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In this work we report the calculation of the total cross section for pion-production by the
dispersion of neutrinos on nucleons. We use a consistent formalism for the intermediate resonance
states of spin—%, taking care on the conditions imposed by the invariance on contact transformations

and using the Sachs parametrization for the form factors. In addition, we incorporate states in the
second resonance region up to 1.6 GeV and implement different approaches for all the dressed
resonance propagators. In addition to the A(1232), we include the N*(1440), N*(1535), and
N*(1520) resonance contributions, and it is shown that this inclusion improves the description of
the total cross section regarding a model where only the A(1230) resonance is considered. Also,

results for antineutrinos are properly described.
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I. INTRODUCTION

In the standard model, neutrinos are massless, but
experimental evidence shows that although small, it is not
zero. This increases interest in their study as it leads to
flavor oscillations, mixture of angles between mass states,
violation of quantum numbers, among others. The detec-
tion of neutrino masses is the first evidence of physics
beyond the standard model. Neutrino physics has been
one of the most studied topics in recent years for particle
physics. Now, as it is known that neutrinos are massive
particles that can oscillate (changing flavor), it is essential
to know precisely the cross section in the interaction of
the neutrino with nucleons or with a nucleus in the
detector. The interaction of neutrinos with nuclei and
nucleons have received considerable attention in recent
years, stimulated by the needs in the analysis of neu-
trinoexperiments giving information about the probability
of oscillation. There are several processes for the study of
the interaction of neutrinos with nucleons. The dispersion
of neutrinos by nucleons can be quasielastic or inelastic
producing additional pions together the nucleon in
charged current (CC) and neutral current (NC) inter-
actions [1]. CC quasielastic (QE) interaction of neutrinos
and antineutrinos with nucleons involves the processes
vo+n—p+¢ and D,+p—>n+ T respectively
where £ = e, v, 7, and it is used to detect the arri-
ving of neutrinos or antineutrinos to the detectors.
The following process to be considered is the CC
single pion production (SPP) v, + N — £~ + N'z and
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Uy + N — 7+ N'zn, where N,N' = p, n or the NC one
ve+N—=>vV,+Nznand 0, +N -0, + N'n.

A good understanding of SPP by neutrinos with few-
GeV energies is important for current and future oscillation
experiments, where pion production is either a signal
process when scattering cross sections are analyzed, or a
large background for analyses which select QE events.
At these energies, the dominant production mechanism is
via the production and subsequent decay of hadronic
resonances.

The axial form factor (FF) for pion production on free
nucleons cannot be constrained by electron scattering
data, is used normally to get the vector FF, so it relies
upon data from Argonne National Laboratory’s 12 ft
bubble chamber (ANL) [2] and Brookhaven National
Laboratory’s 7 ft bubble chamber (BNL) [3]. The ANL
neutrino beam was produced by focusing 12.4 GeV
protons onto a beryllium target. Two magnetic horns
were used to focus the positive pions produced by the
primary beam in the direction of the bubble chamber,
these secondary particles decayed to produce a predomi-
nantly v, peaked at ~0.5 GeV. The BNL neutrino beam
was produced by focusing 29 GeV protons on a sapphire
target, with a similar two horn design to focus the
secondary particles. The BNL v, beam had a higher
peak energy of ~1.2 GeV, and was broader than the ANL
beam. These experiments will be referenced below in the
results section. These datasets differed in normalization
by 30%—-40% for the leading pion production process
v,p = u~pr", which conduced to large uncertainties in
the predictions for oscillation experiments.

© 2022 American Physical Society
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It has long been suspected that the discrepancy between
ANL and BNL was due to an issue with the normalization
of the flux prediction from one or both experiments, and it
has been shown by other authors that their published results
are consistent within the experimental uncertainties pro-
vided [4,5]. In Ref. [6], was presented a method for
removing flux normalization uncertainties from the ANL
and BNL v,p — y~px" measurements by taking ratios
with charged current quasielastic (CCQE) event rates in
which the normalization cancels. Then, it was obtained a
measurement of v, p — u~ pzx" by multiplying the ratio by
an independent measurement of CCQE (which is well
known for nucleon targets). Using this technique, they
found good agreement between the ANL and BNL v, p —
u~pr* datasets. Later, they extend that method to include
the subdominantv,n — u~ pa’ and v,n — p~nzt channels
[7]. This is one of the reasons encourage us to return to the
calculation of SPP neutrino-nucleon cross sections. The
other reason is that there are many models to describe this
process that fail in several aspects namely:

(i) There are problems from the formal point of view.
Since the pion emission source are excitation and
decay of resonances, and many of them are of spin—%,
we must keep amplitudes invariant by contact trans-
formations (see below). These transformations
change the amount of the spin—% spurious contribu-
tion in the field that are present by construction.
Many works keep the simpler forms of the free and
interaction Lagrangians, and the amplitude lacks the
mentioned invariance

(i) In addition to the resonances pole contribution
(normally referred as resonant terms) to the ampli-
tude, we have background terms coming form cross
resonance contributions and nonresonance origin
(called usually nonresonant terms). Many works
do not consider the interference between resonant
and background contributions and really it is very
important to describe the data.

(iii) Other models detach the decay process for the
resonance out of the whole weak production ampli-
tude. However, resonances are nonperturbative phe-
nomena associated to the pole of the S-matrix
amplitude and one cannot detach its production
from its decay mechanisms, omitting the details in
the propagation.

In this work we calculate the SPP cross section, where
we use a consistent formalism for the intermediate reso-
nance states of spin-3. The A(1232) will be described
within the complex mass scheme (CMS), obtained from its
dressed propagator (see below). In addition, we incorporate
states in the second resonance region which includes the
N*(1440), N*(1535), N*(1520) resonances treated within
a constant width approach. This work is organized as
follows: In Sec. II, we summarize the general description of
weak interactions and the SPP cross section. In Sec. III we

will introduce the formalism of Rarita-Schwinger for spin—%
particles, the dressed propagator for them and propose the
consistent form of the vertex and the propagator. Also, we
introduce the formalism for the A(1232) and resonances
of the second region [N*(1440), N*(1520), N*(1535)]. In
Sec. IV we show the results obtained with our model in the
different regimes of the final Wy invariant mass. In Sec. V
we present the form factors used in this work and the results
obtained. Finally in Sec. VI we summarize our conclusions.

II. NEUTRINO-NUCLEON SCATTERING

The CC interaction (we omit other contributions)
between a neutrino and a hadron is obtained from the
weak Lagrangian

-9
Lec= 2_\/§(J7CCW/4 +JheeV2(xorT)-WHHe) (1)

being the leptonic and hadronic currents respectively
Jice = ZW?’”(I sV
1

JI;LCC = Wh’(vy - Aﬂ)‘//h’ (2)

where the isospin operator 7, the T' N — R(I = %) exci-
tation one, and the isospin wave functions for the bosons
W (equal to the pions ¢ ), the nucleons N = p, n and
resonances R, are defined in the Appendix A. Finally we
have the W propagator

Du(p)=—5—5"R~R 5.

being ;= the high mass limit since usually p* < mj,.
w

In this work we analyze the CC vN — y~N'zm and
UN — "N’z modes. The total amplitude M can be
expressed from the Lagrangian (1) as (spin and isospin
indexes omitted)

2

M= @wﬁﬁ(pﬂ)(—)iﬂ(l —vs)u(p,) %
X Vit (p")O" (p' k. p.q)u(p). (3)

where 0 — % Gp = 116637 x 107° GeV2, [V,| =

0.9740, and the four-momenta are defined as

= (E/w pu)v
p'=(Ey.p)

Py = (Ew pv>7 Pu k= (Eﬂ’k)’

p = (En.P),
with E; = \/|p;|* + m?, we set m, =0, and O* is the
vertex generated by J) . in the Lagrangian (1). We will

built #0*u for the v()N — uN'm process with the con-
tributions shown in Fig. 1. Clearly, all the Feynman graphs
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N (9) NN N (h) N

FIG. 1. Contributions to the scattering amplitude for the process
v(D)N — uN'z. Figures (a)-(g) are the background (B) contribu-
tions. Fig. (h) is the pole resonant contributions (R). R in the
figure indicates any of the intermediate considered resonances.

do not necessarily contribute to each of channels as we
will analyze.

