficient in the previous equation
equal to 1 for the Δþþ → πþp → Δþþ loop as was
shown in the Appendix A. Another approach commonly
used, is to fix

ffiffiffi
s

p
≈mΔ in (28) and to use the exper-

imental values for mΔ and ΓΔ times the branching ratio
for the decay into πN, and get gint. We will refer to this
as constant mass-width approach (CMW). We will use
both the CMS and CMW depending on the considered
resonance.FIG. 2. πN loop contribution to the Δ self-energy.
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2. N�ð1520Þ resonance
This IJπ ¼ 1

2
; 3
2
− negative parity resonance has three

quark orbital momentum and spin L ¼ 1; S ¼ 1
2
. The

propagator is (15) but changing mΔ → m1520, where we
will use the notation N�ð1520Þ≡ 1520. The rescattering in
the propagator will be introduced makingm1520 → m1520 −
i Γ1520

2
and since in the second resonance region WπN0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpN0 þ kÞ2
p ≲ 1600 MeV ∼m1520 þ Γ1520 we can adopt
the CMW with m1520 ¼ 1529 MeV and Γ1520 ¼ ΓNπ

1520 þ
ΓΔπ
1520 ¼ 115 MeV [16]. The strong Lagrangian is given

by [17]:

L1520πN ¼ f1520πN
mπ

Ψ̄μγ5∂μΦπðxÞ · τΨ

−
f1520πN
mπ

Ψ̄∂μΦ†
πðxÞ · τγ5Ψμ; ð30Þ

where Ψμ is a Rarita-Schwinger field for the spin-3
2
but

isospin-1
2
. Note that is the same Lagrangian (20) but with γ5

inserted and changing T → τ. From this Lagrangian we
derive the N�ð1520Þ → πN vertex decay

V1520Nπ ¼ f1520πN
mπ

kμγ5ðΦ�
π · τÞ;

and in Eq. (27) we have a minus sign in the pþ =k term due
the γ5 in the vertex and changing the isospin coefficients to
three since we have now π0p and πþn intermediate loop
states (see Appendix A), we can get the relation

Σμν
absðpÞð1520Þ ¼ −Σμν

absðp;−mπ;−mNÞ ÞðΔÞ

this leads to (gint ¼ f1520πN
mπ

)

Γ1520ðsÞ ¼
3g2int
4π

�ð ffiffiffi
s

p
−mNÞ2 −m2

π

48s5=2

�
λ
3
2ðs;m2

N;m
2
πÞ

¼ 3g2int
12π

�ð ffiffi
s

p
−mNÞ2−m2

π

2
ffiffi
s

pffiffiffi
s

p
�
q3CM;

qCM ¼ λ
3
2ðs;m2

N;m
2
πÞ

2
ffiffiffi
s

p ; ð31Þ

that within the CMW the approximation
ffiffiffi
s

p
≈m1520 it is

done and we get the expression used in Ref. [17], where
Γ1520 should be weighted by the corresponding πN branch-
ing ratio decay.
Usually the vector vertex FF for this resonance

are expressed in the so called parity conserving para-
metrization [17,18], nevertheless we want for consistence
to express them in the same Sachs parametrization as the
other present spin-3

2
resonance that is the Δ. Then, we will

assume similar vertex structure than for Δ in (22) times γ5
(for the changing in parity), then transform to parity
conserving parametrization, compare with Ref. [17]
and fix our parameters. We get the axial vertex

multiplying by γ5 the Δ one (25). We get WWN1520 ¼
ðVWN1520 þ AWN1520Þ

ffiffi
2

p
2
ðW� · τÞ with

VWN1520
νμ ðq; pÞ ¼ ½ðGMðQ2Þ −GEðQ2ÞÞKM

νμ þ GEðQ2ÞKE
νμ þGCðQ2ÞKC

νμ�γ5; ð32Þ

AWN1520
νμ ðq; pÞ ¼ i

�
D1ðQ2Þgνμ −

D2ðQ2Þ
m2

N
ðpþ p1520Þαðgμνqα − qνgμαÞ þ

D3ðQ2Þ
m2

N
qμpν

�
γ5; ð33Þ

whereKiðq; pÞ,GiðQ2Þ, andDiðQ2Þ are the same that in Eqs. (22) and (25) but changingmΔ → m1520; pΔ → p1520, and the
values Gið0Þ; Dið0Þ. Note that we have an additional 1

2
factor coming from the charge operator q̂ ¼ 1þτ3

2
present in the

isospin-1
2
electromagnetic vertexes but not in the 3

2
case where we have T†

3 transition operators.
Now, Vνμ (we omit super indexes) can be expressed in the so-called “normal parity” (NP) decomposition making use of

the nontrivial relation

−iϵαβμνaμbνγ5 ¼ ð=a=b − a · bÞiσαβ þ =bðγαaβ − γβaαÞ − =aðγαbβ − γβbαÞ − =aðγαbβ − γβbαÞ þ ðaαbβ − aβbαÞ;

and some on-shell considerations on the resonance, we getting a simplified version of Vνμ [13]

Vνμðq; pÞ ¼ i

�
−ðGMðQ2Þ −GEðQ2ÞÞm1520H3νμ þ

�
GMðQ2Þ −GEðQ2Þ þ 2

2GEðQ2Þðq · p1520Þ − GCðQ2ÞQ2

ðm1520 −mNÞ2 þQ2

�
H4νμ

−
�
2
2GEðQ2Þm2

1520 þ ðp1520 · qÞGCðQ2Þ
ðm1520 −mNÞ2 þQ2

�
H6νμ

�
3ðmN þm1520Þ

2mNðmN þm1520Þ2 þQ2
; ð34Þ

where
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Hνμ
3 ðp; qÞ ¼ gνμ=q − qνγμ;

Hνμ
4 ðp; qÞ ¼ gνμq · p1520 − qνpμ

1520;

Hνμ
5 ðp; qÞ ¼ gνμq · p − qνpν;

Hνμ
6 ðp; qÞ ¼ gνμq2 − qνpν:

Note that the Hνμ
5 tensor does not contribute to Eq. (34),

but it appears in the general parity-conserving expression.
The Eq. (32) are independent of taking p1520 ¼ p ∓ q or
p ¼ p1520 � q, [see Eq. (23)], the þ sign corresponds to
the pole contribution and the − sign to the cross term. Thus,
the Eq. (34) is valid in both cases, but the specific value of
q · p1520 depends on the particular contribution to the

amplitudes ðq · p1520 ¼ � m2
NþQ2−m2

1520

2
Þ. If we set on the

N�ð1520Þ-pole contribution and replace p ¼ p1520 þ q we
can write Eq. (34) as usual in the parity conserving form

Vνμðp; qÞ ¼ iΓV
νμðp; qÞ;

ΓV
νμðpD13

; qÞ ¼
�
−
CV
3 ðQ2Þ
mN

H3νμ −
CV
4 ðQ2Þ
m2

N
H4νμ

−
CV
5 ðQ2Þ
m2

N
H5νμ þ

CV
6 ðQ2Þ
m2

N
H6νμ

�
; ð35Þ

where we have the corresponding FF:

