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In the preceding paper [A. A. Mironov, S. Meuren, and A. M. Fedotov, Phys. Rev. D 102, 053005 (2020)]
we have demonstrated a feasible resummation of the bubble-chain corrections to the electron elastic scattering
amplitude in a strong constant crossed electromagnetic field. Here we present a calculation of a more general
contribution to the off-shell electron mass operator in a constant crossed field with an exact photon propagator
in a loop. Using such an approximated mass operator, we also obtain a corrected electron propagator and
elastic scattering amplitude. The results are expressed in the form of expansion over γ-matrix structures with
scalar coefficients depending on the electron virtuality and the quantum dynamical parameter. By asymptotic
analysis we identify the dominant contribution in the strong field limit. All the calculations were made by
means of the original open-access computer-algebraic scripts. Our findings can be applied to a consistent
study of the Dyson-Schwinger equations in strong-field QED.
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I. INTRODUCTION

QED is known for its tremendously precise predictions
allowing for testing the StandardModel [1]. At its core, QED
relies on the perturbative expansion in the fine structure
constant1 α ¼ e2=4π ≈ 1=137, which breaks down only at
the scale of the Landau pole [2]. A strong electromagnetic
background may severely impact the QED perturbative
expansion [3]. For instance, in a plane wave type field of
frequency ω and amplitude E, it breaks down as the
dimensionless field strength a0 ¼ eE=mω becomes ≳1.
This issue is cured by a proper resummation over all possible
interactions with the background, namely, in the Furry
picture [4]. Such an approach establishes the framework
of strong-field QED (SFQED).
In effect, in SFQED one still expands in powers of α as

in QED, while fermion lines are replaced with the ones
dressed with the external field [3,5]. Once the (asymp-
totically stable) dressed fermion states are explicitly
defined, it is possible to calculate amplitudes of various
field-induced or modified scattering processes. In back-
grounds, which can be (approximately) replaced by a

constant crossed field (CCF), they are controlled by
the quantum dynamical parameter χ ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFpÞ2

p
=m3,

where p is the particle 4-momentum and F is the external
field strength tensor. The parameter χ quantifies the
particle rest frame field strength (normalized by the
QED critical field F0 ¼ m2=e). At χ ≪ 1, the dominating
effect is the first-order nonlinear photon emission by
charged particles, which can be effectively treated as
classical radiation [6,7], whereas at χ ≳ 1, quantum recoil
and the first-order nonlinear e−eþ pair photoproduction
become equally significant [8].
At large values χ ≫ 1, higher-order SFQED processes

might also have an impact [9], as the one-loop photon
polarization [10] and electron mass [11] corrections both
scale as g ¼ αχ2=3. Such a strong scaling with χ is in sharp
contrast to the logarithmic high-energy behavior of field-free
QED. Further analysis have shown [12–16] that n-loop
radiative corrections scale as2 gn to all orders of perturbation
theory. This striking observation leads to important impli-
cations, also known as the Ritus-Narozhny (RN) conjecture
[17], that: (i) g might be an effective expansion parameter of
QED in a strong CCF; (ii) g≳ 1 (χ ≳ 1600) manifests a new
fully nonperturbative regime of radiation-matter interaction,
in which radiative corrections become dominant and have to
be resummed (see [16] for a deeper review).
According to the RN conjecture, the main contribution

comes from the bubble-chain corrections, obtained by
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1We use units such that ℏ ¼ c ¼ ε0 ¼ 1, electron mass and
charge are denoted by m and −e respectively (e > 0), and the
signature of the Minkowski metric is ðþ;−;−;−Þ.

2The precise scaling is specific to the scattering amplitude
under consideration. For the electron elastic scattering, it appears
to be gnχ−1=3 at n ≥ 3 loop level [16].
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successive insertions of the polarization loops to the photon
lines [15,16]. Notably, such an insertion is gauge-invariant
by construction. In our previous paper [16], by considering
the elastic electron scattering amplitude, we have shown
that the bubble-chain corrections indeed scale as g at g < 1
to all orders of perturbation theory. It is still arguable
whether other corrections should be taken into account too.
For instance, the one-loop mass operator [11] and vertex
function [18,19] in a CCF also scale as g at χ ≫ 1.
However, gauge invariance might lead to mutual cancella-
tion of the asymptotically dominant terms in these correc-
tions. Based on this argument, Narozhny conjectured that
the vertex correction is asymptotically irrelevant [14,15].
Some evidence in favor of this statement was presented in
the recent work [19]. In particular, it was shown by a direct
calculation of the one-loop vertex correction in a CCF that
the specific terms asymptotically growing as g do not
contribute to scattering amplitudes due to gauge invariance.
Physically, the replacement of a background by the CCF

is justified by applying the locally constant field approxi-
mation. The type of dominating corrections might be
inconsistent with the RN conjecture in the fields that do
not fall within its scope [20–22] or in theories deviating
from standard QED [23]. Thus, high-χ behavior of radiative
corrections becomes qualitatively different in short or weak
laser pulses [24,25], reproducing QED-like logarithmic
dependence. However, calculations in nonconstant fields
beyond this approximation may be very challenging. For
instance, the radiative corrections in a plane wave have
been computed only at the one-loop level [19,26–29]. It is
noteworthy, that even when the approximation is not
applicable, a proper resummation of higher-order correc-
tions still might be required in order to obtain a consistent
result [30–32]. Yet, the locally constant field approximation
is robust in considerations of ultrarelativistic particles in
strong backgrounds and valid as long as a0 ≫ maxð1; χ1=3Þ
[33]. Furthermore, it appears to be practical in many
situations involving high-intensity optical lasers [34–37].
Experiment-wise, while the state-of-the-art capabilities are

at the level of χ ∼ 1 [38,39], the regime g ∼ 1 is considered to
be within the reach of near future experiments using optical
laser setups [40–42], at future lepton colliders [43], or in the
passing of high-energy electrons through aligned crystals
[44]. However, theoretical studies of the nonperturbative
regime are limited. The standard in-out approach to calcu-
lation of scattering amplitudes is unreliable at g≳ 1, since the
question about the stability of the asymptotic particle states
becomes ambiguous. One may account for state damping by
radiative corrections [45], however, this approach is justified
only in the narrow width approximation, namely, at χ ∼ 1. A
rigorous consideration at g≳ 1 might involve transseries
[46], instanton [47] and nonequilibriumQFT [48] techniques,
or a direct summation of the corrections to loop diagrams in
combination with appropriately defined cutting rules that do
not violate unitarity [49].