We assume a tree-level hadronic amplitudes contributing
to the so-called background (B) that encloses the nucleon
Born terms [Figs. 1(a)-1(b)], the meson exchange ampli-
tudes (including the contact term) [Figs. 1(c)-1(f)] and
the resonance (R)-crossed term [Fig. 1(g)]; the pole
resonant contribution (R) is shown in Fig. 1(h) and as
we will show the resonance acquires a width (i.e., we do
not have only a tree-label amplitude) that avoids the
singularity in the propagator by a dressing it at different
levels of approximation. In this way, we split the
hadronic operator O* involved in the hadronic amplitude
in Eq. (3) as

C)’1 - OB + OR? (4)

where as will be seen Op i are built through the Feynman

rules obtained from the different effective Lagrangians.
The total cross section for weak SPP in terms of the vN

center mass (CM) variables for convenience, will be

calculated from (we take p, = EJA( along the Z axis)

2 + +

m,m E, Ey
EM) =L 8 [ 7 dEM / dEM
o) O eV N

+1 2 1
d 0 dn—
x/_ cos A n 162\./\/[

1 spin

where /s =+/(p, + py)* = EEM + ESM, the angular

variable come from the integration elements d<2, =
dcosOd¢g and dQ, = dcosé&dn (d¢ integration gives a
factor 2z and cos ¢ is fixed by energy conservation) and

2 (5)

s+mi— (my+m,)?
2B

(V2= EM)(s=2VEEM - AL) £A J(EM) — m;
- 2(s=2v/5EM +my)

E- =m Er =

u ( u

’

(6)

with

A=/ (s = 2VFEM — A2)? — dm2 (s — 2/SEM + m).
A}, = m3, —m} —m3. (7)

The neutrino energy CM energy is related to the laboratory
one as

myE;® myE;®

VS 2ES iy +m3

It is well known that the hadronic currents J/;llcc have a

EM =

(8)

vector-axial structure J}..=V*—A% In terms of the

vector current, the electromagnetic one is written as J#,_,

VE i + V4 (VA = r3§ for a nucleon or R( = 1), and

VAT, for the R(I = 3)) and the weak vector CC is obtained
through the CVC hypothesis (z3, T; — V274, \/ETL) as
VA= F (Vi4iVh) =2V -W,. In the same way it is
also possible to get information on different contributions
to the vector current in Mg as the effective WM — 7’ (with
M =z, ®) and the contact NWrz — N'zn’ vector vertexes.
Here the FF are again obtained assuming CVC from the
electromagnetic yM — z’ and yNzm — N'z’ vertexes
obtained through the corresponding effective interaction
Lagrangians, making the replacement (@ x @, ); —
F (O x @) £ (D x D)) = V(D) x B,), =
V2(®; x @) - W, (the same is valid for the contact
vertex changing ®, — 7) for M = zor @, — V2@, - W
for M = w. The p-exchange in the pW — 7z vertex does not
contribute to the vector current since the p — z current is
isoscalar. We assume a phenomenological pW — 7z axial
vertex, where the isospin factor is the same as in the
#W — x vector case.
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ITI. RESONANCES

In this section we will show the resonance Lagrangians
to built Oy since those used to get Oy are more general and
will be referenced from the Appendix B.

A. Spin 3 resonances

1. A(1232) resonance

This 1J* = 5,2 positive parity resonance has a three

quark orbital momentum and spin L = 0,5 =3 3 and its free
most general one-parameter Lagrangian reads

L(A) =

1+ 3A 1 1+3A
Hp — RH o6 __ | RP
o) = (S5 (5 (57,

AHP <— %) = (id — mp) g + iy dy”

—i(O'y? + yHO°) + mpyty’, (10)

W, () A (AW, (x), ©)

and R*(a) = ¢’° + ay’y°. We have that ¥, =y ® &,
where y is a Dirac spinor field and ¢, is a Dirac four-vector
[8]. In this way, the field ¥, will contain a physical spin——
sector and a spurious spin-} sector dragged by construction.
The free Lagrangian leads to an equation of motion

A (A, (x) = 0, (11)
|

plus certain constraints
0,V =y, P =0, (12)

independent of A that fix the % component eliminating the
redundant % contributions. R”?(a) changes the proportion of
the spurious % component of the Rarita Schwinger field ¥,
but, due to the mentioned constraints, does not affect the %
sector. This is the origin of the family of Lagrangians and
L(A=-1), where R’’(a=0)= ¢, was the original
form proposed by Rarita-Schwinger [9]. Also using the

properties of R”°, it should be invariant under the contact
transformation

-2a

IPD \_P/L/ — ,
- 1 +4a

A—- A =

R, (a)¥", (13)

(a#—3.A#—1), to avoid a singularity, and we get
L(A") =W,/ (x)A*(A")¥,(x). The invariance of the free
Lagrangian under the contact transformations means that
the physical quantities as energy and momentum should be
independent of A. The spln— propagator G(p, A)? should
satisfy (in momentum space, we replace i0 — p),

A(pA7 A)ﬂ”GA (pAv A)[iu = g/,w’

for any value of A and to keep consistence, it should be
transformed as

1+3A 1 1+3A
GA(pA,A)W =R < 5 ) GAP (PA’ —g) R™! <—2 )
Ho pv

1 H 1 v
=R! <—5(1 +A)> G*(pa.—1)¥R™! <—§(1 +A)) . (14)
a p
It can be put in terms of the spin—% ,% projectors defined in the Appendix A, as (omitting Dirac indexes)
1 Pa+m 2 1 \/§ 1 I
G} =G pa—5)=-|F—FP+—= P} +— (P, + P 15
$02) =G (pa=3) =~ [ BE P T e ma)p + 22 (P 7 (15)
G (pa =) =~ [ T2 P 2 (st ma) Py 2 (P4 P (16)
A» pi _mzA 3m2A A A)E 22 \/gmA 12 21 | |»
where we put in terms of A = % —1 since will be the cases to discuss below, or alternatively the developed form
G (pa.A) = ! (a4 my) L ( )+2
ap\Pa-A) = P P 8) | =9ap T3Valp T3 VaPap = VpPaa 3ma DPaaDap
2(p% —m%)b(A b(A
- % YaPap — (b(A) - I)Y/ipAa - %pA + (b(A) - 1)mA Ya¥p s (17)
A
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where b(A) = AL Note that (17) is singular at p> = m3,
that is when the resonance is on-shell, but we know that it
must be dressed through a self-energy and thus this
singularity is avoided as we will discuss below. It is
interesting to note that the second A-dependent contribu-
tion in brackets disappears for the A on shell, i.e., when the
constraints filter the % contribution. Nevertheless, the
resonance appears always off-shell in the presence of
|

interactions, and (12) do not hold. The amplitudes can
be defined uniquely, independent of A, when the inter-
actions with the spin—% field are properly chosen. Con-
sequently, we demand the interaction Lagrangian for the %
field coupled to a nucleon (y) and a pseudoscalar meson
(¢) or boson (W), as usually appears in a resonance
production-decay, be invariant under (13). The most gen-
eral interaction Lagrangian satisfying such requirement is

F*(y.¢.W,...) + He., (18)

- 1
Lnl0,2) = R (3024 (1 +420))
uv

where F', is a function of the fields and its derivatives, g;, is the coupling constant and Z a new arbitrary parameter. Using
the property R(a),,R(b); = R(a + b+ 4ab),, it is possible to demonstrate

u"

R<% 2z+(1 +4Z)A)aﬁ = R(#)WR‘I (%(1 —6Z/(1 +4Z)>ﬁ (19)

that would be replaced in Eq. (18). Note that the A-dependence introduced by the propagator (14) in the Wy — ¢y
amplitude is canceled by the R(%) in the vertex generated from (18). That is, for any value of Z we get an A-independent
amplitude. Then, the value for Z must be chosen for each interaction and fixed by a criteria independent from contact
transformations.