CV
3 ðQ2Þ ¼ m1520

mN
RM½GMð0Þ −GEð0Þ�FVðQ2Þ

CV
4 ðQ2Þ ¼ −RM

�
GMð0Þ −

3m1520

m1520 −mN
GEð0Þ

�
FVðQ2Þ

CV
5 ðQ2Þ ¼ 0

CV
6 ðQ2Þ ¼ −RM

2m1520

m1520 −mN
GEð0ÞFVðQ2Þ; ð36Þ

being RM ¼ 3
2

mN
m1520þmN

and FVðQ2Þ ¼ ð1þ Q2

ðmNþm1520Þ2Þ
−1×

GVðQ2Þ. Note that ΓV
νμðp; qÞ coincides with Eqs. (30) and

(31) in Ref. [17] making q → −q and that now taking the
values for CV

i ð0Þ from that reference we can get GM;Eð0Þ
for the N�ð1520Þ resonance. Rearranging Eq. (33) we get
for the pole case

Aνμðp; qÞ ¼
ffiffiffi
2

p
i

��
D1ðQ2Þ þD2ðQ2ÞQ2

m2
N

�
gνμ −

2D2

m2
N
H4νμ

þD3ðQ2Þ þD2ðQ2Þ
m2

N
qνqμ

�
γ5 ¼ iΓA

μν;

ΓA
μν ¼

�
CA
5 gνμ −

CA
4

m2
N
gμνH4νμ þ

CA
6

m2
N
H6μν

�
γ5: ð37Þ

where as before D4ðQ2Þ ¼ 0. Note that this last coincides
with Eq. (32) from Ref. [17] making q → −q. By com-
parison we get

D1 þD2

Q2

m2
N
¼ CA

5 ;

−
2D2

m2
N

¼ −
CA
4

m2
N
;

0 ¼ CA
3

D3 þD2

m2
N

¼ C6
A

m2
N
: ð38Þ

From Eqs. (38) one can get from Ref. [17] theDi values for
the axial resonance N�ð1520Þ vertex.

B. Spin 1
2 resonances

For the considered resonances of spin-1
2
that has three

quark orbital momentum and spin-L ¼ 0; 1; S ¼ 1
2
, the

parametrization of the hadronic vertex is simpler than
for spin-3

2
ones and is similar to the parametrization for

the νN → N0 vertex depending on the parity. We will
include the L ¼ 0, IJπ ¼ 1

2
; 1
2
þ N�ð1440Þ resonance and the

L ¼ 1, IJπ ¼ 1
2
; 1
2
−N�ð1535Þ one. The propagator of these

resonances looks like the nucleon one but with the
replacement mR → mR − i ΓR

2
to introduce the width, and

ΓR will be considered constant (CMW) since the second
resonance region extends to 1600 MeV and close to the
centroids. We get

SRðpÞ ¼
pþmR

p2 −m2
R þ iΓRmR

; ð39Þ

where ΓR should be weighted by the corresponding πN
branching ratio decay. The RNπ strong coupling is
described by the Lagrangian [17]:

LRNπ ¼
fRπN
mπ

ðΨ̄Rγ
μΛτΨNÞ · ∂μΦπðxÞ

þ fRπN
mπ

∂μΦ†
πðxÞ · ðΨ̄Nγ

μΛτΨP11
Þ; ð40Þ

where Λ ¼ γ5; I for positive or negative parity. Note that in
the N�ð1440Þ case this Lagrangian is similar to the LNNπ .
From the Lagrangian (40), we can deduce the RπN decay
vertex

VRπN ¼ π
fRπN
mπ

Λ=kðΦ�
π · τÞ: ð41Þ

For the W → NR vertex as we have an outgoing boson,
make q → −q in the hadronic vertex of Ref. [18], and the
vertex can be written as WWNRλ ×

ffiffiffi
2

p
τ ·W� with
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WWNRλ ¼ −i
1

2

�
g1V

ðmR þmNÞ2
ðQ2γλ þ qqλÞγ5

−
g2V

ðmR þmNÞ
iσλνqνγ5 − g1Aγλ þ

g3A
mN

qλ
�
Λ

Λ ¼ γ5; I; for parity π ¼ �1; ð42Þ

where we note that Eq. (42) is the same as in Ref. [17]
making q → −q but changing mR þmN → 2mN and g1V ,
g2V , g1A, g3A → F 1, F 2, −FA, −FP. We note the similarity
of (42) with the same for nucleons which will be shown in
the calculations of the background contributions in the next
section.
The term with g3A is called the pion-pole term and gives

the contribution where the W boson decays in a pion which
then interacts with the nucleon. This can be obtained
replacing the axial contribution Aλ by Aλ þ qμq:A=ðQ2 þ
m2

πÞ (see g3AðQ2Þ below). Then, one assumes that the
resonance is on shell and evaluates ūRð=q ¼ p − pRÞΛu ¼
∓ ūRΛðmR �mNÞu. The FF for the W → NN�ð1440Þ
vertex are obtained from the connection between electro-
magnetic resonance production and the helicity
amplitudes.The helicity amplitudes describe the nucleon-
resonances transition depending on the polarization of the
incoming photon and the spins of the baryons [18]. For
nonzero Q2, data on helicity amplitudes for the N�
resonance are available only for the proton [18], where
it is assumed that the isovector contribution on the neutrino
production is given as gVi ¼ −2gpi . The PCAC hypothesis
allows us to relate the two form factors and fix their axial
values at Q2 ¼ 0 ([18]), we get

g1VðQ2Þ ¼ g1Vð0Þðb1Vlnð1þ Q2

GeV2Þ þ 1−π
2
Þ

ð1þQ2=M2
VÞ2ð1þQ2=a1VM2

VÞ
;

g2VðQ2Þ ¼ g2Vð0Þðb2Vlnð1þ Q2

GeV2Þ − 1þπ
2
Þ

ð1þQ2=M2
VÞ2

g1AðQ2Þ ¼ g1Að0Þ
ð1þQ2=M2

AÞ2ð1þQ2=3M2
AÞ

;

g3AðQ2Þ ¼ g1Að0ÞðmR þ πmNÞ
Q2 þm2

π
mN: ð43Þ

The coupling g ¼ fRπN
mπ

can be obtained of the partial decay
width (R → πN) according to [17]

ΓR→πN ¼ 3

4π
g2ðmR þ πmNÞ2

�ð ffiffi
s

p
−πmNÞ2−m2

π

2
ffiffi
s

pffiffiffi
s

p
�
qCM;

qCM ¼ λ
1
2ðs;m2

N;m
2
πÞ

2
ffiffiffi
s

p ; ð44Þ

using the CMW approach mentioned above.