Fortunately, in the case of a strong CCF the nonperturba-
tive resummation of the (dominant) bubble-chain corrections
seems feasible, as we have shown by the example of the
electron elastic scattering amplitude [16]. The core idea of
the calculation was to replace the virtual photon with the
bubble-chain dressed photon propagator [10,12]. While this
result served as a proof of principle and allowed asymptotic
studies at g ≫ 1, the full description of the nonperturbative
regime is yet to be formulated.
A proper approach requires a consistent summation of the

radiative corrections, that is, solving the Dyson-Schwinger
(DS) equations, which are depicted diagrammatically in
Fig. 1. In general, this task is inexecutable as these equations
cannot be enclosed. The reason is that the exact vertex
cannot be expressed explicitly in terms of itself and the exact
propagators. To overcome this difficulty, various approx-
imations for the vertex have been considered [50]. In
particular, the fact that the 1-loop OðgÞ correction contrib-
utes exclusively to the longitudinal part of the vertex [19]
suggests that bare vertex (“rainbow”) approximation (BVA)
should be reasonable in the nonperturbative regime implied
by the RN conjecture. Let us mention that the BVA-based
approach proved to be successful in a similar problem of
QED in a supercritical magnetic field [51,52].
In practice, one has to accomplish the following program:

(i) determine the γ-matrix and tensor structure of the exact
photon and electron propagators; (ii) impose a gauge-fixing
condition in which the full vertex can be approximated by
the bare one; (iii) calculate the electron mass and photon
polarization operators with accounting for these propagators;
(iv) plug the result into the DS equations and reformulate
them by exploiting the specific structure of the constituents.
If the resulting equations are solvable, exactly or approx-
imately, then hopefully this will shed some light on
phenomena arising in the fully nonperturbative regime.
In this paper, we advance our previous studies of Ref. [16]

toward the DS equations in the BVA by (partially) consid-
ering the points (i) and (iii). In particular, we introduce an
exact photon propagator, as shown in Fig. 2, and consider the
“improved bubble-chain” (IBC) mass operator in a CCF
depicted in Fig. 3. After computing the latter, we present the
corresponding IBC electron propagator and analyse its
implications for the DS equations. Noteworthy, in order

FIG. 1. The Dyson-Schwinger equations. The thin wavy and
the double fermion lines corresponds to the leading order photon
and (dressed by a CCF) electron propagators. The thick lines
describe the exact photon and electron propagators. The filled
circle corresponds to the exact vertex.
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to delay using explicit expressions for the propagators as
much as possible, here we adopt a different evaluation
sequence than in Ref. [16].
Let us also note that the complexity of calculations in

SFQED rapidly grows with the order of perturbation theory.
Even in the simplest case of aCCF, intermediate computations
appear to be too lengthy to be presented in print.Motivated by
this, we developed several computer algebraic scripts with the
aid of the FeynCalc package [53–55]. They contain the full
version of the calculations discussed here. The scripts are
open-access [56].We believe that the presented results and the
developed scripts make a solid basis for advancing further the
studies of the DS equations in a CCF.
The paper is organized as follows. We start with intro-

ducing the notations in Sec. II A. In Sec. II B we present the
tree-level electron propagator in a CCF in the proper time
representation. In the follow-up Sec. II C we discuss the
exact photon propagator obtained by resummation of one-
particle irreducible (1PI) polarization loop insertions and
derive it in the proper time representation. We apply these
propagators in Sec. III A in order to calculate the IBC mass
operator. Then in Sec. III B we present the IBC electron
propagator and discuss its γ-matrix structure. After that we
derive the IBC electron elastic scattering amplitude in
Sec. III C. In Sec. IV we perform an asymptotic analysis
of the obtained results and identify the terms dominating at
χ ≫ 1, and also give some outlook for further advancing
toward a consistent study of the DS equations. We conclude
our paper in Sec. V. We relegate the derivation and the
explicit answer for the IBC electron propagator in the proper
time representation to Appendix.

II. ELECTRON AND PHOTON PROPAGATORS

A. Notations

Let us consider an electron propagating in a CCF. We
choose a fixed gauge for the external field, such that a four-
potential is given by AμðφÞ ¼ aμφ. Here, aμ is a constant
four-vector and the phase φ ¼ kx, where kμ is a lightlike
four-vector satisfying k2 ¼ ka ¼ 0. The corresponding field

strength tensor reads Fμν ¼ kμaν − kνaμ. Without loss of
generality, we may introduce a special reference frame (RF)
where kμ ¼ mð1; 0; 0; 1Þ and aμ ¼ ð0; a⊥; 0Þ with
a⊥ ¼ ða1; a2Þ. In this RF, for a four-vector pμ we have
scalar products ðkpÞ ¼ mp− and ðapÞ ¼ −a⊥p⊥, where
p− ¼ p0 − p3 and p⊥ ¼ ðp1; p2Þ. Also, for an arbitrary qμ

we have ðpqÞ ¼ pþq− þ p−qþ − p⊥q⊥, where pþ ¼
ðp0 þ p3Þ=2 (the same notations go for q). For any four-
vector p, we will refer to p� as the light-cone variables
(similarly to e.g., Ref. [19]).
In our calculations, we use dimensional regularization of

divergent integrals [57,58]. By D ¼ 4 − ε we denote the
fractional dimension, implying the limit ε → 0 at the end of
calculation. Therefore, the Minkowski metric satisfies
gμμ ¼ D, while all the scalar products are written as usual,
e.g., pμpμ ¼ p2. We define D-dimensional gamma matri-
ces γμ, so that their anticommutator fγμ; γνg ¼ 2gμν, and
the trace Trγμγν ¼ 4gμν. As a consequence, the gamma
matrices obey the identities γμγμ ¼ D, γμγργμ ¼ ðD − 2Þγρ
etc. The γ5 ¼ iγ0γ1γ2γ3 matrix, which is also present in our
calculations, might need a special treatment in D-dimen-
sions [59]. However, as one will see further, γ5 will arise
only in a product with the Levi-Civita tensor εμνδλ

(ε0123 ¼ 1), therefore causing no additional difficulties.
Moreover, for simplicity, we will treat it as a D ¼ 4
dimensional object since it will enter only regular terms.

B. Tree-level electron propagator in a CCF

The tree-level propagator of an electron Sc0ðx00; x0Þ
dressed by an external field (hereinafter TL propagator)
obeys the equation

½ðγp̂Þ þ eðγAÞ −m�Sc0ðx00; x0Þ ¼ iδðx00 − x0Þ; ð1Þ
where p̂μ ¼ i∂=∂x00μ. A solution of this equation in a
plane-wave background can be expressed in the Ritus
Ep-representation [12] as

Sc0ðx00; x0Þ ¼ iΛ4−D
Z

dDp
ð2πÞD

Epðx00Þ½ðγpÞþm�Ēpðx0Þ
p2 −m2þ i0

; ð2Þ

where we extended the definition of Sc0 to D ¼ 4 − ε
dimensions and introduced a mass scale Λ. The factor
Λ4−D ensures that the natural dimension of Sc0 is indepen-
dent of D.
The matrix functions EpðxÞ multiplied by a free-electron

bispinor up;λ give the well-known Volkov solutions of the
Dirac equation in a plane-wave [60]. In particular, we use
the Ep-functions in a CCF:

FIG. 3. The improved bubble-chain (IBC) electron mass
operator, see Eq. (20).

FIG. 2. The exact photon propagator obtained by a summation of one-particle irreducible (1PI) polarization loop insertions in a CCF,
see Eq. (8).
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Epðx00Þ ¼
�
1 −

eðγkÞðγaÞ
ðkpÞ φ00

�
exp

�
−ipx00 þ i

eðapÞ
2ðkpÞ φ

002 þ i
e2a2

6ðkpÞφ
003
�
; ð3Þ

where φ00 ¼ ðkx00Þ, and Ēpðx0Þ ¼ γ0E†
pðx0Þγ0 is the Dirac conjugated function.