For the strong AzN interaction Lagrangian we adopt the usual chiral invariant one derivative in the pion field

Lang (A = -%,z = %) _/ ;NA go[@(x)1]" - TP, + f ;NA P oD (x)" - Thy, (20)

where the choosing in Z will be explained below, and this
Lagrangian enables the definition of the A — zN vertex

yany — _SaNa s (¢ - T)A, (21)

4

where we use the prescription I = i, &¢ = —ik*¢p, and
i X propagator, and a global i in the total amplitudes.
The weak interaction Lagrangian Ly, compatible with

the free £, and the strong interacting Lagrangian ﬁA,,N
that makes possible also a definition of the weak WNA
excitation vertex, is [10] (we choose the same Z value)

s(r=-12=)
= i‘i’”(x)VAVW\/E(TT - W¥(x) "y (x) + Hec.,

with a vertex WWNA = (VWNA 1 AWNA)/DW* . TT being
the same VWVA vector vertex as in pion-photo (Q* = 0)
[11] and electroproduction applying CVC

VINA(q, p) = [(Gu(Q?) — Gp(Q*)KM 4+ Gp(Q*)KE,
+Gc(QHKE), (22)

|
with Q?>=—¢*=-m,+2E,E,(ps/E,cos6,,)>0, being
q = p; — p,, and where

M 3(mN + mA) (1’ + PA)a Y]
KW - 2 2 €W‘1ﬂ q
2my(my +my)” + Q 2
E _ 4 3(my +my)
Ky = _ 2 25 2 2
(mp —my)* + Q" 2my(my + my)* + Q
(P + pa)” .
X Cap—y el Phd i3
KC — 2 3(my + mysy)
77 _ 2 2 2 2 2
(my —my)* + Q* 2my(my +my)* + O
P+ pa)”.
X [_ngay + Qaqu]QH(fA) lys. (23)
For the FF we adopt
Gi(0%) = Gi(0)Gy (%), (24)

and for the axial contribution we use the model given in
Ref. [10], which is compatible with V)V (it could be, in

principle, obtained by using —V};'*ys) and reads
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. D, (Q? . D5(Q? D, (0? "
AN (q.p) =—i|-Dy(0%) g, + 2,1(12 )(p+pA) (GopGa = 4 Gay) — 3”(12 )puq;ﬂrl ‘;(12 )eyuaﬂ(p+pA) q’ys|. (25)
N N N

The G;(Q?%) and D;(Q?) FF will also be described below.

The bare propagator (17) being singular at p3 = m}

should be dressed by the inclusion of a self-energy (%)
giving to it a width corresponding to an unstable particle.
This self-energy (where usually only Born interaction terms
are considered) could include the lowest order zN one-loop
contribution as well as other higher order zN irreducible
scattering nonpole contributions consistent with the zN
scattering amplitude.

The expression for the dressed propagator GA#*(p,) can
be obtained by solving the Schwinger-Dyson equation
satisfied by its the inverse

[(G2)u]™ (Pa) = [(G0)w (Pa) = Zu(ps).  (26)
where ¥#*(p) denotes the self-energy correction of A as
shown in Fig. 2, and G§ is given in Eq. (15).

In the following we will consider only the absorptive
(imaginary) parts of the self-energy correction, i.e., we will
assume as in Ref. [12] that the parameter m, represents
the “renormalized” mass of A. We place quotation marks
as a reminder that the Lagrangian is not renormalizable;
only the absorptive corrections are finite in this case.
Nevertheless, we have analyzed the effect of the real
energy dependent self-energy contribution through disper-
sive relations and we found that the effect is small [13]. If
we compute the one-loop absorptive corrections in Fig. 2

by applying the cutting rules, we obtain (g, = f;%)

gz &’k 1 s+m2—m3
os(pa) =iz " 5( k N
ws(Pa) =155 5 / Ho2vs \ T T2

X O(s — (my +my)*) (pa+ K+ my k'K,

(27)

being s = p% and when developed in terms of the projec-
tors we can get the corresponding coefficients by solving
Eq. (26), and the dressed propagator can be finally obtained
(for details see Ref. [12]). Now, we discuss some approx-
imations commonly adopted. If neglected terms of O(g?))
and O((my — +/5)g?,) in the dressed propagator expres-
sion (see Ref. [13]), since these terms are expected to very

(k)
ST
/ \\
A(p) { H_k A

FIG. 2. zN loop contribution to the A self-energy.

small in the in the resonance region (\/s=m,), we

get again G§ with the replacement my — my — i %
with
2 2 2
o 9; (\/E + mN) —m 3 2 2
FA(S> _41_:; < 4885/2 ”>ﬂz(s’mN’mﬂ)v
Ax,y,2) = x* +y* + 2% — 2xy — 2xz — 2yz. (28)

For the sake of completeness, we mention that up to this
moment we have considered only the dressing of the A
propagator. Nevertheless, analyzing the formal scattering
T-matrix calculations [11], one can realize that the AzN
vertex should be also dressed by the rescattering. This of
course generates a dependence on s in the vertex, or
equivalently an effective coupling constant g;,(s), due to
the decay in nonresonant amplitudes [11] mediated by the
intermediate 7N propagator.

Now, we consider the formal limit of massless N and =
in the loop contribution to £ and in the dressed zNA
vertex, this is the so-called complex-mass scheme (CMS)
[14]. It assumes within this formal limit that the dressing

gives a dependence g;,(s) = K\g/i(%‘, [13] with ¢2,

being the

bare zZNA coupling constant and « a constant of dimen-
sion MeV~! to fit, avoiding the direct calculation of the
momentum integral in the vertex correction. Thus, we
derive from (28) the following approximated expression
for the width

= (152,

mp

(0 )2
qvs — 71(9951;) ma. (29)
In the s ~m3 region we have a constant width [s(s) ~
M, where now I'S™S is fitted in place of k together
gine and my to reproduce z" p scattering [15]. Note that
we have the isospin coefficient in the previous equation
equal to 1 for the A™ — z7p - A™" loop as was
shown in the Appendix A. Another approach commonly
used, is to fix /s~ m, in (28) and to use the exper-
imental values for m, and I', times the branching ratio
for the decay into zN, and get g;,,. We will refer to this
as constant mass-width approach (CMW). We will use
both the CMS and CMW depending on the considered
resonance.
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2. N*(1520) resonance

This 1J* =1.,3~ negative parity resonance has three
quark orbital momentum and spin L=1,5= % The
propagator is (15) but changing m, — m;s5, Where we
will use the notation N*(1520) = 1520. The rescattering in

the propagator will be introduced making mi;s559 — m509 —
i% and since in the second resonance region W =
V (pn + k)? 1600 MeV ~ m 55 + I'ysp9 We can adopt
the CMW with mspy = 1529 MeV and I'5p9 = I'V%, +
I'4%5, =115 MeV [16]. The strong Lagrangian is given
by [17]:

Li520zn = leOHN ‘i’”yﬁ"tl)ﬂ(x) 7Y
—M@aﬂdﬂ,(x) 1ys¥,.  (30)

my

where W, is a Rarita-Schwinger field for the spin—% but
isospin—%. Note that is the same Lagrangian (20) but with y;
inserted and changing 7' — z. From this Lagrangian we
derive the N*(1520) — zN vertex decay

+_ J1520aN "
yisovs — L0 (@ ),

T

and in Eq. (27) we have a minus sign in the p -+ ¥ term due
the y5 in the vertex and changing the isospin coefficients to
three since we have now z°p and z*n intermediate loop
states (see Appendix A), we can get the relation

|

ngs<p><1520> = _Zgll;s(p’ _mﬂ,—mN))(A)

this leads to (g, = flfnﬂ)

3gi2n -m 2—m,2, 3
Fisa(s) = (WS 00 =) 2 )

(\/E_mN)z_mlzl
_ 39%1t 2y/s q3
127 NG M
l%(s, m%,, m2)
dom = ——5 = \}g , 31)

that within the CMW the approximation /s & m, sy it is
done and we get the expression used in Ref. [17], where
150 should be weighted by the corresponding #N branch-
ing ratio decay.