IV. BACKGROUND AND
RESONANCE AMPLITUDES

Now we built the different components of OB and OR
from the Lagrangians shown in the Appendix B and those
described in the previous section. We get

Oλ
Bðp; p0; qÞ ¼ Oλ

BNðp; p0; qÞ þOλ
BRðp; p0; qÞ

Oλ
BNðp;p0; qÞ ¼ −i

1

2

�
FV
1 ðQ2Þγλ − i

FV
2 ðQ2Þ
2mN

σλνqν −FAðQ2Þγλγ5
�
i
p0 þ qþmN

ðp0 þ qÞ2 −mN
×
gπNN

2mN
γ5ðp−p0 − qÞ

ffiffiffi
2

p
T aðmt;mt0 Þ

þ gπNN

2mN
γ5ðp−p0 − qÞi p− qþmN

ðp− qÞ2 −m2
N

�
−i

1

2

��
FV
1 ðQ2Þγλ − i

FV
2 ðQ2Þ
2mN

σλνqν −FAðQ2Þγλγ5
� ffiffiffi

2
p

T bðmt;mt0 Þ

−
i

ðp−p0Þ2 −m2
π
iFV

1 ðQ2Þð2p− 2p0 − qÞλ × gπNN

2mN
γ5ðp−p0Þ

ffiffiffi
2

p
T cðmt;mt0 Þ

þ gπNN

2mN
FV
1 ðQ2Þγ5γλ

ffiffiffi
2

p
T dðmt;mt0 Þ

þ i
gωπV
mπ

FV
1 ðQ2Þϵλαβδqαðp−p0Þβi

−gδϵ
ðp−p0Þ2 −m2

ω
ð−iÞgωNN

2

�
γϵ − i

κω
2mN

σϵκðp−p0Þκ
� ffiffiffi

2
p

T eðmt;mt0 Þ

þ fρπAFAðQ2Þi −gλμ

ðp−p0Þ2 −m2
ρ
ð−iÞgρNN

2

�
γμ − i

κρ
2mN

σμκðp−p0Þκ
� ffiffiffi

2
p

T fðmt;mt0 Þ; ð45Þ

WEAK PION-PRODUCTION AND THE SECOND RESONANCE … PHYS. REV. D 105, 033008 (2022)

033008-9



Oλ
BRðp; p0; qÞ ¼ −i

1

2

�
g14401V

ðm1440 þmNÞ2
ðQ2γλ þ qqλÞ − g14402V

ðm1440 þmNÞ
iσλνqν − g14401A γλγ5 þ

g14403A

mN
qλγ5

�

× i
p0 þ qþmR

ðp0 þ qÞ2 −m2
1440 þ iΓ1440m1440

ð−Þ f1440πN
mπ

γ5ðp − p0 − qÞ
ffiffiffi
2

p
T 1440

g ðmt;mt0 Þ

− i
1

2
γ5

�
g15351V

ðm1535 þmNÞ2
ðQ2γλ þ qqλÞ − g15352V

ðm1535 þmNÞ
iσλνqν − g15351A γλγ5 þ

g15353A

mN
qλγ5

�

× i
p0 þ qþm1535

ðp0 þ qÞ2 −m2
1535 þ iΓ1535m1535

ð−Þ f1535πN
mπ

ðp − p0 − qÞ
ffiffiffi
2

p
T 1535

g ðmt;mt0 Þ

þ ð−ÞWWNΔ
λα ðp; p0;−qÞiGαβ

Δ ðp0 þ qÞð−Þ fπNΔ

mπ
ðp − p0 − qÞβ

ffiffiffi
2

p
T Δ

g ðmt;mt0 Þ

þ ð−Þ 1
2
WWN1520

λα ðp; p0;−qÞiGαβ
1520ðp0 þ qÞð−Þ fπN1520

mπ
γ5ðp − p0 − qÞβ

ffiffiffi
2

p
T 1520

g ðmt;mt0 Þ; ð46Þ

where the background contributions were split in those coming from the nucleon contributions and those coming from the
resonances one. Here T ðmt;mt0 Þ are isospin factors calculated between the initial and final nucleon with isospin mt;m0

t

projections respectively for each amplitude contribution. Note that the 1
2
factor in the weak vertex of the isospin-1

2
resonances

comes from the isovector part of the charge operator τ3
2
dragged from the CVC hypothesis. The corresponding pole

contributions coming from the resonances are

Oλ
R ¼ f1440πN

mπ
γ5ðp − p0 − qÞi p − qþmR

ðp − qÞ2 −m2
1440 þ iΓ1440m1440

× ð−iÞ 1
2

�
g14401V

ðm1440 þmNÞ2
ðQ2γλ þ qqλÞ − g14402V

ðm1440 þmNÞ
iσλνqν − g14401A γλγ5 þ

g14403A

mN
qλγ5

� ffiffiffi
2

p
T 1440

h ðmt;mt0 Þ

þ ð−Þ f1535πN
mπ

ðp − p0 − qÞi p − qþm1535

ðp − qÞ2 −m2
1535 þ iΓ1535m1535

× ð−iÞ 1
2

�
g15351V

ðm1535 þmNÞ2
ðQ2γλ þ qqλÞ − g15352V

ðm1535 þmNÞ
iσλνqν − g15351A γλγ5 þ

g15353A

mN
qλγ5

�
γ5T 1335

h ðmt;mt0 Þ

þ ð−Þ fπNΔ

mπ
ðp − p0 − qÞαiGαβ

Δ ðp − qÞWWNΔ
βλ ðp; p0; qÞ

ffiffiffi
2

p
T Δ

h ðmt;mt0 Þ

þ ð−Þ fπN1520

mπ
γ5ðp − p0 − qÞαiGαβ

1520ðp − qÞWWN1520
βλ ðp; p0; qÞ

ffiffiffi
2

p
T 1520

h ðmt;mt0 Þ: ð47Þ

Here we show the isospin coefficients calculated with the ingredients of Appendix A

T aðmt;mt0 Þ ¼ T 1440;1535;1520
g ðmt;mt0 Þ ¼ χ†ðmt0 Þðτ ·W�Þðτ ·Φ�

πÞχðmtÞ ¼ −2; 0;−
ffiffiffi
2

p

T bðmt;mt0 Þ ¼ T 1440;1535;1520
h ðmt;mt0 Þ ¼ χ†ðmt0 Þðτ ·Φ�

πÞðτ ·W�ÞχðmtÞ ¼ 0;−2;
ffiffiffi
2

p

T cðmt;mt0 Þ ¼ −iχ†ðmt0 Þ½ðΦ�
π ×Φπ0 Þ ·W��ðτ ·Φ�

π0 Þχðmt0 Þ ¼ 1;−1;
ffiffiffi
2

p

T dðmt;mt0 Þ ¼ χ†ðmt0 Þ½ðΦ�
π × τÞ ·W��χðmtÞ ¼ −1; 1;−

ffiffiffi
2

p

T eðmt;mt0 Þ ¼ χ†ðmt0 ÞðΦ�
π ·W�ÞχðmtÞ ¼ −1;−1; 0

T fðmt;mt0 Þ ¼ iχ†ðmt0 Þ½ðΦ�
π × ρÞ ·W��ðτ · ρ�ÞχðmtÞ ¼ −1; 1;−

ffiffiffi
2

p

T Δ
g ðmt;mt0 Þ ¼ χ†ðmt0 ÞðT ·W�ÞðT† ·Φ�

πÞχðmtÞ ¼ −1=3;
ffiffiffi
2

p
=3;−1

T Δ
h ðmt;mt0 Þ ¼ χ†ðmt0 ÞðT ·Φ�

πÞðT† ·W�ÞχðmtÞ ¼ −1;−
ffiffiffi
2

p
=3;−1=3: ð48Þ

D. F. TAMAYO AGUDELO et al. PHYS. REV. D 105, 033008 (2022)

033008-10



V. FORM FACTORS AND RESULTS

In this work we analyze as a first step the total cross
section for the charged current (CC) modes of the six
processes

