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We study the quasi-two-body D → SP decays and the three-body D decays proceeding through
intermediate scalar resonances, where S and P denote scalar and pseudoscalar mesons, respectively. Our
main results are the following: (i) Certain external and internalW-emission diagramswith the emittedmeson
being a scalar meson are naïvely expected to vanish, but they actually receive contributions from vertex and
hard spectator-scattering corrections beyond the factorization approximation. (ii) For light scalars with
masses below or close to 1 GeV, it is more sensible to study three-body decays directly and compare with
experiment as the two-body branching fractions are either unavailable or subject to large finite-width effects
of the scalar meson. (iii)We consider the two-quark (scheme I) and four-quark (scheme II) descriptions of the
light scalar mesons, and find the latter generally in better agreement with experiment. This is in line with
recent BESIII measurements of semileptonic charm decays that prefer the tetraquark description of light
scalars produced in charmed meson decays. (iv) The topological amplitude approach fails here as the
D → SP decay branching fractions cannot be reliably inferred from the measurements of three-body decays,
mainly because the decay rates cannot be factorized into the topological amplitude squared and the
phase space factor. (v) The predicted rates for D0 → f0P; a0P are generally smaller than experimental data
by one order of magnitude, presumably implying the significance of W-exchange amplitudes. (vi) The
W-annihilation amplitude is found to be very sizable in the SP sector with jA=TjSP ∼ 1=2, contrary to its
suppression in the PP sector with jA=TjPP ∼ 0.18. (vii) Finite-width effects are very important for the very
broad σ=f0ð500Þ and κ=K�

0ð700Þ mesons. The experimental branching fractions BðDþ → σπþÞ and

BðDþ → κ̄0πþÞ are thus corrected to be ð3.8� 0.3Þ × 10−3 and ð6.7þ5.6
−4.5 Þ%, respectively.

DOI: 10.1103/PhysRevD.105.033006

I. INTRODUCTION

In recent years many measurements of hadronic three-
body and four-body decays of charmed mesons have been
performed with Dalitz-plot amplitude analyses. Amplitudes
describing D meson decays into multibody final states are
dominated by quasi-two-body processes, such as D →
PP;VP; SP; AP and TP, where P, V, S, A and T denote
pseudoscalar, vector, scalar, axial-vector and tensor mes-
ons, respectively. Among various S-, P- and D-wave
intermediate resonances, the identification of the scalar
mesons is rather difficult due to their broad widths and flat
angular distributions.

Scalar mesons with masses lower than 2 GeV can be
classified into two nonets: one nonet with masses below or
close to 1 GeV, including σ=f0ð500Þ, f0ð980Þ, a0ð980Þ and
κ=K�

0ð700Þ; and the other nonet with masses above 1 GeV,
including a0ð1450Þ, K�

0ð1430Þ, f0ð1370Þ, f0ð1500Þ and
f0ð1710Þ. The last three are all isosinglet scalars and only
two of them can be accommodated in the quark model,
implying a dominant scalar glueball content in one of the
three isosinglets.
In this work, we shall study the quasi-two-bodyD → SP

decays and the three-body D decays proceeding through
intermediate scalar resonances. In Tables I and II we collect
all the measured branching fractions of D → SP → P1P2P
decays available in the Particle Data Group (PDG) [1]. It is
clear that f0ð980Þ and the f0 family such as f0ð1370Þ,
f0ð1500Þ and f0ð1710Þ are observed in the three-body
decays ofDþ; D0 andDþ

s , while a0ð980Þ is seen exclusively
in three-body D0 decays (except for Dþ

s → aþ;0
0 π0;þ).

Contrary to f0ð980Þ and a0ð980Þ which are relatively easy
to identify experimentally, the establishment of σ and κ is
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very difficult and controversial because their widths are so
broad that their shapes are not clearly resonant.
Nevertheless, their signals in three-body D decays have
been identified in Dþ;0 → σπþ;0 → πþπ−πþ;0, Dþ →
κ̄0πþ → KSπ

0πþ and Dþ → κ̄0Kþ → πþK−Kþ, respec-
tively. Because of threshold and coupled-channel effects
for f0ð980Þ and a0ð980Þ and the very broadwidths for σ and
κ, it is no longer pertinent to use the conventional Breit-
Wigner parametrization to describe their line shapes.
The D → SP decays and related three-body D decays

have been studied previously in Refs. [7–18]. In the D →
SP decays, the flavor diagram of each topology has two
possibilities: one with the spectator quark in the charmed
meson going to the pseudoscalar meson in the final state,
and the other with the spectator quark ending up in the
scalar meson. We thus need two copies of each topological
diagram to describe the decay processes. Many of these
decays have been observed in recent years through dedi-
cated experiments and powerful Dalitz plot analyses of
multibody decays. We will investigate whether an extrac-
tion of the sizes and relative strong phases of these
amplitudes is possible.
One purpose of studying these decays is to check our

understanding in the structures and properties of light even-
parity scalar mesons. Another goal is to learn the final-state
interaction pattern in view of the rich resonance spectrum
around the D meson mass range. Not only does this work
update our previous study [14], we also study the
finite-width effect in the three-body decays mediated by
the scalar mesons. Such an effect is observed to be
particularly important for decays involving σ=f0ð500Þ
and κ=K�

0ð700Þ in the intermediate state because of their
broad widths compared to their masses, respectively.
Therefore, one should be careful in the use of the narrow
width approximation (NWA) to extract the D → SP two-
body decays from the three-body decay rates.
This paper is organized as follows. In Sec. II, we review

the current experimental status about how various D → SP
decay branching fractions are extracted using the NWA
from three-body decay rates. In Sec. III, we discuss the
two-quark qq̄ and tetraquark pictures of the scalar nonet
near or below 1 GeV along with the associated conun-
drums. The decay constants and form factors required for
subsequent numerical calculations are given in this section,
too. Section IV sets up the notation and formalism of
flavor amplitude analysis, for both quark-antiquark and
tetraquark pictures. In Sec. V, we take the factorization
approach as an alternative toward analyzing these decays.
We also introduce line shapes for the scalar resonances
when describing various three-body decays. Section VI
gives the results obtained based upon the approaches in the
previous two sections for a comparison. Section VI B is
devoted to the study of finite-width effect and how the
NWA should be modified. We summarize our findings in
Sec. VII.

II. EXPERIMENTAL STATUS

It is known that three- and four-body decays of heavy
mesons provide a rich laboratory for studying the inter-
mediate-state resonances. The Dalitz plot analysis of three-
body or four-body decays of charmed mesons is a very
useful technique for this purpose. We are interested in
D → SP decays followed by S → P1P2. The results of
various experiments are summarized in Tables I and II. To
extract the branching fraction for a D → SP decay, it is the
usual practice to use the NWA:

ΓðD → SP → P1P2PÞ ¼ ΓðD → SPÞNWA BðS → P1P2Þ:
ð2:1Þ

Since this relation holds only in the ΓS → 0 limit, we put
the subscript NWA to emphasize that BðD → SPÞ thus
obtained is under this limit. Finite width effects will be
discussed in Sec. VI B. For the branching fractions of two-
body decays of scalar mesons, we shall use [1]

Bða0ð980Þ → πηÞ ¼ 0.850� 0.017;

Bðσð500Þ → πþπ−Þ ¼ 2

3
;

Bðf0ð1500Þ → ππÞ ¼ 0.345� 0.022;

Bðf0ð1710Þ → KþK−Þ ¼ 0.292� 0.027;

BðK�0
0 ð1430Þ → Kþπ−Þ ¼ 2

3
ð0.93� 0.10Þ;

Bðκð700Þ → Kþπ−Þ ¼ 2

3
; ð2:2Þ

where we have applied the average of Γða0ð980Þ →
KK̄Þ=Γða0ð980Þ → πηÞ ¼ 0.177� 0.024 from PDG [1]
to extract the branching fraction of a0ð980Þ → πη,
assuming that its width is saturated by the KK̄ and πη
modes. For f0ð1710Þ we have used the values of
Γðf0ð1710Þ→ ππÞ=Γðf0ð1710Þ→KK̄Þ¼ 0.23�0.05 and
Γðf0ð1710Þ→ ηηÞ=Γðf0ð1710Þ→KK̄Þ¼ 0.48�0.15 from
PDG together with the assumption of its width being
saturated by ππ, KK̄ and ηη modes. For S ¼ f0ð980Þ or
a0ð980Þ, we are not able to extract the branching fractions
of D → SP due to the lack of information of BðS → P1P2Þ
[except for a0ð980Þ → πη], especially for BðS → KK̄Þ
where the threshold effect must be taken into account.
For example, the NWA relation

ΓðDþ → f0ð980ÞKþ → KþK−KþÞ
¼ ΓðDþ → f0ð980ÞKþÞBðf0ð980Þ → KþK−Þ ð2:3Þ

cannot be applied to extract the branching fraction ofDþ →
f0ð980ÞKþ due to the unknown Bðf0ð980Þ → KþK−Þ.
Therefore, we will calculate the branching fractions of
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BðD → SP → P1P2PÞ directly and compare them with
experiment (see Table VIII below).

III. PHYSICAL PROPERTIES
OF SCALAR MESONS

It is known that the underlying structure of scalar mesons
is not well established theoretically (see, e.g., Refs. [19,20]
for a review). Scalar mesons with masses lower than 2 GeV
can be classified into two nonets: one nonet with masses
below or close to 1 GeV, including the isoscalars f0ð500Þ
(or σ), f0ð980Þ, the isodoublet K�

0ð700Þ (or κ) and the
isovector a0ð980Þ; and the other nonet with masses above
1 GeV, including f0ð1370Þ, a0ð1450Þ, K�

0ð1430Þ and
f0ð1500Þ=f0ð1710Þ. If the scalar meson states below or
near 1 GeV are identified as the conventional low-lying
0þ qq̄ nonet, then the nonet states above 1 GeV could be
excited qq̄ states.

In the naïve quark model, the flavor wave functions of
the light scalars read

σ ¼ 1ffiffiffi
2

p ðuūþ dd̄Þ; f0 ¼ ss̄;

a00 ¼
1ffiffiffi
2

p ðuū − dd̄Þ; aþ0 ¼ ud̄; a−0 ¼ dū;

κþ ¼ us̄; κ0 ¼ ds̄; κ̄0 ¼ sd̄; κ− ¼ sū; ð3:1Þ

where an ideal mixing for f0 and σ is assumed as f0ð980Þ is
the heaviest one and σ the lightest one in the light scalar
nonet. However, as summarized in Ref. [14], this simple
picture encounters several serious problems:
(1) It is impossible to understand the mass degeneracy

between f0ð980Þ and a0ð980Þ, which is the so-called
“inverted spectrum problem.”

TABLE I. Experimental branching fractions of ðDþ; Dþ
s Þ → SP → P1P2P decays. For simplicity and convenience, we have dropped

the mass identification for σð500Þ, f0ð980Þ, a0ð980Þ, κð700Þ and K�
0ð1430Þ. Data are taken from Ref. [1] unless specified otherwise. We

have applied the NWA given by Eq. (2.1) to extract the branching fractions of the two-body D decay denoted by BðD → SPÞNWA.