Usually the vector vertex FF for this resonance
are expressed in the so called parity conserving para-
metrization [17,18], nevertheless we want for consistence
to express them in the same Sachs parametrization as the
other present spin-% resonance that is the A. Then, we will
assume similar vertex structure than for A in (22) times y5
(for the changing in parity), then transform to parity
conserving parametrization, compare with Ref. [17]
and fix our parameters. We get the axial vertex

multiplying by ys the A one (25). We get WWN1320 =

(VWN1520 +AWN1520)\/T§(W* -7) with

V%NISZO(‘], p) = [(Gu(Q*) = GL(0?)KY, + GE(Q*)KL, 4+ G (Q*)KE,lys. (32)
D,(Q? D5(Q?
A%Nlﬂ()(q’ p) =1 Dl(Qz)guu - 2(2Q ) (p + plSZO)a(gﬂyqa - QVgﬂa) + #qﬂpb 75, (33)
my my

where K(g, p), G;(Q?), and D;(Q?) are the same that in Egs. (22) and (25) but changing m, — m,sy0, Pa = P1s20, and the

values G,(0), D;(0). Note that we have an additional  factor coming from the charge operator §

_ 141

= —* present in the

isospin—% electromagnetic vertexes but not in the % case where we have T; transition operators.
Now, V,,, (we omit super indexes) can be expressed in the so-called “normal parity” (NP) decomposition making use of

the nontrivial relation

_ieuf)’ﬂyaﬂbny = (ﬁ% —a- b)ia(lﬁ + %(yaaﬂ - yﬂa(l)

- ¢(Yab/7’ - y/)'ba)

- ¢(7/ab/i - },[)’ba) + (aab/} - a/}ba)7

and some on-shell considerations on the resonance, we getting a simplified version of V,, [13]

Volaop) = i{—(GM<QZ> = Ge(Q%))misaoHay + [GM<Q2> —Gp(@?) +22

- {2 2GE(Q*)misy, + (Piso - Q)Gc(Qz)]H } 3(my + misx0)
6up 2mN

(mys20 — my)* + Q7

where

Gp(0*)(q - pis:o) — Gc(0H)0?

(mysa0 — my)?* + Q7

H 4vp

, 34
(my + mysy)* + O (34)
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HY (p.q) = "¢ — q“r*,

HZ”(P, q) = 9*q - P1s20 — 4" P'i520-
(p,q)—g””q P=qp",
H¢ (p.q) = ¢"q* — 4" p".

Note that the H g” tensor does not contribute to Eq. (34),
but it appears in the general parity-conserving expression.
The Eq. (32) are independent of taking piso0 = p F g or
P = Pis20 £ ¢, [see Eq. (23)], the + sign corresponds to
the pole contribution and the — sign to the cross term. Thus,
the Eq. (34) is valid in both cases, but the specific value of
q - P1so depends on the particular contribution to the
amplitudes (g - pi520 = iw) If we set on the
N*(1520)-pole contribution and replace p = pisy + g wWe

can write Eq. (34) as usual in the parity conserving form

Viup.q) =i (p.q).
CV 2 CV 2
FV (ley q) - niQ )H'iw 4n52Q >H4144
2 CV 2
(Q )H5v/t+ 6(2Q )H6u/4:|’ (35)
N N

where we have the corresponding FF:

CY(0%) =7 RulGu(0) = GE(O)1F* ()
CY(Q?) = —Ryy |Gy 0) —MGE«))}FWQ%
Misp0 — My
cY(Q?) =
2m
CY(0%) = —R,, —— B2 G (0)FV(0?). 36
(0% = —Ry - G(O)FY () (36)
bemg RM 2m|s:(:]‘vme Ild FV(Qz) - (1 + (mN+m1520)2)_1X

G"(Q?). Note that I'},,(p. ¢) coincides with Egs. (30) and
(31) in Ref. [17] making ¢ — —¢ and that now taking the
values for CY(0) from that reference we can get Gy £(0)
for the N*(1520) resonance. Rearranging Eq. (33) we get
for the pole case

2 2 2D
AD,Ap,q)—f[( () + (Q)Q)W D2
N N
D~ (0% + D, (0>
5(0 )n‘; 2(0 )quﬂ]% =T,
N

A C? v Cé
C5 Guu — 2 gﬂ H4u/4 + m—2H6;w V5. (37)
My N

where as before D4(Q?) = 0. Note that this last coincides
with Eq. (32) from Ref. [17] making ¢ - —¢q. By com-
parison we get

Dy + D, =5 = (%,
N
2D,  C}
my omy
0=C
Dy+D, C§
T Tl (38)
N N

From Eqgs. (38) one can get from Ref. [17] the D; values for
the axial resonance N*(1520) vertex.

B. Spin 1 resonances

For the considered resonances of spin—% that has three
quark orbital momentum and spin-L =0,1,S = % the
parametrization of the hadronic vertex is simpler than
for spin—% ones and is similar to the parametrization for
the vN — N’ vertex depending on the parity. We will
include the L = 0 1J® =147 N*(1440) resonance and the
L=1,1J"= N*(1535) one. The propagator of these
resonances looks like the nucleon one but with the
replacement mp — mp —ile 5 to introduce the width, and
'y will be considered constant (CMW) since the second
resonance region extends to 1600 MeV and close to the
centroids. We get

7+ mg
p* —m% + ilrmpg’

Sg(p) = (39)

where I'p should be weighted by the corresponding z/N
branching ratio decay. The RNz strong coupling is
described by the Lagrangian [17]:

Lrnz = f:;”N (lilR}’ﬂ ATPy) - aﬂq)ﬂ(x>

IR g @) (B AT ). (40)

mg

where A = ys, I for positive or negative parity. Note that in
the N*(1440) case this Lagrangian is similar to the Ly,
From the Lagrangian (40), we can deduce the RzN decay
vertex

= EMA;{@;.T). (41)

4

VR N

For the W — NR vertex as we have an outgoing boson,
make g — —q in the hadronic vertex of Ref. [18], and the

vertex can be written as WWNRY x /27 - W* with
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! Jiv
WWNRL — _j = 20 4
2 (e + ) 5 (0% + a9")rs

oy A

S — + A
(mR—l-m ) qv¥s — 91A}’ Nq

A =ys, 1, for parity 7 = +1, (42)

where we note that Eq. (42) is the same as in Ref. [17]
making g — —¢ but changing my + my — 2my and gy,
Govs G1as Gaa — F1, Fa, —F 4, —F p. We note the similarity
of (42) with the same for nucleons which will be shown in
the calculations of the background contributions in the next
section.

The term with g3, is called the pion-pole term and gives
the contribution where the W boson decays in a pion which
then interacts with the nucleon. This can be obtained
replacing the axial contribution A* by A* + ¢#q.A/(Q* +
m2) (see g34(Q?) below). Then, one assumes that the
resonance is on shell and evaluates iz (f = p — pr)Au =
F ugA(mg £ my)u. The FF for the W — NN*(1440)
vertex are obtained from the connection between electro-
magnetic resonance production and the helicity
amplitudes.The helicity amplitudes describe the nucleon-
resonances transition depending on the polarization of the
incoming photon and the spins of the baryons [18]. For
nonzero Q2, data on helicity amplitudes for the N*
resonance are available only for the proton [18], where
it is assumed that the isovector contribution on the neutrino
production is given as g/ = —2g7. The PCAC hypothesis

2
g1y (0)(byylIn(1 + %) + I—Tfr)

91V(Q2) (1+ Q2/M )2(1 —|—Q2/611VM2)
G2v(0) (bayIn(1 + Z5) - 155)
9w (Q%) = (1+ QZ/]\/IG%,\)/2 :
B 914(0)
914(0%) = (1+ Q%/M2)*(1+ Q?/3M3)’
(o) = IOy 7my) (43)

Q% + m?

The coupling g = ’:’;—”N can be obtained of the partial decay
width (R — zN) according to [17]

3 (fs—mmy)*—m?
2./
Froan = Egz(mR + wmy)? (ﬁ) qcMms
pl 2(s, mN, m2)

dem = 3 \/— ) (44)

using the CMW approach mentioned above.