νp→ μ−pπþ; νn→ μ−pπ0; νn→ μ−nπþ;

ν̄n→ μþnπ−; ν̄p→ μþpπ−; ν̄p→ μþnπ0; ð49Þ
with νðν̄) energies exciting the second resonance region and
the corresponding cutoffs inWπN0 . We will obtain this total
cross section through the Eqs. (5)–(8) with the amplitude
(3), taking ð1 − γ5Þ when ν → ν̄, and the vertex production
contributions in Eqs. (45)–(48).

A. Parameters and form factors

What remains is to define the hadronic FF and the
different coupling constants. The coupling constant we use
are the values from pion-nucleon scattering, analysis of
photo-production and electroproduction of pions. For the
strong couplings of nucleons we take g2πNN=4π ¼ 14, (note
that fπNN

mπ
¼ gπNN

2mN
) g2ρNN=4π ¼ 2.9, κρ ¼ 3.7, gωNN ¼ 3gρNN

and κω ¼ −0.12 [15] with the usually adopted masses for
involved hadrons [16,19]. The coupling of nucleon ρ and ω
mesons were obtained by assuming the vector dominance
model. In the weak sector the vector coupling constant are
fixed by assuming the CVC hypothesis both, for B and R
amplitudes. As usual, for the axial currents we exploit the
PCAC hypothesis and Golderberg-Treiman relations
with the exception of the Δ, the most important resonance
in this region, where the axial couplings are obtained by
fitting to the differential cross section (see below). For the
nucleon Born and meson exchange contributions in Oλ

BN
we adopt gV ¼ 1, gωπV ¼ 0.324e [11], while for the axial

couplings we assume gA ¼ 1.26 (PCAC values) and fρπA ¼
m2

ρ

ð93 MeVÞgρNN
[20].

The FF are expressed in terms of the usual Sachs dipole
model for the vector current and also a dipole FF for the
axial part [10]:

FV
1 ðQ2Þ¼ gV

1þt
½Gp

EðQ2Þ−Gn
EðQ2ÞþtðGp

MðQ2Þ−Gn
MðQ2ÞÞ�;

FV
2 ðQ2Þ¼ gV

1þt
½Gp

MðQ2Þ−Gn
MðQ2Þ−ðGp

EðQ2Þ−Gn
EðQ2ÞÞ�;

FAðQ2Þ¼ gA
ð1þQ2=M2

AÞ2
; MA¼1.032GeV; ð50Þ

where t ¼ Q2=4m2
N and

Gp
EðQ2Þ ¼ 1

1þ κp
Gp

MðQ2Þ ¼ 1

κn
Gn

MðQ2Þ ¼ 1

1þQ2=M2
V
;

Gn
EðQ2Þ ¼ 0;

withM2
V ¼ 0.71 GeV2, κp ¼ 1.79, κn ¼ −1.91. In the case

of the contribution involving the Wππ vertex (third term in

Eq. (45) we adopt the same F1
VðQ2Þ as in the other Born

terms [first, second, and fourth terms in Eq. (45)] since
these together should produce a gauge invariant amplitude
in the electromagnetic case.
Now, we define parameters and FF for the resonances.

We begin with the spin-1
2
ones.The coupling f1440πN can be

obtained from the partial decay width N�ð1440Þ → πN
from Eq. (44) with π ¼ þ1; m1440 ¼ 1462 MeV;Γ1440 ¼
391 MeV [16], making the approach

ffiffiffi
s

p
≈m1440 (CMW).

We take Γ1440→πN ≈ 0.69 × 391 MeV ¼ 269.79 MeV [17]
were the factor 0.69 comes from the branching ratio of
decay in Nπ which is between 55% and 75%. With this
width we get the value of f1440πN ¼ 0.412.
The weak WWN1440 vertex are obtained from the con-

nection between electromagnetic resonance production and
the helicity amplitudes. The helicity amplitudes describe
the nucleon-resonances transition depending on the polari-
zation of the incoming photon and the spins of the baryons
[18]. For nonzero Q2, data on helicity amplitudes for the
N�ð1440Þ are available only for the proton [18], where it is
assumed that the isovector contribution on the neutrino
production is given as gVi ¼ −2gpi . The PCAC hypothesis
allows us to relate the strong and weak FF and fix their
values at Q2 ¼ 0. We adopt the following parametrization
and values taken from Ref. [18]

g14401V ðQ2Þ ¼ 4.6
ð1þQ2=M2

VÞ2ð1þQ2=4.3M2
VÞ

;

g14402V ðQ2Þ ¼ 1.52
ð1þQ2=M2

VÞ2
ð2.8 lnð1þQ2=GeV2Þ − 1Þ;

g14401A ðQ2Þ ¼ 0.51
ð1þQ2=M2

AÞ2ð1þQ2=3M2
AÞ

;

g14403A ðQ2Þ ¼ 0.51
ðm1440 þmNÞ
Q2 þm2

π
mN; ð51Þ

with MV ¼ 0.84 GeV and MA ¼ 1.05 GeV. Note that the
signs of g1VðQ2Þ; g2VðQ2Þ; g1AðQ2Þ are the same that for
F1VðQ2Þ; F2VðQ2Þ; FAðQ2Þ in (50) in spite we have differ-
ent form factors. For the N�ð1535Þ resonance we get from
the same procedure followed before for theN�ð1440Þ using
Eq. (44) but for π ¼ −1; m1535 ¼ 1534 MeV, Γ1535 ¼
151 MeV and a branching-ratio of 0.51 [19] a value
f1535πN ¼ 0.17, while for the weak FF we get

g15351V ¼ 4.0
ð1þQ2=M2

VÞ2ð1þQ2=1.2M2
VÞ

× ð7.2 lnð1þQ2=GeV2Þ þ 1Þ;

g15352V ¼ 1.68
ð1þQ2=M2

VÞ2
ð0.11 lnð1þQ2=GeV2ÞÞ;

g15351A ¼ 0.21
ð1þQ2=M2

AÞ2ð1þQ2=3M2
AÞ

;

g15353A ¼ 0.21ðm1535 −mNÞmN

Q2 þm2
π

: ð52Þ
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We analyze now the spin-3
2
resonances beginning with theΔ

one. For this resonance, for the mass, width, and πNΔ
coupling constant we assume consistently the values
obtained previously from fitting the πþp scattering
data [10], using the propagator (15) within the CMS
approach and the strong vertex (21). We got f2NπΔ=4π ¼
0.317� 0.003, mΔ ¼ 1211.7� 0.4 MeV, and ΓΔ ¼
92.2� 0.4 MeV. For the vector Δ weak contribution to
the B and R amplitudes we use the effective (empirical)
values GMð0Þ ¼ 2.97, GEð0Þ ¼ 0.055 and GCð0Þ ¼
2mΔ

mN−mΔ
GEð0Þ fixed from photo and electroproduction reac-

tions [11,21]. We call these “effective” values, as discussed
in Ref. [11], because they correspond to the bare ones
G0

i ð0Þ [usually related with quark models (QM)] renor-
malized through the decay of a πN state coming from the B
amplitude into a Δ through final state interactions (FSI). In
Ref. [11] we also get the bare G0