BðD → SP; S → P1P2Þ BðD → SPÞNWA

BðDþ → f0πþ; f0 → πþπ−Þ ¼ ð1.56� 0.33Þ × 10−4

BðDþ → f0ð1370Þπþ; f0ð1370Þ → πþπ−Þ ¼ ð8� 4Þ × 10−5

BðDþ → f0ð1500Þπþ; f0ð1500Þ → πþπ−Þ ¼ ð1.1� 0.4Þ × 10−4 BðDþ → f0ð1500ÞπþÞ ¼ ð4.78� 1.77Þ × 10−4

BðDþ → f0ð1710Þπþ; f0ð1710Þ → πþπ−Þ < 5 × 10−5 BðDþ → f0ð1710ÞπþÞ < 5.8 × 10−4

BðDþ → f0Kþ; f0 → πþπ−Þ ¼ ð4.4� 2.6Þ × 10−5

BðDþ → f0Kþ; f0 → KþK−Þ ¼ ð1.23� 0.02Þ × 10−5
a

BðDþ → a0ð1450Þ0πþ; a00 → KþK−Þ ¼ ð4.5þ7.0
−1.8Þ × 10−4

BðDþ → σπþ; σ → πþπ−Þ ¼ ð1.38� 0.12Þ × 10−3 BðDþ → σπþÞ ¼ ð2.07� 0.18Þ × 10−3

BðDþ → κ̄0πþ; κ̄0 → KSπ
0Þ ¼ ð6þ5

−4 Þ × 10−3 BðDþ → κ̄0πþÞ ¼ ð3.6þ3.0
−2.4 Þ%

BðDþ → κ̄0Kþ; κ̄0 → K−πþÞ ¼ ð6.8þ3.5
−2.1 Þ × 10−4 BðDþ → κ̄0KþÞ ¼ ð1.0þ0.5

−0.3 Þ × 10−3

BðDþ → K̄�0
0 πþ; K̄�0

0 → K−πþÞ ¼ ð1.25� 0.06Þ% BðDþ → K̄�0
0 πþÞ ¼ ð2.02� 0.24Þ%

BðDþ → K̄�0
0 πþ; K̄�0

0 → KSπ
0Þ ¼ ð2.7� 0.9Þ × 10−3 BðDþ → K̄�0

0 πþÞ ¼ ð1.74� 0.61Þ%
BðDþ → K̄�0

0 Kþ; K̄�0
0 → K−πþÞ ¼ ð1.82� 0.35Þ × 10−3 Dþ → K̄�0

0 Kþ prohibited on-shell

BðDþ
s → f0πþ; f0 → KþK−Þ ¼ ð1.14� 0.31Þ%

BðDþ
s → f0πþ; f0 → π0π0Þ ¼ ð2.1� 0.4Þ × 10−3

b

BðDþ
s → Sð980Þπþ; Sð980Þ → KþK−Þ ¼ ð1.05� 0.07Þ%c,d

BðDþ
s → f0ð1370Þπþ; f0 → KþK−Þ ¼ ð7� 5Þ × 10−4

BðDþ
s → f0ð1370Þπþ; f0 → KþK−Þ ¼ ð7� 2Þ × 10−4

c

BðDþ
s → f0ð1370Þπþ; f0 → π0π0Þ ¼ ð1.3� 0.2Þ × 10−3

b

BðDþ
s → f0ð1710Þπþ; f0 → KþK−Þ ¼ ð6.6� 2.8Þ × 10−4 BðDþ

s → f0ð1710ÞπþÞ ¼ ð2.26� 0.98Þ × 10−3

BðDþ
s → f0ð1710Þπþ; f0 → KþK−Þ ¼ ð10� 4Þ × 10−4

c BðDþ
s → f0ð1710ÞπþÞ ¼ ð3.42� 1.40Þ × 10−3

BðDþ
s → aþ;0

0 π0;þ; aþ;0
0 → ηπþ;0Þ ¼ ð1.46� 0.27Þ%e BðDþ

s → a00π
þ þ aþ0 π

0Þ ¼ ð1.72� 0.32Þ%
BðDþ

s → K̄�0
0 Kþ; K̄�0

0 → K−πþÞ ¼ ð1.8� 0.4Þ × 10−3 BðDþ
s → K̄�0

0 KþÞ ¼ ð2.9� 0.7Þ × 10−3

BðDþ
s → K̄�0

0 Kþ; K̄�0
0 → K−πþÞ ¼ ð1.6� 0.4Þ × 10−3

c BðDþ
s → K̄�0

0 KþÞ ¼ ð2.6� 0.7Þ × 10−3

BðDþ
s → K�0

0 πþ;K�0
0 → Kþπ−Þ ¼ ð5.0� 3.5Þ × 10−4 BðDþ

s → K�0
0 πþÞ ¼ ð8.1� 5.7Þ × 10−4

aAssuming a fit fraction of 20% for Dþ → f0ð980ÞKþ in Dþ → KþK−Kþ decay [2].
bBESIII data taken from Ref. [3].
cBESIII data taken from Ref. [4].
dSð980Þ denotes both f0ð980Þ and a0ð980Þ.eThe branching fraction is assigned to be ð2.2� 0.4Þ% by the PDG [1]. However, as pointed out in Ref. [5], the fraction of

Dþ
s → a0ð980Þþð0Þπ0ðþÞ; a0ð980Þþð0Þ → π0ðþÞη with respect to the total fraction of Dþ

s → a0ð980Þπ; a0ð980Þ → πη is evaluated to be
0.66. Consequently, the branching fraction should be multiplied by a factor of 0.66 to become ð1.46� 0.27Þ%.
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(2) The P-wave 0þ meson has one unit of orbital
angular momentum which costs an energy around
500 MeV. Hence, it should have a mass lying above
rather than below 1 GeV.

(3) It is difficult to explain why σ and κ are much
broader than f0ð980Þ and a0ð980Þ in width.

(4) The γγ widths of a0ð980Þ and f0ð980Þ are much
smaller than naïvely expected for a qq̄ state [21].

(5) The radiative decay ϕ → a0ð980Þγ, which cannot
proceed if a0ð980Þ is a pure qq̄ state, can be nicely
described by the four-quark nature of a0ð980Þ
[22,23] or the kaon loop mechanism [24]. Likewise,
the observation of the radiative decay ϕ →
f0ð980Þγ → ππγ is also accounted for by the
four-quark state of f0ð980Þ [23].

It turns out that these difficulties can be readily resolved in
the tetraquark scenario where the four-quark flavor wave
functions of light scalarmesons are symbolically givenby [25]

σ¼uūdd̄; f0¼
1ffiffiffi
2

p ðuūþdd̄Þss̄;

a00¼
1ffiffiffi
2

p ðuū−dd̄Þss̄; aþ0 ¼ud̄ss̄; a−0 ¼dūss̄;

κþ¼us̄dd̄; κ0¼ds̄uū; κ̄0¼ sd̄uū; κ−¼ sūdd̄: ð3:2Þ

The four quarks q2q̄2 can form an S-wave (rather than
P-wave) 0þ meson without introducing one unit of orbital
angular momentum. This four-quark description explains
naturally the inverted mass spectrum of the light nonet,1

especially the mass degeneracy between f0ð980Þ and
a0ð980Þ, and accounts for the broad widths of σ and κ
while f0ð980Þ and a0ð980Þ are narrow because of the
suppressed phase space for their decays to the kaon pairs.
Lattice calculations have confirmed that a0ð1450Þ and
K�

0ð1430Þ are qq̄ mesons, and suggested that σ, κ and
a0ð980Þ are tetraquark mesonia [27–31].
The inverted spectrum problem can also be alleviated in

the scenario where the light scalars are dynamically
generated from the meson-meson interaction, with the
f0ð980Þ and the a0ð980Þ coupling strongly to the KK̄
channel with isospin 0 and 1, respectively. Indeed, the
whole light scalar nonet appears naturally from properly

TABLE II. Same as Table I except for D0 → SP → P1P2P decays.

BðD → SP; S → P1P2Þ BðD → SPÞNWA

BðD0 → f0π0; f0 → πþπ−Þ ¼ ð3.7� 0.9Þ × 10−5

BðD0 → f0π0; f0 → KþK−Þ ¼ ð3.6� 0.6Þ × 10−4

BðD0 → f0ð1370Þπ0; f0 → πþπ−Þ ¼ ð5.5� 2.1Þ × 10−5

BðD0 → f0ð1500Þπ0; f0 → πþπ−Þ ¼ ð5.8� 1.6Þ × 10−5 BðD0 → f0ð1500Þπ0Þ ¼ ð2.5� 0.7Þ × 10−4

BðD0 → f0ð1710Þπ0; f0 → πþπ−Þ ¼ ð4.6� 1.6Þ × 10−5 BðD0 → f0ð1710Þπ0Þ ¼ ð3.7� 1.4Þ × 10−4

BðD0 → f0K̄0; f0 → πþπ−Þ ¼ ð2.40þ0.80
−0.46 Þ × 10−3

BðD0 → f0K̄0; f0 → KþK−Þ < 1.8 × 10−4

BðD0 → f0ð1370ÞK̄0; f0 → πþπ−Þ ¼ ð5.6þ1.8
−2.6 Þ × 10−3

BðD0 → f0ð1370ÞK̄0; f0 → KþK−Þ ¼ ð3.4� 2.2Þ × 10−4

BðD0 → aþ0 K
−; aþ0 → KþK̄0Þ ¼ ð1.18� 0.36Þ × 10−3

BðD0 → aþ0 K
−; aþ0 → KþK̄0Þ ¼ ð3.07� 0.84Þ × 10−3

a

BðD0 → a−0K
þ; a−0 → K−K̄0Þ < 2.2 × 10−4

BðD0 → a00K̄
0; a00 → KþK−Þ ¼ ð5.8� 0.8Þ × 10−3

BðD0 → a00K̄
0; a00 → KþK−Þ ¼ ð8.12� 1.80Þ × 10−3

a

BðD0 → a00K̄
0; a00 → ηπ0Þ ¼ ð2.40� 0.56Þ × 10−2 BðD0 → a00K̄

0Þ ¼ ð2.83� 0.66Þ%
BðD0 → a−0 π

þ; a−0 → K−K0Þ ¼ ð2.6� 2.8Þ × 10−4

BðD0 → aþ0 π
−; aþ0 → KþK̄0Þ ¼ ð1.2� 0.8Þ × 10−3

BðD0 → a0ð1450Þ−πþ; a−0 → K−K0Þ ¼ ð5.0� 4.0Þ × 10−5

BðD0 → a0ð1450Þþπ−; aþ0 → KþK̄0Þ ¼ ð6.4� 5.0Þ × 10−5

BðD0 → a0ð1450Þ−Kþ; a−0 → K−KSÞ < 0.6 × 10−3
a

BðD0 → σπ0; σ → πþπ−Þ ¼ ð1.22� 0.22Þ × 10−4 BðD0 → σπ0Þ ¼ ð1.8� 0.3Þ × 10−4

BðD0 → K�−
0 πþ;K�−

0 → K̄0π−Þ ¼ ð5.34þ0.80
−0.66 Þ × 10−3 BðD0 → K�−

0 πþÞ ¼ ð8.6þ1.6
−1.4 Þ × 10−3

BðD0 → K�−
0 πþ;K�−

0 → K−π0Þ ¼ ð4.8� 2.2Þ × 10−3 BðD0 → K�−
0 πþÞ ¼ ð1.55� 0.73Þ%

BðD0 → K̄�0
0 π0; K̄�0

0 → K−πþÞ ¼ ð5.9þ5.0
−1.6 Þ × 10−3 BðD0 → K̄�0

0 π0Þ ¼ ð9.5þ8.1
−2.8 Þ × 10−3

BðD0 → K�þ
0 π−;K�þ

0 → K0πþÞ < 2.8 × 10−5 BðD0 → K�þ
0 π−Þ < 4.5 × 10−5

aBESIII data taken from Ref. [6].