IV. BACKGROUND AND
RESONANCE AMPLITUDES

Now we built the different components of Op and O
from the Lagrangians shown in the Appendix B and those
described in the previous section. We get

allows us to relate the two form factors and fix their axial yl /
Oi(p,p'.qg) =0 +0
values at Q% — 0 ([18]), we get | 8(p.p'.q) = Otn(p. P q) + Ofr(p. 1. q)
.1 (Q2> P +qg+my » IaNN
A N V(2 v 2 )
Opn(p.p'q) = =iz |FY(Q*)y —i—5 ==0"q, = F'(Q )77’} Tt —my < amy vs(r— ¥ —@)V2T ((m,,my)
ps -4+ 2
I il q)% -iz) [F1@ -3 g, - P @] VT )
2m r—ar-m \ "2 2m
o IFY(QY)(2p — 2 ) x Q”N%(p—ﬂ)ﬁtfxm,,mﬂ)
(P P) my
+g’rﬂF1 (Qz)YSYA\/ETd(mnmt’)
my
Y Vv 2\ JAaps VAN —YGse . 9JoNN e _ Ko €K o ,
1 Q) i A () P =5 0 = ) [ VET ()
. — g ~ 9pNN . K e
PN @i B (S 1= 5 Lol = P | VAT ) (45)

033008-9



D.F. TAMAYO AGUDELO et al. PHYS. REV. D 105, 033008 (2022)

y 1 91?/“ 2,0 1 9%?/40 o 1440 9%?140
Oke(p.p'.q) = —iz |— IV 7 Pl — +5a }
sr(P. P’ q) 3 [(m1440+mN)2 (O*r* + 44q") (a0 T ) ' v~ 9 r'ys . q'ys
ﬁ' +4+ m J1aa0
X i— K (=) =2y s (= ¢ — V2T 140 (m,, my)
(P + q)* — miy + i 4401400 my
1 9%\5/35 2,0 9%%/35 o 1535 9%15435
H v
{m1535+m1v (0" +4q") - 7(m1535+mN)l 4y — G5 }’5+ q }’5}
v +q+ my535 Si5352n 1535
X i (-) (F— — V2T 335 (m;.my)
(P’ + q)* = miss + iCys3smsas m, g v

(WIS =G + a) () T (p = p' — )BT S (m,my)

ﬂ'

1 . Q, fﬂ
+ ()W (p. v, —q)iG%(p' + ) (-) %mys(p —p' = @) V2T 5 (m.my),  (46)

b

where the background contributions were split in those coming from the nucleon contributions and those coming from the
resonances one. Here 7 (m,, m,) are isospin factors calculated between the initial and final nucleon with isospin m,, m]
projections respectively for each amplitude contribution. Note that the % factor in the weak vertex of the isospin—% resonances
comes from the isovector part of the charge operator 5 dragged from the CVC hypothesis. The corresponding pole
contributions coming from the resonances are

Ok =

S 144028 . P — 4+ mg
sy —p —q)i ;
- (P = q)* = Ml + iTy4s0M1440
x (—i)1 L(QW + qq*) —Lyoiaﬂ”q - g12r'ys + g%f‘mq Yys | V2T 140 (m,, my)
2 [(mysao + my)? (Myga0 + my) Lo ’ " n
S15350n Y — 4+ mys3s
+ ()= - —9q)i :
. (P = q)* = misss + il 1535535
% (—i)l 9> (0% + qq?) — 95" i g, — g\ yhys + 91535 q vs|rsT1335(m,, my)
2 [ (mys35 + my)? (mys3s + my) Lo ’ 755 oo
Sz
+(2) 2 (p = 1 = )G (p = )W (p. P @) V2T (my.my)
T
Sz :
+ (2) R ys(p = 0 = 4)udGis(p — W (p. 0 V2T [y my ). (47)
b4

Here we show the isospin coefficients calculated with the ingredients of Appendix A

Ta m, my :T}JMOJS%JSZ()(mr’mt): T(mt/)(l' W*)(‘t ‘I’*))((mt) 0 \/_
Tp(my,my) = T30y gy = 2T (my) (2 - ®2) (T - W)y (m,) = 0,-2,V/2
T o(my,my) = =iy (m)[(@; x ®p) - W](z- ®%)y(my) = 1,-1,V2

2 (mo) (@ x ) - Wy (m,) = —1,1,-V2
T (my,my) =y (mp)(@; - W)y (m) = =1,-1,0

T - W*)(T" - @)y (m,) = -1/3,v/2/3, -1

(
mg,my) =i I(mt’)[(cl)* xp)- W*](T 'P*))((mt) =-L1, _\/E
(
my,my) =y (my)(T - @) (T" - W)y(m,) = =1,-v2/3,-1/3. (48)
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V. FORM FACTORS AND RESULTS

In this work we analyze as a first step the total cross
section for the charged current (CC) modes of the six
processes

+

vp - prt, wn-u pi®, wvn-unat,

n—utnr~,  bp—ptpr,  bp-utnr®,  (49)
with v/(D) energies exciting the second resonance region and
the corresponding cutoffs in W ,,,. We will obtain this total
cross section through the Egs. (5)—(8) with the amplitude
(3), taking (1 — ys) when v — 7, and the vertex production

contributions in Eqs. (45)—(48).

A. Parameters and form factors

What remains is to define the hadronic FF and the
different coupling constants. The coupling constant we use
are the values from pion-nucleon scattering, analysis of
photo-production and electroproduction of pions. For the
strong couplings of nucleons we take g2y /47 = 14, (note

that Las — gy g2 /4z = 2.9, k, = 3.7, guny = 3G,mw

and Kw = —0.12 [15] with the usually adopted masses for
involved hadrons [16,19]. The coupling of nucleon p and @
mesons were obtained by assuming the vector dominance
model. In the weak sector the vector coupling constant are
fixed by assuming the CVC hypothesis both, for B and R
amplitudes. As usual, for the axial currents we exploit the
PCAC hypothesis and Golderberg-Treiman relations
with the exception of the A, the most important resonance
in this region, where the axial couplings are obtained by
fitting to the differential cross section (see below). For the
nucleon Born and meson exchange contributions in 0%,
we adopt gy = 1, g,,,v = 0.324¢ [11], while for the axial

couplings we assume g4 = 1.26 (PCAC values) and f .4 =

vy 1201

The FF are expressed in terms of the usual Sachs dipole
model for the vector current and also a dipole FF for the
axial part [10]:

FY (@)= 1+ T[GE(0%) = GR(0%) +1(Gh(0%) =Gy (QY))],

F}(Q%)= 1+t[GP (0%) -G (Q%) - (GE(Q*) - GL(Q%))].

ga o

FA(Q?) = W’ M,=1.032GeV, (50)

where t = Q?/4m% and
1 1 1

GII;(QZ) 1+x, Gf,,(Qz) :Kn (Qz) W,
G(0%) =0,

with M3 = 0.71 GeV?, k, = 1.79, k, = —1.91. In the case
of the contribution involving the Wzz vertex (third term in

Eq. (45) we adopt the same F1,(Q?) as in the other Born
terms [first, second, and fourth terms in Eq. (45)] since
these together should produce a gauge invariant amplitude
in the electromagnetic case.

Now, we define parameters and FF for the resonances.
We begin with the spin—% ones.The coupling f440,n can be
obtained from the partial decay width N*(1440) — zN
from Eq (44) with 7 = +1, Myga0 = 1462 MCV,F1440 =
391 MeV [16], making the approach /s & m 49 (CMW).
We take ' g40_ v ® 0.69 x 391 MeV = 269.79 MeV [17]
were the factor 0.69 comes from the branching ratio of
decay in Nz which is between 55% and 75%. With this
width we get the value of f440,y = 0.412.