Evaluation of the integrals in Eq. (2) casts the propagator into the proper time representation [12,61]:

Sc0ðx00; x0Þ ¼ eiðaxÞΦe−iπ2D−2
2

Λ4−D

ð4πÞD=2

Z
∞

0

ds

sD=2 exp

�
−im2s − i

x2

4s
þ i

s
12

e2ðFxÞ2
�

×

�
mþ ðγxÞ

2s
−
s
3
e2ðγF2xÞ þ i

2
mseðσFÞ þ i

2
eðγF⋆xÞγ5

�
: ð4Þ

Hereinafter, we adopt the notation x ¼ x00 − x0,
X ¼ ðx00 þ x0Þ=2, Φ ¼ ðkXÞ. F⋆

μν ¼ ð1=2ÞεμνλσFλσ is the
dual field strength tensor. For convenience, we introduced
a shorthand notation for scalar combinations like
ðγF2xÞ ¼ γμFμνFνδxδ, and ðσFÞ is the contraction of the
field tensor Fμν with the gamma matrix commutator
σμν ¼ ði=2Þðγμγν − γνγμÞ. Note that the electron proper
time is defined by

s ¼ x−
2p−

¼ ðkxÞ
2ðkpÞ : ð5Þ

Although the derivation of Eq. (4) is straightforward, the
detailed calculation can be found in [56].

C. Exact photon propagator

The photon propagator Dc with account for 1PI polari-
zation corrections in a CCF obeys the Dyson-Schwinger
equation (see Fig. 2) [12]:

�
l2gμν −

�
1 −

1

dl

�
lμlν − ΠμνðlÞ

�
Dc

νλðlÞ ¼ −iδμλ ; ð6Þ

where lμ is the photon momentum, dl is the gauge-fixing
parameter, and ΠμνðlÞ is the 1PI photon polarization
operator. In a CCF, ΠμνðlÞ can be decomposed into the
three transverse tensors:

ΠμνðlÞ ¼ Π̂ðl2;χlÞðl2gμν − lμlνÞ þ
X2
i¼1

Πiðl2;χlÞϵðiÞμ ðlÞϵðiÞν ðlÞ:

ð7Þ

The eigenfunctions Π̂ and Π1;2 specifically depend on
the virtuality l2 and the dynamical quantum parameter

χl ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνlνÞ2

q
=m3 of the virtual photon, and the

eigenvectors ϵð1Þμ ðlÞ ¼ eFμνlν=ðm3χlÞ and ϵð2Þμ ðlÞ ¼
eF⋆

μνlν=ðm3χlÞ obey ϵðiÞ2 ¼ −1, ðϵð1Þϵð2ÞÞ ¼ 0. Notably,
the second term in Eq. (7) is field-induced and should
vanish at Fμν → 0.

By substituting the expansion (7) into Eq. (6) one obtains
the exact photon propagator in the momentum representa-
tion [10,12,16,62]:

Dc
μνðlÞ ¼ D0ðl2; χlÞ

�
gμν − ð1 − dlÞ

lμlν
l2

�

þ
X2
i¼1

Diðl2; χlÞϵðiÞμ ðlÞϵðiÞν ðlÞ: ð8Þ

The renormalized photon propagator is given by [16]:

D0ðl2; χlÞ ¼
−i

l2 þ i0
; ð9Þ

D1;2ðl2; χlÞ ¼
iΠ1;2ðl2; χlÞ

ðl2 þ i0Þ½l2 − Π1;2ðl2; χlÞ�
: ð10Þ

Here, the argument χl is introduced to D0 for uniformity of
notations. In what follows, we omit the lμlν term in the
propagator (8) as it does not contribute to the resulting mass
operator.
It is convenient to introduce the dressed photon propa-

gator in the x-representation:

Dc
μνðxÞ ¼

Λ4−D

ð2πÞD
Z

dDl Dc
μνðlÞe−ilx: ð11Þ

Let us substitute Eq. (8) into this expression and
pass to the light-cone variables l�, so that dDl ¼
ð1=2jtjÞdtdl2dD−2l⊥, where the photon proper time is
defined by

t ¼ x−
2l−

¼ φ

2ðklÞ : ð12Þ

Note that the dynamical parameter of a photon in a CCF
now reads

χl ¼
ξðklÞ
m2

¼ ξφ

2m2t
; ð13Þ
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where ξ2 ¼ −e2a2=m2 is the dimensionless field strength
parameter. The D1;2 terms [see Eq. (8)] that are quadratic
in l can be rewritten with the aid of differentiation:

Z
dDllαlβDiðlÞe−ilx ¼ −∂α∂β

Z
dDl DiðlÞe−ilx: ð14Þ

Then, after expanding

ðlxÞ ¼ l−xþ þ lþx− − l⊥x⊥
¼ sðl2 þ l2⊥Þ þ ð1=4tÞðx2 þ x2⊥Þ − l⊥x⊥

in the exponent of Eq. (11), we can carry out the (D − 2)-
dimensional Gaussian integral over l⊥ straightforwardly.

Let us introduce dimensionless functions [cf. Ref. [16],
Eq. (31)]

J nðt;χlÞ ¼ −i
Z

∞

−∞
dl2Dnðl2; χlÞe−il2t; n¼ 0;1;2; ð15Þ

J̃ 1;2ðt;χlÞ ¼
i½J nðt;χlÞ�0t

m2
¼−i

Z
∞

−∞
dl2

l2

m2
D1;2ðl2;χlÞe−il2t;

ð16Þ

By using the functions (15) and performing differentiation
over x [see Eq. (14)], we finally arrive at the expression

Dc
μνðxÞ ¼ e−i

π
2
D−4
2

Λ4−D

ð4πÞD=2þ1

Z
∞

0

dt

tD=2 exp

�
−i

x2

4t

��
J 0ðt; χlÞgμν

þ J 1ðt; χlÞ
m2ξ2φ2

e2½ðFxÞμðFxÞν − 2itðF2Þμν�

þJ 2ðt; χlÞ
m2ξ2φ2

e2½ðF⋆xÞμðF⋆xÞν − 2itðF2Þμν�
�
: ð17Þ

We will employ this result in the calculation of the IBC
mass operator. A detailed derivation of Eq. (17) is presented
in [56].
The functions J n and J̃ 1;2 vanish at t < 0, which

follows from Eqs. (9), (10) and the fact that all the poles
of D1;2 are physical (an infinite number of them) [12].
In particular, J 0ðtÞ ¼ 2πiθðRetÞ. This reflects the photon
propagator causality. At χl ≳ 1 these functions can be
approximated by the contribution from the main pole
l2 ≈ Π1;2ð0; χlÞ [16]:

J 1;2ðt; χlÞ ≈ −2πiθðRet − teffÞ½e−iΠ1;2ð0;χlÞt − 1�; ð18Þ

J̃ 1;2ðt;χlÞ≈−2πiθðRet− teffÞ
Π1;2ð0;χlÞ

m2
e−iΠ1;2ð0;χlÞt; ð19Þ

where the shift in the θ-function argument roughly esti-
mates the smearing of the causal θ-function at the scale
teff ∼ 1=m2χ2=3l due to radiative corrections.