1However, it has been claimed recently in Ref. [26] that the
inverse mass hierarchy can be realized in the qq̄ picture through a
Uð1Þ axial anomaly including explicit SUð3ÞF breaking. The
anomaly term contributes to a0ð980Þwith the strange quark mass
and to κ=K�

0ð700Þ with the up or down quark mass due to its
flavor singlet nature. The current mass of the strange quark makes
the a0 meson heavier than the κ meson.
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unitarized chiral amplitudes for pseudoscalar-pseudoscalar
scatterings [32,33]. Consequently, both f0ð980Þ and
a0ð980Þ are good candidates of KK̄ molecular states
[34], while σ and κ can be considered as the bound states
of ππ and Kπ, respectively.
In the naïve two-quark model with ideal mixing for

f0ð980Þ and σð500Þ, f0ð980Þ is purely an ss̄ state, while
σð500Þ is an nn̄ state with nn̄≡ ðūuþ d̄dÞ= ffiffiffi

2
p

. However,
there also exists some experimental evidence indicating that
f0ð980Þ is not a purely ss̄ state. For example, the
observation of ΓðJ=ψ → f0ωÞ ≈ 1

2
ΓðJ=ψ → f0ϕÞ [1]

clearly shows the existence of the nonstrange and strange
quark contents in f0ð980Þ. Therefore, isoscalars σð500Þ
and f0ð980Þ must have a mixing

jf0ð980Þi ¼ jss̄i cos θ þ jnn̄i sin θ;
jσð500Þi ¼ −jss̄i sin θ þ jnn̄i cos θ: ð3:3Þ

Various mixing angle measurements have been discussed in
the literature and summarized in Refs. [35,36]. A recent
measurement of the upper limit on the branching fraction
product BðB̄0 → J=ψf0ð980ÞÞ × Bðf0ð980Þ → πþπ−Þ by
LHCb leads to jθj < 30° [37]. Likewise, in the four-quark
scenario for light scalar mesons, one can also define a
similar f0 − σ mixing angle

jf0ð980Þi ¼ jnn̄ss̄i cosϕþ juūdd̄i sinϕ;
jσð500Þi ¼ −jnn̄ss̄i sinϕþ juūdd̄i cosϕ: ð3:4Þ

It has been shown that ϕ ¼ 174.6° [38].
In reality, the light scalar mesons could have both two-

quark and four-quark components. Indeed, a real hadron in
the QCD language should be described by a set of Fock
states each of which has the same quantum number as the
hadron. For example,

jaþð980Þi ¼ ψa0
ud̄
jud̄i þ ψa0

ud̄g
jud̄gi

þ ψa0
ud̄ss̄

jud̄ss̄i þ…: ð3:5Þ
In the tetraquark model, ψa0

ud̄ss̄
≫ ψa0

ud̄
, while it is the other

way around in the two-quark model. Although as far as the
spectrum and decay are concerned, light scalars are pre-
dominately tetraquark states, their productions in heavy
meson decays and in high energy hadron collisions are
probably more sensitive to the two-quark component of the
scalar mesons. For example, onemaywonder if the energetic
f0ð980Þ produced in B decays is dominated by the four-
quark configuration as it requires to pick up two energetic
quark-antiquark pairs to form a fast moving light tetraquark.
Since the scalar meson production in charm decays is not
energetic, it is possible that it has adequate time to form a
tetraquark state. In principle, the two-quark and four-quark
descriptions of the light scalars can be discriminated in the
semileptonic charm decays. For example, the ratio

R ¼ BðDþ → f0lþνÞ þ BðDþ → σlþνÞ
BðDþ → a00l

þνÞ ð3:6Þ

is equal to 1 in the two-quark scenario and 3 in the four-
quark model under the flavor SU(3) symmetry [39]. Based
on the BESIII measurements of Dþ → a0ð980Þ0eþνe [40],
Dþ → σeþνe and the upper limit on Dþ → f0ð980Þeþνe
[41], it follows that R > 2.7 at 90% confidence level.
Hence, the BESIII results favor the SU(3) nonet tetraquark
description of the f0ð500Þ, f0ð980Þ and a0ð980Þ produced
in charmed meson decays. A detailed analysis of BESIII
and CLEO data on the decays Dþ → πþπ−eþνe and
Dþ

s → πþπ−eþνe in Ref. [42] also shows results in favor
of the four-quark nature of light scalar mesons f0ð500Þ and
f0ð980Þ.
The vector and scalar decay constants of the scalar

meson are, respectively, defined as

hSðpÞjq̄2γμq1j0i ¼ fSpμ; hSjq̄2q1j0i ¼ mSf̄S: ð3:7Þ

The neutral scalar mesons σ, f0 and a00 cannot be produced
via the vector current owing to charge conjugation invari-
ance or conservation of vector current:

fσ ¼ ff0 ¼ fa0
0
¼ 0: ð3:8Þ

Applying the equation of motion to Eq. (3.7) yields

μSfS ¼ f̄S; with μS ¼
mS

m2ðμÞ −m1ðμÞ
; ð3:9Þ

where m2 and m1 are the running current quark masses.
Therefore, the vector decay constant of the scalar meson fS
vanishes in the SU(3) or isospin limit. The vector decay
constants of K�

0ð1430Þ and the charged a0ð980Þ are non-
vanishing, but they are suppressed due to the small mass
difference between the constituent s and u quarks and
between d and u quarks, respectively. The scalar decay
constants f̄S have been computed in Ref. [35] within the
framework of QCD sum rules. For the reader’s conven-
ience, we list the scalar decay constants (in units of MeV) at
μ ¼ 1 GeV relevant to the present work

f̄f0 ¼ 370� 20; f̄a0 ¼ 365� 20;

f̄σ ¼ 350� 20; f̄κ ¼ 340� 20;

f̄a0ð1450Þ ¼ 460� 50; ff0ð1500Þ ¼ 490� 50;

f̄K�
0
¼ 445� 50: ð3:10Þ

From Eq. (3.9) we obtain (in units of MeV) 2

2The vector decay constants of the scalar meson and its
antiparticle are of opposite sign. For example, fa0ð980Þþ ¼
−1.3 MeV and fa0ð980Þ− ¼ 1.3 MeV.
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jfa0ð980Þ� j ¼ 1.3; jfa0ð1450Þ� j ¼ 1.1; jfκj ¼ 45.5; jfK�
0
ð1430Þj ¼ 35.3: ð3:11Þ

In short, the vector decay constants of scalar mesons are either zero or very small for nonstrange scalar mesons.
Form factors for D → P; S transitions are defined by [43]

hPðp0ÞjVμjDðpÞi ¼
�
Pμ −

m2
D −m2

P

q2
qμ

�
FDP
1 ðq2Þ þm2

D −m2
P

q2
qμFDP

0 ðq2Þ;

hSðp0ÞjAμjDðpÞi ¼ −i
��

Pμ −
m2

D −m2
S

q2
qμ

�
FDS
1 ðq2Þ þm2

D −m2
S

q2
qμFDS

0 ðq2Þ
�
; ð3:12Þ

where Pμ ¼ ðpþ p0Þμ and qμ ¼ ðp − p0Þμ. As shown in
Ref. [44], a factor of (−i) is needed in theD → S transition in
order for theD → S form factors to be positive. This can also
be checked from heavy quark symmetry consideration [44].
Throughout this paper, we use the 3-parameter para-

metrization

Fðq2Þ ¼ Fð0Þ
1 − aðq2=m2

DÞ þ bðq2=m2
DÞ2

ð3:13Þ

for D → S transitions. For hadronic D → SP decays, the
relevant form factor is FDS

0 ðq2Þ. The parameters FDS
0 ð0Þ for

D → S transitions calculated in the covariant light-front
quark model (CLFQM) [44,45], covariant confined quark
model (CCQM) [46], and light-cone sum rules (LCSR)
[47–49] are exhibited in Table III. Note that the matrix
element hSðp0ÞjAμjDðpÞi is sometimes parametrized as

hSðp0ÞjAμjDðpÞi ¼ −i½FDSþ ðq2ÞPμ þ FDS
− ðq2Þqμ�: ð3:14Þ

It is easily seen that

F1ðq2Þ ¼ Fþðq2Þ;

F0ðq2Þ ¼
q2

m2
D −m2

S
F−ðq2Þ þ Fþðq2Þ; ð3:15Þ

and hence F1ð0Þ ¼ F0ð0Þ ¼ Fþð0Þ. It was argued in [49]
that the relation F−ðq2Þ ¼ −Fþðq2Þ holds in the LCSR
calculation. In [46], the D → S transition form factors are
defined by

hSðpÞjAμjDðpþ qÞi ¼ −i½F0þðq2Þpμ þ F0
−ðq2Þqμ�:

ð3:16Þ

They are related to Fþðq2Þ and F−ðq2Þ through the relation

F0þðq2Þ ¼ 2Fþðq2Þ;
F0
−ðq2Þ ¼ Fþðq2Þ þ F−ðq2Þ: ð3:17Þ

For the q2 dependence of the form factors in various
models, the parameters a and b are available in
Refs. [44,45] and Ref. [47] for CLFQM and LCSR(I),
respectively. In CCQM and LCSR(II), one needs to apply
Eq. (3.15) to get the q2 dependence of F0. The form-factor
q2 dependence in the LCSR(III) calculation is shown in
Fig. 3 of Ref. [49].
BESIII has measured the branching fractions of

both D0 → a0ð980Þ−eþνe and Dþ → a0ð980Þ0eþνe [50].
The theoretical calculations depend on the form factors
Fþðq2Þ and F−ðq2Þ and their q2 dependence (see e.g.,
Ref. [51]). It turns out that the predicted branching fractions
for D → a0ð980Þeþνe in LCSR(II) [48] are too large by

TABLE III. Form factors FDS
0 ð0Þ for D;Ds → f0ð980Þ; a0ð980Þ; a0ð1450Þ and K�

0ð1430Þ transitions in various models.