E;Mð0Þ values by intro-
ducing dynamically the FSI by an explicit evaluation of the
rescattering amplitudes and showed that the effective
values, which are obtained through a fitting procedure,
can be in fact interpreted as the “dressed” ones. For the FF
we adopt

GiðQ2Þ ¼ Gið0Þð1 −Q2=M2
VÞ−2ð1þ aQ2Þe−bQ2

; ð53Þ

with a ¼ 0.154=GeV2 and b ¼ 0.166=GeV2, for i ¼ M, E,
and C, which corresponds also to Sachs dipole model times
a corrections factor already used in electroproduction
calculations [21]. The axial FF at Q2 ¼ 0, Dið0Þ, i ¼ 1,
4, are obtained by comparing the nonrelativistic limit of the
amplitude ūνΔAνμu in the Δ rest frame (pΔ ¼ ðmΔ; 0Þ,
p ¼ ðENðqÞ, −q) with the nonrelativistic QM [20,22].
D4ðQ2Þ ¼ 0 since we will not take into account the
contribution of the Δ deformation to the axial current.
The Q2 dependence of Di is taken to be the same as in
the vector case with a different parameter in the dipole
factor, i.e.,

DiðQ2Þ ¼ Dið0ÞFðQ2Þ; for i ¼ 1; 2;

D3ðQ2Þ ¼ D3ð0ÞFðQ2Þ m2
N

Q2 þm2
π
; ð54Þ

with MA ¼ 1.02 GeV and FðQ2Þ ¼ ð1þQ2=M2
AÞ−2 ×

ð1þ aQ2Þe−bQ2

. Here

D1ð0Þ ¼
3

ffiffiffi
2

p
gA

5

mN þmΔ

2mNFð−ðmΔ −mNÞ2Þ
;

D2ð0Þ ¼ −D1ð0Þ
m2

N

ðmN þmΔÞ2
;

D3ð0Þ ¼ D1ð0Þ
2m3

N

ðmN þmΔÞm2
π
;

where Fð−ðmΔ −mNÞ2) in the denominator comes from
the fact that we scale DiðQ2 ¼ −q2Þ from the timelike
point q20 ¼ ðmΔ −mNÞ2 to q2 ¼ 0 through FðQ2Þ. Then, as
in the case of pion photo-production, we will consider
D1ð0Þ as a free (effective or empirical) parameter to be
fitted from the experimental data for dσ=dQ2 and including
the FSI effectively. From this fit we get D1ð0Þ ¼ 2.35ffiffi

2
p with

χ2=dof ¼ 0.71, and results are shown with full lines in the
Fig. 2 of Ref. [10] where a comparison with the data from
the ANL and BNL experiments [2,3] of the neutrino flux
ϕðEνÞ averaged cross section

	
dσ
dQ2



¼

R Emax
ν

Emin
ν

dσðEνÞ
dQ2 ϕðEνÞdEνR Emax

ν

Emin
ν

ϕðEνÞdEν

;

for the main channel νp → μ−πþp0 with the cut WπN0 <
1.4 GeV in the final invariant mass is done. With this cut it
is expected, at least for this channel, that the contributions
of more energetic resonances than the Δð1232Þ are small
and that are important for more energetic cuts. This will be
analyzed in the next subsection. As the reanalyzed data of
ANL achieved in Ref. [7] does not affect appreciably the
channel used to fit D1ð0Þ for the mentioned cut we do not
make a new fitting with h dσ

dQ2i nor show again results for

this, and we concentrate in the results for the total cross
section σðEν;ν̄Þ.
Now we fix the parameters, coupling constant, and FF

for the N�ð1520Þ resonance. From Eq. (31) making the
CMW approach

ffiffiffi
s

p
≈m1520 ¼ 1524 MeV, Γ1520 ¼

115 MeV and using the partial width 0.55 [19] for decaying
into πN states we get f1520πN

4π ¼ 0.2. Choosing the values
reported for the vector couplings for Q2 ¼ 0 in Ref. [17],
we have for the vector part using the Eqs. (36)

−2.98 ¼ 3

2

1.52
0.94þ 1.52

ðG1520
M −G1520

E Þ;

4.21 ¼ −3
2

�
G1520

M −
4.56

1.52 − 0.94
G1520

E

�
0.94

0.94þ 1.52
;

ð55Þ
from where we get G1520

M ¼ −2.62, G1520
E ¼ 0.6, while for

Δ it was GΔ
M ¼ 2.97; GΔ

E ¼ 0.055, being the change in GM

consistent with the change of CV
3 between both resonances

(see Ref. [18]). If we use CV values of Ref. [18] we get
GM ¼ −4.67 and GE ¼ −0.26. For the axial couplings
using the pole contribution vertex we have using the CA

values from Ref. [17]

D1ð0Þ ¼ −
2.15ffiffiffi

2
p ; D2ð0Þ ¼ 0;

D3ð0Þ ¼ −
2.15ffiffiffi

2
p m2

N

m2
π
: ð56Þ
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while for Δ D1ð0Þ ¼ 2.35ffiffi
2

p , this is consistent also with the

change in C5
A [18]. The Q2 dependence is assumed similar

to that in Eqs. (53) and (54).