III. THE IMPROVED BUBBLE-CHAIN RADIATIVE
CORRECTIONS

A. Mass operator

Let us now consider the electron mass operator in a CCF
with accounting for the polarization corrections to the
virtual photon as depicted in Fig. 3. In the current work, our
derivation is based on the Morozov-Ritus approach to
calculation of the one-loop mass operator in a CCF [63]
(and is different from the one adopted in Ref. [16]). It relies
on the specific properties of a CCF, which allow for
significant simplifications.
The mass operator in the Ritus Ep-representation reads

−iΣðq; pÞ ¼ Λ2ðD−4Þ
Z

dDx0dDx00Ēqðx00ÞðieγμÞSc0ðx00; x0ÞðieγνÞEpðx0ÞDc
μνðx00; x0Þ: ð20Þ

Here, the four-momenta of the ingoing and outgoing
electron are denoted by pμ and qμ, respectively. In addition,
by lμ we denote the four-momentum of the virtual photon
(see Fig. 3). The integration is performed over the space-
time position of the vertices x0 and x00.
We plug the Ep-functions (3), the TL electron propagator

Sc0 (4) and the photon propagator Dc
μν in the form of

Eq. (17) into the expression (20). We will calculate the

spacetime integrals in Eq. (20) in order to obtain Σðq; pÞ in
the proper time representation. The intermediate compu-
tations are too lengthy to be presented in the paper, so
instead we will outline key steps emphasizing some
important details. All specific formulas, though, can be
found in [56].
Let us start with expanding the integrand preexponential

factor. Tedious γ-matrix algebra and tensor contractions is
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donewith the aid of FeynCalc package [53–55]. The expression
simplifies greatly if one applies the properties of a CCF,
which can be done straightforwardly by substituting Fμν ¼
kμaν − kνaμ and ðF2Þμν ¼ −a2kμkν beforehand. An impor-
tant observation at this stage is that the resulting expression
does not contain terms with products of more than three
γ-matrices. Furthermore, we rewrite the latter using the
identity γαγβγλ ¼ gαβγλ − gαλγβ þ gβλγα − iεδαβλγδγ5.
It is convenient to introduce new integration variables

x ¼ x00 − x0, X ¼ ðx0 þ x00Þ=2 and the corresponding phase
variables φ ¼ ðkxÞ, Φ ¼ ðkXÞ. Then Eq. (20) can be
written in the form:

Σðq; pÞ ¼ −
e−i

π
2
Dαm

ð4πÞDþ1

Z
dDxdDX

Z
∞

0

ds

sD=2

Z
∞

0

dt

tD=2 Γe
iΘ;

ð21Þ

Γ ¼
X2
n¼0

J nðt; χlÞΓn ð22Þ

where we denoted the γ-matrix factor and the integrand
phase by Γ and Θ, respectively. The functions J nðt; χlÞ are
given by (15). We will use these shorthand notations
throughout the section. At the current step, we have

Θ ¼ −m2s −
x2

4ω
þ 1

2
½ðpxÞ þ ðqxÞ�

− ðpXÞ þ ðqXÞ þ eðaxÞΦ

þ eðapÞ
8ðkpÞ ðφ − 2ΦÞ2 − eðaqÞ

8ðkqÞ ðφþ 2ΦÞ2

þm2ξ2

48

�ðφ − 2ΦÞ3
ðkpÞ þ ðφþ 2ΦÞ3

ðkqÞ − 4sφ2

�
; ð23Þ

where we introduced the notation ω−1 ¼ s−1 þ t−1. At the
same time, Γn depends on x0, x00 only through x and Φ.
Let us now pass to the light-cone variables:

xμ → fx− ¼ φ=m; xþ; x⊥g, Xμ → fX− ¼ Φ=m; Xþ;X⊥g.
Then one may see that Xþ and X⊥ enter Θ linearly, as
ðpXÞ ¼ p−Xþ þ pþΦ=m − p⊥X⊥ [and the same for
ðqXÞ]. By integrating them out, we obtain the conserva-
tion of the minus and transverse components of the
incoming electron momentum:

Z
dXþXD−2⊥ eiðq−−p−ÞXþ−iðq⊥−p⊥ÞX⊥…

→ ð2πÞðD−1Þδðq− − p−ÞδðD−2Þðq⊥ − p⊥Þ…:

Now, noting that ðkqÞ ¼ ðkpÞ and ðaqÞ ¼ ðapÞ allows one
to simplify the expressions considerably. In particular,
these substitutions cast Γn into the form

Γn ¼ Sn þ Vð1Þ
n ðγxÞ þ Vð2Þ

n e2ðγF2xÞ þ Vð3Þ
n eðγFxÞ

þ T neðσFÞ þAnieðγF⋆xÞγ5; ð24Þ

where for each of the γ-matrix structures, we introduced a
scalar factor, which depends only on the proper times s, t
and (polynomially) on the phases φ,Φ. Let us note that the
term ∝ ðγFÞμxμ should vanish in the final result due to the
charge symmetry [12].
We proceed with rewriting the scalar products with x in

terms of light-cone variables, which yields:

Θ ¼
�
ðkpÞ − φ

2ω

�
xþ
m

þ…; Γ ¼ Γ0xþ þ…;

where we omitted terms independent of xþ. Noteworthy, in
the expression (24), the xþ-terms originate only from
ðγxÞ ¼ ½ðγkÞ=m�xþ þ � � �. Hence, we may integrate out
xþ and φ with the aid of the identity

Z
∞

−∞
dφfðφÞeigðφÞ

Z
∞

−∞
dxþ

�
1

xþ

�
eixþPðφÞ

¼ 2πeigðφÞ

jP0
φðφÞj

2
664

fðφÞ

i

�
fðφÞ
P0
φðφÞ

�0

φ

− fðφÞ g0φðφÞ
P0
φðφÞ

3
775
								
φ¼φ0

; ð25Þ

where φ0 is a zero of PðφÞ, which in our case is
φ0 ¼ 2ωðkpÞ. So far we mainly followed Ref. [63].
However, we proceed differently in what follows, as for
the considered here photon propagator (17) the functions
J nðt; χlÞ inexplicitly depend on φ, see Eq. (13). As a result,
the integration in Eq. (25) introduces into Γ the terms that
are proportional to ðJ nÞ0χl :

Γ ¼
X2
n¼0

½J nðt; χlÞΓn þ ðJ nÞ0χl Γ̃n�:

Note that ðJ 0Þ0χl ¼ 0 since D0 is independent of χl
[see Eq. (9)].
After the previous step, Θ can be represented as

Θ ¼ x2⊥
4ω

− ðea⊥Φþ p⊥Þx⊥ þ…; ð26Þ

while Γ is linear in x⊥. Hence, the dD−2x⊥ integral is
Gaussian and can be calculated straightforwardly. After the
integration, all the terms in Γ that are dependent on Φ
cancel out, soΦ enters the integrand only though the phase:
Θ ¼ ðqþ − pþÞΦ=mþ � � �. The integral overΦ results into
the electron’s momentum pþ component conservation.
Therefore, the mass operator, given by Eq. (20), is diagonal
in the Ep-representation:
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Σðq; pÞ ¼ ΛD−4ð2πÞDδðDÞðq − pÞΣðp; FÞ: ð27Þ

Hereinafter, we will consider only the diagonal part
Σðp;FÞ.
We have integrated out all the spatial variables in