CLFQM CCQM LCSR(I) LCSR(II) LCSR(III)
Transition [44,45] [46] [47] [48] [49]

D → f0ð980Þ 0.51þ0.04
−0.05

a 0.45� 0.02 0.321
Dþ

s → f0ð980Þ 0.52þ0.01
−0.01

b 0.36� 0.02
D → a0ð980Þc 0.55� 0.02 0.88� 0.13d 0.85þ0.10

−0.11
D → a0ð1450Þ 0.51þ0.01

−0.02 0.94þ0.02
−0.03

D → K�
0ð1430Þ 0.47þ0.02

−0.03
Dþ

s → K�
0ð1430Þ 0.55þ0.02

−0.03
aFor D → fq0 transition.
bFor Dþ

s → fs0 transition.
cIt stands for either D0 → a0ð980Þ− or Dþ → a0ð980Þ0 transition.
dUse of the relation Fþð0Þ ¼ F0þð0Þ=2 has been made.
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more than a factor of 2 compared to the BESIII experiment
(see Table VI of Ref. [49]). Hence, this model is disfavored.

IV. DIAGRAMMATIC AMPLITUDES

A least model-dependent analysis of heavy meson
decays can be carried out in the so-called topological
diagram approach. In this diagrammatic scenario, all two-
body nonleptonic weak decays of heavy mesons can be
expressed in terms of six distinct quark diagrams [52–54]:
T, the external W-emission tree diagram; C, the internal
W-emission; E, the W-exchange; A, the W-annihilation;
H, the horizontal W-loop; and V, the vertical W-loop. The
one-gluon exchange approximation of the H graph is the
so-called “penguin diagram.” These diagrams are classified
according to the topologies of weak interactions with all
strong interaction effects encoded.
The topological amplitudes for D → SP decays have

been discussed in [11,14]. Just as D → VP decays, one
generally has two sets of distinct diagrams for each top-
ology. For example, there are two externalW-emission and
two internal W-emission diagrams, depending on whether

the emitted particle is an even-party meson or an odd-parity
one. Following the convention in [11,14], we shall denote
the primed amplitudes T 0 and C0 for the case when the
emitted meson is a scalar one. For the W-exchange and W-
annihilation diagrams with the final state q1q̄2, the primed
amplitude denotes that the even-parity meson contains the
quark q1. Since K�

0, a0ð1450Þ and the light scalars
σ; κ; f0ð980Þ; a0ð980Þ fall into two different SU(3) flavor
nonets, in principle one cannot apply SU(3) symmetry to
relate the topological amplitudes in Dþ → f0ð980Þπþ to,
for example, those in Dþ → K̄�0

0 πþ.
In Ref. [14] we have presented the topological amplitude

decomposition inD → SP decays in two different schemes.
In scheme I, light scalar mesons σ; κ; a0ð980Þ and f0ð980Þ
are described by the ground-state qq̄ states, while K�

0 and
a0ð1450Þ as excited qq̄ states. In scheme II, light scalars are
tetraquark states, while K�

0 and a0ð1450Þ are ground-state
qq̄. The topological amplitudes forD → SP decays are listed
in Table IV. The expressions of topological amplitudes are
the same in both schemes I and II except for the channels
involving f0 and σ. For example,

AðDþ → f0πþÞ ¼
( 1ffiffi

2
p V�

cdVudðT þ C0 þ Aþ A0Þ sin θ þ V�
csVusC0 cos θ scheme I;

1ffiffi
2

p V�
cdVudðT þ C0 þ Aþ A0Þ þ ffiffiffi

2
p

V�
csVusC0 scheme II;

AðDþ → σπþÞ ¼
(

1ffiffi
2

p V�
cdVudðT þ C0 þ Aþ A0Þ cos θ − V�

csVusC0 sin θ scheme I;

V�
cdVudðT þ C0 þ Aþ A0Þ scheme II:

ð4:1Þ

In our numerical estimates, we will take θ ¼ 30°, saturating
the measured upper bound mentioned earlier.
In Table IV the upper part involves only light scalar

mesons (f0, a0, σ, and κ), whereas the lower part involves
the a0ð1450Þ and K�

0ð1430Þ mesons in the heavier nonet
representation. This division is made because the ampli-
tudes of the same topology in these two groups have no
a priori relations. In each group we have 15 unknown
parameters for the 8 topological amplitudes T, C, E, A and
T 0; C0; E0; A0. For neutral scalar mesons σ; f0 and a00, we
cannot set T 0 ¼ C0 ¼ 0 even though their vector decay
constants vanish. As will be discussed in Sec. VA, T 0 and
C0 do receive nonfactorizable contributions through vertex
and spectator-scattering corrections [55,56]. Nevertheless,
it is naïvely expected that, for example, jT 0j ≪ jTj and
jC0j ≪ jCj for charged a0. However, as we shall see in
Sec. V C, a realistic calculation yields jC0j > jCj instead.
At any rate, we have more theory parameters than observ-
ables (6 in the upper part and 5 in the lower part of the
table), barring a fit.
Since the branching fractions of f0 → ππ and ðf0; a0Þ →

KK̄ are unknown, many of the two-body decays in

Table IV cannot be extracted from the data of three-body
decays. Nevertheless, the strong couplings such as
gf0→ππ; gf0→KK̄; ga0→KK̄ and ga0→ηπ have been inferred from
a fit to the data. There are 17 available D → SP → P1P2P2

modes, but there are only 14 data related toD → SP and we
have 15 parameters to fit. Moreover, since we need to
introduce appropriate energy-dependent line shapes for the
scalar mesons, it is not conceivable to extract the topo-
logical amplitudes from three-body decays as the decay rate
cannot be factorized into the topological amplitude squared
and the phase space factor. We will come back to this
point later.
It is interesting to notice that the current data already

imply the importance of W-exchange and W-annihilation
amplitudes. Consider the decays: D0 → aþ0 π

− → KþK̄0π−

and D0 → a−0 π
þ → K−K0πþ with the two-body decay

amplitudes proportional to ðT 0 þ EÞ and ðT þ E0Þ, respec-
tively (see Table IV). If the W-exchange contributions are
negligible, the former mode governed by the amplitude T 0
is expected to have a rate smaller than the latter
(cf. Table II). Experimentally, it is the other way around.
This is an indication that E and E0 play some role.
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V. FACTORIZATION APPROACH

The diagrammatic approach has been applied quite
successfully to hadronic decays of charmed mesons into
PP and VP final states [57–66]. When generalized to the
decay modes involving a scalar meson in the final state,
it appears that the current data are still insufficient for
us to fully extract the information of all amplitudes.
Therefore, we take the naïve factorization formalism as a
complementary approach to estimate the rates of these
decay modes. In this framework, the W-exchange and
-annihilation type of contributions will be neglected.

A. Factorizable and nonfactorizable amplitudes

The factorizable amplitudes for the D → SP decays read

XðDS;PÞ ¼hPðqÞjðV−AÞμj0ihSðpÞjðV−AÞμjDðpDÞi;
XðDP;SÞ ¼hSðqÞjðV−AÞμj0ihPðpÞjðV−AÞμjDðpDÞi; ð5:1Þ

and have the expressions

XðDS;PÞ ¼ −fPðm2
D −m2

SÞFDS
0 ðq2Þ;

XðDP;SÞ ¼ fSðm2
D −m2

PÞFDP
0 ðq2Þ; ð5:2Þ

TABLE IV. Topological amplitudes of variousD → SP decays. Schemes I has ðα; βÞ ¼ ðsin θ; cos θÞ, and scheme
II has ðα; βÞ ¼ ð1; ffiffiffi

2
p Þ for those modes with one f0 and ð0; ffiffiffi

2
p Þ for those modes with one σ. In scheme I, light

scalar mesons σ; κ; a0ð980Þ and f0ð980Þ are described by the qq̄ states, while K�
0 and a0ð1450Þ as excited qq̄ states.

In scheme II, light scalars are tetraquark states, whileK�
0 and a0ð1450Þ are ground-state qq̄. The f0 − σ mixing angle

θ in the two-quark model is defined in Eq. (3.3). The experimental branching fractions denoted by BNWA are taken
from Tables I and II. For simplicity, we do not consider the f0 − σ mixing in the tetraquark model as its value is close
to π [38].

Decay Amplitude BNWA

Dþ → f0πþ 1ffiffi
2

p αV�
cdVudðT þ C0 þ Aþ A0Þ þ βV�

csVusC0

→ f0Kþ V�
cdVus½ 1ffiffi2p αðT þ A0Þ þ βA�

→ aþ0 K̄
0 V�

csVudðT 0 þ CÞ
→ a00π

þ 1ffiffi
2

p V�
cdVudð−T − C0 − Aþ A0Þ

→ σπþ 1ffiffi
2

p βV�
cdVudðT þ C0 þ Aþ A0Þ − αV�

csVusC0 ð2.1� 0.2Þ × 10−3

→ κ̄0πþ V�
csVudðT þ C0Þ ð3.6þ3.0

−2.4Þ%
→ κ̄0Kþ V�

csVusT þ V�
cdVudA ð1.0þ0.5

−0.3 Þ × 10−3

D0 → f0π0 1
2
αV�

cdVudð−Cþ C0 − E − E0Þ þ 1ffiffi
2

p βV�
csVusC0

→ f0K̄0 V�
csVud½ 1ffiffi2p αðCþ EÞ þ βE0�

→ aþ0 π
− V�

cdVudðT 0 þ EÞ
→ a−0 π

þ V�
cdVudðT þ E0Þ

→ aþ0 K
− V�

csVudðT 0 þ EÞ
→ a00K̄

0 V�
csVudðC − EÞ= ffiffiffi

2
p ð2.83� 0.66Þ%

→ a−0K
þ V�

cdVusðT þ E0Þ
→ σπ0 1

2
V�
cdVudβð−Cþ C0 − E − E0Þ − 1ffiffi

2
p αV�

csVusC0 ð1.8� 0.3Þ × 10−4

Dþ
s → f0πþ 1ffiffi

2
p V�

csVud½
ffiffiffi
2

p
βT þ αðAþ A0Þ�

→ f0Kþ V�
csVus½βðT þ C0 þ AÞ þ 1ffiffi

2
p αA0� þ 1ffiffi

2
p V�

cdVudαC0

→ a00π
þ 1ffiffi

2
p V�

csVudð−Aþ A0Þ ð0.86� 0.23Þ%a

Dþ → a0ð1450Þ0πþ 1ffiffi
2

p V�
cdVudð−T − C0 − Aþ A0Þ

→ K̄�0
0 πþ V�

csVudðT þ C0Þ ð1.98� 0.22Þ%
→ K̄�0

0 Kþ V�
csVusT þ V�

cdVudA Prohibited
D0 → a0ð1450Þþπ− V�

cdVudðT 0 þ EÞ
→ a0ð1450Þ−πþ V�

cdVudðT þ E0Þ
→ a0ð1450Þ−Kþ V�

cdVusðT þ E0Þ
→ K�−

0 πþ V�
csVudðT þ E0Þ ð8.8� 1.5Þ × 10−3

→ K̄�0
0 π0 1ffiffi

2
p V�

csVudðC0 − E0Þ ð9.5þ8.1
−2.8 Þ × 10−3

→ K�þ
0 π− V�

cdVusðT 0 þ EÞ < 4.5 × 10−5

Dþ
s → K�0

0 πþ V�
cdVudT þ VcsV�

usA ð8.1� 5.7Þ × 10−4

→ K̄�0
0 Kþ V�

csVudðC0 þ AÞ ð2.8� 0.5Þ × 10−3

aSince the decay amplitudes of Dþ
s → aþ0 π

0 and Dþ
s → a00π

þ are the same except an overall negative sign, they
have the same rates.
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where use of Eqs. (3.7) and (3.12) has been made. Hence,