B. Results

We begin discussing a formal issue referred to spin-3
2

resonances. It would be useful to put attention in the
Eq. (17) where the Δ (also valid for the N�ð1520Þ case)
propagator (14) is written expanding the projectors in
Eqs. (15) or Eqs. (16).
Note that if we take A ¼ − 1

3
, our choice in previous

works [10,11], then bð− 1
3
Þ ¼ 2 in (17) and 1

2
ð2Z þ ð1þ

4ZÞAÞ ¼ 1
3
Z − 1

6
in (18). At first, one could choose another

value for Awhile the same is taken for the different vertexes
coupled to the propagator. On the other hand, if one takes
A ¼ −1 then bð−1Þ ¼ 0 and only the first term of (14),
which sometimes is called (wrongly) the on shell 3

2

projector, contributes. Nevertheless, as can be seen from
(15), for a different value of A 1

2
off-shell propagation

always is present. This is not property of the 3
2
field, also in

the massive vector meson propagator we have present an
off-shell lower spin 0 component [23]. As can be seen from
the Eq. (17) for our election the propagator has a con-
tribution with a pole at p2 ¼ m2

Δ and another that is not
singular. When the value A ¼ −1 is adopted this last term is
not presented, nevertheless an observation regards the
vertexes should be done in order.
As was previously mentioned, quite generally in all

interaction vertexes we need a contact transformation
invariant form proposed in (18), where Z is an arbitrary
parameter independent of A that is property of each
interaction [see Eq. (19)]. We concentrate for example in
the strong πNΔ decay vertex for choosing Z, while we fix
for simplicity the same value for the photoproduction and
weak production ones as done in previous works [10,11].
Now we point to the question of the true degree of freedom
of the spin-3

2
field, and remember that this is a constrained

quantum field theory. Observe that in the free RS
Lagrangian in Eqs. (9) and (10), there is no term containing
_Ψ0. So, the equation of motion for it is a true constraint, and
Ψ0 has no dynamics. It is necessary then that interactions
do not change that fact and as it is shown in [24] this is
fulfilled for the value Z ¼ 1

2
. The same conclusion was

obtained in the original work of Nath [25], where through
other methods the same value was obtained. Then, we
adopt this value for our interaction, in which we use
A ¼ −1=3 in propagators and vertexes involving the Δ
plus Z ¼ 1

2
being 1

2
ð1þ 4ZÞAþ Z ¼ 0 and Rμ

αð0Þ ¼ gμα.
This selection will be the same for the N�ð1520Þ that is a
spin-3

2
resonance. In spite of this analysis some authors

[20,26–28] try to get both, the simpler versions for 3
2

propagator using A ¼ −1 and a πNΔ vertex with
1
2
ð1þ 4ZÞAþ Z ¼ 0.

This can be read in two different manners. First, if they are
adopting the same Z ¼ 1

2
value (generally this is not

discussed at all) as us, we could conclude that there is
an inconsistency since they are adopting a value
A ¼ −1 for the propagator while A ¼ −1=3 to get
1
2
ð1þ 4ZÞAþ Z ¼ 0, violating the independence of the

amplitude with A. Or second, the different choice Z ¼ − 1
2

is adopted but not mentioned explicitly, and A ¼ −1 it is
used in both propagator and vertexes. Nevertheless this Z
value does not avoid the dynamics ofΨ0 in the πNΔ vertex.
In each case, model dependencies are introduced.
In Ref. [10] we have showed the numerical conse-

quences, in the Δ region, of adopting the value A ¼ −1
in the Δ propagator (called wrongly RS propagator in
another works and referred with this name there) keeping
inconsistently A ¼ −1=3 in the strong and weak Δ vertexes
for the value Z ¼ 1=2. Results are below the consistent
choice results and the data, showing that the inconsistence
leads to an observable effect.
Another formal problem is related to the fact that many

works do not consider the nonresonant background con-
tributions [18] or do not introduce them through the
corresponding effective Lagrangians, or do not consider
the interference between the background and resonant
contributions [17,18] as really it is very important to
describe the data. On the other hand, also these models
detach the resonance production out of the weak production
amplitude [17,18]. However, resonances are nonperturba-
tive phenomena associated to the pole of the S-matrix
amplitude and one cannot detach them from its production
or decay mechanisms, being necessary to built the ampli-
tude through the Feynman rules using the resonance
propagators.
Now we show our results. First, in Fig. (3) we compare

our calculations without and with the second resonance
region included, for WπN < 1.4 GeV for the ANL data
(BNL does not give results with this cut for the total cross
section). We implement the CMS approach for the Δ
resonance, used previously in getting its strong and weak
parameters [10,11,15], and the CMW for the others. As can
be seen the effect of adding more resonances depends on
the considered channel. If we considered a fixed energy
Eν ¼ 3, 1.5, 1.5 GeV for the mentioned ν channels in (49)
respectively, one can see from the Fig. 3 that their
contribution is correspondingly 4%, 17% and 10%,
improving the data description regards the model where
one includes only the Δ. Note that in spite of the cut in
WπN , the tails of the resonances generated by the finite
width give an appreciable contribution and the interference
between them is also important.
Analyzing the individual contributions of the

N�ð1440Þ; N�ð1520Þ, and N�ð1535Þ one can notice that
the main contribution comes from the N�ð1520Þ being for
the other less that 1%. All isospin factors for the mentioned
three isospin-1

2
resonances read
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T h ¼ 0;
ffiffiffi
2

p
;−2; T g ¼ −2;−

ffiffiffi
2

p
; 0;

and thus this explain why the contribution for the first
channel is small since comes from background terms of
these resonances. For the second channel we have the main
effect since we have contributions of both the direct and
cross terms and interference between of them, while for the

last one we have only pole contribution. In addition, one
could to ask why the contribution of the second resonance
region are, apart from the cutting in invariant mass effect,
lower than the Δþ background contributions. This can be
understood from the Eqs. (5) and (8). For a certain value of
the neutrino energy Eν in the Lab and νN CM systems
ECM
ν

ffiffiffi
s

p ¼ EνmN , being the limits in the cross section
integrals (6) fixed for a given final μπN0 state, and if
amplitudes are of the same order of magnitude in the
second resonance region regarding the Δ one, the kinetical
cross section factor 1

Eν
favors smaller neutrinos energies and

thus lowest excitation energy contributions. For example if
we take the final muon at rest p2

R ¼ ðEν þmN −mμÞ2 and
thus for p2

Δ ¼ ð1232Þ2 MeV2 we have ðmNEνÞ−1 ≈
2.7 GeV−2 while for p2

1520 ¼ ð1520Þ2 MeV2 we have
ðmNEνÞ−1 ≈ 1.5 GeV−2. Then, in spite strong and weak
coupling constants would be of the same order the Δ
contribution is favored by the neutrino kinematical
factor. This explain the different size of the resonances
contribution.
Information about the axial FF Dið0Þ for the Δ is carried

by the fitting to the differential cross section dσ=dQ2 data
for the cutWπN < 1.4 GeV [10]. Therefore, contrasting the
model predictions with the ANL and BNL differential data
cross sections, will help to complement the model’s quality
analysis. Our results for the flux averaged cross sections are
shown in Fig. 4, are shown for the Δ plus background, all
resonances plus background both coherent summed in the
amplitude and with the incoherent sum of resonant and
background cross sections. As can be seen, the effect of
adding the second resonance region is noticeable and
consistent with the effect on the total cross section in
the previous Fig. 3. In addition, it is evident of the effect of
adding resonant and background at the amplitude level
(coherently) in place at the level of the cross section
(incoherently).
Now we go to the cutWπN < 1.6 GeV where the second