Eq. (20) but left the proper time integrals. It is convenient
to restore the covariant notations now. Γ is then spanned by
the matrices ðγpÞ, ðγF2pÞ, ðσFÞ and ðγF⋆Þγ5 (as expected,
the matrix γμFμν is absent [12]).
Let us introduce the following change of variables

fs; tg → fu; σg:

s¼ sðu;σÞ ¼ 1þu

m2χ2=3u1=3
σ; t¼ tðu;σÞ ¼ sðu;σÞ

u
; ð28Þ

where χ ¼ ξðkpÞ=m2 is the electron dynamical parameter.
Then the phase of the integrand reads

Θ ¼ −
σ3

3
− zσ; ð29Þ

z ¼
�
u
χ

�
2=3

�
1 −

1

u

�
p2

m2
− 1

��
: ð30Þ

In the next step, we reexpress the factors ðJ 1;2Þ0χl in Γ.
The variable u has the meaning of the dynamical parameter
splitting ratio χl ¼ uχ=ð1þ uÞ, hence, we may write
ðJ 1;2Þ0χl ¼ ½ðJ 1;2Þ0u − ðJ 1;2Þ0tt0u�=ðχlÞ0u. The term ðJ 1;2Þ0u
can be integrated over u by parts, taking into account that
J 1;2ðt; 0Þ ¼ 0 and vanishing of the integrand at u → ∞. As
for the second term, in effect, the derivative over t replaces
the functions J 1;2 by J̃ 1;2 (up to a complex factor), see
Eqs. (15), (16). It is important to note that the last step is
justified for n ¼ 1, 2 as the corresponding terms are finite.
To finalize the calculation, we integrate some terms in the

resulting expression by parts over σ, specifically, the ones
that are proportional to J 1;2ðtðu; σÞ; χlÞe2ðγF2pÞσ−D=2.
We rewrite them by applying the integral equality3

Z
∞

0

dσ

σD=2 hðσÞe−iσ
3=3−izσ ¼ 2

D − 2

Z
∞

0

dσ

σD=2−1 ½h0σðσÞ

− iðσ2 þ zÞhðσÞ�e−iσ3=3−izσ:

Let us briefly discuss the renormalization procedure.4

The divergent part of Σðp; FÞ reads

Σ0ðp;FÞ ¼−
e−i

π
4
DαmD−3Λ4−D

ð4πÞD=2−1χðD−4Þ=3

Z
∞

0

duu2ðD−4Þ=3

ð1þuÞD−2

×
Z

∞

0

dσ

σD=2−1

�
D−

D− 2

1þu
ðγpÞ
m

�
e−iσ

3=3−izσ: ð31Þ

The dimensional regularization allows applying various
renormalization schemes [64]. As the divergence is of the
vacuum nature, we choose to subtract the field-free part
Σðp;F ¼ 0Þ ¼ Σ0ðp;F ¼ 0Þ and renormalize it on shell,
i.e.,Σðp;FÞ → Σo:s:

R ðp; F ¼ 0Þ þ ½Σðp; FÞ − Σðp; F ¼ 0Þ�,
where the indexR stands for a renormalized quantity (see also
[12,26,65]). As the expression for Σðp;FÞ is now finite and
regular, we set D → 4.
Finally, the diagonal part of the renormalized IBC mass

operator can be represented in the following form:

Σðp;FÞ ¼
X2
n¼0

�
mSnðp2; χÞ þ ðγpÞVð1Þ

n ðp2; χÞ

þ e2ðγF2pÞ
m4χ2

Vð2Þ
n ðp2; χÞ þ eðσFÞ

mχ
Tnðp2; χÞ

þ eðγF⋆pÞγ5
m2χ

Anðp2; χÞ
�
; ð32Þ

where each of the γ-matrix structures is multiplied by an
invariant scalar function. For n ¼ 0, these functions read:

S0ðp2; χÞ ¼ α

π

Z
∞

0

du
ð1þ uÞ2

�
2uþ 1

ð1þ uÞuλ
− log

�
1 −

1

u

�
p2

m2
− 1

��
þ f1ðzÞ

�
; ð33aÞ

Vð1Þ
0 ðp2; χÞ ¼ −

α

2π

Z
∞

0

du
ð1þ uÞ3

�
2
2uþ 1

uλ

− log

�
1 −

1

u

�
p2

m2
− 1

��
þ f1ðzÞ

�
; ð33bÞ

Vð2Þ
0 ðp2; χÞ ¼ α

3π

Z
∞

0

du
3þ u

ð1þ uÞ2
�
χ

u

�
2=3

f0ðzÞ; ð33cÞ

T0ðp2; χÞ ¼ −
α

2π

Z
∞

0

du
ð1þ uÞ2

�
χ

u

�
1=3

fðzÞ; ð33dÞ

A0ðp2; χÞ ¼ α

2π

Z
∞

0

du
2þ u

ð1þ uÞ3
�
χ

u

�
1=3

fðzÞ; ð33eÞ

where uλ ¼ uþ ðmγ=mÞ2ð1þ uÞ=u and z given in
Eq. (30). We also introduced a small photon mass mγ

eliminating the IR divergence in the field-free part of the
mass operator. In these expressions we used the Ritus
functions [12]:

3We assume that the σ-integral are convergent as J 1;2 → 0 at
σ → 0, see also [16].

4The full expression for the unrenormalized mass operator inD
dimensions is given in [56].
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fðzÞ ¼ i
Z

∞

0

dσe−iσ
3=3−izσ;

f1ðzÞ ¼
Z

∞

0

dσ
σ
ðe−iσ3=3−izσ − 1Þ:

Equations (33a)–(33e) correspond to the one-loop mass operator in a CCF. Note that we express in the form which is similar
to the one used in Ref. [14].
Then ¼ 1, 2 terms in Eq. (32) give the nontrivial contribution. In particular, the corresponding scalar functions are given by

S1;2ðp2; χÞ ¼ iα
8π2

Z
∞

0

duu
ð1þ uÞ2

Z
∞

0

dσ
σ
J 1;2e−i

σ3

3
−izσ; ð34aÞ

Vð1Þ
1;2ðp2; χÞ ¼ −

iα
8π2

Z
∞

0

du
ð1þ uÞ3

Z
∞

0

dσ
σ
J 1;2e−i

σ3

3
−izσ; ð34bÞ

Vð2Þ
1;2ðp2; χÞ ¼ iα

16π2

Z
∞

0

du
ð1þ uÞ2

Z
∞

0

dσ

�
2

�
u2 þ 2uþ 2

1þ u
� 1

��
χ

u

�
2=3

σJ 1;2

þ
��

1þ 2

u
−
u2 þ uþ 2

uð1þ uÞ
p2

m2

�
J 1;2 þ

u2 þ 2uþ 2

u2
J̃ 1;2

�
1

σ

�
e−i

σ3

3
−izσ; ð34cÞ

T1;2ðp2; χÞ ¼ α

16π2

Z
∞

0

du
1þ u

Z
∞

0

dσ

�
1

1þ u
� 1

��
χ

u

�
1=3

J 1;2e−i
σ3

3
−izσ; ð34dÞ

A1;2ðp2; χÞ ¼ −
α

8π2

Z
∞

0

du
ð1þ uÞ2

Z
∞

0

dσ

�
1

1þ u
� 1

��
χ

u

�
1=3

J 1;2e−i
σ3

3
−izσ: ð34eÞ

In these expressions, z is given in Eq. (30), and we imply
that J 1;2 ¼ J 1;2ðtðu; σÞ; uχ=ð1þ uÞÞ (and the same
for J̃ 1;2).