T ¼ −a1ðSPÞfPðm2
D −m2

SÞFDS
0 ðq2Þ;

C ¼ −a2ðSPÞfPðm2
D −m2

SÞFDS
0 ðq2Þ;

T 0 ¼ a1ðPSÞfSðm2
D −m2

PÞFDP
0 ðq2Þ;

C0 ¼ a2ðPSÞfSðm2
D −m2

PÞFDP
0 ðq2Þ: ð5:3Þ

The primed amplitudes T 0 and C0 vanish for the neutral
scalar mesons such as σ=f0ð500Þ, f0ð980Þ and a0ð980Þ0 as
they cannot be produced through the (V − A) current; that
is, fS ¼ 0. Nevertheless, beyond the factorization approxi-
mation, contributions proportional to the scalar decay
constant f̄S of the scalar meson defined in Eq. (3.7) can
be produced from vertex and hard spectator-scattering
corrections. It has been shown in Refs. [55,56] that the
nonfactorizable amplitudes can be recast to

T 0 ¼ a1ðPSÞf̄Sðm2
D −m2

PÞFDP
0 ðq2Þ;

C0 ¼ a2ðPSÞf̄Sðm2
D −m2

PÞFDP
0 ðq2Þ; ð5:4Þ

for S ¼ σ=f0ð500Þ; f0ð980Þ and a0ð980Þ0, etc., while the
expressions of T 0 and C0 given in Eq. (5.3) are valid for
S ¼ a�0 ; κ=K

�
0ð800Þ and K�

0ð1430Þ, etc.

B. Flavor operators

The flavor operators aiðM1M2Þ in Eqs. (5.3) and (5.4)
are basically the Wilson coefficients in conjunction with
short-distance nonfactorizable corrections such as vertex
corrections and hard spectator interactions. In general, they
have the expressions [67,68]3

a1ðM1M2Þ¼
�
c1þ

c2
Nc

�
N1ðM2Þ

þ c2
Nc

CFαs
4π

�
V1ðM2Þþ

4π2

Nc
H1ðM1M2Þ

�
;

a2ðM1M2Þ¼
�
c2þ

c1
Nc

�
N2ðM2Þ

þ c1
Nc

CFαs
4π

�
V2ðM2Þþ

4π2

Nc
H2ðM1M2Þ

�
; ð5:5Þ

where ci are theWilson coefficients,CF ¼ ðN2
c − 1Þ=ð2NcÞ

with Nc ¼ 3, M2 is the emitted meson and M1 shares the
same spectator quark with the D meson. The quantities
ViðM2Þ account for vertex corrections, HiðM1M2Þ for hard
spectator interactions with a hard gluon exchange between
the emitted meson and the spectator quark of the D meson.
The explicit expressions of V1;2ðMÞ andH1;2ðM1M2Þ in the
QCD factorization approach are given in [55]. The expres-
sion of the quantities NiðM2Þ, which are relevant to the
factorizable amplitudes, reads

NiðPÞ ¼ 1; NiðSÞ ¼
�
0; for S ¼ σ; f0; a00;

1; else:
ð5:6Þ

Results for the flavor operatorsaiðM1M2ÞwithM1M2 ¼ SP
and PS are shown in Table V.4

We see from Eqs. (5.5) and (5.6) that the factorizable
contributions toa1ðPSÞ anda2ðPSÞ vanish forS ¼ σ; f0 and
a00. Beyond the factorization approximation, nonfactorizable

TABLE V. Numerical values of the flavor operators a1;2ðM1M2Þ for M1M2 ¼ SP and PS at the scale
μ ¼ m̄cðm̄cÞ ¼ 1.3 GeV, where use of c1ðμÞ ¼ 1.33 and c2ðμÞ ¼ −0.62 has been made.

f0ð500Þπ πf0ð500Þ K�
0ð700Þπ πK�

0ð700Þ
a1 1.292þ 0.080i 0.033 − 0.056i a1 1.292þ 0.080i 1.579 − 0.492i
a2 −0.527 − 0.172i −0.070þ 0.121i a2 −0.527 − 0.172i −1.147þ 0.930i

f0ð980Þπ πf0ð980Þ f0ð980ÞK Kf0ð980Þ
a1 1.292þ 0.080i 0.033 − 0.056i a1 1.295þ 0.075i 0.033þ 0.075i
a2 −0.527 − 0.172i −0.070þ 0.121i a2 −0.533 − 0.162i −0.070þ 0.121i

a0ð980Þ0π πa0ð980Þ0 a0ð980Þ0K Ka0ð980Þ0
a1 1.292þ 0.080i 0.037 − 0.066i a1 1.295þ 0.075i 0.037 − 0.066i
a2 −0.527 − 0.172i −0.080þ 0.141i a2 −0.533 − 0.162i −0.080þ 0.141i

a0ð980Þ�π πa0ð980Þ� a0ð980Þ�K Ka0ð980Þ�
a1 1.292þ 0.080i �ð−10.04þ 20.03iÞ a1 1.295þ 0.075i �ð−10.04þ 20.03iÞ
a2 −0.527 − 0.172i �ð23.89 − 43.14iÞ a2 −0.533 − 0.162i �ð23.89 − 43.14iÞ

a0ð1450Þπ πa0ð1450Þ K�
0ð1430Þπ πK�

0ð1430Þ
a1 1.292þ 0.080i 0.033 − 0.056i a1 1.292þ 0.080i 1.692 − 0.544i
a2 −0.527 − 0.172i −0.071þ 0.108i a2 −0.527 − 0.172i −1.390þ 1.171i

3Notice that a1 and a2 do not receive contributions from
penguin contractions.

4Studies of B → SP decays in QCDF were presented in
Refs. [55,56]. Here We generalize these works to the D → SP
decays and obtain the flavor operators given in Table V.
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contributions proportional to the decay constant f̄S can be
produced from vertex and spectator-scattering corrections
[55,56]. Therefore, when the strong couplingαs is turned off,
the nonfactorizable contributions vanish accordingly. In
short, the primed amplitudes T 0 and C0 are factorizable for
S ¼ a�0 ; κ; K

�
0, namely hSjJμj0ihPjJ0μjDi, whereas they are

nonfactorizable for S ¼ σ; f0; a00.
Upon an inspection of Table V, we see that (i) the flavor

operators aiðPSÞ and aiðSPÞ are very different as the former
does not receive factorizable contributions [i.e., NiðSÞ ¼ 0],
and (ii)whilea1ðSPÞ anda2ðSPÞ are similar for any light and
heavy scalar mesons, namely a1ðSPÞ ≈ 1.29� 0.08i and
a2ðSPÞ ≈ −0.53 − 0.17i, a1ðPSÞ and a2ðPSÞ vary from
neutral to the charged ones as shown in Table VI. One
may wonder why the flavor operators a1;2ðπa�0 Þ are much
greater than a1;2ðπa00Þ. As noticed in Eqs. (5.3) and (5.4), the
nonfactorizable amplitudes are proportional to a1;2ðπa�0 Þfa�0
for charged a�0 and to a1;2ðπa00Þf̄a0 for neutral a00. Hence,
a1;2ðπa�0 Þ=a1;2ðπa00Þ ¼ f̄a0=fa�0 ≫ 1.We see fromTableVI
that a1;2ðPSÞ become larger when the decay constants
become smaller.

C. Implications

Naïvely it is expected that jT 0ðπ−aþ0 Þj ≪ jTða−0 πþÞj
because fπ ≫ faþ

0
and jC0ðπþκ̄0Þj < jCðπþf0Þj due to

the fact that fπ > fκ. Although we are not able to extract
the topological amplitudes of D → SP from the experi-
mental data of three-bodyD → P1P2P3 decays, we can use
the theoretical calculations to see their sizes and relative
phases. From Eq. (5.3) we have

Tðf0πþÞ ¼ −a1ðf0πÞfπðm2
D −m2

f0
ÞFDf0

0 ðm2
πÞ;

Cðf0π0Þ ¼ −a2ðf0πÞfπðm2
D −m2

f0
ÞFDf0

0 ðm2
πÞ;

T 0ðπ−aþ0 Þ ¼ a1ðπaþ0 Þfaþ0 ðm2
D −m2

πÞFDπ
0 ðm2

a0Þ;
C0ðπ0f00Þ ¼ a2ðπf0Þf̄f0ðm2

D −m2
πÞFDπ

0 ðm2
f0
Þ;

C0ðπþκ̄0Þ ¼ a2ðπκÞfκðm2
D −m2

πÞFDπ
0 ðm2

κÞ: ð5:7Þ

Using the flavor operators given in Table V, form factors
FDS listed in Table III and FDPðq2Þ evaluated in the

covariant confining quark model [69], we find numerically
(in units of 10−6 GeV),

Tðf0πþÞ¼ 1.80e−i186°; Cðf0π0Þ¼ 0.77e−i18°;

T 0ðπ−aþ0 Þ¼ 0.55ei117°;

C0ðπ0f0Þ¼ 0.99ei120°; C0ðπþκ̄0Þ¼ 1.26ei141°: ð5:8Þ

For heavier scalar mesons we find

TðK�−
0 πþÞ ¼ 0.70e−i177°;

T 0ðπ−K�þ
0 Þ ¼ 1.29e−i18°;

C0ðπ0K̄�0
0 Þ ¼ 1.32ei140°;

Tða0ð1450Þ0πþÞ ¼ 0.93e−i177°;

T 0ðπ−a0ð1450ÞþÞ ¼ 0.59ei121°;

C0ðπ0a0ð1450Þ0Þ ¼ 1.21ei123°: ð5:9Þ

In the light scalar meson sector, we have jTj > jT 0j and
jCj < jC0j rather than jTj ≫ jT 0j and jCj > jC0j. For scalar
mesons in the higher nonet representation, we find jT 0j >
jC0j > jTj with jTj being suppressed as the mass term
ðm2

D −m2
SÞ becomes smaller when S becomes heavier.