The weak WWN1440 vertex are obtained from the con-
nection between electromagnetic resonance production and
the helicity amplitudes. The helicity amplitudes describe
the nucleon-resonances transition depending on the polari-
zation of the incoming photon and the spins of the baryons
[18]. For nonzero Q?, data on helicity amplitudes for the
N*(1440) are available only for the proton [18], where it is
assumed that the isovector contribution on the neutrino
production is given as g = —2g7. The PCAC hypothesis
allows us to relate the strong and weak FF and fix their
values at Q% = 0. We adopt the following parametrization
and values taken from Ref. [18]

1440( )2 _ 4.6
1.52
ov(0%) = m(z.smu +0%/GeV?) - 1),
0.51
gia0 (0% =

(14 0*/M3)*(1+ Q*/3M3)’
m +m
ati0(07) 051 M ),

with My = 0.84 GeV and M, = 1.05 GeV. Note that the
signs of g1,(0?), g2v(Q?). 914(Q?) are the same that for
F1y(Q?), F2,(Q?%), F4(Q?) in (50) in spite we have differ-
ent form factors. For the N*(1535) resonance we get from
the same procedure followed before for the N*(1440) using
Eq (44) but for 7 = —1,m1535 = 1534 MeV, F1535 =
151 MeV and a branching-ratio of 0.51 [19] a value
Sf1535:n = 0.17, while for the weak FF we get

4.0

(51)

1535 _

VT T oM (1 + 02/1.2M7)
x (7.21In(1 + Q?/GeV?) + 1),
1.68
gl — AT oIy (0.111In(1 4 Q?/GeV?)),
e 0.21
W (14 QM)A (1 + 0*/3M5)
0.21(m 535 — my)m
1535 ( Q1§3j— — v) N (52)
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We analyze now the spin—% resonances beginning with the A
one. For this resonance, for the mass, width, and zNA
coupling constant we assume consistently the values
obtained previously from fitting the z'p scattering
data [10], using the propagator (15) within the CMS
approach and the strong vertex (21). We got f%,_./4m =
0.317 £0.003, my =1211.7+04 MeV, and Iy =
92.2 £0.4 MeV. For the vector A weak contribution to
the B and R amplitudes we use the effective (empirical)
values Gy (0) =2.97, Gg(0) =0.055 and G(0) =
2mp
my=mpu
tions [11,21]. We call these “effective” values, as discussed
in Ref. [11], because they correspond to the bare ones
GY(0) [usually related with quark models (QM)] renor-
malized through the decay of a zN state coming from the B
amplitude into a A through final state interactions (FSI). In
Ref. [11] we also get the bare GY,,(0) values by intro-
ducing dynamically the FSI by an explicit evaluation of the
rescattering amplitudes and showed that the effective
values, which are obtained through a fitting procedure,
can be in fact interpreted as the “dressed” ones. For the FF
we adopt

G£(0) fixed from photo and electroproduction reac-

G,(0?) = G,(0)(1 — Q*/M3)2(1 + aQ?)e ", (53)

with a = 0.154/GeV? and b = 0.166/GeV?, fori = M, E,
and C, which corresponds also to Sachs dipole model times
a corrections factor already used in electroproduction
calculations [21]. The axial FF at Q%> =0, D;(0), i = 1,
4, are obtained by comparing the nonrelativistic limit of the
amplitude @4 A,,u in the A rest frame (pp = (m,.0),
p = (Ex(q), —q) with the nonrelativistic QM [20,22].
D4(Q?) =0 since we will not take into account the
contribution of the A deformation to the axial current.
The Q? dependence of D; is taken to be the same as in
the vector case with a different parameter in the dipole
factor, i.e.,

D;(Q?) = D;(0)F(Q?), fori=1,2,
my
D5(0?) = D3(0)F(Q2)Q2Tm,2,’ (54)

with M, =1.02 GeV and F(Q?) = (1+ Q*/M?%)7> x
(14 aQ?)e 2. Here

D (O) _ 3\/§gA mpy + mpa
l 5 2myF(—(my—my)?)’
my
D2(0) = _Dl(o)m,
Zm?v

D;(0) = Dy(0)

’

(my + mp)m3

where F(—(ma —my)?) in the denominator comes from
the fact that we scale D;(Q* = —¢?) from the timelike
point g3 = (my — my)? to g> = 0 through F(Q?). Then, as
in the case of pion photo-production, we will consider
D, (0) as a free (effective or empirical) parameter to be
fitted from the experimental data for do/dQ? and including

the FSI effectively. From this fit we get D(0) = % with

x*/dof = 0.71, and results are shown with full lines in the
Fig. 2 of Ref. [10] where a comparison with the data from
the ANL and BNL experiments [2,3] of the neutrino flux
¢(E,) averaged cross section

< do > i G5 S(E)dE,
dQ? [E ¢(E,)dE,

v

for the main channel vp — p~z*p’ with the cut W,y <
1.4 GeV in the final invariant mass is done. With this cut it
is expected, at least for this channel, that the contributions
of more energetic resonances than the A(1232) are small
and that are important for more energetic cuts. This will be
analyzed in the next subsection. As the reanalyzed data of
ANL achieved in Ref. [7] does not affect appreciably the
channel used to fit D(0) for the mentioned cut we do not
make a new fitting with <dd_52> nor show again results for
this, and we concentrate in the results for the total cross
section o(E, ;).

Now we fix the parameters, coupling constant, and FF
for the N*(1520) resonance. From Eq. (31) making the
CMW  approach /s & m s = 1524 MeV, T'j509 =
115 MeV and using the partial width 0.55 [19] for decaying

into zN states we get % = 0.2. Choosing the values

reported for the vector couplings for Q% = 0 in Ref. [17],
we have for the vector part using the Eqs. (36)

3 152
208 =2___"% (G150 _ (51520)
2094 + 152 ¥ )
-3 4.56 0.94
421 = — G1520 _ 1520 ,
2 ( Mo 152-094F > 0.94 +1.52
(55)
from where we get GL?0 = —2.62, GP* = 0.6, while for

A it was G4 = 2.97, G% = 0.055, being the change in Gy,
consistent with the change of C} between both resonances
(see Ref. [18]). If we use C" values of Ref. [18] we get
Gy = —4.67 and Gg = —0.26. For the axial couplings
using the pole contribution vertex we have using the C4
values from Ref. [17]

D, (0) = —%, ,(0) =0,
m2
D;(0) = —%m—g (56)
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while for A D{(0) = % this is consistent also with the

change in C3 [18]. The Q? dependence is assumed similar
to that in Egs. (53) and (54).

B. Results

We begin discussing a formal issue referred to spin—%
resonances. It would be useful to put attention in the
Eq. (17) where the A (also valid for the N*(1520) case)
propagator (14) is written expanding the projectors in
Egs. (15) or Egs. (16).

Note that if we take A = —%, our choice in previous
works [10,11], then b(—1) =2 in (17) and §(2Z + (1 +
42)A) = %Z - % in (18). At first, one could choose another
value for A while the same is taken for the different vertexes
coupled to the propagator. On the other hand, if one takes
A = —1 then b(—1) =0 and only the first term of (14),
which sometimes is called (wrongly) the on shell %
projector, contributes. Nevertheless, as can be seen from
(15), for a different value of A % off-shell propagation
always is present. This is not property of the % field, also in
the massive vector meson propagator we have present an
off-shell lower spin 0 component [23]. As can be seen from
the Eq. (17) for our election the propagator has a con-
tribution with a pole at p> = m% and another that is not
singular. When the value A = —1 is adopted this last term is
not presented, nevertheless an observation regards the
vertexes should be done in order.

As was previously mentioned, quite generally in all
interaction vertexes we need a contact transformation
invariant form proposed in (18), where Z is an arbitrary
parameter independent of A that is property of each
interaction [see Eq. (19)]. We concentrate for example in
the strong #NA decay vertex for choosing Z, while we fix
for simplicity the same value for the photoproduction and
weak production ones as done in previous works [10,11].
Now we point to the question of the true degree of freedom
of the spin-3 field, and remember that this is a constrained
quantum field theory. Observe that in the free RS
Lagrangian in Egs. (9) and (10), there is no term containing
‘i‘o. So, the equation of motion for it is a true constraint, and
¥, has no dynamics. It is necessary then that interactions
do not change that fact and as it is shown in [24] this is
fulfilled for the value Z = % The same conclusion was
obtained in the original work of Nath [25], where through
other methods the same value was obtained. Then, we
adopt this value for our interaction, in which we use
A = —1/3 in propagators and vertexes involving the A
plus Z =1 being 1(1 +4Z)A+Z =0 and Ri(0) = dh.
This selection will be the same for the N*(1520) that is a
spin-3 resonance. In spite of this analysis some authors
[20,26-28] try to get both, the simpler versions for %
propagator using A= -1 and a zNA vertex with
1(1+42)A+Z=0.