B. Electron propagator

Radiative corrections cast Eq. (1) for the TL electron
propagator into the DS equation. In the Ep-representation it
takes a simple algebraic form:

−iDðp;FÞScðp;FÞ ¼−i½ðγpÞ−m−Σðp;FÞ�Scðp;FÞ ¼ 1;

ð35Þ
where we used the diagonality of the mass operator. As the
matrixDðp;FÞ should be Lorentz- and gauge-invariant and
C-symmetric, in a CCF, it can be decomposed into the
following sum of the γ-matrix terms [12]:

Dðp; FÞ ¼ mSþ ðγpÞVð1Þ þ e2ðγF2pÞ
m4χ2

Vð2Þ

þ eðσFÞ
mχ

T þ eðγF⋆pÞγ5
m2χ

A; ð36Þ

where the scalar functions S, Vð1;2Þ, T and A depend on p2

and χ. By substituting Eq. (32) into Dðp;FÞ, we find these
functions in our case read:

S¼ −1−
X2
n¼0

Sn; Vð1Þ ¼ 1−
X2
n¼0

Vð1Þ
n ;

Vð2Þ ¼ −
X2
n¼0

Vð2Þ
n ; T ¼ −

X2
n¼0

Tn; A¼ −
X2
n¼0

An: ð37Þ

Then it is possible to write out the (exact) electron
propagator Scðp; FÞ ¼ iD−1ðp;FÞ explicitly [12]:

Scðp; FÞ ¼ i

�
mS − ðγpÞVð1Þ −

e2ðγF2pÞ
m4χ2

Vð2Þ −
eðσFÞ
mχ

T

þ eðγF⋆pÞγ5
m2χ

A

�X
�

1� ðγnÞγ5
2D�

; ð38Þ

where nμ ¼ eðF⋆pÞμ=m3χ and D� ¼ D�ðp2; χÞ factorize
detDðp;FÞ ¼ DþD− and read

D� ¼ m2S2 − p2Vð1Þ2 þm2ðA2 − 2Vð1ÞVð2ÞÞ
� 2m2ðSA − 2TVð1ÞÞ: ð39Þ

At vanishing α, the expression in Eq. (38) corresponds to
Eq. (2). Note that Scðp;FÞ has an infinite number of poles
corresponding to the solutions of the equations D� ¼ 0.
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Note that a more detailed analysis of Scðp; FÞ properties can be found in Ref. [12].
By applying the Ep-transformation to Eq. (38), we obtain the electron propagator in the proper time representation:

Scðx00; x0Þ ¼ eiðaxÞΦe−iπ2D−4
2

Λ4−D

ð4πÞD=2þ1

Z
∞

0

ds

sD=2 exp

�
−i

x2

4s
þ i

s
12

e2ðFxÞ2
�

×

�
mSðs;φÞ þ ðγxÞ

2s
Vð1Þðs;φÞ þ e2ðγF2xÞ

m2ξ2φ2
Vð2Þðs;φÞ þ eðσFÞ

mξφ
T ðs;φÞ

þ eðγF⋆xÞγ5
ξφ

Aðs;φÞ þ eðγF⋆xÞγ5ðγxÞ
2msξφ

A0ðs;φÞ
�
: ð40Þ

where the scalars S, Vð1;2Þ, T , A and A0 accommodate the
integrals over p2 from the scalar functions utilized in
Eq. (38). The explicit expressions for them are lengthy
and thus relegated to Appendix. The physical meaning of
these functions is smearing of the proper time causal step
function θðsÞ due to accounting for the radiative correc-
tions to the TL propagator. In a sense, the scalar functions
in Eq. (40) are analogous to the functions J 1;2 in the exact
photon propagator, see Eqs. (15), (16). When deriving
Eq. (40), we did not make any approximations, therefore it
corresponds to the exact electron propagator. The specific
expression for the IBC propagator is obtained by sub-
stituting Eqs. (33a)–(34e) for the scalar coefficients.
As the TL electron propagator [see Eq. (4)], Scðx00; x0Þ

factorizes into the nondiagonal exponent eiðaxÞΦ and the
diagonal part, which depends on x0, x00 only through φ. The
γ-matrix structure of Eq. (40) differs from Eq. (4) only by
an additional term ∝ ðγF⋆xÞγ5ðγxÞ arising due to the spin
factor ½1� ðγnÞγ5� in Eq. (38) (which reduces to 1 at the
tree-level).

C. Electron elastic scattering amplitude

For completeness, let us present the on-shell electron
elastic scattering amplitude TsðpÞ ¼ −MðχÞ=ð2p0Þ, where
MðχÞ≡ ūp;λΣðp;FÞjp2¼m2up;λ is the invariant amplitude.
It can be derived from Eq. (32) straightforwardly by applying
the following equalities [65]:

ūpðγpÞup ¼ 2m;

ūpe2ðγF2pÞup ¼ 2m6χ2p;

ūpeðσFÞup ¼ 4sμeF�
μνpν; ð41Þ

where sμ ¼ ðūpγμγ5upÞ=2m is the electron spin four-vector
[66]. Then the invariant amplitude reads:

MðχÞ ¼
X2
n¼0

�
2m2½Snðm2;χÞ þVð1Þ

n ðm2;χÞ þVð2Þ
n ðm2; χÞ�

þ2eðsF⋆pÞ
mχ

½2Tnðm2; χÞ þAnðm2;χÞ�
�
: ð42Þ

This result is general in a CCF until one specifies the scalar
functions. The IBC MðχÞ is obtained by the substitution of
Eqs. (33a)–(34e). The amplitude M naturally splits into
M ¼ Mð0Þ þ δM, where Mð0Þ corresponds to n ¼ 0 and
δM contains the rest terms. Then Mð0Þ coincides with the
one-loop scattering amplitude and reads

Mð0ÞðχÞ ¼ αm2

π

Z
∞

0

du
ð1þ uÞ2

×

�
2uþ 1

1þ u
f1ðz0Þ þ

2

3
ðuþ 3Þ

�
χ

u

�
2=3

f0ðz0Þ

−
2γs
1þ u

�
u
χ

�
2=3

fðz0Þ
�
: ð43Þ

Here, we introduced z0 ¼ ðu=χÞ2=3 and γs ¼ eF�
μνsμpν=

2m3.5 The identity

Z
∞

0

du
ð1þ uÞ2

�
2ðu− 2Þ
3ð1þ uÞ

�
χ

u

�
2=3

f0ðz0Þ−
2u

1þ u
f1ðz0Þ

�
¼ 0

ð44Þ

casts Eq. (43) into the more familiar form [12]:

Mð0ÞðχÞ ¼ αm2

π

Z
∞

0

du
ð1þ uÞ2

×

�
f1ðz0Þ þ

u2 þ 2uþ 2

1þ u

�
χ

u

�
2=3

f0ðz0Þ

−
2γs
1þ u

�
u
χ

�
2=3

fðz0Þ
�
; ð45Þ

The other term δM ¼ δM1 þ δM2 corresponds to the
nontrivial contribution from the IBC corrections and is
given by:

5Note that in Ref. [16] γs is introduced with an opposite sign,
which is though compensated by the definition of γ5 (and hence sμ),
that also differs by sign from the one adopted in this paper.
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δM1;2ðχÞ ¼
iαm2

ð2πÞ2
Z

∞

0

du
ð1þ uÞ2

Z
∞

0

dσe−iσ
3=3−iz0σ

��
u2 þ 2uþ 2

1þ u
� 1

��
χ

u

�
2=3

σJ 1;2

þ
�
J 1;2 þ

u2 þ 2uþ 2

2u2
J̃ 1;2

�
1

σ
− 2iγs

�
1

1þ u
� 1

��
u
χ

�
2=3

J 1;2

�
; ð46Þ

where, as previously, J 1;2 ¼ J 1;2ðtðu; σÞ; uχ=ð1þ uÞÞ
(and the same for J̃ 1;2). Note that Eq. (46) is equivalent
to Eq. (16) from Ref. [16].