D. Flatté line shape

To describe three-body decays we need to introduce a
line shape of the scalar resonance. Normally we use the
relativistic Breit-Wigner line shape to describe the scalar
resonance contributions to three-body decays D → SP →
P1P2P:

TBWðsÞ ¼ 1

s −m2
R þ imRΓRðsÞ

; ð5:10Þ

with

ΓRðsÞ ¼ Γ0
R

�
q
q0

�
mRffiffiffi
s

p ; ð5:11Þ

where q ¼ jp⃗1j ¼ jp⃗2j is the c.m. momentum in the rest
frame ofR, q0 the value of qwhen s is equal tom2

R. However,
this parametrization is not suitable to describe the decay
of f0ð980Þ or a0ð980Þ into KK̄ as mðKþÞ þmðK−Þ ¼
987.4 MeV and mðK0Þ þmðK̄0Þ ¼ 995.2 MeV are near
threshold. In other words, one has to take the threshold effect
into account. Since f0ð980Þ couples strongly to the channel
KK̄ as well as to the channel ππ, they can be described by a
coupled channel formula, the so-called Flatté line shape [70]

TFlatte
f0

ðsÞ ¼ 1

s −m2
f0
þ i½g2f0→ππρππðsÞ þ g2f0→KK̄ρKK̄ðsÞ�

;

ð5:12Þ

TABLE VI. Same as Table V except for the flavor operators
a1;2ðPSÞ with P ¼ π. For neutral scalar mesons σ; f0; a00,
the vector decay constant fS is replaced by the scalar decay
constant f̄S.

S fS (MeV) a1ðPSÞ a2ðPSÞ
σ; f0; a00 350–370 ∼0.035–0.060i ∼ − 0.075þ 0.130i
κ̄ 45.5 1.58–0.49i −1.15þ 0.93i
K̄�

0
35.3 1.69–0.54i −1.39þ 1.17i

a−0 1.3 10–20i −24þ 43i
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with the phase space factor

ρab ¼
1

16π

�
1 −

ðma þmbÞ2
s

�
1=2

�
1 −

ðma −mbÞ2
s

�
1=2

;

ð5:13Þ

so that

ρKK̄ðsÞ ¼ ρKþK−ðsÞ þ ρK0K̄0ðsÞ

¼ 1

16π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð4m2

K�=sÞ
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð4m2

K0=sÞ
q 	

;

ρππðsÞ ¼ ρπþπ−ðsÞ þ
1

2
ρπ0π0ðsÞ

¼ 1

16π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð4m2

π�=sÞ
q

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð4m2

π0
=sÞ

q �
;

ð5:14Þ

and ρ → i
ffiffiffiffiffiffiffiffi
−ρ2

p
whenbelow the threshold, i.e., s < 4m2

K for
ρKK̄ . The dimensionful coupling constants in Eq. (5.12) are

gf0→ππ ≡ gf0→πþπ− ¼
ffiffiffi
2

p
gf0→π0π0 ;

gf0→KK̄ ≡ gf0→KþK− ¼ gf0→K0K̄0 : ð5:15Þ

Likewise, a0ð980Þ couples strongly to KK̄ and ηπ

TFlatte
a0 ðsÞ ¼ 1

s −m2
a0 þ i½g2a0→ηπρηπðsÞ þ g2a0→KK̄ρKK̄ðsÞ�

:

ð5:16Þ

with

ρηπðsÞ ¼
1

16π

�
1 −

ðmη −mπÞ2
s

�
1=2�

1 −
ðmη þmπÞ2

s

�
1=2

:

ð5:17Þ

It is important to check whether gf0→ππ and gf0;a0→KK̄ can
be interpreted as the strong couplings of f0 to ππ and KK̄,
respectively. Using the formula

Γðf0 → πþπ−Þ ¼ pc

8πm2
f0

g2f0→πþπ− ; ð5:18Þ

with pc being the c.m. momentum of the pion in the rest
frame of f0, it is easily seen that the term g2f0→ππρππðm2

f0
Þ

in Eq. (5.12) is identical to mf0ðΓðf0 → πþπ−Þ þ
Γðf0 → π0π0ÞÞ. Therefore, we are sure that gf0→ππ is the
strong coupling appearing in the matrix element hπþπ−jf0i.
The strong couplings gf0;a0→KK̄ , gf0→ππ and ga0→ηπ have
been extracted from fits to the experimental data. In this
work we shall use

gf0→KK̄ ¼ ð3.54� 0.05Þ GeV;
ga0→KK̄ ¼ ð3.77� 0.42Þ GeV;
gf0→ππ ¼ ð1.5� 0.1Þ GeV;
ga0→ηπ ¼ ð2.54� 0.16Þ GeV; ð5:19Þ

where the values of gf0→KK̄ and gf0→ππ are taken from
Ref. [6], dominated by the Dalitz plot analysis of eþe− →
π0π0γ performed by KLOE [71]. The couplings ga0→KK̄

and ga0→πη are taken from the analysis of the decay D0 →
K0

SK
þK− by BESIII [6].5 Note the result for the coupling

gf0→ππ is consistent with the value of 1.33þ0.29
−0.26 GeV

extracted from Belle’s measurement of the partial width
of f0ð980Þ → πþπ− [73].
The partial widths can be inferred from the strong

couplings listed in Eq. (5.19) as

Γðf0ð980Þ → ππÞ ¼ ð65.7� 8.8Þ MeV;

Γða0ð980Þ → ηπÞ ¼ ð85.2� 10.7Þ MeV; ð5:20Þ

though they are not directly measured.

E. Line shape for σ=f 0ð500Þ
As stressed in Ref. [74], the scalar resonance σ=f0ð500Þ is

very broad and cannot be described by the usual Breit-
Wigner line shape. Its partial wave amplitude does not
resemble a Breit-Wigner shape with a clear peak and a
simultaneous steep rise in the phase. The mass and width of
the σ resonance are identified from the associated pole
position

ffiffiffiffiffi
sσ

p
of the partial wave amplitude in the second

Riemann sheet as
ffiffiffiffiffi
sσ

p ¼ mσ − iΓσ=2 [74]. We shall follow
the LHCbCollaboration [75] to use a simple pole description

TσðsÞ ¼
1

s − sσ
¼ 1

s −m2
σ þ Γ2

σðsÞ=4þ imσΓσðsÞ
; ð5:21Þ

with
ffiffiffiffiffi
sσ

p ¼ mσ − iΓσ=2 and

ΓσðsÞ ¼ Γ0
σ

�
q
q0

�
mσffiffiffi
s

p : ð5:22Þ

Using the isobar description of the πþπ− S-wave to fit
the Bþ → πþπ−πþ decay data, the LHCb Collaboration
found [75]

5From the amplitude analysis of the χc1 → ηπþπ− decay, BESIII
obtained another set of couplings: ga0→ηπ ¼ ð4.14� 0.02Þ GeV
and ga0→KK̄ ¼ ð3.91� 0.02Þ GeV [72]. However, this set of
couplings is not appealing for two reasons: (a) the large coupling
constant ga0→ηπ will yield too large partial width Γηπ ¼ 222 MeV,
recalling that the total width of a0ð980Þ lies in the range of 50 to
100MeV [1], and (b) it is commonly believed that a0ð980Þ couples
more strongly toKK̄ than to ηπ, especially in the scenario in which
a0ð980Þ is a KK̄ molecular state.
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ffiffiffiffiffi
sσ

p ¼ ð563� 10Þ − ið350� 13Þ MeV; ð5:23Þ

consistent with the PDG value of
ffiffiffiffiffi
sσ

p ¼ ð400 − 550Þ −
ið200–350Þ MeV [1].
In principle, we could also use a similar pole shape TκðsÞ

TκðsÞ ¼
1

s − sκ
¼ 1

s −m2
κ þ Γ2

κðsÞ=4þ imκΓκðsÞ
: ð5:24Þ

to describe the broad resonance κ=K�
0ð700Þ and follow [76]

to use the latest result

ffiffiffiffi
sκ

p ¼ ð648� 7Þ − ið280� 16Þ MeV; ð5:25Þ

determined from a dispersive data analysis. However, we
find that this line shape together with the above pole mass
and width will yield a very huge and unreasonable result for
the finite-width correction to Dþ → κ̄0πþ (see Sec. VI B
below). Hence, we will use the usual Breit-Wigner line
shape for κ=K�

0ð700Þ and take the Breit-Wigner mass and
width [1]

mBW
K�

0
ð700Þ ¼ 845� 17 MeV;

ΓBW
K�

0
ð700Þ ¼ 468� 30 MeV: ð5:26Þ

F. Three-body decays

We take Dþ → σπþ → πþπ−πþ as an example to illus-
trate the calculation for the three-body rate. The two-body
decay amplitude for Dþ → σðm12Þπþ with m12

(m2
12 ≡ ðp1 þ p2Þ2Þ being the invariant mass of the σ is

given by

AðDþ → σðm12ÞπþÞ

¼ GFffiffiffi
2

p V�
cdVud½−a1ðσπÞfπðm2

D − sÞFDσ
0 ðm2

πÞ

þ a2ðπσÞf̄σðm2
D −m2

πÞFDπ
0 ðsÞ�: ð5:27Þ

Denoting Aσ ≡ AðDþ → σπþ → πþðp1Þπ−ðp2Þπþðp3ÞÞ,
we have

Aσ ¼ gσ→πþπ−Fðs12; mσÞTσðs12ÞAðDþ → σðs12ÞπþÞ
þ ðs12 ↔ s23Þ; ð5:28Þ

where the σ line shape Tσ is given by Eq. (5.21). When σ is
off the mass shell, especially when s12 is approaching the
upper bound of ðmD −mπÞ2, it is necessary to account for
the off-shell effect. For this purpose, we shall follow [77] to
introduce a form factor Fðs;mRÞ parametrized as

Fðs;mRÞ ¼
�
Λ2 þm2

R

Λ2 þ s

�
n

; ð5:29Þ

with the cutoff Λ not far from the resonance,

Λ ¼ mR þ βΛQCD; ð5:30Þ

where the parameter β is expected to be of order unity. We
shall use n ¼ 1, ΛQCD ¼ 250 MeV and β ¼ 1.0� 0.2 in
subsequent calculations.
The decay rate then reads

ΓðDþ → σπþ → πþπ−πþÞ ¼ 1

2

1

ð2πÞ332m3
D

Z
ds12ds23

� jgσ→πþπ− j2Fðs12; mσÞ2
ðs12 −m2

σ þ Γσðs12Þ=4Þ2 þm2
σΓ2

σðs12Þ
jAðDþ → σðm12ÞπþÞj2

þ ðs12 ↔ s23Þ þ interference



; ð5:31Þ

where the factor of 1
2
accounts for the identical particle

effect. The coupling constant gσ→πþπ− is determined by the
relation

Γσ→πþπ− ¼ pc

8πm2
σ
g2σ→πþπ− : ð5:32Þ

VI. RESULTS AND DISCUSSION

In Tables VII and VIII we have calculated two-body
D → SP and three-body D → SP → P1P2P decays,
respectively, in schemes I and II using the factorization
approach with W-exchange and W-annihilation being

neglected. We see from Table IV that the decay modes
Dþ → aþ0 K̄

0; κ̄πþ and K̄�
0π

þ are free of W-annihilation
contributions and they are ideal for testing the validity of
the factorization approach. From Table VIII it is evident
that the calculated rates of Dþ → κ̄πþ → KSπ

0πþ and
Dþ → K̄�0

0 πþ → ðKπÞ0πþ in scheme II are in agreement
with experiment. These modes are governed by the
topologies T þ C0 which interfere constructively. This is
in contrast to the Cabibbo-favored (CF)Dþ → K̄0πþ decay
in the PP sector where T and C contribute destructively.
For ðDþ; D0; Dþ

s Þ → f0P; f0 → P1P2, predictions in
scheme II are improved over that in scheme I and the
discrepancies presumably arise from the W-exchange or
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W-annihilation amplitude. This implies that the tetraquark
picture for light scalars works better than the quark-
antiquark scenario.
Upon an inspection of Table VII, the reader may wonder

(i) why the branching fractions for D → ðf0; σÞP decays in
scheme II are always larger than that in scheme I except for
D0 → f0π0, and (ii) why the predicted branching fractions
ofDþ → σπþ andDþ → κ̄0πþ are larger than experimental
data, while the corresponding three-body decays agree with
the measurements. For (i), we see from Table IV and also
Eq. (4.1) that the W-emission decay amplitude involving σ
is suppressed by a factor of cos θ=

ffiffiffi
2

p
in scheme I relative to

that in scheme II, while it is suppressed by a factor of sin θ
for theW-emission decay amplitude involving f0ð980Þ. As
a consequence of our choice of θ ¼ 30°, the branching
fractions for D → ðf0; σÞP in scheme II are always larger
than scheme I except for D0 → f0π0. For (ii), it has
something to do with the finite-width effects of σ and κ
as they are both very broad. We shall see in Sec. VI B that
the extraction of BðD → SPÞ from the data is affected by
the broad widths of both σ and κ.