This can be read in two different manners. First, if they are
adopting the same Z = % value (generally this is not
discussed at all) as us, we could conclude that there is
an inconsistency since they are adopting a value
A = -1 for the propagator while A =-1/3 to get
3(14+4Z)A+Z =0, violating the independence of the
amplitude with A. Or second, the different choice Z = —%
is adopted but not mentioned explicitly, and A = —1 it is
used in both propagator and vertexes. Nevertheless this Z
value does not avoid the dynamics of ¥, in the zN A vertex.
In each case, model dependencies are introduced.

In Ref. [10] we have showed the numerical conse-
quences, in the A region, of adopting the value A = —1
in the A propagator (called wrongly RS propagator in
another works and referred with this name there) keeping
inconsistently A = —1/3 in the strong and weak A vertexes
for the value Z = 1/2. Results are below the consistent
choice results and the data, showing that the inconsistence
leads to an observable effect.

Another formal problem is related to the fact that many
works do not consider the nonresonant background con-
tributions [18] or do not introduce them through the
corresponding effective Lagrangians, or do not consider
the interference between the background and resonant
contributions [17,18] as really it is very important to
describe the data. On the other hand, also these models
detach the resonance production out of the weak production
amplitude [17,18]. However, resonances are nonperturba-
tive phenomena associated to the pole of the S-matrix
amplitude and one cannot detach them from its production
or decay mechanisms, being necessary to built the ampli-
tude through the Feynman rules using the resonance
propagators.

Now we show our results. First, in Fig. (3) we compare
our calculations without and with the second resonance
region included, for W,y < 1.4 GeV for the ANL data
(BNL does not give results with this cut for the total cross
section). We implement the CMS approach for the A
resonance, used previously in getting its strong and weak
parameters [10,11,15], and the CMW for the others. As can
be seen the effect of adding more resonances depends on
the considered channel. If we considered a fixed energy
E,=3,1.5, 1.5 GeV for the mentioned v channels in (49)
respectively, one can see from the Fig. 3 that their
contribution is correspondingly 4%, 17% and 10%,
improving the data description regards the model where
one includes only the A. Note that in spite of the cut in
Wn, the tails of the resonances generated by the finite
width give an appreciable contribution and the interference
between them is also important.

Analyzing the individual contributions of the
N*(1440), N*(1520), and N*(1535) one can notice that
the main contribution comes from the N*(1520) being for
the other less that 1%. All isospin factors for the mentioned
three isospin—% resonances read
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FIG. 3. Total vN cross section as function of the neutrino
energy for different channel. Results with only the A and A+
second region resonances plus the corresponding background, in
each case are shown for a cut W,y < 1.4 GeV. Data are taken
form Ref. [2].

Th = 07 \/57 _27 Tg - _29 _\/57 Ov

and thus this explain why the contribution for the first
channel is small since comes from background terms of
these resonances. For the second channel we have the main
effect since we have contributions of both the direct and
cross terms and interference between of them, while for the