IV. DISCUSSION

The high-χ scaling of the mass operator Σðp; FÞ, the
electron propagator Scðp; FÞ and the scattering amplitude
MðχÞ [given in Eqs. (32), (38) and (42)] is determined by

the asymptotic properties of the scalar functions Sn, V
ð1;2Þ
n ,

Tn and An [see Eqs. (33a)–(34e)]. The asymptotic properties
of the one-loop contribution, given by Eqs. (33a)–(33e), was
studied by Narozhny in Ref. [14]. He identified the terms

dominating at χ ≫ 1, namely Vð1;2Þ
0 , while the rest can be

omitted. Here, using similar argumentation, we study the
nontrivial part represented by Eqs. (34a)–(34e).
We start with comparing T1;2, A1;2 [Eqs. (34d), (34e)]

with Vð2Þ
1;2; in particular, with the term that is proportional to

σJ 1;2 [Eq. (34c)]. The integral formation scales in these
expressions are of the same order. At the same time, the

σJ 1;2 term in Vð2Þ
1;2 is enhanced by the factor of χ2=3, while

T1;2 and A1;2 contain only χ1=3. Therefore, we will neglect

the latter two terms against Vð2Þ
1;2.

The functions S1;2 and Vð1Þ
1;2 share similar integral

structure [see Eqs. (34a), (34b)]. Let us estimate the latter.

To this end, we represent J 1;2 as in Eq. (18), so that Vð1Þ
1;2

reads:

Vð1Þ
1;2∼α

Z
∞

0

du
ð1þuÞ3

Z
∞

0

dσ
σ
½e−iΠ1;2ð0;χlÞtðu;σÞ−1�e−iσ3=3−izσ;

ð47Þ

where χl ¼ uχ=ð1þ uÞ is the photon dynamical parameter
(denoted as in Ref. [16]), and we omitted numerical
constants. The integrals are formed at u ∼ ueff ∼ 1 and
σ < σeff ∼ 1. Hence, tðu; σÞ and z, given by Eqs. (28)
and (30), can be estimated as t ∼ σ=m2χ2=3 and
z ∼ −ν=m2χ2=3. Here, by ν ¼ p2 −m2 we denote the
virtuality of the incoming electron. Assuming that χ ≫ 1

andΠ1;2ð0; χÞ ≪ m2χ2=3, we expand the exponent inside the
brackets of Eq. (47) up to the linear term, which gives:

Vð1Þ
1;2 ∼

αΠ1;2ð0; χÞ
m2χ2=3

Z
1

0

dσe−iσ
3=3þiσν=m2χ2=3 : ð48Þ

Note that here χl ∼ ðχlÞeff ∼ χ.6 S1;2 can be estimated
similarly.
Let us now consider the two cases of small and large

values of ν=m2χ2=3, assuming χ ≫ 1. At small virtuality
ν ≪ m2χ2=3, including the on-shell case, we get the

estimate S1;2 ∼ Vð1Þ
1;2 ∼ αΠ1;2ð0; χÞ=m2χ2=3 ≪ α. It means

that S1;2 and Vð1Þ
1;2 are negligible in comparison to Vð2Þ

1;2,
which is enhanced by χ2=3. We, therefore, conclude that the

dominating terms in the amplitudeMðχ ≫ 1Þ are Vð2Þ
n . It is

noteworthy that the two asymptotic contributions to MðχÞ
considered in Ref. [16] originate from this term.
In the opposite case, ν ≫ m2χ2=3, we have S1;2∼

Vð1Þ
1;2 ∼ αΠ1;2ð0; χÞ=ν. While S1;2 can be omitted straightfor-

wardly, we have to be more careful with the functions Vð1Þ
1;2.

In the mass operator Σðp;FÞ and the electron propagator
Scðp; FÞ, they are multiplied by ðγpÞ ∼ ν, hence,

νVð1Þ
1;2 ∼ αΠ1;2ð0; χÞ. Let us compare it with the term propor-

tional to J̃ 1;2=σ in Vð2Þ
1;2 [see Eq. (34c)]. To the same accuracy

as in Eq. (47), we estimate this term as

Ṽð2Þ
1;2 ∼

α

m2

Z
∞

0

du
u2þ 2uþ 2

u2

×
Z

∞

σ0ðuÞ

dσ
σ
Π1;2ð0;χlÞe−iΠ1;2ð0;χlÞtðu;σÞe−iσ3=3−izσ; ð49Þ

where we used Eq. (19) and the fact that J̃ 1;2 effectively
cuts off the σ-integral from below [16]. As in Eq. (47),
the integrand is proportional to Π1;2ð0; χlÞ, but in contrary
the u-integral is formed at u ∼ ueff ∼ 1=χ [16]. The latter

means that Ṽð2Þ
1;2 is enhanced by a factor of χ, hence, larger

than νVð1Þ
1;2.

We conclude that in the nonperturbative regime
αχ2=3 > 1, the asymptotically dominant contribution to
Σðp;FÞ, Scðp;FÞ and MðχÞ is given by the scalar

function Vð2Þ
n ðp2; χÞ. Let us emphasize that such a sit-

uation is specific to the bubble-chain and IBC corrections.

For loop diagrams of other types, the term ðγpÞVð1Þ
n might

also become relevant. For instance, in the asymptotic
studies of the two- and three-loop contributions [14,15],

6The effective scales in Vð1Þ
1;2 are the same as in the term δMðIÞ

in Ref. [16], see Table II therein.
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Narozhny observed that the Vð1Þ
0 term in Σðp;FÞ should

be accounted for in the rainbow-type corrections,
obtained by successive insertions of the one-loop mass
operator as shown in Fig. 4(a). Notably, such corrections
are enhanced only logarithmically (see also Ref. [16] for a
more detailed review). At the same time, for the insertions
of the two-loop bubble-type mass operator as in Fig. 4(b),
the asymptotic behavior of the total correction was

determined by Vð2Þ
n in agreement with our findings.