A. W-annihilation amplitude

In the factorization calculations presented in Tables VII
and VIII, we have neglected both W-exchange and
W-annihilation amplitudes. TheDþ

s → aþ0 π
0 þ a00π

þ mode
recently observed by BESIII [5] proceeds only through
the W-annihilation amplitudes. However, its branching
fraction at a percent level is much larger than the
other two W-annihilation channels Dþ

s → ωπþ and ρ0πþ

whose branching fractions are ð1.92� 0.30Þ × 10−3 and
ð1.9� 1.2Þ × 10−4, respectively [1]. This implies that
jAðSPÞj > jAðVPÞj. In other words, the W-annihilation

amplitude plays a more significant role in the SP sector
than in the VP one.
Consider the decay amplitude of Dþ

s → a00π
þ and the

W-annihilation contribution to Dþ
s → f0πþ (in scheme II)

AðDþ
s → a00π

þÞ ¼ 1ffiffiffi
2

p V�
csVudð−Aþ A0Þ;

AðDþ
s → f0πþÞann ¼

1ffiffiffi
2

p V�
csVudðAþ A0Þ: ð6:1Þ

Following the G-parity argument given in Ref. [57], it is
obvious that the direct W-annihilation process through
cs̄ → W → ud̄ is allowed in Dþ

s → f0πþ decay but not
in Dþ

s → a00π
þ decay as Gðud̄Þ ¼ −, Gða0πÞ ¼ þ and

Gðf0πÞ ¼ −: This means that short-distance W-annihila-
tion contributions respect the relation A0 ¼ A, contrary to
the naïve expectation. Hence, one needs large long-distance
W-annihilation which yields A0 ¼ −A. Since Dþ

s → ρþη
has the largest branching fraction of ð8.9� 0.8Þ% among
the CF Dþ

s → VP decays [1], it is conceivable that long-
distance contribution from the weak decays Dþ

s → ρþη
followed by the resonantlike final-state rescattering of
ρþη → a00π

þ (see Fig. 1), which has the same topology
as W-annihilation, may explain the large W-annihilation
rate.6 It is customary to evaluate the final-state rescattering
contribution, Fig. 1, at the hadron level manifested in
Fig. 2. One of the diagrams, namely, the triangle graph in
Fig. 2(b) has been evaluated recently in [78,79]. It yields a
major contribution to Dþ

s → a00π
þ owing to the large

TABLE VII. Branching fractions for various D → SP decays calculated in schemes I and II. The upper part
involves only light scalar mesons (f0, a0, σ, and κ), whereas the lower part involves the a0ð1450Þ and K�

0ð1430Þ
mesons in the heavier nonet representation. The theoretical calculations are done in the factorization approach with
both W-exchange and W-annihilation amplitudes being neglected. In scheme I, K�

0 and a0ð1450Þ are excited qq̄
states. Hence, their predictions are not presented here. The f0 − σ mixing angle θ is taken to be 30° for scheme I.

Decay Scheme I Scheme II BNWA

Dþ → σπþ 2.6 × 10−3 4.6 × 10−3 ð2.1� 0.2Þ × 10−3

→ κ̄0πþ 6.1% 6.1% ð3.6þ3.0
−2.4Þ%

→ κ̄0Kþ 1.1 × 10−3 1.1 × 10−3 ð1.0þ0.5
−0.3 Þ × 10−3

D0 → a00K̄
0 4.2 × 10−3 4.2 × 10−3 ð2.83� 0.66Þ%

→ σπ0 3.2 × 10−5 7.8 × 10−5 ð1.8� 0.3Þ × 10−4

Dþ
s → a00π

þ 0 0 ð0.86� 0.23Þ%

Dþ → K̄�0
0 πþ 2.19% ð1.98� 0.22Þ%

D0 → K�−
0 πþ 2.1 × 10−3 ð8.8� 1.5Þ × 10−3

→ K̄�0
0 π0 2.1 × 10−3 ð9.5þ8.1

−2.8 Þ × 10−3

→ K�þ
0 π− 1.1 × 10−5 <4.5 × 10−5

Dþ
s → K�0

0 πþ 2.9 × 10−4 ð8.1� 5.7Þ × 10−4

→ K̄�0
0 Kþ 3.1 × 10−3 ð2.8� 0.5Þ × 10−3

6The hadronic weak decays Dþ
s → ρþη0; K̄�0Kþ and K̄0K�þ

followed by final-state rescattering will also contribute to
Dþ

s → a00π
þ.
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coupling constants for ρþ → πþπ0 and a00 → π0η. The
graph in Fig. 2(a) shows the resonant final-state interactions
manifested by the nearby resonance πð1800Þ whose strong
decay to a0π has been seen experimentally [1]. However,
we are not able to have a quantitative statement owing to
the lack of information on its partial width.
Assuming A0 ≈ −A, the annihilation amplitude extracted

from the data of Dþ
s → aþ0 π

0 þ a00π
þ is (in units of

10−6 GeV),

jAj ¼ 0.91� 0.12: ð6:2Þ

Hence, the annihilation amplitude is very sizable in the
SP sector, jA=TjSP ∼ 1=2, contrary to its suppression

TABLE VIII. Branching fractions of various D → SP → P1P2P decays calculated in schemes I and II. For simplicity and
convenience, we have dropped the mass identification for f0ð980Þ, a0ð980Þ and K�

0ð1430Þ. Data are taken from Tables I and II. In
scheme I, K�

0 and a0ð1450Þ are excited qq̄ states. Hence, their predictions are not presented here. The f0 − σ mixing angle θ is taken to
be 30° for scheme I.

D → SP; S → P1P2 Scheme I Scheme II Experiment

Dþ → f0πþ; f0 → πþπ− 7.6 × 10−5 2.2 × 10−4 ð1.56� 0.33Þ × 10−4

Dþ → f0Kþ; f0 → πþπ− 3.6 × 10−7 1.2 × 10−5 ð4.4� 2.6Þ × 10−5

Dþ → f0Kþ; f0 → KþK− 2.5 × 10−7 8.4 × 10−6 ð1.23� 0.02Þ × 10−5

Dþ → σπþ; σ → πþπ− 4.9 × 10−4 1.7 × 10−3 ð1.38� 0.12Þ × 10−3

Dþ → κ̄0πþ; κ̄0 → KSπ
0 5.4 × 10−3 5.4 × 10−3 ð6þ5

−4 Þ × 10−3

Dþ → κ̄0Kþ; κ̄0 → K−πþ 3.7 × 10−4 3.7 × 10−4 ð6.8þ3.5
−2.1Þ × 10−4

D0 → f0π0; f0 → πþπ− 1.6 × 10−5 1.4 × 10−5 ð3.7� 0.9Þ × 10−5

D0 → f0π0; f0 → KþK− 1.1 × 10−5 8.8 × 10−6 ð3.6� 0.6Þ × 10−4

D0 → f0K̄0; f0 → πþπ− 9.0 × 10−6 3.0 × 10−4 ð2.40þ0.80
−0.46 Þ × 10−3

D0 → f0K̄0; f0 → KþK− 4.3 × 10−6 1.4 × 10−4 <1.8 × 10−4

D0 → aþ0 π
−; aþ0 → KþK̄0 1.3 × 10−5 1.3 × 10−5 ð1.2� 0.8Þ × 10−3

D0 → a−0 π
þ; a−0 → K−K0 2.9 × 10−4 2.9 × 10−4 ð2.6� 2.8Þ × 10−4

D0 → aþ0 K
−; aþ0 → KþK̄0 2.2 × 10−4 2.2 × 10−4 ð1.47� 0.33Þ × 10−3

D0 → a00K̄
0; a00 → KþK− 3.4 × 10−4 3.4 × 10−4 ð6.18� 0.73Þ × 10−3

D0 → a00K̄
0; a00 → ηπ0 1.1 × 10−3 1.1 × 10−3 ð2.40� 0.56Þ%

D0 → a−0K
þ; a−0 → K−K̄0 1.7 × 10−5 1.7 × 10−5 <2.2 × 10−4

D0 → σπ0; σ → πþπ− 2.2 × 10−5 2.0 × 10−4 ð1.22� 0.22Þ × 10−4

Dþ
s → f0πþ; f0 → KþK− 2.5 × 10−3 5.1 × 10−3 ð1.14� 0.31Þ%

Dþ
s → aþ;0

0 π0;þ; aþ;0
0 → ηπþ;0 0 0 ð1.46� 0.27Þ%

Dþ → a0ð1450Þ0πþ; a00 → KþK− 1.7 × 10−5 ð4.5þ7.0
−1.8Þ × 10−4

Dþ → K̄�0
0 πþ; K̄�0

0 → K−πþ 1.38% ð1.25� 0.06Þ%
Dþ → K̄�0

0 πþ; K̄�0
0 → KSπ

0 6.0 × 10−3 ð5.4� 1.8Þ × 10−3

Dþ → K̄�0
0 Kþ; K̄�0

0 → K−πþ 7.6 × 10−5 ð1.82� 0.35Þ × 10−3

D0 → a0ð1450Þ−πþ; a−0 → K−K0 6.1 × 10−6 ð5.0� 4.0Þ × 10−5

D0 → a0ð1450Þþπ−; aþ0 → KþK̄0 1.8 × 10−7 ð6.4� 5.0Þ × 10−5

D0 → a0ð1450Þ−Kþ; a−0 → K−KS <0.6 × 10−3

D0 → K�−
0 πþ; K�−

0 → K̄0π− 8.3 × 10−4 ð5.34þ0.80
−0.66 Þ × 10−3

D0 → K�−
0 πþ; K�−

0 → K−π0 4.2 × 10−4 ð4.8� 2.2Þ × 10−3

D0 → K̄�0
0 π0; K̄�0

0 → K−πþ 9.6 × 10−4 ð5.9þ5.0
−1.6Þ × 10−3

D0 → K�þ
0 π−; K�þ

0 → K0πþ 5.4 × 10−6 <2.8 × 10−5

Dþ
s → K�0

0 πþ; K�0
0 → Kþπ− 1.3 × 10−4 ð5.0� 3.5Þ × 10−4

Dþ
s → K̄�0

0 Kþ; K̄�0
0 → K−πþ 2.0 × 10−3 ð1.7� 0.3Þ × 10−3

FIG. 1. Long-distance contributions to the W-annihilation
amplitude of Dþ

s → a00π
þ through final-state rescattering of

ρηð0Þ → a0π.
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jA=TjPP ∼ 0.18 in the PP sector [80] and jAV=TPjVP ∼
0.07 in the VP sector [81].