°

ANL

All Resonances + Background

~~~~~~~~~~~ - A+Background

m————— All Resonances + Background incoherent

0.8

o6l ¢

0.4

do/dQ2(107**cm?/GeV?/c?)

0.2}

do/dQ2(events/0.05 GeVz/c?)

last one we have only pole contribution. In addition, one
could to ask why the contribution of the second resonance
region are, apart from the cutting in invariant mass effect,
lower than the A 4 background contributions. This can be
understood from the Egs. (5) and (8). For a certain value of
the neutrino energy E, in the Lab and vN CM systems
ESM./s = E,my, being the limits in the cross section
integrals (6) fixed for a given final uzN’ state, and if
amplitudes are of the same order of magnitude in the
second resonance region regarding the A one, the kinetical
cross section factor El favors smaller neutrinos energies and

thus lowest excitation energy contributions. For example if
we take the final muon at rest pj = (E, + my —m,)* and
thus for p% = (1232)2 MeV? we have (myE,)”!
2.7 GeV™2 while for pis,, = (1520)> MeV? we have
(myE,)"' ~ 1.5 GeV~2. Then, in spite strong and weak
coupling constants would be of the same order the A
contribution is favored by the neutrino kinematical
factor. This explain the different size of the resonances
contribution.

Information about the axial FF D;(0) for the A is carried
by the fitting to the differential cross section do/dQ? data
for the cut W,y < 1.4 GeV [10]. Therefore, contrasting the
model predictions with the ANL and BNL differential data
cross sections, will help to complement the model’s quality
analysis. Our results for the flux averaged cross sections are
shown in Fig. 4, are shown for the A plus background, all
resonances plus background both coherent summed in the
amplitude and with the incoherent sum of resonant and
background cross sections. As can be seen, the effect of
adding the second resonance region is noticeable and
consistent with the effect on the total cross section in
the previous Fig. 3. In addition, it is evident of the effect of
adding resonant and background at the amplitude level
(coherently) in place at the level of the cross section
(incoherently).

Now we go to the cut W < 1.6 GeV where the second
resonance region is fully included. As can be seen from
the Fig. 5, the contribution of these resonances is more

~
~

—— BNL
N —— All Resonances
N e A + Background .
R All Resonances + Background incoherent

N
=)

=)
=]

©
S

@
S

N
S

n
=)

S

o

0.4 0.6 0.8
Q2(GeVz/c?)

Qx(Geva/c)

FIG. 4. Comparison of the calculated flux averaged differential cross section do/dQ?* for W,y < 1.4 GeV with the data of

references [2,3].
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. . . (a)
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(103 cm?)

vn—s pnx'(MNz<1.6)

0.3F
0.2
01
0
0
Ev(GeV)
FIG. 5. Same as in Fig. 3 but for a cut W, < 1.6 GeV.

important and necessary to improve the consistency with
data. Note that until this moment we keep within the
CMS and CMW approaches, the simplest way to treat all
the resonances together with the Born terms of the
nonresonant background that also include the resonance
cross amplitudes.

Finally we compare the calculated flux averaged cross
section do/dW , for both cuts 1.4 and 1.6 GeV with the
data for both ANL and BNL experiments in Fig. 6, in order

to see with more detail the contribution of the resonant
amplitude and background. As can be seen, we have a large
background contribution mainly in the vn — p~z"n chan-
nel, coming for the cross background contribution in
Fig. 1(g) for the A. This contribution has isospin coefficient
—1 while the resonant one in Fig. 1(h) has coefficient —1/3
giving a small contribution to the cross section when
squared. The term responsible for this behavior is the
second one in the propagator (17) that is present, as
consequence of our consistent selection of A = —1/3,Z =
1/2 and grows for p? > m3. As this contribution cannot be
renormalized with a self-energy as the pole Fig. 1(h) term,
this suggest the necessity of FF for W, to take into
account the finite size of the hadrons not considered in the
punctual effective vertexes [29]. Of course, in another
choices of A, Z where b(A) = 0 in (17) this growing is not
present but the treatment is not consistent. In addition, is
not clear that we can extend the another tree nonresonant
background contributions in Figs. 1(a) to (f) to any final
W, keeping structureless hadrons. Finally, it is visible the
contribution of the N*(1520) resonance for the vn —
u~ztn channel due to the value of the isopin factor 2 in
this case.

Now, in order to follow probing our model we wish to
calculate the antineutrinos total cross sections. We have two
differences regards the neutrinos case. First, the interactions
of neutrinos with hadrons is not the same that for
antineutrinos. We have a sign of difference in the lepton
current contraction that makes a different coupling with the
hadron one. Then, the interaction with neutrinos is different
from antineutrinos due the use of spinors for antiparticles in
(3) and has nothing to do with the very known CP violation
effect. Second, in the experiment we have an admixture
of heavy freon CF3Br and was exposed to the CERN PS
antineutrino beam (peaked at E; ~ 1.5 GeV) [30]. In this
case the experiment informs that we have 0.44% on
neutrons and 0.55% of protons, and since our calculations

——ANL
—— All Resonances + Background
rrrrrrrr Resonances
rrrrr A + Background
All Resonances + Background cut=1.4 GeV

——BNL
—— All Resonances + Background
"""" Resonance
~~= A + Background
- All Resonances + Background cut=1.4

30

n
o

Events/0.03(GeV)
>

o

IS
o

do/dWxn [events/0.05 GeV]

w
=]

20

Events/0.02(GeV)

1.1 ] 1.2 1.3 1.4 15 1.6 1.7
Wan(GeV)

FIG. 6. Comparison of the flux averaged do/dW .y

1.1 1.2 1.3 1.4.1 1.5 1.6 1.7
Wazn(GeV)

cross section with the ANL and BNL data. The values of W,y for which

theoretical cross section is reported, correspond to the bin’s central values of the ANL or BNL data.
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FIG. 7. Antineutrino’s total cross sections with a cut in 1.4 GeV

for the on — p™nzx~ and that leading to a final Nz~ final state.

were for free nucleons we weight out results with these
percentages depending on the channel on — u"nz~ or
Up — utnpr~. Our results including all resonances and
compared with the data are shown in Fig. 7 for the only cut
W.n < 1.4 GeV reported in [30], and as can be seen we
get a consistent description with the same cut for the
neutrino case.

Now we analyze the quality of our results and compare
them with other calculations including the second reso-
nance region, taking into account the formal shortcomings
mentioned above. As can be seen from a general point of
view, our model that fulfills consistence regards contact
transformations in the spin-3 field reproduce better the ANL
data than other inconsistent models [27]. In addition, in that
reference it seems that the cross resonance contributions are
omitted for the vp — u~n"p channel. It is true that the
direct or pole contribution of isospin—% resonances cannot
contribute to an isospin—% amplitude, but the cross terms do
contribute noticing the isospin factors for this channel are
not zero in Eq. (48). This make the difference between the
full thin lines and the dashed ones in the upper panel of
Figs. 3 and 5. A last shortcoming to mention is that for
nonresonant backgrounds contributions Figs 1(a)—(f), an
arbitrary cutoff of W y < 1.2 GeV is applied changing
artificially the behavior of these contributions independ-
ently from the rest of terms. This is done for all the
presented regimes W,y < 1.4, 1.6 GeV. Note that we can
reproduce very well these data without the necessity of any
special cuttings, all contributions are calculated with the
same W_, maximum value. Finally, we note that in
Ref. [27] the antineutrino results are not reproduced, while
within our model the accordance with the data is very well
in all the energy region where the data is reported.

On the other hand, the model adopted in Ref. [18] where
the propagation of the resonance is described by a Breit-
Wigner distribution separating production and decay, does
not include a background amplitude and to get accordance
in the data for the vn — y~nat,vn — u~pa° processes
they needed to add incoherently a spin-% background. The
model adopted in Ref. [17] is similar to that in [18] but they
adjust the background cross section contribution through a
parameter b™" different for each channel. These two last
works were improved in Ref. [28], where the R and B
contributions were added coherently and the A propagation
is treated with the choice A = —1,Z = —1/2 mentioned
above, within the parity conserving parametrization of
the WN — A vertex. These differences make difficult to
compare with our results when R = A since we choose a
different A, Z choice and the Sachs parametrization.

VI. CONCLUSIONS

In this work we calculate the pion production cross
section including in the model spin—% and % resonances
A(1232), N*(1440), N*(1520), and N*(1535) to cover the
so called second resonance region. From the formal point of
view the spin—% Lagrangians (free and interaction) respect
invariance under contact transformations and the associated
parameter A, is fixed to be the same in all components of
the Feynman rules to get A-independent amplitudes. Also,
the additional Z parameter present in the £,y Lagrangian
for these resonances is fixed to avoid time evolution of the

field component ¥, since ‘i’o is not present in the free
Lagrangian. It is shown how other models do not analyze
these formal facts that can produce model dependence.
We treat the spin—% resonances within the parity con-
serving parametrization for the FF, since this is compatible
to that used in the similar topological nucleon contribution
in Fig. 1(a) and (b). For the spin—% resonances we adopt the
Sachs parametrization to be consistent with our previous
works including only the A resonance where we get better
results than using the parity conserving one [31]. We
followed the connection between both parametrizations
achieved in that reference to get the FF for the N*(1520)
resonance and have taken the Q% FF from Ref. [18] for all
the second region resonances. We note that the main
contribution comes from the A resonance and the presence
of the additional resonances do not change appreciably the
results of the cross section for the vp — u~ pa™ channel for
the cut W,y < 1.4 GeV as can be seen from Fig. 3. As this
cut was used to fix G;(0), Gg(0) and D;(0) for the A we
keep the same values obtained previously in Refs. [10,11].
First, we achieve the comparison with the data of ANL
experiment in the region of W,y < 1.4, 1.6 GeV, where
we have worked within the CMS + CMW approach. From
the results including and not including the second reso-
nance region, we conclude that to improve the data, this
resonance region should be included. More, in the case
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W,y < 1.4 GeV one can think why? We conclude this
second energy region is necessary due to the tail of the
resonances that have their centroids out of this region, but
influences through the tails that interfere between reso-
nance and background contributions. This behavior is
confirmed when we compare with the data with the W <
1.6 GeV and the good agreement with the data for the
antineutrino case. In other approaches as in Ref. [32], the
replacement L, ya — L na + ¢Lc is proposed, with L.
describing contact terms without the A field, with adjusting
the low-energy constant ¢ to get a better fitting for the
vn — p~nx" channel. The addition of contact terms is
based on the argumentation that within the ChPT frame-
work, the equivalence between different Lagrangians is at
less of low energy constants, to be adjusted. We see that this
is not necessary if one includes consistently the second
resonance region.

Finally the data of Ref. [2] also contains results without
energy cuts and also all results in Ref. [3] are reported
without events exclusion. In addition a reanalysis of these
two set of data has been done recently in Ref. [7] where the
main results are shown without cuts. For describing them
we need to extend the model to higher energies. This will
be done in future work.
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APPENDIX A: SPIN PROJECTORS
AND ISOSPIN OPERATORS

We have introduced Pf; which projects on the k = 3, §
sector of the representation space, with i, j =1, and 2
indicating the subsectors of the % subspace, and are
defined as

. 1 1
(P%)/w = 9w — gyyyu - 3_[72 [ﬂyupu + puyuﬂ}’
3 PuPv
<P222);41/ = pz ’
1 3 1
(lel);w = 9w — PIZW - (P222)/w

PyuPa ., ppp
= (gﬂ(l_ ;2()(1/3]/ yﬁ)<g/h/_ ;zy),

1
<P212)/w = \/—3—172(pﬂp1./ _ﬁYypv),

1
(P%Z);w = \/§P2 (_pupv + pp/ﬂ/v)-

(A1)

On the other hand we define the isospin A excitation
operators

10 0 0 0 0
Be 2 0
- |0 5 0 0 3
¢+,—.O ) _ 1 0 ) )
00 ve 0 /2
0 1 0 1 o 0

that acts on N = (;),(}) for the proton and neutron,
respectively, and

Aprro-=

S O O =
- O O O

for the A states, being ¢, _ :\‘/—%(l,i,O),\/%(l,—i,O),
(0,0,1),and W, = ¢.. The isospin factors included in the

resonances width are for isospin I = %,%
A1+(TT ¢+>(T¢1)A++
— AL[(T -, )(T-p1) + (T -bo) (T- A, ] =+ =1

R (3) e 0w o)+ -0 IR 5) = =3

since we can have z°p,z"n, states when we have an
isospin § projection (¢ = ¢) and also z°n, #~ p when isospin
projection is —% (g = —e) or z7n only in the I = 3/2 one

with projection —3.

APPENDIX B: LAGRANGIANS AND
PROPAGATORS INVOLVED IN THE
NONRESONANT BACKGROUND

The propagators and interaction Lagrangians used to
built amplitudes Opy will be resumed here. First the
propagators, which come from the inversion of the kinetic
operators present in the free Lagrangians are

+
S(p) = 21

== 2,nucleon
p-—m

1
Ap) = pion
p*—m;
g+ 2

2

D/w(p) = p2 —m

, vector-meson,

while the effective strong interacting Lagrangians are
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fameen (7 {000 Pl

With V = w, p. Now, we define the effective hadron weak Lagrangians built from Egs. (1), (2)

F3 (0%

ZmN
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