According to the asymptotic analysis of the one-loop
vertex function Γμ [19,67], the dominating scaling g ¼
αχ2=3 arises from the terms ∝ ðγkÞkμ. However, such
terms do not contribute to scattering amplitudes due to
gauge invariance [19]. Let us now consider a one-loop
correction to a vertex that connects two exact electron
propagators as shown in Fig. 4(c). Note that the mass
correction to the vertex is already taken into account in
the exact propagators. The correction will be enhanced by
a factor of g if the product of dominating terms in the
exact propagator and Γμ survives. However, the asymp-
totically strongest contribution to the electron propagator
is given by the term ∝ ðγF2pÞVð2Þ ¼ −a2ðγkÞðkpÞVð2Þ.
Hence, when the leading terms are multiplied, they vanish
as ðγkÞ2 ¼ 0. Therefore, the vertex correction should be
enhanced by a factor that is asymptotically weaker than g.
This supposition is in favor of the RN conjecture, but
should be substantiated with a full length calculation to
be presented elsewhere.
Finally, let us discuss the implications of the presented

results for the DS equations. The overall tensor and
γ-matrix structure of the photon and electron propagators
in a CCF given in Eqs. (8), (17) and (38), (40),
respectively, also applies to the exact propagators, i.e.,
a self-consistent solution of Eqs. (6) and (35) (see also
Fig. 1). In order to obtain the proper scalar functions
pertaining to such a solution, one should recalculate the
polarization and mass operators with account for the

electron propagator Sc given by Eq. (38). When it is
rewritten in the proper time representation Scðx00; x0Þ as in
Eq. (40), its structure appears to be not much different
from that of Sc0ðx00; x0Þ [Eq. (4)]. Therefore, we suppose
that the calculation of the exact mass operator is feasible
and should generally follow the steps outlined in
Sec. III A. The first part of this supposition also applies
to the exact photon polarization operator. In effect, such a
self-consistent computation to be presented elsewhere
will enclose the system of the DS equations and refor-
mulate them in terms of the scalar functions Π1;2, S, Vð1;2Þ,
T and A. Furthermore, the resulting system can be
simplified at g > 1 by taking into account only the
dominating contributions.

V. CONCLUSIONS

We have considered the improved bubble-chain
electron mass operator in a CCF (see Fig. 3) that
combines the tree-level electron and the exact photon
propagators. The latter accounts for the resummed Dyson
series of 1PI polarization loop insertions. In a CCF the
photon propagator can be expanded over the three trans-
verse tensors multiplied by the invariant scalar functions
of l2 and χl. We kept these functions in general form
during the calculation. To simplify the computations, we
have determined the proper time representation for the
propagators. The resulting expression for the mass
operator is expanded over 5 γ-matrix terms, each multi-
plied by a scalar invariant function of p2 and χ.
As it was shown by Ritus [12], such an overall structure
is fixed by imposing the Lorentz and gauge invariance
and C-symmetry. It allows to derive the corresponding
electron propagator and the elastic scattering amplitude

via the scalar invariant functions Sn, V
ð1;2Þ
n , Tn and An,

which are given explicitly in Eqs. (33a)–(34e).
The asymptotic properties of the IBC electron mass

operator, propagator and scattering amplitude are also
determined by the scalar functions. The dominating
contribution at χ ≫ 1 is provided by Vð2Þ

n . This confirms
the previous findings from the asymptotic studies at the
third-loop level [14,15] and of the bubble-chain scattering
amplitude [16]. The dominance of this particular term
might lead to effective suppression of the vertex
corrections.
The discussed here photon and electron propagator

structures apply also to the DS equations in a CCF. The
presented here calculations can be generalized by replac-
ing the leading order electron propagator with the IBC
one. This will further allow formulating the DS equations
in the bare vertex approximation in terms of the scalar
functions. Furthermore, we hope that our computer-
algebraic scripts [56] will make such a lengthy compu-
tation feasible.

(a) (b)

(c)

FIG. 4. Three-loop corrections to the electron propagator (a,b);
a one-loop correction to the bare vertex connecting two exact
fermion propagators (c).
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APPENDIX: EXACT ELECTRON PROPAGATOR
IN THE PROPER TIME REPRESENTATION

The exact electron propagator in the coordinate repre-
sentation can be calculated from Eq. (38) by applying the
transformation

Scðx00; x0Þ ¼ Λ4−D
Z

dDp
ð2πÞD Epðx00ÞScðp;FÞĒpðx0Þ; ðA1Þ

Let us outline the main steps of the evaluation (for a
detailed derivation see [56]). We start with expanding the
gamma matrix prefactor in the integrand and change the
variables x0, x00 to x ¼ x00 − x0, X ¼ ðx0 þ x00Þ=2, as we did
above. Then we express all the scalar products with p in
terms of the light-cone variables p�;⊥, and perform the
substitutions pþ ¼ ðp2 þ p2⊥Þ=2p−, p− ¼ x−=2s. Next, we
pass to the new integration variables fs; p2; p2⊥g, so that
dDp ¼ ð1=j2sjÞdsdp2dD−2p⊥. We proceed by evaluating
the Gaussian integral over dD−2p⊥ and return to covariant
notation for scalar products. Note that after this step, the
terms proportional to p2 enter the preexponential factor. We
remove these terms using integration by parts in s. Finally,
by collecting the γ-matrix structures, we arrive to Eq. (40),
where the coefficients can be expressed as follows:

Sðs;φÞ ¼
X
ζ¼�

Z
∞

−∞

dp2e−ip
2s

Dζðp2; χÞ
�
Sðp2; χÞ − ζ

i
2
ξφVð1Þðp2; χÞ þ ζAðp2; χÞ

�
; ðA2aÞ

Vð1Þðs;φÞ ¼ −
X
ζ¼�

Z
∞

−∞

dp2e−ip
2s

Dζðp2; χÞV
ð1Þðp2; χÞ; ðA2bÞ

Vð2Þðs;φÞ ¼ m2
X
ζ¼�

Z
∞

−∞

dp2e−ip
2s

Dζðp2; χÞ
�
iζsξφSðp2; χÞ þ s

3
ξ2φ2Vð1Þðp2; χÞ

− 2sVð2Þðp2; χÞ − 4ζsTðp2; χÞ þ isξφAðp2; χÞ

−
iξφ
2m4s

Dζðp2; χÞ
�
Vð1Þðp2; χÞ
Dζðp2; χÞ

�0
χ

�
; ðA2cÞ

T ðs;φÞ ¼ m2
X
ζ¼�

ζ

Z
∞

−∞

dp2e−ip
2s

Dζðp2; χÞ
�
iζsξφSðp2; χÞ

þ
�
s
3
ξ2φ2 − i

D − 3

m2

�
Vð1Þðp2; χÞ − 2sVð2Þðp2; χÞ − 4ζsTðp2; χÞ

þisξφAðp2; χÞ − iξφ
2m4s

Dζðp2; χÞ
�
Vð1Þðp2; χÞ
Dζðp2; χÞ

�0
χ

�
; ðA2dÞ

Aðs;φÞ ¼
X
ζ¼�

ζ

Z
∞

−∞

dp2e−ip
2s

Dζðp2; χÞ
�
Sðp2; χÞ − ζ

i
2
ξφVð1Þðp2; χÞ þ ζAðp2; χÞ

�
; ðA2eÞ

A0ðs;φÞ ¼ −
X
ζ¼�

ζ

Z
∞

−∞

dp2e−ip
2s

Dζðp2; χÞV
ð1Þðp2; χÞ; ðA2fÞ

where χ ¼ ξðkpÞ=m2 ¼ ξφ=2m2s.
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