B. Finite width effects

The finite-width effect is accounted for by the quantity
ηR defined by [82,83]

ηR ≡ ΓðD → RP3 → P1P2P3ÞΓR→0

ΓðD → RP3 → P1P2P3Þ

¼ ΓðD → RP3ÞBðR → P1P2Þ
ΓðD → RP3 → P1P2P3Þ

¼ 1þ δ; ð6:3Þ

so that the deviation of ηR from unity measures the degree
of departure from the NWA when the resonance width is
finite. It is naïvely expected that the correction δ will be of
order ΓR=mR. It is calculable theoretically but depends on
the line shape of the resonance and the approach of
describing weak hadronic decays such as QCD factoriza-
tion and perturbative QCD.
Using the branching fractions of two-body and three-

body D decays calculated in Tables VII and VIII, respec-
tively, in scheme II, the resultant ηR parameters for scalar
resonances σ, κ and K�

0 produced in the three-body D
decays are summarized in Table IX. We only consider the
Dþ decays as the three-body modes listed in Table IX are
not contaminated by the W-annihilation amplitude and
hence the calculated finite width effects are more trust-
worthy. We have also checked explicitly that ηR → 1
in the narrow width limit as it should be. The ηR parameters
for various resonances produced in the three-body
B decays have been evaluated in [82,83]. Our results for
ηR’s in Table IX have similar features as the values

ησ=f0ð500Þ ¼ 2.15� 0.05 and ηK�
0
ð1430Þ ¼ 0.83� 0.04 ob-

tained in B decays.
Note that a priori we do not know if the deviation of ηR

from unity is positive or negative. In general, it depends on
the line shape, mass and width of the resonance. As alluded
to above, the mass and width have a more dominant effect
than the line shape in the case of κð700Þ. As another
example, we found in Ref. [83] that ηρ > 1 for the Breit-
Wigner line shape and ηρ < 1 when the Gounaris-Sakurai
model [84] is used to describe the line shape of the broad
ρð770Þ resonance. To our knowledge, there is no good
argument favoring one line shape over the other. Therefore,
ηK�

0
ð1430Þ ¼ 0.985 < 1, for example, is the result of our

particular line shape choice.
When the resonance is sufficiently broad, it is necessary

to take into account the finite-width effects characterized by
the parameter ηR. Explicitly [82,83],

BðD → RPÞ ¼ ηRBðD → RPÞNWA

¼ ηR
BðD → RP3 → P1P2P3Þexpt

BðR → P1P2Þexpt
: ð6:4Þ

Therefore, the experimental branching fractions BðD →
RPÞNWA for Dþ → σπþ; κ̄0πþ and K̄�0

0 πþ decays in
Tables I and VII should have the following corrections:

BðDþ→σπþÞ∶ ð2.1�0.2Þ×10−3→ð3.8�0.3Þ×10−3;

BðDþ→ κ̄0πþÞ∶ ð3.6þ3.0
−2.4Þ%→ð6.7þ5.6

−4.5Þ%;

BðDþ→ K̄�0
0 πþÞ∶ ð1.98�0.22Þ%→ð1.94�0.22Þ%: ð6:5Þ

TABLE IX. A summary of the ηR parameter for scalar resonances produced in the three-body D decays. The mass and width of
σ=f0ð500Þ are taken from Eq. (5.23).

Resonance D → Rh3 → h1h2h3 ΓR (MeV) [1] mR (MeV) [1] ΓR=mR ηR

σ=f0ð500Þ Dþ → σπþ → πþπ−πþ 700� 26 563� 10 1.243� 0.051 1.850
κ=K�

0ð700Þ Dþ → κ̄0πþ → K0
Sπ

0πþ 468� 30 845� 17 0.554� 0.037 1.873
K�

0ð1430Þ Dþ → K̄�0
0 πþ → K−πþπþ 270� 80 1425� 50 0.19� 0.06 0.985

(a) (b)

FIG. 2. Manifestation of Fig. 1 at the hadron level: (a) resonant contribution from the nearby resonance πð1800Þ and (b) the triangle
rescattering diagram.
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From Table VII, it is evident that the agreement between
theory and experiment is substantially improved for
Dþ → σπþ and Dþ → κ̄0πþ.
If we employ the pole mass and width, mκ ¼ 648�

7 MeV and Γκ ¼ 560� 32 MeV, respectively, for
κ=K�

0ð700Þ and the pole line shape given in Eq. (5.24),
we will be led to the results BðDþ → κ̄0πþÞ ¼ 8.10%,
BðDþ → κ̄0πþ → K0

Sπ
0πþÞ ¼ 1.62 × 10−3 and ηκ ¼ 8.34.

This implies that the finite-width correction will be unrea-
sonably too large and thus unlikely, as alluded to at the end
of Sec. V E. However, if the Breit-Wigner mass and width
are used instead, we get ηκ ¼ 1.92 for pole line shape,
which is a more reasonable result. This implies that in this
case, it is the mass and width rather than the line shape that
governs the finite-width correction.
For the case of f0ð500Þ, one may wonder what the

correction will be if the Breit-Wigner line shape is used.
According to PDG [1], the Breit-Wigner mass and width of
f0ð500Þ lie in the wide ranges of 400–800 MeV and 100–
800 MeV, respectively. As a result, it is quite difficult to pin
down a specific set of parameters and thereby determine the
finite-width correction. On the contrary, LHCb has deter-
mined its pole mass and width with reasonable accuracy
using the pole line shape [see Eq. (5.23)]. It turns out that
the pole mass and width fall within the above allowed
ranges of the Breit-Wigner mass and width. Therefore, it is
more sensible to use pole mass and width for calculations in
either line shapes.

VII. CONCLUSIONS

In this work we have examined the quasi-two-body
D → SP decays and the three-body D decays proceeding
through intermediate scalar resonances. Our main results
are the following:

(i) In theD → SP3 → P1P2P3 decays,we cannot extract
the two-body branching fractions BðD → SPÞ for
S ¼ f0ð980Þ and a0ð980Þ due to the lack of infor-
mation of BðS → P1P2Þ [except for a0ð980Þ → πη].
For S ¼ κ=K�

0ð700Þ and σ=f0ð500Þ, the extracted
two-body branching fractions are subject to large
finite-width effects owing to their broad widths.
Hence, for light scalars it is more sensible to study
BðD → SP → P1P2PÞ directly and compare with
experiment.

(ii) We have considered the two-quark (scheme I) and
four-quark (scheme II) descriptions of the light
scalar mesons with masses below or close to
1 GeV. Recent BESIII measurements of semilep-
tonic charm decays favor the SU(3) nonet tetraquark
description of the f0ð500Þ, f0ð980Þ and a0ð980Þ
produced in charmed meson decay. In Table VIII we
have calculated D → SP3 → P1P2P3 in schemes I
and II. It is evident that scheme II agrees better with
experiment for decays such asDþ → f0πþ followed

by f0 → πþπ− and Dþ → f0Kþ followed by f0 →
πþπ− or f0 → KþK−. This again favors the tetra-
quark structure for light scalars. The predicted rates
for D0 → f0P; a0P are generally smaller than ex-
perimental data by one order of magnitude, presum-
ably implying the importance of W-exchange.

(iii) The three-body decay modes Dþ → κ̄0ð→KSπ
0Þπþ,

Dþ → K̄�
0ð→K−πþÞπþ and Dþ → K̄�

0ð→KSπ
0Þπþ

are ideal for testing the validity of the factorization
approach as they are free of W-annihilation contri-
butions. T and C0 amplitudes contribute construc-
tively, contrary to the Cabibbo-allowed Dþ → K̄0πþ
decay where the interference between external and
internal W-emission is destructive.

(iv) Denoting the primed amplitudes T 0 and C0 for the
case when the emitted meson is a scalar meson, it is
naïvely expected that T 0 ¼ C0 ¼ 0 for the neutral
scalars σ; f0 and a00, jT 0j ≪ jTj and jC0j ≪ jCj for
the charged a0 and jT 0j < jTj and jC0j < jCj for the κ
and K�

0ð1430Þ. Beyond the factorization approxima-
tion, contributions proportional to the scalar decay
constant f̄S can be produced from vertex and hard
spectator-scattering corrections for the above-
mentioned neutral scalars.

(v) We have studied the flavor operators a1;2ðM1M2Þ for
M1M2 ¼ SP and PS within the framework of
QCD factorization. Notice that aiðPSÞ and aiðSPÞ
are very different as the former does not receive
factorizable contributions. While a1;2ðSPÞ are sim-
ilar for any light and heavy scalar mesons, a1ðPSÞ
and a2ðPSÞ vary from neutral to the charged ones as
shown in Table VI. The flavor operators a1;2ðπa�0 Þ
are much greater than a1;2ðπa00Þ. In general, a1;2ðPSÞ
become larger when the vector decay constants
become smaller.

(vi) For f0ð980Þ and a0ð980Þ, we use the Flatté line
shape to describe both of them to take into account
the threshold and coupled channel effects. For the
very broad σ=f0ð500Þ, we follow LHCb to employ a
simple pole description.

(vii) The annihilation amplitude inferred from the meas-
urement of Dþ

s → aþ;0
0 π0;þ → ηπþ;0π0;þ is given by

jAj ¼ ð0.91� 0.12Þ × 10−6 GeV. It is very sizable
in the SP sector, jA=TjSP ∼ 1=2, contrary to its
suppression in the PP sector with jA=TjPP ∼ 0.18.

(viii) Since σ and κ are very broad, we have considered
their finite-width effects characterized by the param-
eter ηS, whose deviation from unity measures
the degree of departure from the NWA when the
resonance width is finite. We find ησ and ηκ to be
of order 1.85–1.87. The experimental branching
fractions BðDþ → σπþÞ and BðDþ → κ̄0πþÞ should
then read ð3.8� 0.3Þ × 10−3 and ð6.7þ5.6

−4.5Þ%,
respectively.
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(ix) For each scalar nonet (lighter and heavier one) we
have 15 unknown parameters for the 8 topological
amplitudes T, C, E, A and T 0; C0; E0; A0. However,
there are only 14 independent data to fit. Moreover,
since we need to introduce appropriate energy-
dependent line shapes for the scalar mesons, it is
not conceivable to extract the topological amplitudes
from three-body decays as the decay rates cannot be
factorized into the topological amplitude squared
and the phase space factor.
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