resonance region is fully included. As can be seen from
the Fig. 5, the contribution of these resonances is more
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FIG. 3. Total νN cross section as function of the neutrino
energy for different channel. Results with only the Δ and Δþ
second region resonances plus the corresponding background, in
each case are shown for a cut WπN < 1.4 GeV. Data are taken
form Ref. [2].
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FIG. 4. Comparison of the calculated flux averaged differential cross section dσ=dQ2 for WπN < 1.4 GeV with the data of
references [2,3].
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important and necessary to improve the consistency with
data. Note that until this moment we keep within the
CMS and CMW approaches, the simplest way to treat all
the resonances together with the Born terms of the
nonresonant background that also include the resonance
cross amplitudes.
Finally we compare the calculated flux averaged cross

section dσ=dWπN for both cuts 1.4 and 1.6 GeV with the
data for both ANL and BNL experiments in Fig. 6, in order

to see with more detail the contribution of the resonant
amplitude and background. As can be seen, we have a large
background contribution mainly in the νn → μ−πþn chan-
nel, coming for the cross background contribution in
Fig. 1(g) for theΔ. This contribution has isospin coefficient
−1 while the resonant one in Fig. 1(h) has coefficient −1=3
giving a small contribution to the cross section when
squared. The term responsible for this behavior is the
second one in the propagator (17) that is present, as
consequence of our consistent selection of A ¼ −1=3; Z ¼
1=2 and grows for p2 > m2

Δ. As this contribution cannot be
renormalized with a self-energy as the pole Fig. 1(h) term,
this suggest the necessity of FF for WπN to take into
account the finite size of the hadrons not considered in the
punctual effective vertexes [29]. Of course, in another
choices of A, Z where bðAÞ ¼ 0 in (17) this growing is not
present but the treatment is not consistent. In addition, is
not clear that we can extend the another tree nonresonant
background contributions in Figs. 1(a) to (f) to any final
WπN keeping structureless hadrons. Finally, it is visible the
contribution of the N�ð1520Þ resonance for the νn →
μ−πþn channel due to the value of the isopin factor 2 in
this case.
Now, in order to follow probing our model we wish to

calculate the antineutrinos total cross sections. We have two
differences regards the neutrinos case. First, the interactions
of neutrinos with hadrons is not the same that for
antineutrinos. We have a sign of difference in the lepton
current contraction that makes a different coupling with the
hadron one. Then, the interaction with neutrinos is different
from antineutrinos due the use of spinors for antiparticles in
(3) and has nothing to do with the very known CP violation
effect. Second, in the experiment we have an admixture
of heavy freon CF3Br and was exposed to the CERN PS
antineutrino beam (peaked at Eν̄ ∼ 1.5 GeV) [30]. In this
case the experiment informs that we have 0.44% on
neutrons and 0.55% of protons, and since our calculations

0 1 2 3 4
0

0.2

0.4

0.6

0.8

ANL
CMS +Background
CMS +N*(1440)+N*(1520)+N*(1535)+Background

(a)

0 1 2 3 4
0

0.1

0.2

0.3

0.4

(b)

(1
0

 c
m

)

0 1 2 3 4
0

0.1

0.2

0.3

0.4

E GeV

(c)

FIG. 5. Same as in Fig. 3 but for a cut WπN < 1.6 GeV.
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were for free nucleons we weight out results with these
percentages depending on the channel ν̄n → μþnπ− or
ν̄p → μþnpπ−. Our results including all resonances and
compared with the data are shown in Fig. 7 for the only cut
WπN < 1.4 GeV reported in [30], and as can be seen we
get a consistent description with the same cut for the
neutrino case.
Now we analyze the quality of our results and compare

them with other calculations including the second reso-
nance region, taking into account the formal shortcomings
mentioned above. As can be seen from a general point of
view, our model that fulfills consistence regards contact
transformations in the spin-3

2
field reproduce better the ANL

data than other inconsistent models [27]. In addition, in that
reference it seems that the cross resonance contributions are
omitted for the νp → μ−πþp channel. It is true that the
direct or pole contribution of isospin-1

2
resonances cannot

contribute to an isospin-3
2
amplitude, but the cross terms do

contribute noticing the isospin factors for this channel are
not zero in Eq. (48). This make the difference between the
full thin lines and the dashed ones in the upper panel of
Figs. 3 and 5. A last shortcoming to mention is that for
nonresonant backgrounds contributions Figs 1(a)–(f), an
arbitrary cutoff of WπN < 1.2 GeV is applied changing
artificially the behavior of these contributions independ-
ently from the rest of terms. This is done for all the
presented regimes WπN < 1.4, 1.6 GeV. Note that we can
reproduce very well these data without the necessity of any
special cuttings, all contributions are calculated with the
same WπN maximum value. Finally, we note that in
Ref. [27] the antineutrino results are not reproduced, while
within our model the accordance with the data is very well
in all the energy region where the data is reported.

On the other hand, the model adopted in Ref. [18] where
the propagation of the resonance is described by a Breit-
Wigner distribution separating production and decay, does
not include a background amplitude and to get accordance
in the data for the νn → μ−nπþ; νn → μ−pπ0 processes
they needed to add incoherently a spin-1

2
background. The

model adopted in Ref. [17] is similar to that in [18] but they
adjust the background cross section contribution through a
parameter bπN different for each channel. These two last
works were improved in Ref. [28], where the R and B
contributions were added coherently and the Δ propagation
is treated with the choice A ¼ −1; Z ¼ −1=2 mentioned
above, within the parity conserving parametrization of
the WN → Δ vertex. These differences make difficult to
compare with our results when R ¼ Δ since we choose a
different A, Z choice and the Sachs parametrization.

VI. CONCLUSIONS

In this work we calculate the pion production cross
section including in the model spin-1

2
and 3

2
resonances

Δð1232Þ; N�ð1440Þ; N�ð1520Þ, and N�ð1535Þ to cover the
so called second resonance region. From the formal point of
view the spin-3

2
Lagrangians (free and interaction) respect

invariance under contact transformations and the associated
parameter A, is fixed to be the same in all components of
the Feynman rules to get A-independent amplitudes. Also,
the additional Z parameter present in the LπNR Lagrangian
for these resonances is fixed to avoid time evolution of the
field component Ψ0, since _Ψ0 is not present in the free
Lagrangian. It is shown how other models do not analyze
these formal facts that can produce model dependence.
We treat the spin-1

2
resonances within the parity con-

serving parametrization for the FF, since this is compatible
to that used in the similar topological nucleon contribution
in Fig. 1(a) and (b). For the spin-3

2
resonances we adopt the

Sachs parametrization to be consistent with our previous
works including only the Δ resonance where we get better
results than using the parity conserving one [31]. We
followed the connection between both parametrizations
achieved in that reference to get the FF for the N�ð1520Þ
resonance and have taken the Q2 FF from Ref. [18] for all
the second region resonances. We note that the main
contribution comes from the Δ resonance and the presence
of the additional resonances do not change appreciably the
results of the cross section for the νp → μ−pπþ channel for
the cutWπN < 1.4 GeV as can be seen from Fig. 3. As this
cut was used to fix GMð0Þ; GEð0Þ and D1ð0Þ for the Δ we
keep the same values obtained previously in Refs. [10,11].
First, we achieve the comparison with the data of ANL
experiment in the region of WπN < 1.4, 1.6 GeV, where
we have worked within the CMSþ CMW approach. From
the results including and not including the second reso-
nance region, we conclude that to improve the data, this
resonance region should be included. More, in the case
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FIG. 7. Antineutrino’s total cross sections with a cut in 1.4 GeV
for the ν̄n → μþnπ− and that leading to a final Nπ− final state.
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WπN < 1.4 GeV one can think why? We conclude this
second energy region is necessary due to the tail of the
resonances that have their centroids out of this region, but
influences through the tails that interfere between reso-
nance and background contributions. This behavior is
confirmed when we compare with the data with theWπN <
1.6 GeV and the good agreement with the data for the
antineutrino case. In other approaches as in Ref. [32], the
replacement LπNΔ → LπNΔ þ cLC is proposed, with LC
describing contact terms without the Δ field, with adjusting
the low-energy constant c to get a better fitting for the
νn → μ−nπþ channel. The addition of contact terms is
based on the argumentation that within the ChPT frame-
work, the equivalence between different Lagrangians is at
less of low energy constants, to be adjusted. We see that this
is not necessary if one includes consistently the second
resonance region.
Finally the data of Ref. [2] also contains results without

energy cuts and also all results in Ref. [3] are reported
without events exclusion. In addition a reanalysis of these
two set of data has been done recently in Ref. [7] where the
main results are shown without cuts. For describing them
we need to extend the model to higher energies. This will
be done in future work.
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APPENDIX A: SPIN PROJECTORS
AND ISOSPIN OPERATORS

We have introduced Pk
ij which projects on the k ¼ 3

2
, 1
2

sector of the representation space, with i, j ¼ 1, and 2
indicating the subsectors of the 1

2
subspace, and are

defined as

ðP3
2Þμν ¼ gμν −

1

3
γμγν −

1

3p2
½pγμpν þ pμγνp�;

ðP1
2

22Þμν ¼
pμpν

p2
;

ðP1
2

11Þμν ¼ gμν − P
3
2
μν − ðP1

2

22Þμν
¼

�
gμα −

pμpα

p2

�
ð1=3γαγβÞ

�
gβν −

pβpν

p2

�
;

ðP1
2

12Þμν ¼
1ffiffiffi
3

p
p2

ðpμpν − pγμpνÞ;

ðP1=2
21 Þμν ¼

1ffiffiffi
3

p
p2

ð−pμpν þ ppμγνÞ: ðA1Þ

On the other hand we define the isospin Δ excitation
operators

T† · ϕþ;−;0 ¼

0
BBB@

1 0

0 1ffiffi
3

p

0 0

0 1

1
CCCA;

0
BBB@

0 0

0 0

− 1ffiffi
3

p 0

0 1

1
CCCA;

0
BBBBBB@

0 0ffiffi
2
3

q
0

0
ffiffi
2
3

q
0 0

1
CCCCCCA
;

that acts on N ¼ ð1
0
Þ; ð0

1
Þ for the proton and neutron,

respectively, and

Δþþ;þ;0;− ¼

0
BBB@

1

0

0

0

1
CCCA;

0
BBB@

0

1

0

0

1
CCCA;

0
BBB@

0

0

1

0

1
CCCA;

0
BBB@

0

0

0

1

1
CCCA

for the Δ states, being ϕþ;−;0 ¼ −1ffiffi
2

p ð1; i; 0Þ; 1ffiffi
2

p ð1;−i; 0Þ;
ð0; 0; 1Þ, andW� ¼ ϕ�. The isospin factors included in the
resonances width are for isospin I ¼ 3

2
; 1
2

Δ†
þþðT† ·ϕþÞðT ·ϕ†

þÞΔþþ

¼Δ†
þ½ðT† ·ϕþÞðT ·ϕ†

þÞþðT† ·ϕ0ÞðT ·ϕ†
0ÞΔþ�¼ ���¼1

R†
�
1

2

�
½ðτ ·ϕ0Þðτ ·ϕ†

0Þþðτ ·ϕþÞðτ ·ϕ†
þÞ�R

�
1

2

�
¼���¼3;

since we can have π0p; πþn, states when we have an
isospin 1

2
projection (q ¼ e) and also π0n; π−pwhen isospin

projection is − 1
2
(q ¼ −e) or π−n only in the I ¼ 3=2 one

with projection − 3
2
.

APPENDIX B: LAGRANGIANS AND
PROPAGATORS INVOLVED IN THE
NONRESONANT BACKGROUND

The propagators and interaction Lagrangians used to
built amplitudes OBN will be resumed here. First the
propagators, which come from the inversion of the kinetic
operators present in the free Lagrangians are

SðpÞ ¼ pþmN

p2 −m2
; nucleon

ΔðpÞ ¼ 1

p2 −m2
π
; pion

DμνðpÞ ¼
−gμν þ pμpν

m2
V

p2 −m2
V

; vector-meson;

while the effective strong interacting Lagrangians are
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LπNNðxÞ ¼ −
gπNN

2mN
ψ̄ðxÞγ5γμτ · ð∂μϕðxÞÞψðxÞ;

LVNNðxÞ ¼ −
gV
2
ψ̄ðxÞ

�
γμ

�
ρμðxÞ · τ
ωμðxÞ

�
−

κV
2mN

σμν

�
∂ν

�
ρμðxÞ · τ
ωμðxÞ

���
ψðxÞ;

With V ¼ ω, ρ. Now, we define the effective hadron weak Lagrangians built from Eqs. (1), (2)

LWNNðxÞ ¼ −
g

2
ffiffiffi
2

p ψ̄ðxÞ
�
γμFV

1 ðQ2Þ − FV
2 ðQ2Þ
2mN

σμν∂ν − FAðQ2Þγμγ5
� ffiffiffi

2
p

WμðxÞ · τ
2
ψðxÞ þ H:c:;

LWππðxÞ ¼ −
g

2
ffiffiffi
2

p FV
1 ðQ2Þ

ffiffiffi
2

p
½ϕðxÞ × ∂μϕðxÞ� ·WμðxÞ;

LWπNNðxÞ ¼ −
g

2
ffiffiffi
2

p fπNN

mπ
FV
1 ðQ2Þψ̄ðxÞγ5γμ

ffiffiffi
2

p
ðτ × ϕðxÞÞ ·WμψðxÞ;

LWπρðxÞ ¼
g

2
ffiffiffi
2

p fρπAFAðQ2Þ
ffiffiffi
2

p
ðϕðxÞ × ρμðxÞÞ ·WðxÞμ

LWπωðxÞ ¼ −
g

2
ffiffiffi
2

p gωπV
mω

FV
1 ðQ2Þϵμαλνð∂λϕðxÞÞ · ð∂μWαðxÞÞωνðxÞ:
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